201
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
202
|
Hajj A, Halepian L, Osta NE, Chahine G, Kattan J, Rabbaa Khabbaz L. OPRM1 c.118A>G Polymorphism and Duration of Morphine Treatment Associated with Morphine Doses and Quality-of-Life in Palliative Cancer Pain Settings. Int J Mol Sci 2017; 18:ijms18040669. [PMID: 28346387 PMCID: PMC5412267 DOI: 10.3390/ijms18040669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Despite increased attention on assessment and management, pain remains the most persistent symptom in patients with cancer, in particular in end-of-life settings, with detrimental impact on their quality-of-life (QOL). We conducted this study to evaluate the added value of determining some genetic and non-genetic factors to optimize cancer pain treatment. Eighty-nine patients were included in the study for the evaluation of palliative cancer pain management. The regression analysis showed that age, OPRM1 single nucleotide polymorphism (SNP), as well as the duration of morphine treatment were significantly associated with morphine doses at 24 h (given by infusion pump; p = 0.043, 0.029, and <0.001, respectively). The mean doses of morphine decreased with age but increased with the duration of morphine treatment. In addition, patients with AG genotype c.118A>G OPRM1 needed a higher dose of morphine than AA patients. Moreover, metastases, OPRM1 SNP, age, and gender were significantly associated with the QOL in our population. In particular, AA patients for OPRM1 SNP had significantly lower cognitive function than AG patients, a result not previously reported in the literature. These findings could help increase the effectiveness of morphine treatment and enhance the QOL of patients in regards to personalized medicine.
Collapse
Affiliation(s)
- Aline Hajj
- Laboratory of Pharmacology, Clinical Pharmacy and Quality Control of Drugs, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut 1107 2180, Lebanon.
| | - Lucine Halepian
- Laboratory of Pharmacology, Clinical Pharmacy and Quality Control of Drugs, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut 1107 2180, Lebanon.
| | - Nada El Osta
- Department of Public Health, Faculty of Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon.
- Department of Prosthodontics, Faculty of Dental Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon.
- University of Auvergne, CROC-EA4847, Centre de Recherche en Odontologie Clinique, BP 10448, Clermont-Ferrand F-63000, France.
| | - Georges Chahine
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon.
| | - Joseph Kattan
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University, Beirut 1107 2180, Lebanon.
| | - Lydia Rabbaa Khabbaz
- Laboratory of Pharmacology, Clinical Pharmacy and Quality Control of Drugs, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut 1107 2180, Lebanon.
| |
Collapse
|
203
|
Browne CA, Erickson RL, Blendy JA, Lucki I. Genetic variation in the behavioral effects of buprenorphine in female mice derived from a murine model of the OPRM1 A118G polymorphism. Neuropharmacology 2017; 117:401-407. [PMID: 28188737 DOI: 10.1016/j.neuropharm.2017.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Pharmacogenetic studies have identified the non-synonymous single nucleotide polymorphism (A118G) in the human mu opioid receptor (MOR) gene (OPRM1) as a critical genetic variant capable of altering the efficacy of opioid therapeutics. To date few studies have explored the potential impact of the OPRM1 A118G polymorphism on the pharmacological effects of buprenorphine (BPN), a potent MOR partial agonist and kappa opioid receptor antagonist, which is approved by the FDA for the treatment of opioid addiction and chronic pain. The goal of these studies was to determine whether the MOR-mediated behavioral effects of BPN were altered in the Oprm1 A112G mouse model of the human OPRM1 A118G SNP. All studies were conducted in female, AA, AG and GG mice. BPN's maximal analgesic effect in the hot plate test was significantly blunted in AG and GG mice compared to wild type AA mice. Similarly, the BPN-induced reduction of latency to consume food in the novelty induced hypophagia test was blocked entirely in AG and GG mice compared to their AA littermates. In addition, GG mice exhibited marked reductions in psychostimulant hyperlocomotor activity compared to the AA group. In contrast, reduced immobility in the forced swim test, an effect of BPN mediated by kappa opioid receptors, was not affected by genotype. These studies demonstrate the ability of the Oprm1 A112G SNP to attenuate the analgesic, anxiolytic and hyperlocomotor effects of BPN. Overall, these data suggest that the OPRM1 A118G SNP will significantly impact the clinical efficacy of BPN in its therapeutic applications.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rebecca L Erickson
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Irwin Lucki
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
204
|
Reed B, Butelman ER, Kreek MJ. Endogenous opioid system in addiction and addiction-related behaviors. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
205
|
Hermann D, Hirth N, Reimold M, Batra A, Smolka MN, Hoffmann S, Kiefer F, Noori HR, Sommer WH, Reischl G, la Fougère C, Mann K, Spanagel R, Hansson AC. Low μ-Opioid Receptor Status in Alcohol Dependence Identified by Combined Positron Emission Tomography and Post-Mortem Brain Analysis. Neuropsychopharmacology 2017; 42:606-614. [PMID: 27510425 PMCID: PMC5240173 DOI: 10.1038/npp.2016.145] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
Abstract
Blockade of the μ-opioid receptor (MOR) by naltrexone reduces relapse risk in a subpopulation of alcohol-dependent patients. Previous positron-emission-tomography (PET) studies using the MOR ligand [11C]carfentanil have found increased MOR availability in abstinent alcoholics, which may reflect either increased MOR expression or lower endogenous ligand concentration. To differentiate between both effects, we investigated two cohorts of alcoholic subjects using either post-mortem or clinical PET analysis. Post-mortem brain tissue of alcohol-dependent subjects and controls (N=43/group) was quantitatively analyzed for MOR ([3H]DAMGO)-binding sites and OPRM1 mRNA in striatal regions. [11C]carfentanil PET was performed in detoxified, medication free alcohol-dependent patients (N=38), followed by a randomized controlled study of naltrexone versus placebo and follow-up for 1 year (clinical trial number: NCT00317031). Because the functional OPRM1 variant rs1799971:A>G affects the ligand binding, allele carrier status was considered in the analyses. MOR-binding sites were reduced by 23-51% in post-mortem striatal tissue of alcoholics. In the PET study, a significant interaction of OPRM1 genotype, binding potential (BPND) for [11C]carfentanil in the ventral striatum, and relapse risk was found. Particularly in G-allele carriers, lower striatal BPND was associated with a higher relapse risk. Interestingly, this effect was more pronounced in the naltrexone treatment group. Reduced MOR is interpreted as a neuroadaptation to an alcohol-induced release of endogenous ligands in patients with severe alcoholism. Low MOR availability may explain the ineffectiveness of naltrexone treatment in this subpopulation. Finally, low MOR-binding sites are proposed as a molecular marker for a negative disease course.
Collapse
Affiliation(s)
- Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Central Institute of Mental Health (ZI), Square J5, Mannheim 68159, Germany, Tel: +49 621 1703 6293 or +49 621 1703 3522, Fax: 49 621 17036255,E-mail: or
| | - Natalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Reimold
- Department of Nuclear Medicine, University of Tübingen, Tübingen, Germany
| | - Anil Batra
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Michael N Smolka
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang H Sommer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | | | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Central Institute of Mental Health (ZI), Square J5, Mannheim 68159, Germany, Tel: +49 621 1703 6293 or +49 621 1703 3522, Fax: 49 621 17036255,E-mail: or
| |
Collapse
|
206
|
Li WQ, E McGeary J, Cho E, Flint A, Wu S, Ascherio A, Rimm E, Field A, A Qureshi A. Indoor tanning bed use and risk of food addiction based on the modified Yale Food Addiction Scale. J Biomed Res 2017; 31:31-39. [PMID: 28808183 PMCID: PMC5274510 DOI: 10.7555/jbr.31.20160098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The popularity of indoor tanning may be partly attributed to the addictive characteristics of tanning for some individuals. We aimed to determine the association between frequent indoor tanning, which we view as a surrogate for tanning addiction, and food addiction. A total of 67,910 women were included from the Nurses’ Health Study II. In 2005, we collected information on indoor tanning during high school/college and age 25-35 years, and calculated the average use of indoor tanning during these periods. Food addiction was defined as ≥3 clinically significant symptoms plus clinically significant impairment or distress, assessed in 2009 using a modified version of the Yale Food Addiction Scale. Totally 23.3% (15,822) of the participants reported indoor tanning at high school/college or age 25-35 years. A total of 5,557 (8.2%) women met the criteria for food addiction. We observed a dose–response relationship between frequency of indoor tanning and the likelihood of food addiction (Ptrend < 0.0001), independent of depression, BMI, and other confounders. Compared with never indoor tanners, the odds ratio (95% confidence interval) of food addiction was 1.07 (0.99-1.17) for average indoor tanning 1-2 times/year, 1.25 (1.09-1.43) for 3-5 times/year, 1.34 (1.14-1.56) for 6-11 times/year, 1.61 (1.35-1.91) for 12-23 times/year, and 2.98 (1.95-4.57) for 24 or more times/year. Frequent indoor tanning before or at early adulthood is associated with prevalence of food addiction at middle age. Our data support the addictive property of frequent indoor tanning, which may guide intervention strategies to curb indoor tanning and prevent skin cancer.
Collapse
Affiliation(s)
- Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI 02903, United States.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, United States
| | - John E McGeary
- Providence VA Medical Center, Providence, RI 02908, United States.,Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI 02903, United States
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI 02903, United States.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, United States.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women
| | - Alan Flint
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Shaowei Wu
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI 02903, United States.,Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Alberto Ascherio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Eric Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Alison Field
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, United States;Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States;Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States;Division of Adolescent Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI 02903, United States.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, United States;Providence VA Medical Center, Providence, RI 02908, United States.,Department of Dermatology, Rhode Island Hospital, Providence, RI 02903, United States
| |
Collapse
|
207
|
Ebrahimi G, Asadikaram G, Akbari H, Nematollahi MH, Abolhassani M, Shahabinejad G, Khodadadnejad L, Hashemi M. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:193-199. [DOI: 10.1080/00952990.2016.1275659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ghasem Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamabbas Shahabinejad
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Leyla Khodadadnejad
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences. Zahedan, Iran
| |
Collapse
|
208
|
Randesi M, Levran O, Correa da Rosa J, Hankins J, Rule J, Kreek MJ, Lee WM, Acute Liver Failure Study Group ReubenAdrianFontanaRobert J.DavernTimothyMcGuireBrendanStravitzR. ToddDurkalskiValerieLiouIrisFixOrenSchilskyMichaelGangerDanielMDChungRaymond T.KochDavidReddyK. RajenderRossaroLorenzo. Association of Variants of Arginine Vasopressin and Arginine Vasopressin Receptor 1A With Severe Acetaminophen Liver Injury. Cell Mol Gastroenterol Hepatol 2017; 3:500-505. [PMID: 28462386 PMCID: PMC5404026 DOI: 10.1016/j.jcmgh.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/16/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Acetaminophen-related acute liver injury and liver failure (ALF) result from ingestion of supratherapeutic quantities of this analgesic, frequently in association with other forms of substance abuse including alcohol, opioids, and cocaine. Thus, overdosing represents a unique high-risk behavior associated with other forms of drug use disorder. METHODS We examined a series of 21 single nucleotide polymorphisms (SNPs) in 9 genes related to impulsivity and/or stress responsivity that may modify response to stress. Study subjects were 229 white patients admitted to tertiary care liver centers for ALF that was determined to be due to acetaminophen toxicity after careful review of historical and biochemical data. Identification of relevant SNPs used Sanger sequencing, TaqMan, or custom microarray. Association tests were carried out to compare genotype frequencies between patients and healthy white controls. RESULTS The mean age was 37 years, and 75.6% were female, with similar numbers classified as intentional overdose or unintentional (without suicidal intent, occurring for a period of several days, usually due to pain). There was concomitant alcohol abuse in 30%, opioid use in 33.6%, and use of other drugs of abuse in 30.6%. The genotype frequencies of 2 SNPs were found to be significantly different between the cases and controls, specifically SNP rs2282018 in the arginine vasopressin gene (AVP, odds ratio 1.64) and SNP rs11174811 in the AVP receptor 1A gene (AVPR1A, odds ratio 1.89), both of which have been previously linked to a drug use disorder diagnosis. CONCLUSIONS Patients who develop acetaminophen-related ALF have increased frequency of gene variants that may cause altered stress responsivity, which has been shown to be associated with other unrelated substance use disorders.
Collapse
Affiliation(s)
- Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Joel Correa da Rosa
- Center for Clinical and Translational Science, Rockefeller University, New York, New York
| | - Julia Hankins
- Center for the Genetics of Host Defense, Department of Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jody Rule
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - William M. Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, Texas
- Correspondence Address correspondence to: William M. Lee, MD, FACP, FAASLD, Division of Digestive and Liver Diseases, UT Southwestern Medical Center at Dallas, 5959 Harry Hines Boulevard, Suite 420, Dallas, Texas 75390-8887. fax: (214) 645–6114.Division of Digestive and Liver DiseasesUT Southwestern Medical Center at Dallas5959 Harry Hines Boulevard, Suite 420DallasTexas 75390-8887
| | | |
Collapse
|
209
|
Shakiba M, Hashemi M, Rahbari Z, Mahdar S, Danesh H, Bizhani F, Bahari G. Lack of Association between Human µ-Opioid Receptor (<em>OPRM1</em>) Gene Polymorphisms and Heroin Addiction in A Sample of Southeast Iranian Population. AIMS MEDICAL SCIENCE 2017. [DOI: 10.3934/medsci.2017.2.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
210
|
Zhang Y, Sun Y, Liang J, Lu L, Shi J. Similarities and Differences in Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1010:59-71. [DOI: 10.1007/978-981-10-5562-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
211
|
Hill EM, Hunt L, Duryea DG. Evolved Vulnerability to Addiction: The Problem of Opiates. EVOLUTIONARY PSYCHOLOGY 2017. [DOI: 10.1007/978-3-319-60576-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
212
|
The Role of Chronic Psychosocial Stress in Explaining Racial Differences in Stress Reactivity and Pain Sensitivity. Psychosom Med 2017; 79:201-212. [PMID: 27669431 PMCID: PMC5285323 DOI: 10.1097/psy.0000000000000385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To examine the role of psychosocial factors in mediating the relationship between African American (AA) race and both increased pain sensitivity and blunted stress reactivity. METHODS Participants included 133 AA and non-Hispanic white (nHW) individuals (mean [SD] age, 37 [9]) matched for age, sex, and socioeconomic status. Participants underwent mental stress testing (Trier Social Stress Test) while cardiovascular, hemodynamic, and neuroendocrine reactivity were measured. Participants completed questionnaires assessing potential sources of psychosocial stress and were tested for pain responses to cold pain and the temporal summation of heat pulses. Mediation analyses were used to determine the extent to which exposure to psychosocial stress accounted for the observed racial differences in stress reactivity and pain. RESULTS Chronic stress exposure and reactivity to mental stress was largely similar among AAs and nHWs; however, AAs exhibited heightened pain to both cold (p = .012) and heat (p = .004). Racial differences in the relationship between stress reactivity and pain were also observed: while greater stress reactivity was associated with decreased pain among nHWs, reactivity was either unrelated to or even positively associated with pain among AAs (e.g., r = -.21 among nHWs and r = .41 among AAs for stroke volume reactivity and cold pressor intensity). Adjusting for minor racial differences in chronic psychosocial stress did not change these findings. CONCLUSIONS Accounting for psychosocial factors eliminated racial differences in stress reactivity but not racial differences in sensitivity to experimental pain tasks. Increased exposure to chronic stress may not explain AAs' increased pain sensitivity in laboratory settings.
Collapse
|
213
|
Biochemical Diagnosis in Substance and Non-substance Addiction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1010:169-202. [PMID: 29098673 DOI: 10.1007/978-981-10-5562-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An optimal biochemical marker for addiction would be some easily traced molecules in body specimens, which indicates indulgent addictive behaviors, or susceptibility to certain addictive stimuli. In this chapter, we discussed existing literature about possible biomarkers, and classified them into three categories: origin forms and metabolites of substances, markers from biochemical responses to certain addiction, and genetic and epigenetic biomarkers suggesting susceptibility to addiction. In every category, we examined studies concerning certain type of addiction one by one, with focuses mainly on opiates, psychostimulants, and pathological gambling. Several promising molecules were highlighted, including those of neurotrophic factors, inflammatory factors, and indicators of vascular injury, and genetic and epigenetic biomarkers such as serum miRNAs. DNA methylation signatures and signal nucleotide polymorphism of candidate gene underlying the addiction.
Collapse
|
214
|
Bujarski S, Ray LA. Experimental psychopathology paradigms for alcohol use disorders: Applications for translational research. Behav Res Ther 2016; 86:11-22. [PMID: 27266992 PMCID: PMC5067182 DOI: 10.1016/j.brat.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 02/05/2023]
Abstract
In spite of high prevalence and disease burden, scientific consensus on the etiology and treatment of Alcohol Use Disorder (AUD) has yet to be reached. The development and utilization of experimental psychopathology paradigms in the human laboratory represents a cornerstone of AUD research. In this review, we describe and critically evaluate the major experimental psychopathology paradigms developed for AUD, with an emphasis on their implications, strengths, weaknesses, and methodological considerations. Specifically we review alcohol administration, self-administration, cue-reactivity, and stress-reactivity paradigms. We also provide an introduction to the application of experimental psychopathology methods to translational research including genetics, neuroimaging, pharmacological and behavioral treatment development, and translational science. Through refining and manipulating key phenotypes of interest, these experimental paradigms have the potential to elucidate AUD etiological factors, improve the efficiency of treatment developments, and refine treatment targets thus advancing precision medicine.
Collapse
Affiliation(s)
- Spencer Bujarski
- Department of Psychology, University of California, Los Angeles, United States.
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| |
Collapse
|
215
|
Kringel D, Lötsch J. Next-generation sequencing of human opioid receptor genes based on a custom AmpliSeq™ library and ion torrent personal genome machine. Clin Chim Acta 2016; 463:32-38. [PMID: 27725223 PMCID: PMC5352731 DOI: 10.1016/j.cca.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/12/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The opioid system is involved in the control of pain, reward, addictive behaviors and vegetative effects. Opioids exert their pharmacological actions through the agonistic binding at opioid receptors and variation in the coding genes has been found to modulate opioid receptor expression or signaling. However, a limited selection of functional opioid receptor variants is perceived as insufficient in providing a genetic diagnosis of clinical phenotypes and therefore, unrestricted access to opioid receptor genetics is required. METHODS Next-generation sequencing (NGS) workflow was based on a custom AmpliSeq™ panel and designed for sequencing of human genes related to the opioid receptor group (OPRM1, OPRD1, OPRK1, SIGMA1, OPRL1) on an Ion PGM™ Sequencer. A cohort of 79 previously studied chronic pain patients was screened to evaluate and validate the detection of exomic sequences of the coding genes with 25 base pair exon padding. In-silico analysis was performed using SNP and Variation Suite® software. RESULTS The amplicons covered approximately 90% of the target sequence. A median of 2.54×106 reads per run was obtained generating a total of 35,447 nucleotide reads from each DNA sample. This identified approximately 100 chromosome loci where nucleotides deviated from the reference sequence GRCh37 hg19, including functional variants such as the OPRM1 rs1799971 SNP (118 A>G) as the most scientifically regarded variant or rs563649 SNP coding for μ-opioid receptor splice variants. Correspondence between NGS and Sanger derived nucleotide sequences was 100%. CONCLUSION Results suggested that the NGS approach based on AmpliSeq™ libraries and Ion PGM sequencing is a highly efficient mutation detection method. It is suitable for large-scale sequencing of opioid receptor genes. The method includes the variants studied so far for functional associations and adds a large amount of genetic information as a basis for complete analysis of human opioid receptor genetics and its functional consequences.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
216
|
Soyka M, Mutschler J. Treatment-refractory substance use disorder: Focus on alcohol, opioids, and cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:148-61. [PMID: 26577297 DOI: 10.1016/j.pnpbp.2015.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/23/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Substance use disorders are common, but only a small minority of patients receive adequate treatment. Although psychosocial therapies are effective, relapse is common. This review focusses on novel pharmacological and other treatments for patients with alcohol, opioid, or cocaine use disorders who do not respond to conventional treatments. Disulfiram, acamprosate, and the opioid antagonist naltrexone have been approved for the treatment of alcoholism. A novel, "as needed" approach is the use of the mu-opioid antagonist and partial kappa agonist nalmefene to reduce alcohol consumption. Other novel pharmacological approaches include the GABA-B receptor agonist baclofen, anticonvulsants such as topiramate and gabapentin, the partial nicotine receptor agonist varenicline, and other drugs. For opioid dependence, opioid agonist therapy with methadone or buprenorphine is the first-line treatment option. Other options include oral or depot naltrexone, morphine sulfate, depot or implant formulations, and heroin (diacetylmorphine) in treatment-refractory patients. To date, no pharmacological treatment has been approved for cocaine addiction; however, 3 potential pharmacological treatments are being studied, disulfiram, methylphenidate, and modafinil. Pharmacogenetic approaches may help to optimize treatment response in otherwise treatment-refractory patients and to identify which patients are more likely to respond to treatment, and neuromodulation techniques such as repeated transcranial magnetic stimulation and deep brain stimulation also may play a role in the treatment of substance use disorders. Although no magic bullet is in sight for treatment-refractory patients, some novel medications and brain stimulation techniques have the potential to enrich treatment options at least for some patients.
Collapse
Affiliation(s)
- Michael Soyka
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Nussbaumstrasse 7, 80336 Munich, Germany; Privatklinik Meiringen, Postfach 612, CH-3860 Meiringen, Switzerland.
| | - Jochen Mutschler
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, 8001 Zurich, Switzerland
| |
Collapse
|
217
|
Mnika K, Pule GD, Dandara C, Wonkam A. An Expert Review of Pharmacogenomics of Sickle Cell Disease Therapeutics: Not Yet Ready for Global Precision Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:565-574. [PMID: 27636225 PMCID: PMC5067801 DOI: 10.1089/omi.2016.0105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sickle cell disease (SCD) is a blood disease caused by a single nucleotide substitution (T > A) in the beta globin gene on chromosome 11. The single point mutation (Glu6Val) promotes polymerization of hemoglobin S (HbS) and causes sickling of erythrocytes. Vaso-occlusive painful crises are associated with recurrent and long-term use of analgesics/opioids and hydroxyurea (HU) by people living with SCD. The present analysis offers a state-of-the-art expert review of the effectiveness of pharmacogenomics/genetics of pain management in SCD, with specific focus on HU and opioids. The literature search used the following keywords: SCD, pharmacogenomics, pharmacogenetics, pain, antalgics, opioids, morphine, and HU. The literature was scanned until March 2016, with specific inclusion of targeted landmark and background articles on SCD. Surprisingly, our review identified only a limited number of studies that addressed the genetic/genomic basis of variable responses to pain (e.g., variants in OPRM1, HMOX-1, GCH1, VEGFA COMT genes), and pharmacogenomics of antalgics and opioids (e.g., variants in OPRM1, STAT6, ABCB1, and COMT genes) in SCD. There has been greater progress made toward identifying the key genomic variants, mainly in BCL11A, HBS1L-MYB, or SAR1, which contribute to response to HU treatment. However, the complete picture on pharmacogenomic determinants of the above therapeutic phenotypes remains elusive. Strikingly, no study has been conducted in sub-Saharan Africa where majority of the patients with SCD live. This alerts the broader global life sciences community toward the existing disparities in optimal and ethical targeting of research and innovation investments for SCD specifically and precision medicine and pharmacology research broadly.
Collapse
Affiliation(s)
- Khuthala Mnika
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Gift D. Pule
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| |
Collapse
|
218
|
Ziauddeen H, Nestor LJ, Subramaniam N, Dodds C, Nathan PJ, Miller SR, Sarai BK, Maltby K, Fernando D, Warren L, Hosking LK, Waterworth D, Korzeniowska A, Win B, Richards DB, Vasist Johnson L, Fletcher PC, Bullmore ET. Opioid Antagonists and the A118G Polymorphism in the μ-Opioid Receptor Gene: Effects of GSK1521498 and Naltrexone in Healthy Drinkers Stratified by OPRM1 Genotype. Neuropsychopharmacology 2016; 41:2647-57. [PMID: 27109624 PMCID: PMC5026731 DOI: 10.1038/npp.2016.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 02/02/2023]
Abstract
The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate-heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders.
Collapse
Affiliation(s)
- Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge, UK
| | - Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Centre for Neuropsychopharmacology, Imperial College, London, UK
| | - Naresh Subramaniam
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Chris Dodds
- Department of Psychology, University of Exeter, Exeter, UK
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Neuroscience Center of Excellence, inVentiv Health Clinical, Maidenhead, UK
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | | | | | - Kay Maltby
- GSK Clinical Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Disala Fernando
- GSK Clinical Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Liling Warren
- Acclarogen, St John's Innovation Centre, Cambridge, UK
| | | | - Dawn Waterworth
- Genetics, Target Science, GlaxoSmithKline, King of Prussia, PA, USA
| | | | - Beta Win
- GSK, Global Clinical Safety & Pharmacovigilance, Stockley Park, UK
| | - Duncan B Richards
- Academic Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, UK
| | | | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge, UK
- Academic Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, UK
| |
Collapse
|
219
|
Association of the OPRM1 and COMT genes’ polymorphisms with the efficacy of morphine in Tunisian cancer patients: Impact of the high genetic heterogeneity in Tunisia? Therapie 2016; 71:507-513. [DOI: 10.1016/j.therap.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/04/2016] [Indexed: 01/21/2023]
|
220
|
Taheri S, Jalali F, Fattahi N, Jalili R, Bahrami G. Sensitive determination of methadone in human serum and urine by dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by HPLC-UV. J Sep Sci 2016; 38:3545-51. [PMID: 26289536 DOI: 10.1002/jssc.201500636] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
Abstract
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy.
Collapse
Affiliation(s)
- Salman Taheri
- Department of Analytical Chemistry, Razi University, Kermanshah, Iran
| | - Fahimeh Jalali
- Department of Analytical Chemistry, Razi University, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Jalili
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
221
|
Wetmore LA, Pascoe PJ, Shilo-Benjamini Y, Lindsey JC. Effects of fentanyl administration on locomotor response in horses with the G57C μ-opioid receptor polymorphism. Am J Vet Res 2016; 77:828-32. [DOI: 10.2460/ajvr.77.8.828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
222
|
Kalliomäki ML, Sandblom G, Hallberg M, Grönbladh A, Gunnarsson U, Gordh T, Ginya H, Nyberg F. Genetic susceptibility to postherniotomy pain. The influence of polymorphisms in the Mu opioid receptor, TNF-α, GRIK3, GCH1, BDNF and CACNA2D2 genes. Scand J Pain 2016; 12:1-6. [PMID: 28850479 DOI: 10.1016/j.sjpain.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Despite improvements in surgical technique, 5%-8% of patients undergoing herniorrhaphy still suffer from clinically relevant persistent postherniotomy pain. This is a problem at both individual and society levels. The aim of this study was to determine whether or not a single nucleotide polymorphism in a specific gene contributes to the development of persistent pain after surgery. METHODS One hundred individuals with persistent postherniotomy pain, along with 100 without pain matched for age, gender and type of surgery were identified in a previous cohort study on patients operated for groin hernia. All patients underwent a thorough sensory examination and blood samples were collected. DNA was extracted and analysed for single nucleotide polymorphism in the Mu opioid receptor, TNF-α, GRIK3, GCH1, BDNF and CACNA2D2 genes. RESULTS Patients with neuropathic pain were found to have a homozygous single nucleotide polymorph in the TNF-α gene significantly more often than pain-free patients (P=0.036, one-tailed test). CONCLUSIONS SNP in the TNF-α gene has a significant impact on the risk for developing PPSP. IMPLICATIONS The result suggests the involvement of genetic variance in the development of pain and this requires further investigation.
Collapse
Affiliation(s)
- Maija-Liisa Kalliomäki
- Uppsala University, Department for Surgical Sciences, Uppsala, Sweden; Department of Anaesthesia, Tampere University Hospital, Finland.
| | | | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden
| | - Alfhild Grönbladh
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden
| | - Ulf Gunnarsson
- Department of Surgical and Perioperative Sciences, Umeå University, Sweden
| | - Torsten Gordh
- Uppsala University, Department for Surgical Sciences, Uppsala, Sweden; Pain Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Harumi Ginya
- Division of IVD System Development, Precision System Science Co., Ltd., Chiba, Japan
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden
| |
Collapse
|
223
|
Bernardi RE, Zohsel K, Hirth N, Treutlein J, Heilig M, Laucht M, Spanagel R, Sommer WH. A gene-by-sex interaction for nicotine reward: evidence from humanized mice and epidemiology. Transl Psychiatry 2016; 6:e861. [PMID: 27459726 PMCID: PMC5545715 DOI: 10.1038/tp.2016.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 02/03/2023] Open
Abstract
It has been proposed that vulnerability to nicotine addiction is moderated by variation at the μ-opioid receptor locus (OPRM1), but results from human studies vary and prospective studies based on genotype are lacking. We have developed a humanized mouse model of the most common functional OPRM1 polymorphism rs1799971_A>G (A118G). Here we use this model system together with a cohort of German youth to examine the role of the OPRM1 A118G variation on nicotine reward. Nicotine reinforcement was examined in the humanized mouse model using i.v. self-administration. Male (n=17) and female (n=26) mice homozygous either for the major human A allele (AA) or the minor G allele (GG) underwent eight daily 2 h sessions of nicotine self-administration. Furthermore, male (n=104) and female (n=118) subjects homozygous for the A allele or carrying the G allele from the Mannheim Study of Children at Risk were evaluated for pleasurable and unpleasant experiences during their initial smoking experience. A significant sex-by-genotype effect was observed for nicotine self-administration. Male 118GG mice demonstrated higher nicotine intake than male 118AA mice, suggesting increased nicotine reinforcement. In contrast, there was no genotype effect in female mice. Human male G allele carriers reported increased pleasurable effects from their first smoking experience, as compared to male homozygous A, female G and female homozygous A allele carriers. The 118G allele appears to confer greater sensitivity to nicotine reinforcement in males, but not females.
Collapse
Affiliation(s)
- R E Bernardi
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - K Zohsel
- Department of Child and Adolescent
Psychiatry, Central Institute of Mental Health, Medical Faculty
Mannheim/Heidelberg University, Mannheim,
Germany
| | - N Hirth
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - J Treutlein
- Genetic Epidemiology, Central Institute
of Mental Health, Medical Faculty Mannheim/Heidelberg University,
Mannheim, Germany
| | - M Heilig
- Center for Social and Affective
Neuroscience, Linköping University, Linköping,
Sweden
| | - M Laucht
- Department of Child and Adolescent
Psychiatry, Central Institute of Mental Health, Medical Faculty
Mannheim/Heidelberg University, Mannheim,
Germany
| | - R Spanagel
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany,Addiction Medicine, Central Institute of
Mental Health, Medical Faculty Mannheim/Heidelberg University,
Mannheim, Germany,Institute of Psychopharmacology, Central Institute of Mental
Health, Medical Faculty Mannheim/Heidelberg University, Square
J5, Mannheim
68159, Germany; E-mail:
| |
Collapse
|
224
|
Gender Interacts with Opioid Receptor Polymorphism A118G and Serotonin Receptor Polymorphism −1438 A/G on Speed-Dating Success. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2016; 27:244-60. [DOI: 10.1007/s12110-016-9257-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
225
|
Nielsen LM, Olesen AE, Sato H, Christrup LL, Drewes AM. Association between Gene Polymorphisms and Pain Sensitivity Assessed in a Multi-Modal Multi-Tissue Human Experimental Model - An Explorative Study. Basic Clin Pharmacol Toxicol 2016; 119:360-6. [PMID: 27061127 DOI: 10.1111/bcpt.12601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Abstract
The genetic influence on sensitivity to noxious stimuli (pain sensitivity) remains controversial and needs further investigation. In the present study, the possible influence of polymorphisms in three opioid receptor (OPRM, OPRD and OPRK) genes and the catechol-O-methyltransferase (COMT) gene on pain sensitivity in healthy participants was investigated. Catechol-O-methyltransferase has an indirect effect on the mu opioid receptor by changing its activity through an altered endogenous ligand effect. Blood samples for genetic analysis were withdrawn in a multi-modal and multi-tissue experimental pain model in 40 healthy participants aged 20-65. Seventeen different single nucleotide polymorphisms in different genes (OPRM, OPRK, OPRD and COMT) were included in the analysis. Experimental pain tests included thermal skin stimulation, mechanical muscle and bone stimulation and mechanical, electrical and thermal visceral stimulations. A cold pressor test was also conducted. DNA was available from 38 of 40 participants. Compared to non-carriers of the COMT rs4680A allele, carriers reported higher bone pressure pain tolerance threshold (i.e. less pain) by up to 23.8% (p < 0.015). Additionally, carriers of the C allele (CC/CT) of OPRK rs6473799 reported a 30.4% higher mechanical visceral pain tolerance threshold than non-carriers (TT; p < 0.019). For the other polymorphisms and stimulations, no associations were found (all p > 0.05). In conclusion, COMT rs4680 and OPRK rs6473799 polymorphisms seem to be associated with pain sensitivity. Thus, the findings support a possible genetic influence on pain sensitivity.
Collapse
Affiliation(s)
- Lecia Møller Nielsen
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark.,Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Estrup Olesen
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark. .,Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Hiroe Sato
- Interstitial Lung Disease Unit, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | - Lona Louring Christrup
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Asbjørn Mohr Drewes
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
226
|
Lechner WV, Knopik VS, McGeary JE, Spillane NS, Tidey JW, McKee SA, Metrik J, Leventhal AM, Rohsenow DJ, Kahler CW. Influence of the A118G Polymorphism of the OPRM1 Gene and Exon 3 VNTR Polymorphism of the DRD4 Gene on Cigarette Craving After Alcohol Administration. Nicotine Tob Res 2016; 18:632-6. [PMID: 26092968 PMCID: PMC5896808 DOI: 10.1093/ntr/ntv136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/10/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The current study examined whether the presence of the G allele of the A118G polymorphism of the OPRM1 gene (rs1799971) and the long allele of exon 3 VNTR polymorphism of the DRD4 gene moderate the effect of alcohol administration on urge to smoke. These polymorphisms have been associated with greater alcohol induced-urge to drink. Urge to drink and alcohol consumption increase urge to smoke. Therefore, these polymorphisms may also sensitize urge to smoke after alcohol consumption. METHODS Individuals smoking 10-30 cigarettes per day and reporting heavy drinking were recruited from the community. Caucasians (n = 62), 57.3% male, mean age 39.2, took part in a three-session, within-subjects, repeated-measures design study. Participants were administered a placebo, 0.4 g/kg, or 0.8 g/kg dose of alcohol. A118G genotype, exon 3 VNTR genotype, and urge to smoke (baseline and three times after receiving alcohol) were assessed. RESULTS G allele carriers showed greater urge to smoke across all assessments. Additionally, a significant interaction indicated that G carriers, compared to homozygotes (AA), evinced a significantly greater increase in urge to smoke after high dose alcohol relative to placebo. The interaction between condition, DRD4 polymorphism, and time was not significant. CONCLUSIONS Presence of G allele of the A118G polymorphism of the OPRM1 gene may lead to greater increases in urge to smoke after a high dose of alcohol. Pharmacotherapies targeted to opiate receptors (eg, naltrexone) may be especially helpful in aiding smoking cessation among G carriers who are heavy drinkers.
Collapse
Affiliation(s)
- William V Lechner
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI;
| | - Valerie S Knopik
- Division of Behavioral Genetics, Rhode Island Hospital, Providence, RI; Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI
| | - John E McGeary
- Division of Behavioral Genetics, Rhode Island Hospital, Providence, RI; Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI
| | - Nichea S Spillane
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI
| | - Jennifer W Tidey
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI
| | | | - Jane Metrik
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI; Providence Veterans Affairs Medical Center, Providence, RI
| | - Adam M Leventhal
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Damaris J Rohsenow
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI; Providence Veterans Affairs Medical Center, Providence, RI
| | - Christopher W Kahler
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI
| |
Collapse
|
227
|
Inagaki TK, Ray LA, Irwin MR, Way BM, Eisenberger NI. Opioids and social bonding: naltrexone reduces feelings of social connection. Soc Cogn Affect Neurosci 2016; 11:728-35. [PMID: 26796966 PMCID: PMC4847702 DOI: 10.1093/scan/nsw006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/28/2015] [Accepted: 01/14/2016] [Indexed: 11/13/2022] Open
Abstract
Close social bonds are critical to a happy and fulfilled life and yet little is known, in humans, about the neurochemical mechanisms that keep individuals feeling close and connected to one another. According to the brain opioid theory of social attachment, opioids may underlie the contented feelings associated with social connection and may be critical to continued bonding. However, the role of opioids in feelings of connection toward close others has only begun to be examined in humans. In a double-blind, placebo-controlled, crossover study of naltrexone (an opioid antagonist), 31 volunteers took naltrexone for 4 days and placebo for 4 days (separated by a 10-day washout period). Participants came to the laboratory once on the last day of taking each drug to complete a task designed to elicit feelings of social connection. Participants also completed daily reports of feelings of social connection while on naltrexone and placebo. In line with hypotheses, and for the first time in humans, results demonstrated that naltrexone (vs placebo) reduced feelings of connection both in the laboratory and in daily reports. These results highlight the importance of opioids for social bonding with close others, lending support to the brain opioid theory of social attachment.
Collapse
Affiliation(s)
| | | | - Michael R. Irwin
- Semel Institute for Neuroscience and Human Behavior, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, USA
| | - Baldwin M. Way
- Department of Psychology and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
228
|
Abstract
Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids.
Collapse
|
229
|
Vardy E, Sassano MF, Rennekamp AJ, Kroeze WK, Mosier PD, Westkaemper RB, Stevens CW, Katritch V, Stevens RC, Peterson RT, Roth BL. Single Amino Acid Variation Underlies Species-Specific Sensitivity to Amphibian Skin-Derived Opioid-like Peptides. ACTA ACUST UNITED AC 2016; 22:764-75. [PMID: 26091169 DOI: 10.1016/j.chembiol.2015.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
It has been suggested that the evolution of vertebrate opioid receptors (ORs) follow a vector of increased functionality. Here, we test this idea by comparing human and frog ORs. Interestingly, some of the most potent opioid peptides known have been isolated from amphibian skin secretions. Here we show that such peptides (dermorphin and deltorphin) are highly potent in the human receptors and inactive in frog ORs. The molecular basis for the insensitivity of the frog ORs to these peptides was studied using chimeras and molecular modeling. The insensitivity of the delta OR (DOR) to deltorphin was due to variation of a single amino acid, Trp7.35, which is a leucine in mammalian DORs. Notably, Trp7.35 is completely conserved in all known DOR sequences from lamprey, fish, and amphibians. The deltorphin-insensitive phenotype was verified in fish. Our results provide a molecular explanation for the species selectivity of skin-derived opioid peptides.
Collapse
Affiliation(s)
- Eyal Vardy
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Maria F Sassano
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Andrew J Rennekamp
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13(th) Street, Charlestown, MA 02129, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Wesley K Kroeze
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Philip D Mosier
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Richard B Westkaemper
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Craig W Stevens
- Department of Pharmacology & Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17(th) Street, Tulsa, OK 74107, USA
| | - Vsevolod Katritch
- Department of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Raymond C Stevens
- Department of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Randall T Peterson
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13(th) Street, Charlestown, MA 02129, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA.
| |
Collapse
|
230
|
Phillips TJ, Mootz JRK, Reed C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:39-85. [PMID: 27055611 DOI: 10.1016/bs.irn.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction.
Collapse
Affiliation(s)
- T J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - J R K Mootz
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - C Reed
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
231
|
Schwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, et alSchwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, Rietschel M, Roy A, Rujescu D, Saarikoski ST, Swan GE, Todorov AA, Vanyukov MM, Weiss RB, Bierut LJ, Saccone NL. Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behav Genet 2016; 46:151-69. [PMID: 26392368 PMCID: PMC4752855 DOI: 10.1007/s10519-015-9737-3] [Show More Authors] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The mu1 opioid receptor gene, OPRM1, has long been a high-priority candidate for human genetic studies of addiction. Because of its potential functional significance, the non-synonymous variant rs1799971 (A118G, Asn40Asp) in OPRM1 has been extensively studied, yet its role in addiction has remained unclear, with conflicting association findings. To resolve the question of what effect, if any, rs1799971 has on substance dependence risk, we conducted collaborative meta-analyses of 25 datasets with over 28,000 European-ancestry subjects. We investigated non-specific risk for "general" substance dependence, comparing cases dependent on any substance to controls who were non-dependent on all assessed substances. We also examined five specific substance dependence diagnoses: DSM-IV alcohol, opioid, cannabis, and cocaine dependence, and nicotine dependence defined by the proxy of heavy/light smoking (cigarettes-per-day >20 vs. ≤ 10). The G allele showed a modest protective effect on general substance dependence (OR = 0.90, 95% C.I. [0.83-0.97], p value = 0.0095, N = 16,908). We observed similar effects for each individual substance, although these were not statistically significant, likely because of reduced sample sizes. We conclude that rs1799971 contributes to mechanisms of addiction liability that are shared across different addictive substances. This project highlights the benefits of examining addictive behaviors collectively and the power of collaborative data sharing and meta-analyses.
Collapse
Affiliation(s)
- Tae-Hwi Schwantes-An
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, US National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Juan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Key Laboratory of Brain Function and Disease, School of Life Sciences, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert C Culverhouse
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangning Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Helen M Kamens
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bettina Konte
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Leena Kovanen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti Latvala
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Lisa N Legrand
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Whitney E Melroy
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark W Reid
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei-Hong Shen
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
| | | | - Paul Aveyard
- Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Olga Beltcheva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Sandra A Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dale S Cannon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Sven Cichon
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Norbert Dahmen
- Ökumenisches Hainich-Klinikum, Mühlhausen/Thüringen, Germany
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Randwick, NSW, 2031, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, 3010, Australia
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Ina Giegling
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Richard A Grucza
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Hardin
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Annette M Hartmann
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stefan Herms
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Colin A Hodgkinson
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Per Hoffmann
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Hyman Hops
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - David Huizinga
- Institute of Behavioral Science, University of Colorado, Boulder, CO, 80309, USA
| | - Marcus Ising
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Eric O Johnson
- Behavioral Health Research Division, Research Triangle Institute International, Durham, NC, 27709, USA
| | - Elaine Johnstone
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Radka P Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ken S Krauter
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Susanne Lucae
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Michael T Lynskey
- Addictions Department, Institute of Psychiatry, King's College London, London, SE5 8BB, UK
| | | | - Karl Mann
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Nicholas G Martin
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | - Manuel Mattheisen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Harvard School of Public Health, Boston, MA, 02115, USA
- Aarhus University, Aarhus, 8000, Denmark
| | - Grant W Montgomery
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | | | - Michael F Murphy
- Childhood Cancer Research Group, University of Oxford, Oxford, OX3 7LG, UK
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Momchil A Nikolov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Denise Nishita
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Markus M Nöthen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Michele L Pergadia
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maureen Reynolds
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Monika Ridinger
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
- Psychiatric Hospital, Konigsfelden, Windisch, Switzerland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Noora Rouvinen-Lagerström
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy, LVR Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christine Schmäl
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Michael Soyka
- Department of Psychiatry, University of Munich, 3860, Munich, Germany
- Private Hospital Meiringen, Meiringen, Switzerland
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Michael Steffens
- Research Department, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Ming Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Norbert Wodarz
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | | | - Andrew W Bergen
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Jingchun Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Paul M Cinciripini
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Robert E Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
- Department of Genetics, Yale University, New Haven, CT, 06516, USA
- Department of Neurobiology, Yale University, New Haven, CT, 06516, USA
| | - David Goldman
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jaakko Kaprio
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, 00014, Helsinki, Finland
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Ivo M Kremensky
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, UK Centre for Tobacco and Alcohol Studies, and School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | | | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Alec Roy
- Psychiatry Service, Department of Veteran Affairs, New Jersey VA Health Care System, East Orange, NJ, 07018, USA
| | - Dan Rujescu
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Sirkku T Saarikoski
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Gary E Swan
- Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexandre A Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael M Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA.
| |
Collapse
|
232
|
Soyka M. Nalmefene for the treatment of alcohol use disorders: recent data and clinical potential. Expert Opin Pharmacother 2016; 17:619-26. [PMID: 26810044 DOI: 10.1517/14656566.2016.1146689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Few pharmacotherapies are available for alcoholism. Numerous studies indicate the involvement of the opioid-endorphin system in mediating the reinforcing effects of alcohol via dopaminergic neurons. The opioid antagonist naltrexone was found to be effective in alcohol treatment, and the European Medicines Agency has now approved the mu-opioid antagonist und partial kappa agonist nalmefene. AREAS COVERED This article presents background information on the chemistry of nalmefene and pre-clinical and clinical findings. The three relevant Phase III studies, all of which followed a harm-reduction, "as needed" approach and found reduced alcohol consumption with nalmefene 18 (20) mg, are discussed in detail. EXPERT OPINION The integration of the "as needed" approach into conventional psychosocial alcohol therapies may be challenging but offers the opportunity to reach otherwise not treated patients. Nalmefene is the first medication to be approved specifically in this indication and seems to be most suitable for patients with alcohol misuse or a rather low physical dependence on alcohol who do not require immediate detoxification or inpatient treatment. Although a categorical distinction between patients who want to stop heavy drinking or drinking at all over time may be somewhat hypothetical, nalmefene offers new treatment options to patients with alcohol use disorder.
Collapse
Affiliation(s)
- Michael Soyka
- a Department of Psychiatry and Psychotherapy , Ludwig Maximilian University , Munich , Germany.,b Privatklinik Meiringen , Meiringen , Switzerland
| |
Collapse
|
233
|
Abstract
Alcohol addiction is one of the most common and devastating diseases in the world. Given the tremendous heterogeneity of alcohol addicted individuals, it is unlikely that one medication will help nearly all patients. Thus, there is a clear need to develop predictors of response to existing medications. Naltrexone is a mu-opioid receptor antagonist which has been approved in the United States for treatment of alcohol addiction since 1994. It has limited efficacy, in part due to noncompliance, but many patients do not respond despite high levels of compliance. There are reports that a mis-sense single nucleotide polymorphism (rs179919 or A118G) in the mu-opioid receptor gene predicts a favorable response to naltrexone if an individual carries a 'G' allele. This chapter will review the evidence for this hypothesis. The data are promising that the 'G' allele predisposes to a beneficial naltrexone response among alcohol addicted persons, but additional research is needed to prove this hypothesis in prospective clinical trials.
Collapse
Affiliation(s)
- Wade Berrettini
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, 125 S. 31st St., Philadelphia, PA 19104, USA.
| |
Collapse
|
234
|
Heller D, Doyle JR, Raman VS, Beinborn M, Kumar K, Kopin AS. Novel Probes Establish Mas-Related G Protein-Coupled Receptor X1 Variants as Receptors with Loss or Gain of Function. J Pharmacol Exp Ther 2016; 356:276-83. [PMID: 26582731 DOI: 10.1124/jpet.115.227058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 03/08/2025] Open
Abstract
The Mas-related G protein-coupled receptor X1 (MrgprX1) is a human seven transmembrane-domain protein with a putative role in nociception and pruritus. This receptor is expressed in dorsal root ganglion neurons and is activated by a variety of endogenous peptides, including bovine adrenal medulla peptide (BAM) and γ2-melanocyte-stimulating hormone (γ2-MSH). In the present work, we study how naturally occurring missense mutations alter the activity of MrgprX1. To characterize selected receptor variants, we initially used the endogenous peptide ligand BAM8-22. In addition, we generated and characterized a panel of novel recombinant and synthetic peptide ligands. Our studies identified a mutation in the second intracellular loop of MrgprX1, R131S, that causes a decrease in both ligand-mediated and constitutive signaling. Another mutation in this region, H133R, results in a gain of function phenotype reflected by an increase in ligand-mediated signaling. Using epitope-tagged variants, we determined that the alterations in basal and ligand-mediated signaling were not explained by changes in receptor expression levels. Our results demonstrate that naturally occurring mutations can alter the pharmacology of MrgprX1. This study provides a theoretical basis for exploring whether MrgprX1 variability underlies differences in somatosensation within human populations.
Collapse
Affiliation(s)
- Daniel Heller
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (D.H., J.R.D., M.B., A.S.K.); Department of Chemistry, Tufts University, Medford, Massachusetts (V.S.R., K.K.)
| | - Jamie R Doyle
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (D.H., J.R.D., M.B., A.S.K.); Department of Chemistry, Tufts University, Medford, Massachusetts (V.S.R., K.K.)
| | - Venkata S Raman
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (D.H., J.R.D., M.B., A.S.K.); Department of Chemistry, Tufts University, Medford, Massachusetts (V.S.R., K.K.)
| | - Martin Beinborn
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (D.H., J.R.D., M.B., A.S.K.); Department of Chemistry, Tufts University, Medford, Massachusetts (V.S.R., K.K.)
| | - Krishna Kumar
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (D.H., J.R.D., M.B., A.S.K.); Department of Chemistry, Tufts University, Medford, Massachusetts (V.S.R., K.K.)
| | - Alan S Kopin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (D.H., J.R.D., M.B., A.S.K.); Department of Chemistry, Tufts University, Medford, Massachusetts (V.S.R., K.K.)
| |
Collapse
|
235
|
Valenza M, Picetti R, Yuferov V, Butelman ER, Kreek MJ. Strain and cocaine-induced differential opioid gene expression may predispose Lewis but not Fischer rats to escalate cocaine self-administration. Neuropharmacology 2016; 105:639-650. [PMID: 26777278 DOI: 10.1016/j.neuropharm.2016.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 01/03/2016] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to investigate alterations in gene expression of opioid system components induced by extended access (18 h) cocaine self-administration and to determine the impact of genetic background in the vulnerability to escalate cocaine intake. Comparing two inbred rat strains, we previously reported that Lewis rats progressively escalated cocaine consumption compared to Fischer rats, in a new translational model of intravenous cocaine self-administration, which included 14 sessions of 18-h operant sessions in which rats were allowed to select the cocaine unit dose to self-administer. We compare here Fischer and Lewis rats in the gene expression of endogenous opioid peptides (Pomc, Penk, Pdyn) and cognate receptors (Oprm, Oprk and Oprd) in reward-related brain regions, after exposure to either cocaine self-administration or yoked-saline, in the aforementioned translational paradigm. We performed a correlation analysis between the mRNA level, found in the Dorsal Striatum (DS), Nucleus accumbens (NAcc) shell and core respectively, and individual cocaine intake. Our findings show that the gene expression of all the aforementioned opioid genes exhibit strain-dependent differences in the DS, in absence of cocaine exposure. Also, different strain-specific cocaine-induced mRNA expression of Oprm and Oprk was found in DS. Only few differences were found in the ventral parts of the striatum. Moreover, gene expression level of Pdyn, Penk, Oprk, and Oprm in the DS was significantly correlated with cocaine intake only in Fischer rats. Overall, these data shed light on potential genetic differences which may predispose of subjects to initiate and escalate cocaine consumption.
Collapse
Affiliation(s)
- Marta Valenza
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Roberto Picetti
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA; Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| |
Collapse
|
236
|
Lee MG, Kim HJ, Lee KH, Choi YS. The Influence of Genotype Polymorphism on Morphine Analgesic Effect for Postoperative Pain in Children. Korean J Pain 2016; 29:34-9. [PMID: 26839669 PMCID: PMC4731550 DOI: 10.3344/kjp.2016.29.1.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/05/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Background Although opioids are the most commonly used medications to control postoperative pain in children, the analgesic effects could have a large inter-individual variability according to genotypes. The aim of this study was to investigate the association between single nucleotide polymorphisms and the analgesic effect of morphine for postoperative pain in children. Methods A prospective study was conducted in 88 healthy children undergoing tonsillectomy, who received morphine during the operation. The postoperative pain score, frequency of rescue analgesics, and side effects of morphine were assessed in the post-anesthesia care unit. The children were genotyped for OPRM1 A118G, ABCB1 C3435T, and COMT Val158Met. Results Children with at least one G allele for OPRM1 (AG/GG) had higher postoperative pain scores compared with those with the AA genotype at the time of discharge from the post-anesthesia care unit (P = 0.025). Other recovery profiles were not significantly different between the two groups. There was no significant relationship between genotypes and postoperative pain scores in analysis of ABCB1 and COMT polymorphisms. Conclusions Genetic polymorphism at OPRM1 A118G, but not at ABCB1 C3435T and COMT Val158Met, influences the analgesic effect of morphine for immediate acute postoperative pain in children.
Collapse
Affiliation(s)
- Mi Geum Lee
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Hyun Jung Kim
- Department of Anesthesiology and Pain Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Keun Hwa Lee
- Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Korea
| | - Yun Suk Choi
- Department of Anesthesiology and Pain Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
237
|
Le Foll B. What does addiction medicine expect from neuroscience? From genes and neurons to treatment responses. PROGRESS IN BRAIN RESEARCH 2016; 224:419-47. [DOI: 10.1016/bs.pbr.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
238
|
Kibitov АО, Krupitsky ЕМ, Blokhina ЕА, Verbitskaya ЕV, Brodyansky VМ, Alekseeva NP, Bushara NМ, Yaroslavtseva ТS, Palatkin VY, Masalov DV, Burakov АМ, Romanova ТN, Sulimov GY, Grinenko AY, Kosten Т, Nielsen D, Zvartau EE. [A pharmacogenetic analysis of dopaminergic and opioidergic genes in opioid addicts treated with the combination of naltrexone and guanfacine]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:36-48. [PMID: 28300812 DOI: 10.17116/jnevro201611611236-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To evaluate an effect of opioid receptor and dopamine system gene polymorphisms on the efficacy of combined treatment with oral naltrexone and guanfacine in a randomized double blinded double dummy placebo controlled clinical trial. MATERIAL AND METHODS Three hundred and one patients with opioid dependence were randomized into 4 treatment groups: naltrexone 50 mg/day + guanfacine 1 mg/day (N+G); naltrexone + placebo guanfacine (N+GP); placebo naltrexone + guanfacine (NP+G); double placebo (NP+GP). The primary outcome was treatment retention. All enrolled participants were genotyped for polymorphisms in the following genes: mu- (OPRM1), kappa-opioid receptors (OPRK1), catechol-O-methyltransferase (COMT), dopamine receptors types 2 (DRD2) and 4 (DRD4), dopamine-beta-hydroxylase, and dopamine transporter (SLC6A3, DAT1) and alpha-2-adrenoreceptor (ADRA2A) a pharmacological target of guanfacine. RESULTS The efficacy of the combination of naltrexone and guanfacine was comparable to naltrexone monotherapy. Regardless of treatment, several gene polymorphisms were associated with higher chance to complete the treatment program: allele Т DRD4 - 521 С/Т (rs1800955) (р=0.039; OR (95% CI)=3.7 (1.1-12.7); log-rank test: р=0.01); allele С DRD2 С957Т (rs6277) (р=0.03; HR=0.6 (0.34-0.95); genotype combination: DRD4 VNTR (LL) + OPRM1 A118G (rs1799971) (AA), р=0.051; DRD2 C957T (ТТ) + OPRM1 (rs1074287) (СС), р=0.025; DRD2 - 141С (II) + OPRM1 (rs510769) (АА), р=0.035; DBH Fau(СС) + OPRM1 (rs1074287) (СС), р=0.0497. Regardless of treatment several polymorphisms were associated with high risk of relapse: allele Т (rs510769) OPRM1 (р=0.053), allele А (rs1799971, A118G) OPRM1 (р=0.056), allele S exon III 48 bp DRD4 VNTR (р=0.001; HR=3.1 (ДИ 95% 1.57-6.18); genotype combinations: DRD4 - 521 С/Т (ТТ) + DRD2 Nco I (TT), р=0.026; DRD4 -521 С/Т (ТТ) + DRD2 -141 С (II), р=0.011; DRD4 - 521 С/Т (ТТ) + OPRM1 A118G (rs1799971) (AA), р=0.011; DRD2 Nco I(ТТ) + ADRA2A (СС), р=0.012; DRD2 Nco I(ТТ) + OPRM1 A118G (AA), р=0.02. The effects dependent on the treatment group were as follows: 1) in the N+G group, patients with the DRD4 -521 С/Т TT genotype had higher probability of completion of treatment program in comparison with other genotypes (CC and CT) (log-rank test: p=0.002); 2) in NP + GP group, patients with the OPRM1 rs510769 T allele had higher risk of relapse compared to the genotype GG (p=0.008) (FDR p<0.0125). CONCLUSION The additive effect of opioid receptor genes and dopaminergic system genes on outcomes of treatment opioid dependence with oral naltrexone and guanfacine was shown. Pharmacological effects of naltrexone and guanfacine were associated with genetic variants of the DRD4 - 521C/T polymorphism, since its effect was shown only in the N+G group. The effect of the OPRM1 rs510769 polymorphism was demonstrated in the double placebo group that was associated with personality traits (temperament, character) and determined compliance. Genetic analysis is useful for determining potential responders to treatment of opioid dependence; genotyping can increase the efficacy of pharmacotherapy.
Collapse
Affiliation(s)
- А О Kibitov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Е М Krupitsky
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Е А Blokhina
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Е V Verbitskaya
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - V М Brodyansky
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - N P Alekseeva
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - N М Bushara
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Т S Yaroslavtseva
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - V Yа Palatkin
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - D V Masalov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - А М Burakov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Т N Romanova
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - G Yu Sulimov
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - A Yа Grinenko
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - Т Kosten
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - D Nielsen
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| | - E E Zvartau
- Pavlov First St.Petersburg State Medical University, St.Petersburg, Bekhterev St.Petersburg Research Psychoneurilogical Institute, St.Petersburg, Serbsky Federal Medical research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
239
|
Heilig M, Sommer WH, Spanagel R. The Need for Treatment Responsive Translational Biomarkers in Alcoholism Research. Curr Top Behav Neurosci 2016; 28:151-171. [PMID: 27240677 DOI: 10.1007/7854_2015_5006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the past two decades, major advances have been made in the basic neuroscience of alcohol addiction. However, few of these have been translated into clinically useful treatments, which remain limited. In the past decade, psychiatric drug development in general has been stalled, with many preclinically validated mechanisms failing in clinical development. Despite the existence of appealing preclinical models in the area of addictive disorders, drug development for these conditions has been impacted by the exodus of major pharma from psychiatric neuroscience. Here, we discuss translational biomarker strategies that may help turn this tide. Following an approach patterned on an endophenotype approach to complex behavioral traits, we hypothesize that relatively simple biological measures should be sought that can be obtained both in experimental animals and in humans, and that may be responsive to alcoholism medications. These biomarkers have to be tailored to the specific mechanism targeted by candidate medications and may in fact also help identify biologically more homogeneous subpopulations of patients. We introduce as examples alcohol-induced dopamine (DA) release, measures of central glutamate levels, and network connectivity, and discuss our experience to date with these biomarker strategies.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, SE-58183, Linköping, Sweden.
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
240
|
Mileva-Seitz VR, Bakermans-Kranenburg MJ, van IJzendoorn MH. Genetic mechanisms of parenting. Horm Behav 2016; 77:211-23. [PMID: 26112881 DOI: 10.1016/j.yhbeh.2015.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
This article is part of a Special Issue "Parental Care". The complexities of parenting behavior in humans have been studied for decades. Only recently did we begin to probe the genetic and epigenetic mechanisms underlying these complexities. Much of the research in this field continues to be informed by animal studies, where genetic manipulations and invasive tools allow to peek into and directly observe the brain during the expression of maternal behavior. In humans, studies of adult twins who are parents can suggest dimensions of parenting that might be more amenable to a genetic influence. Candidate gene studies can test specific genes in association with parental behavior based on prior knowledge of those genes' function. Gene-by-environment interactions of a specific kind indicating differential susceptibility to the environment might explain why some parents are more resilient and others are more vulnerable to stressful life events. Epigenetic studies can provide the bridge often necessary to explain why some individuals behave differently from others despite common genetic influences. There is a much-needed expansion in parenting research to include not only mothers as the focus-as has been the case almost exclusively to date-but also fathers, grandparents, and other caregivers.
Collapse
Affiliation(s)
- Viara R Mileva-Seitz
- Center for Child and Family Studies, Leiden University, PO Box 9555, 2300 RB Leiden, The Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, PO Box 2060, 3000 CB Rotterdam, The Netherlands.
| | | | - Marinus H van IJzendoorn
- Center for Child and Family Studies, Leiden University, PO Box 9555, 2300 RB Leiden, The Netherlands; School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| |
Collapse
|
241
|
Abstract
A functional polymorphism rs1799971 (A118G) in the μ-opioid receptor gene (OPRM1) produces an amino acid substitution Asn40Asp, which is believed to influence naltrexone response in nondepressed alcohol-dependent patients. In this study, patients with alcohol dependence and major depression (n=108) received open-label naltrexone and clinical case management for 12 weeks, and were randomized to citalopram or placebo. General linear mixed models examined the effect of the OPRM1 A118G genotype on alcohol outcomes during treatment. There was no evidence of any difference in the percentage of days abstinent, drinks per drinking day or percentage of heavy drinking days between Asp40 carriers and noncarriers during treatment. This study therefore failed to replicate the previous positive findings for this single nucleotide polymorphism in relation to naltrexone response, possibly indicating that the effect is not present in depressed patients.
Collapse
|
242
|
BAKHOUCHE H, NOSKOVA P, SVETLIK S, BARTOSOVA O, ULRICHOVA J, KUBATOVA J, MARUSICOVA P, PARIZEK A, BLAHA J, SLANAR O. Maternal and Neonatal Effects of Remifentanil in Women Undergoing Cesarean Section in Relation to ABCB1 and OPRM1 Polymorphisms. Physiol Res 2015. [DOI: 10.33549/10.33549/physiolres.933233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of our study was to evaluate possible effect of ABCB1, and OPRM1 polymorphisms on the efficacy and safety of remifentanil in women undergoing elective cesarean section under general anesthesia. Women received remifentanil (1 µg/kg i.v.) 30 s prior to the induction to standardized general anesthesia. The ABCB1 (rs2032582, rs1045642) and OPRM1 (rs1799971) polymorphisms were analyzed from maternal peripheral blood. The basal hemodynamic and demographic parameters in the study population (n=54) were similar in all the subgroups. The median ± SD increase of systolic blood pressure at 5 min from the baseline was practically completely abolished in homozygous carriers of ABCB1 variants in comparison with wild-type subjects -2.67±25.0 vs. 16.57±15.7 mm Hg, p<0.05 for rs2032582, and 2.00±23.9 vs. 22.13±16.8 mm Hg, p<0.05, for rs1045642, respectively. While no neonate belonging to ABCB1 wild-type homozygous or OPRM1 variant carrying mothers needed any resuscitative measure, 10.5 % of the neonates belonging to OPRM1 wild-type homozygous mothers received resuscitative support similarly as 11.1 %, and 12.5 % of neonates of mothers carrying variants of rs2032582, and rs1045642, respectively. Decreased stabilizing effects of remifentanil on maternal hemodynamics has been observed in ABCB1 wild type mothers, while the adaptation of the neonates was clinically worse in OPRM1 wild type, and ABCB1 variant allele carriers.
Collapse
Affiliation(s)
- H. BAKHOUCHE
- Institute of Pharmacology, First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Henderson-Redmond AN, Yuill MB, Lowe TE, Kline AM, Zee ML, Guindon J, Morgan DJ. Morphine-induced antinociception and reward in "humanized" mice expressing the mu opioid receptor A118G polymorphism. Brain Res Bull 2015; 123:5-12. [PMID: 26521067 DOI: 10.1016/j.brainresbull.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
The rewarding and antinociceptive effects of opioids are mediated through the mu-opioid receptor. The A118G single nucleotide polymorphism in this receptor has been implicated in drug addiction and differences in pain response. Clinical and preclinical studies have found that the G allele is associated with increased heroin reward and self-administration, elevated post-operative pain, and reduced analgesic responsiveness to opioids. Male and female mice homozygous for the "humanized" 118AA or 118GG alleles were evaluated to test the hypothesis that 118GG mice are less sensitive to the rewarding and antinociceptive effects of morphine. We found that 118AA and 118GG mice of both genders developed conditioned place preference for morphine. All mice developed tolerance to the antinociceptive and hypothermic effects of morphine. However, morphine tolerance was not different between AA and GG mice. We also examined sensitivity to the antinociceptive and hypothermic effects of cumulative morphine doses. We found that 118GG mice show reduced hypothermic and antinociceptive responses on the hotplate for 10mg/kg morphine. Finally, we examined basal pain response and morphine-induced antinociception in the formalin test for inflammatory pain. We found no gender or genotype differences in either basal pain response or morphine-induced antinociception in the formalin test. Our data suggests that homozygous expression of the GG allele in mice blunts morphine-induced hypothermia and hotplate antinociception but does not alter morphine CPP, morphine tolerance, or basal inflammatory pain response.
Collapse
Affiliation(s)
- Angela N Henderson-Redmond
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Matthew B Yuill
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Tammy E Lowe
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Benedict College, Columbia, South Carolina 29204, United States
| | - Aaron M Kline
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Michael L Zee
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX 79430, United States.
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
244
|
Heilig M, Leggio L. What the alcohol doctor ordered from the neuroscientist: Theragnostic biomarkers for personalized treatments. PROGRESS IN BRAIN RESEARCH 2015; 224:401-18. [PMID: 26822368 DOI: 10.1016/bs.pbr.2015.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Major advances in the neuroscientific understanding of alcohol actions have so far not translated into measurably improved clinical outcomes in alcoholism. Future treatment development should be guided by accumulating insights into a diverse range of biological mechanisms that maintain the pathophysiology of alcoholism in different individuals, but also at different points in time within any given patient. This biological diversity calls for the development and use of biological markers predictive of treatment response in the individual case, at the specific stage of the disease, here called "theragnostics." As novel therapeutic mechanisms and molecules targeting these mechanisms are discovered, the use of theragnostics will be critical for their successful clinical development, as well as their optimal subsequent clinical use. During clinical development, lest theragnostics are utilized, efficacy signals will risk remaining undetected when diluted in study populations that are not appropriately selected. Similarly, for treatments that reach approval, clinical acceptance, and optimal use will require the proper identification of responsive patients. Here, we discuss desirable properties of theragnostic biomarkers in alcohol addiction using two examples: alcohol-induced activation of brain reward circuitry as assessed using positron emission tomography of functional magnetic resonance imaging; and central glutamate tone, as assessed using MR spectroscopy.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; Intramural Research Program, National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
245
|
Berrettini W. Opioid neuroscience for addiction medicine: From animal models to FDA approval for alcohol addiction. PROGRESS IN BRAIN RESEARCH 2015; 223:253-67. [PMID: 26806780 DOI: 10.1016/bs.pbr.2015.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alcohol addiction is one of the most common and devastating diseases in the world. Given the tremendous heterogeneity of alcohol-addicted individuals, it is unlikely that one medication will help nearly all patients. Thus, there is a clear need to develop predictors of response to existing medications. Naltrexone is a mu opioid receptor antagonist which has been approved in the United States for treatment of alcohol addiction since 1994. It has limited efficacy, in part due to noncompliance, but many patients do not respond despite high levels of compliance. There are reports that a mis-sense single-nucleotide polymorphism (rs179919 or A118G) in the mu opioid receptor gene predicts a favorable response to naltrexone if an individual carries a "G" allele. This chapter will review the evidence for this hypothesis. The data suggest that the "G" allele has a complex role in alcohol addiction, increasing the rewarding valence of alcohol. Whether the G allele increases risk for alcoholism and whether it predisposes to a beneficial naltrexone response among alcohol-addicted persons must await additional research with large sample sizes of multiple ethnicities in prospective clinical trials.
Collapse
Affiliation(s)
- Wade Berrettini
- Karl E Rickles Professor of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
246
|
Patriquin MA, Bauer IE, Soares JC, Graham DP, Nielsen DA. Addiction pharmacogenetics: a systematic review of the genetic variation of the dopaminergic system. Psychiatr Genet 2015; 25:181-93. [PMID: 26146874 PMCID: PMC4549168 DOI: 10.1097/ypg.0000000000000095] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Substance use disorders have significant personal, familial, and societal consequences. Despite the serious consequences of substance use, only a few therapies are effective in treating substance use disorders, thus highlighting a need for improved treatment practices. Substance use treatment response depends on multiple factors such as genetic, biological, and social factors. It is essential that each component is represented in treatment plans. The dopaminergic system plays a critical role in the pharmacotherapy for addictions, and an understanding of the role of variation of genes involved in this system is essential for its success. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement guidelines. A computerized literature search was conducted using PubMed and Scopus (all databases). Articles published up to April 2015 that examined the role of dopaminergic gene variation in the pharmacotherapy of alcohol, opioid, and cocaine use disorders were reviewed. Search terms were dopamine, gene, polymorphism, substance abuse, treatment, and response. Polymorphisms of the DRD2, ANKK1, DAT1, DBH, and DRD4 genes have been found to moderate the effects of pharmacotherapy of alcohol, opioid, and cocaine use disorders. The integration of genetic information with clinical data will inform health professionals of the most efficacious pharmacotherapeutic intervention for substance use disorders. More studies are needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Michelle A. Patriquin
- The Menninger Clinic, Baylor College of Medicine, Houston, TX USA
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| | - Isabelle E. Bauer
- Department of Psychiatry and Behavioral Science, University of Texas Health Sciences Center, Houston, TX USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Science, University of Texas Health Sciences Center, Houston, TX USA
| | - David P. Graham
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX USA
| | - David A. Nielsen
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX USA
| |
Collapse
|
247
|
Robinson JE, Vardy E, DiBerto JF, Chefer VI, White KL, Fish EW, Chen M, Gigante E, Krouse MC, Sun H, Thorsell A, Roth BL, Heilig M, Malanga CJ. Receptor Reserve Moderates Mesolimbic Responses to Opioids in a Humanized Mouse Model of the OPRM1 A118G Polymorphism. Neuropsychopharmacology 2015; 40:2614-22. [PMID: 25881115 PMCID: PMC4569952 DOI: 10.1038/npp.2015.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/09/2022]
Abstract
The OPRM1 A118G polymorphism is the most widely studied μ-opioid receptor (MOR) variant. Although its involvement in acute alcohol effects is well characterized, less is known about the extent to which it alters responses to opioids. Prior work has shown that both electrophysiological and analgesic responses to morphine but not to fentanyl are moderated by OPRM1 A118G variation, but the mechanism behind this dissociation is not known. Here we found that humanized mice carrying the 118GG allele (h/mOPRM1-118GG) were less sensitive than h/mOPRM1-118AA littermates to the rewarding effects of morphine and hydrocodone but not those of other opioids measured with intracranial self-stimulation. Reduced morphine reward in 118GG mice was associated with decreased dopamine release in the nucleus accumbens and reduced effects on GABA release in the ventral tegmental area that were not due to changes in drug potency or efficacy in vitro or receptor-binding affinity. Fewer MOR-binding sites were observed in h/mOPRM1-118GG mice, and pharmacological reduction of MOR availability unmasked genotypic differences in fentanyl sensitivity. These findings suggest that the OPRM1 A118G polymorphism decreases sensitivity to low-potency agonists by decreasing receptor reserve without significantly altering receptor function.
Collapse
Affiliation(s)
- J Elliott Robinson
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eyal Vardy
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vladimir I Chefer
- Intramural Research Program, National Institute on Drug Abuse (NIDA), Baltimore, MD, USA
| | - Kate L White
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meng Chen
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eduardo Gigante
- Intramural Research Program, National Institute on Drug Abuse (NIDA), Baltimore, MD, USA
| | - Michael C Krouse
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Sun
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, USA
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,NIMH Psychoactive Drug Screening Program (PDSP), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Markus Heilig
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, USA,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C J Malanga
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina School of Medicine, Physicians' Office Building, 170 Manning Drive, CB 7025, Chapel Hill, NC 27599-7025, USA, Tel: +1 919 966 1683, Fax: +1 919 843 4576, E-mail:
| |
Collapse
|
248
|
Lovallo WR, Enoch MA, Acheson A, Cohoon AJ, Sorocco KH, Hodgkinson CA, Vincent AS, Glahn DC, Goldman D. Cortisol Stress Response in Men and Women Modulated Differentially by the Mu-Opioid Receptor Gene Polymorphism OPRM1 A118G. Neuropsychopharmacology 2015; 40:2546-54. [PMID: 25881118 PMCID: PMC4569944 DOI: 10.1038/npp.2015.101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 12/27/2022]
Abstract
Differences in stress reactivity may affect long-term health outcomes, but there is little information on how these differences arise. The stress axis is regulated by, in part, the endogenous opioid, beta-endorphin, acting on mu-opioid receptors. Persons carrying one or two copies of the G allele of the mu-opioid receptor gene (OPRM1 A118G) may have higher receptor binding for beta-endorphin compared with AA homozygotes that may contribute to individual differences in cortisol reactivity to stress, leading to a relative blunting of cortisol stress reactivity in G allele genotypes. We measured cortisol in 251 young adults (69 GA/GG vs 182 AA genotypes) exposed to mental arithmetic plus public speaking stress relative to a resting control day. Women had smaller cortisol responses than men (F=10.2, p=0.002), and women with GA or GG genotypes (N=39) had an absence of cortisol response relative to AA carriers (N=110) (F=18.4, p<0.0001). Male genotypes had no such difference in response (F=0.29). Cortisol response following mu-opioid receptor blockade using naltrexone in 119 of these subjects unmasked a greater tonic opioid inhibition of cortisol secretion in women (N=64), consistent with their blunted stress reactivity. Compared with men, women may have cortisol stress responses that are more heavily regulated by endogenous opioid mechanisms, and the OPRM1 GA/GG genotypes may affect females differentially relative to males. Diminished cortisol responses to stress may have consequences for health behaviors in women with GA/GG genotypes.
Collapse
Affiliation(s)
- William R Lovallo
- VA Medical Center, Oklahoma City, OK, USA,Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,755 Research Parkway, Suite 586, Oklahoma City, OK 73104, USA, Tel: +1 405 456 3124, Fax: +1 405 456 1839, E-mail:
| | | | - Ashley Acheson
- Department of Psychiatry, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA,Research Imaging Institute, UTHSCSA, San Antonio, TX, USA
| | | | - Kristen H Sorocco
- VA Medical Center, Oklahoma City, OK, USA,Donald W. Reynolds Department of Geriatric Medicine, OUHSC, Oklahoma City, OK, USA
| | | | - Andrea S Vincent
- Cognitive Science Research Center, University of Oklahoma, Norman, OK, USA
| | - David C Glahn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - David Goldman
- Laboratory of Neurogenetics, NIH, NIAAA, Bethesda, MD, USA
| |
Collapse
|
249
|
Hancock DB, Levy JL, Gaddis NC, Glasheen C, Saccone NL, Page GP, Hulse GK, Wildenauer D, Kelty EA, Schwab SG, Degenhardt L, Martin NG, Montgomery GW, Attia J, Holliday EG, McEvoy M, Scott RJ, Bierut LJ, Nelson EC, Kral AH, Johnson EO. Cis-Expression Quantitative Trait Loci Mapping Reveals Replicable Associations with Heroin Addiction in OPRM1. Biol Psychiatry 2015; 78:474-84. [PMID: 25744370 PMCID: PMC4519434 DOI: 10.1016/j.biopsych.2015.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND No opioid receptor, mu 1 (OPRM1) gene polymorphisms, including the functional single nucleotide polymorphism (SNP) rs1799971, have been conclusively associated with heroin/other opioid addiction, despite their biological plausibility. We used evidence of polymorphisms altering OPRM1 expression in normal human brain tissue to nominate and then test associations with heroin addiction. METHODS We tested 103 OPRM1 SNPs for association with OPRM1 messenger RNA expression in prefrontal cortex from 224 European Americans and African Americans of the BrainCloud cohort. We then tested the 16 putative cis-expression quantitative trait loci (cis-eQTL) SNPs for association with heroin addiction in the Urban Health Study and two replication cohorts, totaling 16,729 European Americans, African Americans, and Australians of European ancestry. RESULTS Four putative cis-eQTL SNPs were significantly associated with heroin addiction in the Urban Health Study (smallest p = 8.9 × 10(-5)): rs9478495, rs3778150, rs9384169, and rs562859. Rs3778150, located in OPRM1 intron 1, was significantly replicated (p = 6.3 × 10(-5)). Meta-analysis across all case-control cohorts resulted in p = 4.3 × 10(-8): the rs3778150-C allele (frequency = 16%-19%) being associated with increased heroin addiction risk. Importantly, the functional SNP allele rs1799971-A was associated with heroin addiction only in the presence of rs3778150-C (p = 1.48 × 10(-6) for rs1799971-A/rs3778150-C and p = .79 for rs1799971-A/rs3778150-T haplotypes). Lastly, replication was observed for six other intron 1 SNPs that had prior suggestive associations with heroin addiction (smallest p = 2.7 × 10(-8) for rs3823010). CONCLUSIONS Our findings show that common OPRM1 intron 1 SNPs have replicable associations with heroin addiction. The haplotype structure of rs3778150 and nearby SNPs may underlie the inconsistent associations between rs1799971 and heroin addiction.
Collapse
Affiliation(s)
- Dana B Hancock
- Behavioral Health Epidemiology Program, Behavioral Health and Criminal Justice Division, Research Triangle Institute (RTI) International, St. Louis, Missouri..
| | - Joshua L Levy
- Research Computing Division, RTI International, Research Triangle Park, North Carolina, St. Louis, Missouri
| | - Nathan C Gaddis
- Research Computing Division, RTI International, Research Triangle Park, North Carolina, St. Louis, Missouri
| | - Cristie Glasheen
- Behavioral Health Epidemiology Program, Behavioral Health and Criminal Justice Division, Research Triangle Institute (RTI) International, St. Louis, Missouri
| | - Nancy L Saccone
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Grier P Page
- Center for Public Health Genomics, RTI International, Atlanta, Georgia
| | - Gary K Hulse
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Dieter Wildenauer
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Erin A Kelty
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Sibylle G Schwab
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany.; Faculty of Science, Medicine, and Health, University of Wollongong, Wollongong, New South Wales
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney
| | - Nicholas G Martin
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland
| | - Grant W Montgomery
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland
| | - John Attia
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales.; Clinical Research Design, IT and Statistical Support Unit, Hunter Medical Research Institute, Newcastle, New South Wales
| | - Elizabeth G Holliday
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales.; Clinical Research Design, IT and Statistical Support Unit, Hunter Medical Research Institute, Newcastle, New South Wales
| | - Mark McEvoy
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales.; Public Health Research Program, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales
| | - Rodney J Scott
- Center for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales.; School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales.; Division of Genetics, Hunter Area Pathology Service, Newcastle, New South Wales, Australia
| | - Laura J Bierut
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Alex H Kral
- Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, San Francisco, California
| | - Eric O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
250
|
Mascarenhas R, Pietrzak M, Smith RM, Webb A, Wang D, Papp AC, Pinsonneault JK, Seweryn M, Rempala G, Sadee W. Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms. PLoS One 2015; 10:e0136798. [PMID: 26331722 PMCID: PMC4558023 DOI: 10.1371/journal.pone.0136798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs), and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs) in lymphoblast cell lines (LCL) and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T) in ABCB1 (MDR1) on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq) in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs) affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.
Collapse
Affiliation(s)
- Roshan Mascarenhas
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Maciej Pietrzak
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Ryan M. Smith
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Danxin Wang
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Audrey C. Papp
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Julia K. Pinsonneault
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Michal Seweryn
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
- Department of Mathematics and Computer Science, University of Lodz, Lodz, Poland
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Grzegorz Rempala
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Medical Genetics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|