201
|
Tiburcio PD, Choi H, Huang LE. Complex role of HIF in cancer: the known, the unknown, and the unexpected. HYPOXIA 2014; 2:59-70. [PMID: 27774467 PMCID: PMC5045057 DOI: 10.2147/hp.s50651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor hypoxia has long been recognized as a driving force of malignant progression and therapeutic resistance. The discovery of hypoxia-inducible transcription factors (HIFs) has greatly advanced our understanding of how cancer cells cope with hypoxic stress by maintaining bioenergetics through the stimulation of glycolysis. Until recently, however, it remained perplexing why proliferative cancer cells opt for aerobic glycolysis, an energy-inefficient process of glucose metabolism. Furthermore, the role of HIF in cancer has also become complex. In this review, we highlight recent groundbreaking findings in cancer metabolism, put forward plausible explanations to the complex role of HIF, and underscore remaining issues in cancer biology.
Collapse
Affiliation(s)
- Patricia Denise Tiburcio
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Hyunsung Choi
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - L Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
202
|
A TRIP230-retinoblastoma protein complex regulates hypoxia-inducible factor-1α-mediated transcription and cancer cell invasion. PLoS One 2014; 9:e99214. [PMID: 24919196 PMCID: PMC4053355 DOI: 10.1371/journal.pone.0099214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
Localized hypoxia in solid tumors activates transcriptional programs that promote the metastatic transformation of cells. Like hypoxia-inducible hyper-vascularization, loss of the retinoblastoma protein (Rb) is a trait common to advanced stages of tumor progression in many metastatic cancers. However, no link between the role of Rb and hypoxia-driven metastatic processes has been established. We demonstrated that Rb is a key mediator of the hypoxic response mediated by HIF1α/β, the master regulator of the hypoxia response, and its essential co-activator, the thyroid hormone receptor/retinoblastoma-interacting protein (TRIP230). Furthermore, loss of Rb unmasks the full co-activation potential of TRIP230. Using small inhibitory RNA approaches in vivo, we established that Rb attenuates the normal physiological response to hypoxia by HIF1α. Notably, loss of Rb results in hypoxia-dependent biochemical changes that promote acquisition of an invasive phenotype in MCF7 breast cancer cells. In addition, Rb is present in HIF1α-ARNT/HIF1β transcriptional complexes associated with TRIP230 as determined by co-immuno-precipitation, GST-pull-down and ChIP assays. These results demonstrate that Rb is a negative modulator of hypoxia-regulated transcription by virtue of its direct effects on the HIF1 complex. This work represents the first link between the functional ablation of Rb in tumor cells and HIF1α-dependent transcriptional activation and invasion.
Collapse
|
203
|
Kim YJ, Cho HJ, Shin WC, Song HA, Yoon JH, Kim CH. Hypoxia-mediated mechanism of MUC5AC production in human nasal epithelia and its implication in rhinosinusitis. PLoS One 2014; 9:e98136. [PMID: 24840724 PMCID: PMC4026485 DOI: 10.1371/journal.pone.0098136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 04/29/2014] [Indexed: 11/23/2022] Open
Abstract
Background Excessive mucus production is typical in various upper airway diseases. In sinusitis, the expression of MUC5AC, a major respiratory mucin gene, increases. However, the mechanisms leading to mucus hypersecretion in sinusitis have not been characterized. Hypoxia due to occlusion of the sinus ostium is one of the major pathologic mechanisms of sinusitis, but there have been no reports regarding the mechanism of hypoxia-induced mucus hypersecretion. Methods and Findings This study aims to identify whether hypoxia may induce mucus hypersecretion and elucidate its mechanism. Normal human nasal epithelial (NHNE) cells and human lung mucoepidermoid carcinoma cell line (NCI-H292) were used. Sinus mucosa from patients was also tested. Anoxic condition was in an anaerobic chamber with a 95% N2/5% CO2 atmosphere. The regulatory mechanism of MUC5AC by anoxia was investigated using RT-PCR, real-time PCR, western blot, ChIP, electrophoretic mobility shift, and luciferase assay. We show that levels of MUC5AC mRNA and the corresponding secreted protein increase in anoxic cultured NHNE cells. The major transcription factor for hypoxia-related signaling, HIF-1α, is induced during hypoxia, and transfection of a mammalian expression vector encoding HIF-1α results in increased MUC5AC mRNA levels under normoxic conditions. Moreover, hypoxia-induced expression of MUC5AC mRNA is down-regulated by transfected HIF-1α siRNA. We found increased MUC5AC promoter activity under anoxic conditions, as indicated by a luciferase reporter assay, and mutation of the putative hypoxia-response element in MUC5AC promoter attenuated this activity. Binding of over-expressed HIF-1α to the hypoxia-response element in the MUC5AC promoter was confirmed. In human sinusitis mucosa, which is supposed to be hypoxic, expression of MUC5AC and HIF-1α is higher than in control mucosa. Conclusion The results indicate that anoxia up-regulates MUC5AC by the HIF-1α signaling pathway in human nasal epithelia and suggest that hypoxia might be a pathogenic mechanism of mucus hypersecretion in sinusitis.
Collapse
Affiliation(s)
- Yoon-Ju Kim
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | - Hyun-Ah Song
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
204
|
The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239356. [PMID: 24895555 PMCID: PMC4034436 DOI: 10.1155/2014/239356] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/23/2014] [Accepted: 02/16/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs). PHD inhibitors (PHIs) activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF), are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.
Collapse
|
205
|
Asuthkar S, Gogineni VR, Rao JS, Velpula KK. Nuclear Translocation of Hand-1 Acts as a Molecular Switch to Regulate Vascular Radiosensitivity in Medulloblastoma Tumors: The Protein uPAR Is a Cytoplasmic Sequestration Factor for Hand-1. Mol Cancer Ther 2014; 13:1309-22. [DOI: 10.1158/1535-7163.mct-13-0892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
206
|
Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle. J Physiol Biochem 2014; 70:569-81. [PMID: 24604252 DOI: 10.1007/s13105-014-0328-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/20/2014] [Indexed: 01/18/2023]
Abstract
Recent studies have given us a clue as to how modulations of both metabolic pathways and cyclins by the ubiquitin system influence cell cycle progression. Among these metabolic modulations, an aerobic glycolysis and glutaminolysis represent an initial step for metabolic machinery adaptation. The enzymes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and glutaminase-1 (GLS1) maintain a high abundance in glycolytic intermediates (for synthesis of non-essential amino acids, the use of ribose for the synthesis of nucleotides and hexosamine biosynthesis), as well as tricarboxylic acid cycle intermediates (replenishing the loss of mitochondrial citrate), respectively. On the one hand, regulation of these key metabolic enzymes by ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/cullin/F-box (SCF) has revealed the importance of anaplerosis by both glycolysis and glutaminolysis to overcome the restriction point of the G1 phase by maintaining high levels of glycolytic and glutaminolytic intermediates. On the other hand, only glutaminolytic intermediates are necessary to drive cell growth through the S and G2 phases of the cell cycle. It is interesting to appreciate how this reorganization of the metabolic machinery, which has been observed beyond cellular proliferation, is a crucial determinant of a cell's decision to proliferate. Here, we explore a unifying view of interactions between the ubiquitin system, metabolic activity, and cyclin-dependent kinase complexes activity during the cell cycle.
Collapse
|
207
|
Shah YM, Xie L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 2014; 146:630-42. [PMID: 24389303 PMCID: PMC3943938 DOI: 10.1053/j.gastro.2013.12.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022]
Abstract
Iron is required for efficient oxygen transport, and hypoxia signaling links erythropoiesis with iron homeostasis. Hypoxia induces a highly conserved signaling pathway in cells under conditions of low levels of O2. One component of this pathway, hypoxia-inducible factor (HIF), is a transcription factor that is highly active in hypoxic cells. The first HIF target gene characterized was EPO, which encodes erythropoietin-a glycoprotein hormone that controls erythropoiesis. In the past decade, there have been fundamental advances in our understanding of how hypoxia regulates iron levels to support erythropoiesis and maintain systemic iron homeostasis. We review the cell type-specific effects of hypoxia and HIFs in adaptive response to changes in oxygen and iron availability as well as potential uses of HIF modulators for patients with iron-related disorders.
Collapse
Affiliation(s)
- Yatrik M. Shah
- Department of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, To whom correspondence should be addressed. Tel: +1 734 6150567; Fax: +1 734 9368813;
| | - Liwei Xie
- Department of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
208
|
Robinson CM, Ohh M. The multifaceted von Hippel-Lindau tumour suppressor protein. FEBS Lett 2014; 588:2704-11. [PMID: 24583008 DOI: 10.1016/j.febslet.2014.02.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/26/2022]
Abstract
Loss of von Hippel-Lindau protein (pVHL) is known to contribute to the initiation and progression of tumours associated with VHL disease as well as certain sporadic tumours including clear cell renal cell carcinoma (ccRCC). The VHL gene was first identified and cloned over 20 years ago and our understanding of its functions and effects has significantly increased since then. The best-known function of pVHL is its role in promoting the degradation of hypoxia-inducible factor α subunit (HIFα) as part of an E3 ubiquitin ligase complex. HIF stabilisation and transcriptional activation are also associated with various epigenetic alterations, indicating a potential role for VHL loss with changes in the epigenome. This review will highlight current knowledge regarding pVHL as well as discuss potentially novel roles of pVHL and how these may impact on cancer progression.
Collapse
Affiliation(s)
- Claire M Robinson
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
209
|
Wang E, Zhang C, Polavaram N, Liu F, Wu G, Schroeder MA, Lau JS, Mukhopadhyay D, Jiang SW, O'Neill BP, Datta K, Li J. The role of factor inhibiting HIF (FIH-1) in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme. PLoS One 2014; 9:e86102. [PMID: 24465898 PMCID: PMC3900478 DOI: 10.1371/journal.pone.0086102] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/04/2013] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1), which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.
Collapse
Affiliation(s)
- Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Chunyang Zhang
- Department of Neuro-Surgery, the First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Navatha Polavaram
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fengming Liu
- Department of Research and Development, Guangxi Medicinal Botanical Institute, Nanning, Guangxi, China
| | - Gang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Mark A. Schroeder
- Department of Radiation Oncology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Julie S. Lau
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Savannah, Georgia, United States of America
| | - Brian Patrick O'Neill
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (KD); (JL)
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Savannah, Georgia, United States of America
- * E-mail: (KD); (JL)
| |
Collapse
|
210
|
Luo DJ, Wu JH. Roles of HIF-1 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:1-8. [DOI: 10.11569/wcjd.v22.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia inducible factor-1 (HIF-1) is a key regulator of the cellular response to hypoxia. Since cell growth is out of control in hepatocellular carcinoma (HCC), HIF-1 activity is significantly enhanced in HCC to help cells adapt to the hypoxic microenvironment. HIF-1 plays a critical role in the occurrence and development of HCC through activating the target genes that participate in the regulation of cell proliferation and apoptosis, energy metabolism, angiogenesis, invasion and metastasis, resistance to chemotherapy and radiotherapy. Given the specific expression and regulation of HIF-1 in HCC growth, HIF-1 may become a new target for drug therapy and gene therapy, which provides a new avenue for neoadjuvant therapy of HCC in the future.
Collapse
|
211
|
Geng X, Feng J, Liu S, Wang Y, Arias C, Liu Z. Transcriptional regulation of hypoxia inducible factors alpha (HIF-α) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2013; 169:38-50. [PMID: 24384398 DOI: 10.1016/j.cbpb.2013.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022]
Abstract
Hypoxia inducible factors (HIFs) are considered to be the master switch of oxygen-dependent gene expression with mammalian species. In most cases, regulation of HIF has been believed at posttranslational levels. However, little is known of HIF regulation in channel catfish, a species highly tolerant to low oxygen condition. Here we report the identification and characterization of HIF-1α, HIF-2αa, HIF-2αb, HIF-3α, and FIH-1 genes, and their mRNA expression under hypoxia conditions. The transcripts of the five genes were found to be regulated temporally and spatially after low oxygen challenge, suggesting regulation of HIF-α genes at pre-translational levels. In most tissues, the HIF-α mRNAs were down-regulated 1.5h but up-regulated 5h after hypoxia treatment. Of these HIF-α mRNAs, the expression of HIF-3α mRNA was induced in the most dramatic fashion, both in the speed of induction and the extent of induction, compared to HIF-1α and HIF-2α genes, suggesting its importance in responses to hypoxia.
Collapse
Affiliation(s)
- Xin Geng
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yaping Wang
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Covadonga Arias
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
212
|
Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70:3989-4008. [PMID: 23307074 PMCID: PMC11113169 DOI: 10.1007/s00018-012-1254-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
- Present Address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Christopher B. Marshall
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
213
|
Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013; 8:e77859. [PMID: 24205000 PMCID: PMC3808424 DOI: 10.1371/journal.pone.0077859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
While the effects of hypoxia on gene expression have been investigated in the CNS to some extent, we currently do not know what role epigenetics plays in the transcription of many genes during such hypoxic stress. To start understanding the role of epigenetic changes during hypoxia, we investigated the long-term effect of hypoxia on gene expression and DNA methylation in hippocampal neuronal cells. Primary murine hippocampal neuronal cells were cultured for 7 days. Hypoxic stress of 1% O2, 5% CO2 for 24 hours was applied on Day 3, conditions we found to maximize cellular hypoxic stress response without inducing cell death. Cells were returned to normoxia for 4 days following the period of hypoxic stress. On Day 7, Methyl-Sensitive Cut Counting (MSCC) was used to identify a genome-wide methylation profile of the hippocampal cell lines to assess methylation changes resulting from hypoxia. RNA-Seq was also done on Day 7 to analyze changes in gene transcription. Phenotypic analysis showed that neuronal processes were significantly shorter after 1 day of hypoxia, but there was a catch-up growth of these processes after return to normoxia. Transcriptome profiling using RNA-Seq revealed 369 differentially expressed genes with 225 being upregulated, many of which form networks shown to affect CNS development and function. Importantly, the expression level of 59 genes could be correlated to the changes in DNA methylation in their promoter regions. CpG islands, in particular, had a strong tendency to remain hypomethylated long after hypoxic stress was removed. From this study, we conclude that short-term, sub-lethal hypoxia results in long-lasting changes to genome wide DNA methylation status and that some of these changes can be highly correlated with transcriptional modulation in a number of genes involved in functional pathways that have been previously implicated in neural growth and development.
Collapse
|
214
|
Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:333-54. [PMID: 24139944 DOI: 10.1016/j.pbiomolbio.2013.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials.
Collapse
|
215
|
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2013; 49:1-15. [PMID: 24099156 DOI: 10.3109/10409238.2013.838205] [Citation(s) in RCA: 572] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their posttranslational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia.
Collapse
Affiliation(s)
- Veronica L Dengler
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Matthew Galbraith
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| |
Collapse
|
216
|
Place TL, Domann FE. Prolyl-hydroxylase 3: Evolving Roles for an Ancient Signaling Protein. HYPOXIA 2013; 2013:13-17. [PMID: 24672806 PMCID: PMC3963164 DOI: 10.2147/hp.s50091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability of cells to sense oxygen is a highly evolved process that facilitates adaptations to the local oxygen environment and is critical to energy homeostasis. In vertebrates, this process is largely controlled by three intracellular prolyl-4-hydroxylases (PHD) 1–3. These related enzymes share the ability to hydroxylate the hypoxia-inducible transcription factor (HIF), and therefore control the transcription of genes involved in metabolism and vascular recruitment. However, it is becoming increasingly apparent that PHD controls much more than HIF signaling, with PHD3 emerging as an exceptionally unique and functionally diverse PHD isoform. In fact, PHD3-mediated hydroxylation has recently been purported to function in such diverse roles as sympathetic neuronal and muscle development, sepsis, glycolytic metabolism, and cell fate. PHD3 expression is also highly distinct from that of the other PHD enzymes, and varies considerably between different cell types and oxygen concentrations. This review will examine the evolution of oxygen sensing by the HIF family of PHD enzymes, with a specific focus on the complex nature of PHD3 expression and function in mammalian cells.
Collapse
Affiliation(s)
- Trenton L Place
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, Iowa, USA
| | - Frederick E Domann
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, Iowa, USA ; Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
217
|
Pawlus MR, Hu CJ. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal 2013; 25:1895-903. [PMID: 23707522 PMCID: PMC3700616 DOI: 10.1016/j.cellsig.2013.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2α/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactorial enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 requires distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity.
Collapse
Affiliation(s)
- Matthew R. Pawlus
- Molecular Biology Graduate Program University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cheng-Jun Hu
- Molecular Biology Graduate Program University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Craniofacial Biology University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
218
|
Walton CB, Ecker J, Anderson CD, Outten JT, Allison RZ, Shohet RV. Cardiac angiogenesis directed by stable Hypoxia Inducible Factor-1. Vasc Cell 2013; 5:15. [PMID: 23987100 PMCID: PMC3766207 DOI: 10.1186/2045-824x-5-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Background The heterodimeric, oxygen-sensitive transcription factor Hypoxia Inducible Factor-1 (HIF-1) orchestrates angiogenesis and plays a key role in the response to ischemia and the growth of cancers. Methods We developed a transgenic mouse line in which expression of an oxygen-stable HIF-1α construct was controlled by a tetracycline-responsive promoter. HIF-1α expression was induced for up to 28 days in adult mouse heart, resulting in angiogenesis and progressive ventricular dysfunction. Results Gross inspection demonstrated enlarged hearts with large epicardial vessels with prominent side branches. Perfusion curves obtained by ultrasound contrast analysis demonstrated a significant increase in the myocardial red cell volume after 28 days of HIF-1α expression. Corrosion casts of cardiac vessels were made with a new low-viscosity resin that can fill the vasculature down to the level of the capillaries. Scanning electron microscopy of these casts reveal "lakes" of capillaries forming off of larger vessels after HIF expression, and support the rapid formation of mature neovascularization. Pro-angiogenic factors DLL-4, Notch-1, and PDGF-β, were evaluated by immunohistochemistry and Western blots, and support a pattern of progressive functional neoangiogenesis. Conclusions This study demonstrates the structural characteristics of HIF-directed angiogenesis and supports the utility of manipulation of HIF signaling to enhance perfusion and treat ischemia.
Collapse
Affiliation(s)
- Chad B Walton
- Department of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | | | | | | | | | | |
Collapse
|
219
|
Lee SJ, No YR, Dang DT, Dang LH, Yang VW, Shim H, Yun CC. Regulation of hypoxia-inducible factor 1α (HIF-1α) by lysophosphatidic acid is dependent on interplay between p53 and Krüppel-like factor 5. J Biol Chem 2013; 288:25244-25253. [PMID: 23880760 DOI: 10.1074/jbc.m113.489708] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) and p53 are pivotal regulators of tumor growth. Lysophosphatidic acid (LPA) is a lipid mediator that functions as a mitogen by acting through LPA receptors. We have shown previously that LPA stimulates HIF-1α expression in colon cancer cells. To determine the mechanism of HIF-1α induction by LPA, we compared the effect of LPA on HIF-1α in several colon cancer cell lines. LPA transcriptionally induced HIF-1α in colon cancer cells. HIF-1α induction was observed in cells expressing WT p53, where LPA decreased p53 expression. However, LPA failed to induce HIF-1α when the p53 gene was mutated. A decrease in p53 expression was dependent on induction of p53-specific E3 ubiquitin ligase Mdm2 by LPA. Krüppel-like factor 5 (KLF5) is an effector of LPA-induced proliferation of colon cancer cells. Because HIF-1α was necessary for LPA-induced growth of colon cancer cells, we determined the relationship between KLF5 and HIF-1α by a loss-of-function approach. Silencing of KLF5 inhibited LPA-induced HIF-1α induction, suggesting that KLF5 is an upstream regulator of HIF-1α. KLF5 and p53 binding to the Hif1α promoter was assessed by ChIP assay. LPA increased the occupancy of the Hif1α promoter by KLF5, while decreasing p53 binding. Transfection of HCT116 cells with KLF5 or p53 attenuated the binding of the other transcription factor. These results identify KLF5 as a transactivator of HIF-1α and show that LPA regulates HIF-1α by dynamically modulating its interaction with KLF5 and p53.
Collapse
Affiliation(s)
- Sei-Jung Lee
- From the Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - Yi Ran No
- From the Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - Duyen T Dang
- the Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Long H Dang
- the Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida 32610
| | - Vincent W Yang
- the Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York 11794
| | - Hyunsuk Shim
- the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, and; the Department of Radiology, Emory University, Atlanta, Georgia 30322
| | - C Chris Yun
- From the Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322,; the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, and.
| |
Collapse
|
220
|
Hsu CC, Wang CH, Wu LC, Hsia CY, Chi CW, Yin PH, Chang CJ, Sung MT, Wei YH, Lu SH, Lee HC. Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells. Biochim Biophys Acta Gen Subj 2013; 1830:4743-51. [PMID: 23791554 DOI: 10.1016/j.bbagen.2013.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/09/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hypoxia-inducible factor-1α (HIF-1α) is an important transcription factor that modulates cellular responses to hypoxia and also plays critical roles in cancer progression. Recently, somatic mutations and decreased copy number of mitochondrial DNA (mtDNA) were detected in hepatocellular carcinoma (HCC). These mutations were shown to have the potential to cause mitochondrial dysfunction. However, the effects and mechanisms of mitochondrial dysfunction on HIF-1α function are not fully understood. This study aims to explore the underlying mechanism by which mitochondrial dysfunction regulates HIF-1α expression. METHODS Human hepatoma HepG2 cells were treated with various mitochondrial respiration inhibitors and an uncoupler, respectively, and the mRNA and protein expressions as well as transactivation activity of HIF-1α were determined. The role of AMP-activated protein kinase (AMPK) was further analyzed by compound C and AMPK knock-down. RESULTS Treatments of mitochondrial inhibitors and an uncoupler respectively reduced both the protein level and transactivation activity of HIF-1α in HepG2 cells under normoxia or hypoxia. The mitochondrial dysfunction-repressed HIF-1α protein synthesis was associated with decreased phosphorylations of p70(S6K) and 4E-BP-1. Moreover, mitochondrial dysfunction decreased intracellular ATP content and elevated the phosphorylation of AMPK. Treatments with compound C, an AMPK inhibitor, and knock-down of AMPK partially rescued the mitochondrial dysfunction-repressed HIF-1α expression. CONCLUSIONS Mitochondrial dysfunctions resulted in reduced HIF-1α protein synthesis through AMPK-dependent manner in HepG2 cells. GENERAL SIGNIFICANCE Our results provided a mechanism for communication from mitochondria to the nucleus through AMPK-HIF-1α. Mitochondrial function is important for HIF-1α expression in cancer progression.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department and Institute of Pharmacology, National Yang-Ming University, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Cuvillier O, Ader I, Bouquerel P, Brizuela L, Gstalder C, Malavaud B. Hypoxia, therapeutic resistance, and sphingosine 1-phosphate. Adv Cancer Res 2013; 117:117-41. [PMID: 23290779 DOI: 10.1016/b978-0-12-394274-6.00005-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway-which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis-as a new regulator of HIF-1 or HIF-2 activity. In this review, we will focus on how the inhibition/neutralization of the SphK1/S1P signaling could be exploited for cancer therapy.
Collapse
Affiliation(s)
- Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France; Université de Toulouse, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
222
|
Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol Cell Biol 2013; 33:2718-31. [PMID: 23671189 DOI: 10.1128/mcb.01254-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in the progression of glioblastoma multiforme tumors, which are characterized by their effective immune escape mechanisms. As major histocompatibility complex class I (MHC-I) is involved in glioma immune evasion and since HIF-1α is a pivotal link between inflammation and glioma progression, the role of tumor necrosis factor alpha (TNF-α)-induced inflammation in MHC-I gene regulation was investigated. A TNF-α-induced increase in MHC-I expression and transcriptional activation was concurrent with increased HIF-1α, ΝF-κΒ, and β-catenin activities. While knockdown of HIF-1α and β-catenin abrogated TNF-α-induced MHC-I activation, NF-κB had no effect. β-Catenin inhibition abrogated HIF-1α activation and vice versa, and this HIF-1α-β-catenin axis positively regulated CREB phosphorylation. Increased CREB activation was accompanied by its increased association with β-catenin and CBP. Chromatin immunoprecipitation revealed increased CREB enrichment at CRE/site α on the MHC-I promoter in a β-catenin-dependent manner. β-Catenin replaced human Brahma (hBrm) with Brg1 as the binding partner for CREB at the CRE site. The hBrm-to-Brg1 switch is crucial for MHC-I regulation, as ATPase-deficient Brg1 abolished TNF-α-induced MHC-I expression. β-Catenin also increased the association of MHC-I enhanceosome components RFX5 and NF-YB at the SXY module. CREB acts as a platform for assembling coactivators and chromatin remodelers required for MHC-I activation in a HIF-1α/β-catenin-dependent manner.
Collapse
|
223
|
STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene 2013; 33:1670-9. [PMID: 23604114 DOI: 10.1038/onc.2013.115] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/19/2013] [Accepted: 02/13/2013] [Indexed: 12/26/2022]
Abstract
Solid tumors often exhibit simultaneously inflammatory and hypoxic microenvironments. The 'signal transducer and activator of transcription-3' (STAT3)-mediated inflammatory response and the hypoxia-inducible factor (HIF)-mediated hypoxia response have been independently shown to promote tumorigenesis through the activation of HIF or STAT3 target genes and to be indicative of a poor prognosis in a variety of tumors. We report here for the first time that STAT3 is involved in the HIF1, but not HIF2-mediated hypoxic transcriptional response. We show that inhibiting STAT3 activity in MDA-MB-231 and RCC4 cells by a STAT3 inhibitor or STAT3 small interfering RNA significantly reduces the levels of HIF1, but not HIF2 target genes in spite of normal levels of hypoxia-inducible transcription factor 1α (HIF1α) and HIF2α protein. Mechanistically, STAT3 activates HIF1 target genes by binding to HIF1 target gene promoters, interacting with HIF1α protein and recruiting coactivators CREB binding protein (CBP) and p300, and RNA polymerase II (Pol II) to form enhanceosome complexes that contain HIF1α, STAT3, CBP, p300 and RNA Pol II on HIF1 target gene promoters. Functionally, the effect of STAT3 knockdown on proliferation, motility and clonogenic survival of tumor cells in vitro is phenocopied by HIF1α knockdown in hypoxic cells, whereas STAT3 knockdown in normoxic cells also reduces cell proliferation, motility and clonogenic survival. This indicates that STAT3 works with HIF1 to activate HIF1 target genes and to drive HIF1-depedent tumorigenesis under hypoxic conditions, but also has HIF-independent activity in normoxic and hypoxic cells. Identifying the role of STAT3 in the hypoxia response provides further data supporting the effectiveness of STAT3 inhibitors in solid tumor treatment owing to their usefulness in inhibiting both the STAT3 and HIF1 pro-tumorigenic signaling pathways in some cancer types.
Collapse
|
224
|
Na YR, Han KC, Park H, Yang EG. Menadione and ethacrynic acid inhibit the hypoxia-inducible factor (HIF) pathway by disrupting HIF-1α interaction with p300. Biochem Biophys Res Commun 2013; 434:879-84. [PMID: 23618863 DOI: 10.1016/j.bbrc.2013.04.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 01/16/2023]
Abstract
Hypoxia is a general characteristic of most solid malignancies and intimately related to neoplastic diseases and cancer progression. Homeostatic response to hypoxia is primarily mediated by hypoxia inducible factor (HIF)-1α that elicits transcriptional activity through recruitment of the CREB binding protein (CBP)/p300 coactivator. Targeted blockade of HIF-1α binding to CBP/p300 would thus constitute a novel approach for cancer treatment by suppressing tumor angiogenesis and metastasis. Here, we identified inhibitors against the interaction between HIF-1α and p300 by a fluorescence polarization-based assay employing a fluorescently-labeled peptide containing the C-terminal activation domain of HIF-1α. Two small molecule inhibitors, menadione (MD) and ethacrynic acid (EA), were found to decrease expression of luciferase under the control of hypoxia-responsive elements in hypoxic cells as well as to efficiently block the interaction between the full-length HIF-1α and p300. While these compounds did not alter the expression level of HIF-1α, they down-regulated expression of a HIF-1α target vascular endothelial growth factor (VEGF) gene. Considering hypoxia-induced VEGF expression leading to highly aggressive tumor growth, MD and EA may provide new scaffolds for development of tumor therapeutic reagents as well as tools for a better understanding of HIF-1α-mediated hypoxic regulation.
Collapse
Affiliation(s)
- Yu-Ran Na
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | | | | | | |
Collapse
|
225
|
Samarajeewa NU, Yang F, Docanto MM, Sakurai M, McNamara KM, Sasano H, Fox SB, Simpson ER, Brown KA. HIF-1α stimulates aromatase expression driven by prostaglandin E2 in breast adipose stroma. Breast Cancer Res 2013; 15:R30. [PMID: 23566437 PMCID: PMC3672802 DOI: 10.1186/bcr3410] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/24/2013] [Accepted: 04/03/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The majority of postmenopausal breast cancers are estrogen-dependent. Tumor-derived factors, such as prostaglandin E2 (PGE2), stimulate CREB1 binding to cAMP response elements (CREs) on aromatase promoter II (PII), leading to the increased expression of aromatase and biosynthesis of estrogens within human breast adipose stromal cells (ASCs). Hypoxia inducible factor-1α (HIF-1α), a key mediator of cellular adaptation to low oxygen levels, is emerging as a novel prognostic marker in breast cancer. We have identified the presence of a consensus HIF-1α binding motif overlapping with the proximal CRE of aromatase PII. However, the regulation of aromatase expression by HIF-1α in breast cancer has not been characterized. This study aimed to characterize the role of HIF-1α in the activation of aromatase PII. METHODS HIF-1α expression and localization were examined in human breast ASCs using quantitative PCR (QPCR), Western blotting, immunofluorescence and high content screening. QPCR and tritiated water-release assays were performed to assess the effect of HIF-1α on aromatase expression and activity. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of HIF-1α on PII activity and binding. Treatments included PGE2 or DMOG ((dimethyloxalglycine), HIF-1α stabilizer). Double immunohistochemistry for HIF-1α and aromatase was performed on tissues obtained from breast cancer and cancer-free patients. RESULTS Results indicate that PGE2 increases HIF-1α transcript and protein expression, nuclear localization and binding to aromatase PII in human breast ASCs. Results also demonstrate that HIF-1α significantly increases PII activity, and aromatase transcript expression and activity, in the presence of DMOG and/or PGE2, and that HIF-1α and CREB1 act co-operatively on PII. There is a significant increase in HIF-1α positive ASCs in breast cancer patients compared to cancer-free women, and a positive association between HIF-1α and aromatase expression. CONCLUSIONS This study is the first to identify HIF-1α as a modulator of PII-driven aromatase expression in human breast tumor-associated stroma and provides a novel mechanism for estrogen regulation in obesity-related, post-menopausal breast cancer. Together with our on-going studies on the role of AMP-activated protein kinase (AMPK) in the regulation of breast aromatase, this work provides another link between disregulated metabolism and breast cancer.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Aromatase/genetics
- Aromatase/metabolism
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Chromatin Immunoprecipitation
- Dinoprostone/pharmacology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoenzyme Techniques
- Oxytocics/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Nirukshi U Samarajeewa
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Physiology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Fangyuan Yang
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Maria M Docanto
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Minako Sakurai
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Keely M McNamara
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
- Department of Pathology, Melbourne University, Parkville, VIC 3010, Australia
| | - Evan R Simpson
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Kristy A Brown
- Prince Henry's Institute, Block E Level 4, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
- Department of Physiology, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
226
|
Abstract
During the past century, few proteins have matched erythropoietin (Epo) in capturing the imagination of physiologists, molecular biologists, and, more recently, physicians and patients. Its appeal rests on its commanding role as the premier erythroid cytokine, the elegant mechanism underlying the regulation of its gene, and its remarkable impact as a therapeutic agent, arguably the most successful drug spawned by the revolution in recombinant DNA technology. This concise review will begin with a synopsis of the colorful history of this protein, culminating in its purification and molecular cloning. It then covers in more detail the contemporary understanding of Epo's physiology as well as its structure and interaction with its receptor. A major part of this article focuses on the regulation of the Epo gene and the discovery of HIF, a transcription factor that plays a cardinal role in molecular adaptation to hypoxia. In the concluding section, a synopsis of Epo's role in disorders of red blood cell production will be followed by an assessment of the remarkable impact of Epo therapy in the treatment of anemias, as well as concerns that provide a strong impetus for the development of even safer and more effective treatment.
Collapse
Affiliation(s)
- H Franklin Bunn
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
227
|
Luo W, Chang R, Zhong J, Pandey A, Semenza GL. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci U S A 2012; 109:E3367-76. [PMID: 23129632 PMCID: PMC3523832 DOI: 10.1073/pnas.1217394109] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that play key roles in breast cancer biology. We hypothesized that interaction of HIF-1 with epigenetic regulators may increase HIF-1 transcriptional activity, and thereby promote breast cancer progression. We report that the histone demethylase jumonji domain containing protein 2C (JMJD2C) selectively interacts with HIF-1α, but not HIF-2α, and that HIF-1α mediates recruitment of JMJD2C to the hypoxia response elements of HIF-1 target genes. JMJD2C decreases trimethylation of histone H3 at lysine 9, and enhances HIF-1 binding to hypoxia response elements, thereby activating transcription of BNIP3, LDHA, PDK1, and SLC2A1, which encode proteins that are required for metabolic reprogramming, as well as LOXL2 and L1CAM, which encode proteins that are required for lung metastasis. JMJD2C expression is significantly associated with expression of GLUT1, LDHA, PDK1, LOX, LOXL2, and L1CAM mRNA in human breast cancer biopsies. JMJD2C knockdown inhibits breast tumor growth and spontaneous metastasis to the lungs of mice following mammary fat pad injection. Taken together, these findings establish an important epigenetic mechanism that stimulates HIF-1-mediated transactivation of genes encoding proteins involved in metabolic reprogramming and lung metastasis in breast cancer.
Collapse
Affiliation(s)
- Weibo Luo
- Vascular Program, Institute for Cell Engineering
- Departments of Biological Chemistry
| | - Ryan Chang
- Vascular Program, Institute for Cell Engineering
| | | | - Akhilesh Pandey
- Departments of Biological Chemistry
- Oncology
- Pathology
- McKusick–Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering
- Departments of Biological Chemistry
- Oncology
- Pediatrics
- Medicine, and
- Radiation Oncology, and
- McKusick–Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
228
|
Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia. Mol Cell Biol 2012; 32:4595-610. [PMID: 22966206 DOI: 10.1128/mcb.00724-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the functions of hypoxia-inducible factor 1α (HIF1α)/aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF2α/ARNT (HIF2) proteins in activating hypoxia-inducible genes are well established, the role of other transcription factors in the hypoxic transcriptional response is less clear. We report here for the first time that the basic helix-loop-helix-leucine-zip transcription factor upstream stimulatory factor 2 (USF2) is required for the hypoxic transcriptional response, specifically, for hypoxic activation of HIF2 target genes. We show that inhibiting USF2 activity greatly reduces hypoxic induction of HIF2 target genes in cell lines that have USF2 activity, while inducing USF2 activity in cells lacking USF2 activity restores hypoxic induction of HIF2 target genes. Mechanistically, USF2 activates HIF2 target genes by binding to HIF2 target gene promoters, interacting with HIF2α protein, and recruiting coactivators CBP and p300 to form enhanceosome complexes that contain HIF2α, USF2, CBP, p300, and RNA polymerase II on HIF2 target gene promoters. Functionally, the effect of USF2 knockdown on proliferation, motility, and clonogenic survival of HIF2-dependent tumor cells in vitro is phenocopied by HIF2α knockdown, indicating that USF2 works with HIF2 to activate HIF2 target genes and to drive HIF2-depedent tumorigenesis.
Collapse
|
229
|
Bratton MR, Frigo DE, Segar HC, Nephew KP, McLachlan JA, Wiese TE, Burow ME. The organochlorine o,p'-DDT plays a role in coactivator-mediated MAPK crosstalk in MCF-7 breast cancer cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1291-6. [PMID: 22609851 PMCID: PMC3440107 DOI: 10.1289/ehp.1104296] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 05/18/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The organochlorine dichlorodiphenyltrichloroethane (DDT), a known estrogen mimic and endocrine disruptor, has been linked to animal and human disorders. However, the detailed mechanism(s) by which DDT affects cellular physiology remains incompletely defined. OBJECTIVES We and others have shown that DDT activates cell-signaling cascades, culminating in the activation of estrogen receptor-dependent and -independent gene expression. Here, we identify a mechanism by which DDT alters cellular signaling and gene expression, independent of the estrogen receptor. METHODS We performed quantitative polymerase chain reaction array analysis of gene expression in MCF-7 breast cancer cells using either estradiol (E₂) or o,p´-DDT to identify distinct cellular gene expression responses. To elucidate the mechanisms by which DDT regulates cell signaling, we used molecular and pharmacological techniques. RESULTS E₂ and DDT treatment both altered the expression of many of the genes assayed, but up-regulation of vascular endothelial growth factor A (VEGFA) was observed only after DDT treatment, and this increase was not affected by the pure estrogen receptor α antagonist ICI 182780. Furthermore, DDT increased activation of the HIF-1 response element (HRE), a known enhancer of the VEGFA gene. This DDT-mediated increase in HRE activity was augmented by the coactivator CBP (CREB-binding protein) and was dependent on the p38 pathway. CONCLUSIONS DDT up-regulated the expression of several genes in MCF-7 breast cancer cells that were not altered by treatment with E₂, including VEGFA. We propose that this DDT-initiated, ER-independent stimulation of gene expression is due to DDT's ability to initiate crosstalk between MAPK (mitogen-activated protein kinase) signaling pathways and transcriptional coactivators.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
Geng H, Liu Q, Xue C, David LL, Beer TM, Thomas GV, Dai MS, Qian DZ. HIF1α protein stability is increased by acetylation at lysine 709. J Biol Chem 2012; 287:35496-35505. [PMID: 22908229 DOI: 10.1074/jbc.m112.400697] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine acetylation regulates protein stability and function. p300 is a component of the HIF-1 transcriptional complex and positively regulates the transactivation of HIF-1. Here, we show a novel molecular mechanism by which p300 facilitates HIF-1 activity. p300 increases HIF-1α (HIF1α) protein acetylation and stability. The regulation can be opposed by HDAC1, but not by HDAC3, and is abrogated by disrupting HIF1α-p300 interaction. Mechanistically, p300 specifically acetylates HIF1α at Lys-709, which increases the protein stability and decreases polyubiquitination in both normoxia and hypoxia. Compared with the wild-type protein, a HIF1α K709A mutant protein is more stable, less polyubiquitinated, and less dependent on p300. Overexpression of the HIF1α wild-type or K709A mutant in cancer cells lacking the endogenous HIF1α shows that the K709A mutant is transcriptionally more active toward the HIF-1 reporter and some endogenous target genes. Cancer cells containing the K709A mutant are less sensitive to hypoxia-induced growth arrest than the cells containing the HIF1α wild-type. Taken together, these data demonstrate a novel biological consequence upon HIF1α-p300 interaction, in which HIF1α can be stabilized by p300 via Lys-709 acetylation.
Collapse
Affiliation(s)
- Hao Geng
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Qiong Liu
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Changhui Xue
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Larry L David
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Tomasz M Beer
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - George V Thomas
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Mu-Shui Dai
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - David Z Qian
- Oregon Health & Science University Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239.
| |
Collapse
|
231
|
Shi Q, Yin S, Kaluz S, Ni N, Devi NS, Mun J, Wang D, Damera K, Chen W, Burroughs S, Mooring SR, Goodman MM, Van Meir EG, Wang B, Snyder JP. Binding Model for the Interaction of Anticancer Arylsulfonamides with the p300 Transcription Cofactor. ACS Med Chem Lett 2012; 3:620-5. [PMID: 24936238 DOI: 10.1021/ml300042k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/21/2012] [Indexed: 02/02/2023] Open
Abstract
Hypoxia inducible factors (HIFs) are transcription factors that activate expression of multiple gene products and promote tumor adaptation to a hypoxic environment. To become transcriptionally active, HIFs associate with cofactors p300 or CBP. Previously, we found that arylsulfonamides can antagonize HIF transcription in a bioassay, block the p300/HIF-1α interaction, and exert potent anticancer activity in several animal models. In the present work, KCN1-bead affinity pull down, (14)C-labeled KCN1 binding, and KCN1-surface plasmon resonance measurements provide initial support for a mechanism in which KCN1 can bind to the CH1 domain of p300 and likely prevent the p300/HIF-1α assembly. Using a previously reported NMR structure of the p300/HIF-1α complex, we have identified potential binding sites in the p300-CH1 domain. A two-site binding model coupled with IC50 values has allowed establishment of a modest ROC-based enrichment and creation of a guide for future analogue synthesis.
Collapse
Affiliation(s)
- Qi Shi
- Department
of Chemistry, Emory University, Atlanta,
Georgia 30322, United States
| | - Shaoman Yin
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Stefan Kaluz
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Nanting Ni
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Narra Sarojini Devi
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jiyoung Mun
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Danzhu Wang
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Krishna Damera
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Weixuan Chen
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Sarah Burroughs
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Suazette Reid Mooring
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Mark M. Goodman
- Department of Hematology and
Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Erwin G. Van Meir
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Hematology and
Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Binghe Wang
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - James P. Snyder
- Department
of Chemistry, Emory University, Atlanta,
Georgia 30322, United States
- Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
232
|
Kwon HS, Kim DR, Yang EG, Park YK, Ahn HC, Min SJ, Ahn DR. Inhibition of VEGF transcription through blockade of the hypoxia inducible factor-1α–p300 interaction by a small molecule. Bioorg Med Chem Lett 2012; 22:5249-52. [DOI: 10.1016/j.bmcl.2012.06.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022]
|
233
|
Chen R, Xu M, Hogg RT, Li J, Little B, Gerard RD, Garcia JA. The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signaling. J Biol Chem 2012; 287:30800-11. [PMID: 22807441 DOI: 10.1074/jbc.m111.244780] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medicine, Veterans Affairs North Texas Health Care System, Dallas, TX 75216, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Liu W, Shen SM, Zhao XY, Chen GQ. Targeted genes and interacting proteins of hypoxia inducible factor-1. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:165-178. [PMID: 22773957 PMCID: PMC3388736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai 200025, CHINA
| | - Shao-Ming Shen
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai 200025, CHINA
| | - Xu-Yun Zhao
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai 200025, CHINA
| | - Guo-Qiang Chen
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai 200025, CHINA
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences & SJTU-SMShanghai 200025, CHINA
| |
Collapse
|
235
|
Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012; 31:2448-60. [PMID: 22562152 PMCID: PMC3365421 DOI: 10.1038/emboj.2012.125] [Citation(s) in RCA: 429] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
Oxygen is essential for eukaryotic life and is inextricably linked to the evolution of multicellular organisms. Proper cellular response to changes in oxygen tension during normal development or pathological processes, such as cardiovascular disease and cancer, is ultimately regulated by the transcription factor, hypoxia-inducible factor (HIF). Over the past decade, unprecedented molecular insight has been gained into the mammalian oxygen-sensing pathway involving the canonical oxygen-dependent prolyl-hydroxylase domain-containing enzyme (PHD)-von Hippel-Lindau tumour suppressor protein (pVHL) axis and its connection to cellular metabolism. Here we review recent notable advances in the field of hypoxia that have shaped a more complex model of HIF regulation and revealed unique roles of HIF in a diverse range of biological processes, including immunity, development and stem cell biology.
Collapse
Affiliation(s)
- Samantha N Greer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Julie L Metcalf
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Yi Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| |
Collapse
|
236
|
Huang TQ, Wang Y, Ebrahem Q, Chen Y, Cheng C, Doughman YQ, Watanabe M, Dunwoodie SL, Yang YC. Deletion of HIF-1α partially rescues the abnormal hyaloid vascular system in Cited2 conditional knockout mouse eyes. Mol Vis 2012; 18:1260-70. [PMID: 22665973 PMCID: PMC3365139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/09/2012] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Cited2 (CBP/p300-interacting transactivators with glutamic acid (E) and aspartic acid (D)-rich tail 2) is a member of a new family of transcriptional modulators. Cited2 null embryos exhibit hyaloid hypercellularity consisting of aberrant vasculature in the eye. The purpose of the study is to address whether abnormal lenticular development is a primary defect of Cited2 deletion and whether deletion of hypoxia inducible factor (HIF)-1α or an HIF-1α target gene, vascular endothelial growth factor (VEGF), could rescue abnormal hyaloid vascular system (HVS) in Cited2 deficient adult eyes. METHODS Le-Cre specific Cited2 knockout (Cited2(CKO)) mice with or without deletion of HIF-1α or VEGF were generated by standard Cre-Lox methods. Eyes collected from six-eight weeks old mice were characterized by Real Time PCR and immunohistological staining. RESULTS Cited2(CKO) mice had smaller lenses, abnormal lens stalk formation, and failed regression of the HVS in the adult eye. The eye phenotype had features similar to persistent hyperplastic primary vitreous (PHPV), a human congenital eye disorder leading to abnormal lenticular development. Deletion of HIF-1α or VEGF in Cited2 knockout eyes partially rescued the abnormal HVS but had no effect on the smaller lens and abnormal lens stalk differentiation. Intravitreal injection of Topotecan (TPT), a compound that inhibits HIF-1α expression, partially eliminated HVS defects in Cited2(CKO) lenses. CONCLUSIONS Abnormal HVS is a primary defect in Cited2 knockout mice, resulting in part from dysregulated functions of HIF-1 and VEGF. The Cited2(CKO) mouse line could be used as a novel disease model for PHPV and as an in vivo model for testing potential HIF-1 inhibitors.
Collapse
Affiliation(s)
- Tai-Qin Huang
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Yiwei Wang
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Quteba Ebrahem
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Yu Chen
- Department of Pharmacology, Rainbow Babies' and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Cindy Cheng
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Yong Qiu Doughman
- Department of Pediatrics, Rainbow Babies' and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michiko Watanabe
- Department of Pediatrics, Rainbow Babies' and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Sally L. Dunwoodie
- Developmental and Stem Cell Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW. St Vincent’s Clinical School University of New South Wales, Kensington, NSW, Australia
| | - Yu-Chung Yang
- Department of Biochemistry and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
237
|
Zhang Q, Yang H. The Roles of VHL-Dependent Ubiquitination in Signaling and Cancer. Front Oncol 2012; 2:35. [PMID: 22649785 PMCID: PMC3355907 DOI: 10.3389/fonc.2012.00035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/26/2012] [Indexed: 01/07/2023] Open
Abstract
The function of tumor suppressor VHL is compromised in the vast majority of clear cell renal cell carcinoma, and its mutations or loss of expression was causal for this disease. pVHL was found to be a substrate recognition subunit of an E3 ubiquitin ligase, and most of the tumor-derived mutations disrupt this function. pVHL was found to bind to the alpha subunits of hypoxia-inducible factor (HIF) and promote their ubiquitination and proteasomal degradation. Proline hydroxylation on key sites of HIFα provides the binding signal for pVHL E3 ligase complex. Beside HIFα, several other VHL targets have been identified, including activated epidermal growth factor receptor (EGFR), RNA polymerase II subunits RPB1 and hsRPB7, atypical protein kinase C (PKC), Sprouty2, β-adrenergic receptor II, and Myb-binding protein p160. HIFα is the most well studied substrate and has been proven to be critical for pVHL's tumor suppressor function, but the activated EGFR and PKC and other pVHL substrates might also be important for tumor growth and drug response. Their regulations by pVHL and their relevance to signaling and cancer are discussed.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
238
|
Zhong L, Mostoslavsky R. SIRT6: a master epigenetic gatekeeper of glucose metabolism. Transcription 2012; 1:17-21. [PMID: 21327158 DOI: 10.4161/trns.1.1.12143] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 01/09/2023] Open
Abstract
Sirtuins are the mammalian homologs of the yeast histone deacetylase Sir2. In recent years, an ever-expanding picture has emerged indicating that these proteins (SIRT1-7) play broad functions in cellular stress resistance, genomic stability, energy metabolism, aging and tumorigenesis. Among members of this family, SIRT6 appears to have particular significance in regulating metabolism, DNA repair and lifespan. In this context, new research from our lab has established SIRT6 as a key regulator of glucose homeostasis. In this Point of View article, we will first highlight our recent findings, and then provide an in-depth discussion of their implications in cancer and aging.
Collapse
Affiliation(s)
- Lei Zhong
- Massachusetts General Hospital Cancer Center, Boston, USA
| | | |
Collapse
|
239
|
Martínez-Romero R, Cañuelo A, Siles E, Oliver FJ, Martínez-Lara E. Nitric oxide modulates hypoxia-inducible factor-1 and poly(ADP-ribose) polymerase-1 cross talk in response to hypobaric hypoxia. J Appl Physiol (1985) 2012; 112:816-23. [DOI: 10.1152/japplphysiol.00898.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological response to hypobaric hypoxia represents a complex network of biochemical pathways in which the nitrergic system plays an important role. Previous studies have provided evidence for an interplay between the hypoxia-inducible factor-1 (HIF-1) and poly(ADP-ribose) polymerase-1 (PARP-1) under hypoxia. Here, we evaluate the potential involvement of nitric oxide (NO) in the cross talk between these two proteins. With this aim, we studied comparatively the effect of pharmacological inhibitors of NO production or PARP activity in the response of the mouse cerebral cortex to 4 h of exposure to a simulated altitude of 31,000 ft. Particularly, we analyzed the NO and reactive oxygen species production, the expression of NO synthase (NOS) isoforms, PARP-1 activity, HIF-1α expression and HIF-1 transcriptional activity, the protein level of the factor inhibiting HIF, and, finally, beclin-1 and fractin expression, as markers of cellular damage. Our results demonstrate that the reduction of NO level did not affect reactive oxygen species production but significantly 1) dampened the posthypoxic increase in neuronal NOS and inducible NOS expression without altering endothelial NOS protein level; 2) prevented PARP activation; 3) decreased HIF-1α response to hypoxia; 4) achieved a higher long-term HIF-1 transcriptional activity by reducing factor inhibiting HIF expression; and 5) reduced hypoxic damage. The pharmacological inhibition of PARP reproduced the NOS expression pattern and the HIF-1α response observed in NOS-inhibited mice, supporting its involvement in the NO-dependent regulation of hypoxia. As a whole, these results provide new data about the molecular mechanism underlying the beneficial effects of controlling NO production under hypobaric hypoxic conditions.
Collapse
Affiliation(s)
| | - Ana Cañuelo
- Department of Experimental Biology, University of Jaén, Jaén; and
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Jaén; and
| | - F. Javier Oliver
- Institute of Parasitology and Biomedicine, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | |
Collapse
|
240
|
Haines B, Li PA. Overexpression of mitochondrial uncoupling protein 2 inhibits inflammatory cytokines and activates cell survival factors after cerebral ischemia. PLoS One 2012; 7:e31739. [PMID: 22348126 PMCID: PMC3279373 DOI: 10.1371/journal.pone.0031739] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/12/2012] [Indexed: 01/29/2023] Open
Abstract
Mitochondria play a critical role in cell survival and death after cerebral ischemia. Uncoupling proteins (UCPs) are inner mitochondrial membrane proteins that disperse the mitochondrial proton gradient by translocating H+ across the inner membrane in order to stabilize the inner mitochondrial membrane potential (ΔΨm) and reduce the formation of reactive oxygen species. Previous studies have demonstrated that mice transgenically overexpressing UCP2 (UCP2 Tg) in the brain are protected from cerebral ischemia, traumatic brain injury and epileptic challenges. This study seeks to clarify the mechanisms responsible for neuroprotection after transient focal ischemia. Our hypothesis is that UCP2 is neuroprotective by suppressing innate inflammation and regulating cell cycle mediators. PCR gene arrays and protein arrays were used to determine mechanisms of damage and protection after transient focal ischemia. Our results showed that ischemia increased the expression of inflammatory genes and suppressed the expression of anti-apoptotic and cell cycle genes. Overexpression of UCP2 blunted the ischemia-induced increase in IL-6 and decrease in Bcl2. Further, UCP2 increased the expression of cell cycle genes and protein levels of phospho-AKT, PKC and MEK after ischemia. It is concluded that the neuroprotective effects of UCP2 against ischemic brain injury are associated with inhibition of pro-inflammatory cytokines and activation of cell survival factors.
Collapse
Affiliation(s)
- Bryan Haines
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
241
|
Wang Y, Li Y, Wang D, Li Y, Chang A, Chan WK. Suppression of the hypoxia inducible factor-1 function by redistributing the aryl hydrocarbon receptor nuclear translocator from nucleus to cytoplasm. Cancer Lett 2012; 320:111-21. [PMID: 22306343 DOI: 10.1016/j.canlet.2012.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/12/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) heterodimerizes with hypoxia inducible factor-1α (HIF-1α), followed by upregulation of genes that are essential for carcinogenesis. We utilized a novel peptide (Ainp1) to address whether the HIF-1α signaling could be suppressed by an ARNT-mediated mechanism. Ainp1 suppresses the HIF-1α-dependent luciferase expression in Hep3B cells and this suppression can be reversed by ARNT. Ainp1 reduces the interaction between ARNT and HIF-1α, suppresses the formation of the HIF-1 gel shift complex, and suppresses the ARNT recruitment to the vegf promoter. These effects are partly mediated by redistribution of the nuclear ARNT contents to the cytoplasm.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | | | |
Collapse
|
242
|
Shenoy SK, Han S, Zhao YL, Hara MR, Oliver T, Cao Y, Dewhirst MW. β-arrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene 2012; 31:282-92. [PMID: 21685944 PMCID: PMC3179824 DOI: 10.1038/onc.2011.238] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/25/2011] [Accepted: 05/11/2011] [Indexed: 12/28/2022]
Abstract
β-Arrestins 1 and 2 are multifunctional adaptor proteins originally discovered for their role in desensitizing seven-transmembrane receptor signaling via the heterotrimeric guanine nucleotide-binding proteins. Recently identified roles of β-arrestins include regulation of cancer cell chemotaxis and proliferation. Herein, we report that β-arrestin1 expression regulates breast tumor colonization in nude mice and cancer cell viability during hypoxia. β-Arrestin1 robustly interacts with nuclear hypoxia-induced factor-1α (HIF-1α) that is stabilized during hypoxia and potentiates HIF-1-dependent transcription of the angiogenic factor vascular endothelial growth factor-A (VEGF-A). Increased expression of β-arrestin1 in human breast cancer (infiltrating ductal carcinoma or IDC and metastatic IDC) correlates with increased levels of VEGF-A. While the anti-angiogenic drug thalidomide inhibits HIF-1-dependent VEGF transcription in breast carcinoma cells, it does not prevent HIF-1α stabilization, but leads to aberrant localization of HIF-1α to the perinuclear compartments and surprisingly stimulates nuclear export of β-arrestin1. Additionally, imatinib mesylate that inhibits release of VEGF induces nuclear export of β-arrestin1-HIF-1α complexes. Our findings suggest that β-arrestin1 regulates nuclear signaling during hypoxia to promote survival of breast cancer cells via VEGF signaling and that drugs that induce its translocation from the nucleus to the cytoplasm could be useful in anti-angiogenic and breast cancer therapies.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/secondary
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Imatinib Mesylate
- Mice
- Mice, Nude
- Neoplasm Metastasis
- Piperazines/pharmacology
- Protein Stability/drug effects
- Pyrimidines/pharmacology
- Thalidomide/pharmacology
- Transcription, Genetic/drug effects
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- S K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
243
|
Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines. PLoS One 2012; 7:e29545. [PMID: 22235307 PMCID: PMC3250444 DOI: 10.1371/journal.pone.0029545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/30/2011] [Indexed: 01/01/2023] Open
Abstract
The activated AHR/ARNT complex (AHRC) regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Importantly, evidence has shown that TCDD represses estrogen receptor (ER) target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3′,4′-dimethoxy-α-naphthoflavone (DiMNF) to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.
Collapse
|
244
|
Kanda G, Ochiai H, Harashima H, Kamiya H. CREB-binding protein transcription activation domain for enhanced transgene expression by a positive feedback system. J Biotechnol 2012; 157:7-11. [DOI: 10.1016/j.jbiotec.2011.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 01/28/2023]
|
245
|
Palazón A, Aragonés J, Morales-Kastresana A, de Landázuri MO, Melero I. Molecular Pathways: Hypoxia Response in Immune Cells Fighting or Promoting Cancer. Clin Cancer Res 2011; 18:1207-13. [DOI: 10.1158/1078-0432.ccr-11-1591] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
246
|
Devipriya B, Kumaradhas P. Probing the effect of intermolecular interaction and understanding the electrostatic moments of anacardic acid in the active site of p300 enzyme via DFT and charge density analysis. J Mol Graph Model 2011; 34:57-66. [PMID: 22306413 DOI: 10.1016/j.jmgm.2011.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/19/2011] [Accepted: 12/19/2011] [Indexed: 01/07/2023]
Abstract
A charge density analysis has been performed on gas phase and docked forms of anacardic acid molecule to understand its charge density distribution, electrostatic moments and the conformation in the active site of p300 enzyme. Here, we report the binding affinity of anacardic acid with the p300 enzyme calculated from docking analysis. The charge density distribution of anacardic acid molecule in the gas phase as well as the docked form has been determined from the high level quantum chemical calculations using HF and DFT methods coupled with AIM theory. The charge density study on both forms of anacardic acid differentiates its structural and the electrostatic properties in different environments. When the molecule enters into the active site of p300 its conformation, charge density distribution, dipole moment and electrostatic potential are significantly altered in comparison to its gas phase structure. In the active site, the molecule adopts different conformations, its pentadecyl chain is found to be highly twisted; the charges are redistributed and the dipole moment increases from 2.37 to 3.17D. Due to the charge redistribution, the electronegative region of carboxyl group increased as it is found small in the gas phase. The comparisons between both forms reveal the flexibility of anacardic acid in the active site.
Collapse
Affiliation(s)
- B Devipriya
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem 636011, India
| | | |
Collapse
|
247
|
Sahu D, Zhao Z, Tsen F, Cheng CF, Park R, Situ AJ, Dai J, Eginli A, Shams S, Chen M, Ulmer TS, Conti P, Woodley DT, Li W. A potentially common peptide target in secreted heat shock protein-90α for hypoxia-inducible factor-1α-positive tumors. Mol Biol Cell 2011; 23:602-13. [PMID: 22190738 PMCID: PMC3279389 DOI: 10.1091/mbc.e11-06-0575] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ETOC: Deregulated/overexpressed HIF-1α is found in many solid tumors, and directly sabotaging it is challenging therapeutically. HIF-1α uses secreted Hsp90α, which uses a key epitope, F-5, for invasion and tumor formation. Drugs that target F-5 may be more effective and less toxic for treatment of HIF-1α–positive tumors. Deregulated accumulation of hypoxia-inducible factor-1α (HIF-1α) is a hallmark of many solid tumors. Directly targeting HIF-1α for therapeutics is challenging. Our finding that HIF-1α regulates secretion of heat shock protein-90α (Hsp90α) for cell migration raises the exciting possibility that targeting the secreted Hsp90α from HIF-1α–positive tumors has a better clinical outlook. Using the HIF-1α–positive and metastatic breast cancer cells MDA-MB-231, we show that down-regulation of the deregulated HIF-1α blocks Hsp90α secretion and invasion of the cells. Reintroducing an active, but not an inactive, HIF-1α into endogenous HIF-1α–depleted cells rescues both Hsp90α secretion and invasion. Inhibition of Hsp90α secretion, neutralization of secreted Hsp90α action, or removal of the cell surface LRP-1 receptor for secreted Hsp90α reduces the tumor cell invasion in vitro and lung colonization and tumor formation in nude mice. Furthermore, we localized the tumor-promoting effect to a 115–amino acid region in secreted Hsp90α called F-5. Supplementation with F-5 is sufficient to bypass the blockade of HIF-1α depletion and resumes invasion by the tumor cells under serum-free conditions. Because normal cells do not secrete Hsp90α in the absence of stress, drugs that target F-5 should be more effective and less toxic in treatment of HIF-1α–positive tumors in humans.
Collapse
Affiliation(s)
- Divya Sahu
- Department of Dermatology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta LA, Novelli F, Petricoin EF. Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 2011; 11:554-63. [PMID: 22050456 DOI: 10.1021/pr2009274] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this present work, we characterized the proteomes of pancreatic ductal adenocarcinoma (PDAC) cell line PANC-1 and normal pancreatic duct cells by mass spectrometry using LTQ-Orbitrap and identified more than 1700 proteins from each sample. On the basis of the spectra count label-free quantification approach, we identified a large number of differentially expressed metabolic enzymes and proteins involved in cytoskeleton, cell adhesion, transport, transcription, translation, and cell proliferation as well. The data demonstrated that metabolic pathways were altered in PANC-1, consistent with the Warburg effect. In addition, the comparative MS analysis unveiled anomalous metabolism of glutamine, suggesting that glutamine was largely consumed as a nitrogen donor in nucleotide and amino acid biosynthesis in PANC-1. Our analysis provides a potentially comprehensive picture of metabolism in PANC-1, which may serve as the basis of new diagnostics and treatment of PDAC.
Collapse
Affiliation(s)
- Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 2011; 31:89-119. [PMID: 22108059 DOI: 10.1016/j.preteyeres.2011.11.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
Abstract
Photoreceptors and other cells of the retina consume large quantities of energy to efficiently convert light information into a neuronal signal understandable by the brain. The necessary energy is mainly provided by the oxygen-dependent generation of ATP in the numerous mitochondria of retinal cells. To secure the availability of sufficient oxygen for this process, the retina requires constant blood flow through the vasculature of the retina and the choroid. Inefficient supply of oxygen and nutrients, as it may occur in conditions of disturbed hemodynamics or vascular defects, results in tissue ischemia or hypoxia. This has profound consequences on retinal function and cell survival, requiring an adaptational response by cells to cope with the reduced oxygen tension. Central to this response are hypoxia inducible factors, transcription factors that accumulate under hypoxic conditions and drive the expression of a large variety of target genes involved in angiogenesis, cell survival and metabolism. Prominent among these factors are vascular endothelial growth factor and erythropoietin, which may contribute to normal angiogenesis during development, but may also cause neovascularization and vascular leakage under pathologically reduced oxygen levels. Since ischemia and hypoxia may have a role in various retinal diseases such as diabetic retinopathy and retinopathy of prematurity, studying the cellular and molecular response to reduced tissue oxygenation is of high relevance. In addition, the concept of preconditioning with ischemia or hypoxia demonstrates the capacity of the retina to activate endogenous survival mechanisms, which may protect cells against a following noxious insult. Part of these mechanisms is the local production of protective factors such as erythropoietin. Due to its plethora of effects in the retina including neuro- and vaso-protective activities, erythropoietin has gained strong interest as potential therapeutic factor for retinal degenerative diseases.
Collapse
Affiliation(s)
- Christian Caprara
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
250
|
Florczyk U, Czauderna S, Stachurska A, Tertil M, Nowak W, Kozakowska M, Poellinger L, Jozkowicz A, Loboda A, Dulak J. Opposite effects of HIF-1α and HIF-2α on the regulation of IL-8 expression in endothelial cells. Free Radic Biol Med 2011; 51:1882-92. [PMID: 21925595 PMCID: PMC3202637 DOI: 10.1016/j.freeradbiomed.2011.08.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 01/16/2023]
Abstract
Recently we have shown that hypoxia as well as overexpression of the stable form of hypoxia-inducible factor-1α (HIF-1α) diminished the expression of interleukin-8 (IL-8) by inhibition of the Nrf2 transcription factor in HMEC-1 cells. Because HIF isoforms may exert different effects, we aimed to examine the influence of HIF-2α on IL-8 expression in endothelial cells. In contrast to HIF-1α, overexpression of HIF-2α obtained by adenoviral transduction resulted in increased expression of IL-8 in an Nrf2-independent way. Importantly, HIF-2α augmented the activity of SP-1, a transcription factor involved in IL-8 regulation and known coactivator of c-Myc. Additionally, HIF-1 decreased, whereas HIF-2 increased, c-Myc expression, and silencing of Mxi-1, a c-Myc antagonist, restored IL-8 expression downregulated by HIF-1α or hypoxia. Accordingly, binding of c-Myc to the IL-8 promoter was abolished in hypoxia. Importantly, both severe (0.5% O(2)) and mild (5% O(2)) hypoxia diminished IL-8 expression despite the stabilization of both HIF-1 and HIF-2. This study reveals the opposite roles of HIF-1α and HIF-2α in the regulation of IL-8 expression in endothelial cells. However, despite stabilization of both isoforms in hypoxia the effect of HIF-1 is predominant, and downregulation of IL-8 expression in hypoxia is caused by attenuation of Nrf2 and c-Myc.
Collapse
Key Words
- adhif-1α/adhif-2α, adenoviral vectors containing hif-1α or hif-2α cdna, respectively
- are, antioxidant-response element
- arnt, aryl hydrocarbon receptor nuclear translocator
- gfp, green fluorescent protein
- hif, hypoxia-inducible factor
- ho-1, heme oxygenase-1
- il-8, interleukin-8
- nqo1, nad(p)h:quinone oxidoreductase
- seap, secreted alkaline phosphatase
- sirna, small interfering rna
- tp, thymidine phosphorylase
- vegf, vascular endothelial growth factor
- angiogenesis
- sp-1
- c-myc
- transcription factor
- free radicals
Collapse
Affiliation(s)
- Urszula Florczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Szymon Czauderna
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Anna Stachurska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Magdalena Tertil
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Witold Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
- Corresponding authors. Fax: + 48 12 664 69 18.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
- Corresponding authors. Fax: + 48 12 664 69 18.
| |
Collapse
|