201
|
Abstract
✓Discovery that the Schwann cell is the primary cell type responsible for both the neurofibroma as well as the schwannoma has proven to represent a crucial milestone in understanding the pathogenesis of peripheral nerve tumor development. This information and related findings have served as a nidus for research aimed at more fully characterizing this family of conditions. Recent discoveries in the laboratory have clarified an understanding of the molecular mechanisms underlying the pathogenesis of benign peripheral nerve tumors. Similarly, the mechanisms whereby idiopathic and syndromic (NF1- andNF2-associated) nerve sheath tumors progress to malignancy are being elucidated. This detailed understanding of the molecular pathogenesis of peripheral nerve tumors provides the information necessary to create a new generation of therapies tailored specifically to the prevention, cessation, or reversal of pathological conditions at the fundamental level of dysfunction. The authors review the data that have helped to elucidate the molecular pathogenesis of this category of conditions, explore the current progress toward exploitation of these findings, and discuss potential therapeutic avenues for future research.
Collapse
Affiliation(s)
- Jonathan Riley
- Department of Neurosciences and the Center for Neurological Restoration, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
202
|
Yokoyama T, Takano K, Yoshida A, Katada F, Sun P, Takenawa T, Andoh T, Endo T. DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation. ACTA ACUST UNITED AC 2007; 177:781-93. [PMID: 17535970 PMCID: PMC2064279 DOI: 10.1083/jcb.200703195] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ras activates Raf, leading to the extracellular-regulated kinase (ERK)–mitogen-activated protein kinase pathway, which is involved in a variety of cellular, physiological, and pathological responses. Thus, regulators of this Ras–Raf interaction play crucial roles in these responses. In this study, we report a novel regulator of the Ras–Raf interaction named DA-Raf1. DA-Raf1 is a splicing isoform of A-Raf with a wider tissue distribution than A-Raf. It contains the Ras-binding domain but lacks the kinase domain, which is responsible for activation of the ERK pathway. As inferred from its structure, DA-Raf1 bound to activated Ras as well as M-Ras and interfered with the ERK pathway. The Ras–ERK pathway is essential for the negative regulation of myogenic differentiation induced by growth factors. DA-Raf1 served as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. These results imply that DA-Raf1 is the first identified competent, intrinsic, dominant-negative antagonist of the Ras–ERK pathway.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Khalaf WF, Yang FC, Chen S, White H, Bessler W, Ingram DA, Clapp DW. K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/- mast cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:2527-34. [PMID: 17277161 DOI: 10.4049/jimmunol.178.4.2527] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
p21(ras) (Ras) proteins and GTPase-activating proteins (GAPs) tightly modulate extracellular growth factor signals and control multiple cellular functions. The specific function of each Ras isoform (H, N, and K) in regulating distinct effector pathways, and the role of each GAP in negatively modulating the activity of each Ras isoform in myeloid cells and, particularly, mast cells is incompletely understood. In this study, we use murine models of K-ras- and Nf1-deficient mice to examine the role of K-ras in modulating mast cell functions and to identify the role of neurofibromin as a GAP for K-ras in this lineage. We find that K-ras is required for c-kit-mediated mast cell proliferation, survival, migration, and degranulation in vitro and in vivo. Furthermore, the hyperactivation of these cellular functions in Nf1(+/-) mast cells is decreased in a K-ras gene dose-dependent fashion in cells containing mutations in both loci. These findings identify K-ras as a key effector in multiple mast cell functions and identify neurofibromin as a GAP for K-ras in mast cells.
Collapse
Affiliation(s)
- Waleed F Khalaf
- Department Microbiology & Immunology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Bjørndal B, Myklebust LM, Rosendal KR, Myromslien FD, Lorens JB, Nolan G, Bruland O, Lillehaug JR. RACK1 regulates Ki-Ras-mediated signaling and morphological transformation of NIH 3T3 cells. Int J Cancer 2007; 120:961-9. [PMID: 17149700 DOI: 10.1002/ijc.22373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Activating Ras mutations are involved in a significant fraction of human tumors. A suppressor screen using a retroviral mouse fibroblast cDNA library was performed to identify novel factors in Ras-mediated transformation. We identified a novel potent inhibitor of Ras-mediated morphological transformation encoded by a truncated version of the receptor for activated C-kinase (RACK1). The truncated protein, designated RACK1DeltaWD1, lacked the N-terminal 49 amino acids encoding the first of the 7 WD40 repeats in RACK1. RACK1DeltaWD1 expression restored contact inhibition, stress fiber formation and reduced ERK phosphorylation in Ki-Ras transformed NIH 3T3 cells. We demonstrate that truncated RACK1 is involved in complexes consisting of wild-type RACK1 and protein kinase C isoforms alpha, betaI and delta, compromising the transduction of an activated Ras signal to the Raf-MEK-ERK pathway. The cellular localization of RACK1DeltaWD1 differed from wtRACK1, indicating that signaling complexes containing the truncated version of RACK1 are incorrectly localized. Notably, 12-O-tetradecanoyl-13-phorbol acetate (TPA) mediated intracellular translocation of RACK1-interacting PKC alpha and delta was abrogated in RACK1DeltaWD1-expressing cells. Our data support a model where RACK1 acts as a key factor in Ki-Ras-mediated morphological transformation.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Keller JW, Franklin JL, Graves-Deal R, Friedman DB, Whitwell CW, Coffey RJ. Oncogenic KRAS provides a uniquely powerful and variable oncogenic contribution among RAS family members in the colonic epithelium. J Cell Physiol 2007; 210:740-9. [PMID: 17133351 DOI: 10.1002/jcp.20898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activating mutations of the RAS family of small GTPases are among the most common genetic events in human tumorigenesis. Constitutive activation of the three canonical family members, KRAS, NRAS, and HRAS segregate strongly by tissue type. Of these, KRAS mutations predominate in human tumors, including those arising from the colon and lung. We sought to compare the oncogenic contributions of different RAS isoforms in a comparable genetic setting and to explore downstream molecular changes that may explain the apparent differential oncogenic effects of the various RAS family members. We utilized colorectal cancer cell lines characterized by oncogenic KRAS in parallel with isogenically derived lines in which the mutant allele has been disrupted. We additionally attempted to reconstitute the isogenic derivatives with oncogenic forms of other RAS family members and analyze them in parallel. Pairwise analysis of HCT 116 and DLD-1 cell lines as well as their isogenic derivatives reveals distinct K-RAS(G13D) signatures despite the genetic similarities of these cell lines. In DLD-1, for example, oncogenic K-RAS enhances the motility of these cells by downregulation of Rap1 activity, yet is not associated with increased ERK1/2 phosphorylation. In HCT 116, however, ERK1/2 phosphorylation is elevated relative to the isogenic derivative, but Rap1 activity is unchanged. K-RAS is uniquely oncogenic in the colonic epithelium, though the molecular aspects of its oncogenic contribution are not necessarily conserved across cell lines. We therefore conclude that the oncogenic contribution of K-RAS is a function of its multifaceted functionality and is highly context-dependent.
Collapse
Affiliation(s)
- Jeffrey W Keller
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
206
|
Whitwam T, Vanbrocklin MW, Russo ME, Haak PT, Bilgili D, Resau JH, Koo HM, Holmen SL. Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene 2007; 26:4563-70. [PMID: 17297468 DOI: 10.1038/sj.onc.1210239] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RAS genes are mutated in approximately 30% of all human cancers. Interestingly, there exists a strong bias in favor of mutation of only one of the three major RAS genes in tumors of different cellular origins. NRAS mutations occur in approximately 20% of human melanomas, whereas HRAS and KRAS mutations are rare in this disease. To define the mechanism(s) responsible for this preference in melanocytes, we compared the transformation efficiencies of mutant NRAS and KRAS in immortal, non-transformed Ink4a/Arf-deficient melanocytes. NRAS mutation leads to increased cellular proliferation and is potently tumorigenic. In contrast, KRAS mutation does not enhance melanocyte proliferation and is only weakly tumorigenic on its own. Although both NRAS and KRAS activate mitogen-activated protein kinase signaling, only NRAS enhances MYC activity in these cells. Our data suggest that the activity of specific RAS isoforms is context-dependent and provide a possible explanation for the prevalence of NRAS mutations in melanoma. In addition, understanding this mechanism will have important implications for cancer therapies targeting RAS pathways.
Collapse
Affiliation(s)
- T Whitwam
- Molecular Medicine and Virology Group, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Recktenwald CV, Mendler S, Lichtenfels R, Kellner R, Seliger B. Influence ofKi-ras-driven oncogenic transformation on the protein network of murine fibroblasts. Proteomics 2007; 7:385-98. [PMID: 17211828 DOI: 10.1002/pmic.200600506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ki-ras gene mutations that specifically occur in codons 12, 13 and 61 are involved in the carcinogenesis of acute myeloid leukemia, melanoma and different carcinomas. In order to define potential mutation-specific therapeutic targets, stable transfectants of NIH3T3 cells carrying different Ki-ras4B gene mutations were generated. Wild type Ki-ras transformants, mock transfectants and parental cells served as controls. These in vitro model systems were systematically analyzed for their protein expression pattern using two-dimensional gel electrophoresis followed by mass spectrometry and/or protein sequencing. Using this approach, a number of target molecules that are differentially but coordinately expressed in the ras transfectants were identified next to other proteins that exhibit a distinct regulation pattern in the different cell lines analyzed. The differentially expressed proteins predominantly belong to the families of cytoskeletal proteins, heat shock proteins, annexins, metabolic enzymes and oxidoreductases. Their validation was assessed by real-time quantitative RT-PCR and/or Western blot analysis. Our results suggest that the Ki-ras-transformed cells represent a powerful tool to study Ki-ras gene mutation-driven protein expression profiles. In addition, this approach allows the discovery of ras-associated cellular mechanisms, which might lead to the identification of physiological targets for pharmacological interventions of the treatment of Ki-ras-associated human tumors.
Collapse
|
208
|
Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1177-95. [PMID: 17428555 DOI: 10.1016/j.bbamcr.2007.01.012] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/17/2007] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
RAS proteins are small GTPases, which serve as master regulators of a myriad of signaling cascades involved in highly diverse cellular processes. RAS oncogenes have been originally discovered as retroviral oncogenes, and ever since constitutively activating RAS mutations have been identified in human tumors, they are in the focus of intense research. In this review, we summarize the biochemical properties of RAS proteins, trace down the evolution of RAS signaling and present an overview of the spatio-temporal activation of major RAS isoforms. We further discuss RAS effector pathways, their role in normal and transformed cell physiology and summarize ongoing attempts to interfere with aberrant RAS signaling. Finally, we comment on the role of micro RNAs in modulating RAS expression, contribution of RAS to stem cell function and on high-throughput analyses of RAS signaling networks.
Collapse
Affiliation(s)
- Krishnaraj Rajalingam
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | | | |
Collapse
|
209
|
Fukano T, Sawano A, Ohba Y, Matsuda M, Miyawaki A. Differential Ras Activation between Caveolae/Raft and Non-Raft Microdomains. Cell Struct Funct 2007; 32:9-15. [PMID: 17314458 DOI: 10.1247/csf.06019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the consequences of Ras activation have been studied extensively in the context of oncogenesis, its regulation in physiological modes of signal transduction is not well understood. A fluorescent indicator, Raichu-Ras, was fused to the C-terminal hypervariable regions of H-Ras and K-Ras to create indicators for Ras activation within caveolae/rafts (Raichu-tH) and non-raft domains (Raichu-tK) of the plasma membrane, respectively. Raichu-tH was also found abundantly in endomembranes. To monitor Ras activation with high spatial resolution, it is imperative to observe sectioned images of the signals. We have developed a wide-field fluorescence microscope equipped with a digital micromirror device (DMD) to acquire optically sectioned images using fringe projection. This system provides reliable signals from fluorescence resonance energy transfer (FRET) between cyan and yellow mutants of green fluorescent protein. We have used this system to demonstrate that, upon stimulation with growth factors, the two indicators are activated in spatially and temporally unique patterns.
Collapse
Affiliation(s)
- Takashi Fukano
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, RIKEN
| | | | | | | | | |
Collapse
|
210
|
Kaul A, Overmeyer JH, Maltese WA. Activated Ras induces cytoplasmic vacuolation and non-apoptotic death in glioblastoma cells via novel effector pathways. Cell Signal 2006; 19:1034-43. [PMID: 17210246 PMCID: PMC1894854 DOI: 10.1016/j.cellsig.2006.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/22/2006] [Accepted: 11/23/2006] [Indexed: 10/23/2022]
Abstract
Expression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways. We find that the unusual effects of activated H-Ras depend on farnesylation and membrane association of the GTPase. Both H-Ras(G12V) and K-Ras4B(G12V) stimulate vacuolation, but activated forms of Cdc42 and RhoA do not. Amino acid substitutions in the Ras effector domain, which are known to selectively impair its interactions with Raf kinase, class-I phosphatidylinositide 3-kinase (PI3K), or Ral nucleotide exchange factors, initially pointed to Raf as a possible mediator of cell vacuolation. However, the MEK inhibitor, PD98059, did not block the induction of vacuoles, and constitutively active Raf-Caax did not mimic the effects of Ras(G12V). Introduction of normal PTEN together with H-Ras(G12V) into U251 glioblastoma cells reduced the PI3K-dependent activation of Akt, but had no effect on vacuolation. Finally, co-expression of H-Ras(G12V) with a dominant-negative form of RalA did not suppress vacuolation. Taken together, the observations indicate that Ras activates non-conventional and perhaps unique effector pathways to induce cytoplasmic vacuolation in glioblastoma cells. Identification of the relevant signaling pathways may uncover specific molecular targets that can be manipulated to activate non-apoptotic cell death in this type of cancer.
Collapse
Affiliation(s)
| | | | - William A. Maltese
- *Correspondence: Dr. William A. Maltese, Department of Biochemistry & Cancer Biology, Block Health Sciences Bldg, University of Toledo College of Medicine, 3035 Arlington Ave., Toledo, Ohio, 43614 E-mail:
| |
Collapse
|
211
|
Abstract
Palmitate, a 16-carbon saturated fatty acid, is attached to more than 100 proteins. Modification of proteins by palmitate has pleiotropic effects on protein function. Palmitoylation can influence membrane binding and membrane targeting of the modified proteins. In particular, many palmitoylated proteins concentrate in lipid rafts, and enrichment in rafts is required for efficient signal transduction. This Review focuses on the multiple effects of palmitoylation on the localization and function of ligands, receptors, and intracellular signaling proteins. Palmitoylation regulates the trafficking and function of transmembrane proteins such as ion channels, neurotransmitter receptors, heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors, and integrins. In addition, immune receptor signaling relies on protein palmitoylation at many levels, including palmitoylated co-receptors, Src family kinases, and adaptor or scaffolding proteins. The localization and signaling capacities of Ras and G proteins are modulated by dynamic protein palmitoylation. Cycles of palmitoylation and depalmitoylation allow H-Ras and G protein alpha subunits to reversibly bind to and signal from different intracellular cell membranes. Moreover, secreted ligands such as Hedgehog, Wingless, and Spitz use palmitoylation to regulate the extent of long- or short-range signaling. Finally, palmitoylation can alter signaling protein function by direct effects on enzymatic activity and substrate specificity. The identification of the palmitoyl acyltransferases has provided new insights into the biochemistry of this posttranslational process and permitted new substrates to be identified.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10021, USA.
| |
Collapse
|
212
|
Sagi Y, Mandel S, Amit T, Youdim MBH. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis 2006; 25:35-44. [PMID: 17055733 DOI: 10.1016/j.nbd.2006.07.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 07/04/2006] [Accepted: 07/25/2006] [Indexed: 01/15/2023] Open
Abstract
The anti-Parkinson monoamine oxidase (MAO)-B inhibitor rasagiline (Azilect) was shown to possess neuroprotective activities, involving the induction of brain-derived- and glial cell line-derived neurotrophic factors (BDNF, GDNF). Employing conventional neurochemical techniques, transcriptomics and proteomic screening tools combined with a biology-based clustering method, we show that rasagiline, given chronically post-MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), exerts neurorescue/neurotrophic activity in mice midbrain dopamine neurons. Rasagiline induced the activation of cell signaling mediators associated with neurotrophic factors responsive-tyrosine kinase receptor (Trk) pathway including ShcC, SOS, AF6, Rin1 and Ras and the increase in the Trk-downstream effector phosphatidylinositol 3 kinase (PI3K) protein. Confirmatory Western and immunohistochemical analyses indicated activation of the substrate of PI3K, Akt and phosphorylative inactivation of glycogen synthase kinase-3beta and Raf1. Thus, the activation of Ras-PI3K-Akt survival pathway may contribute to rasagiline-mediated neurorescue effect. It is interesting to determine whether a similar effect is seen in parkinsonian patients after long-term treatment with rasagiline.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Blotting, Western
- Cell Survival/drug effects
- Cells, Cultured
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Dopamine/physiology
- Dopamine Agents
- Enzyme Activation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry
- Indans/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Monoamine Oxidase Inhibitors/pharmacology
- Nerve Degeneration/pathology
- Nerve Degeneration/prevention & control
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuroprotective Agents/pharmacology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/pathology
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Substantia Nigra/drug effects
- Substantia Nigra/pathology
- Substantia Nigra/physiology
Collapse
Affiliation(s)
- Yotam Sagi
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Rappaport Faculty of Medicine, POB 9697, 31096 Haifa, Israel
| | | | | | | |
Collapse
|
213
|
Sánchez-Molina S, Oliva J, García-Vargas S, Valls E, Rojas J, Martínez-Balbás M. The histone acetyltransferases CBP/p300 are degraded in NIH 3T3 cells by activation of Ras signalling pathway. Biochem J 2006; 398:215-24. [PMID: 16704373 PMCID: PMC1550303 DOI: 10.1042/bj20060052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/07/2006] [Accepted: 05/17/2006] [Indexed: 11/17/2022]
Abstract
The CBP [CREB (cAMP-response-element-binding protein)-binding protein]/p300 acetyltransferases function as transcriptional co-activators and play critical roles in cell differentiation and proliferation. Accumulating evidence shows that alterations of the CBP/p300 protein levels are linked to human tumours. In the present study, we show that the levels of the CBP/p300 co-activators are decreased dramatically by continuous PDGF (platelet-derived growth factor) and Ras signalling pathway activation in NIH 3T3 fibroblasts. This effect occurs by reducing the expression levels of the CBP/p300 genes. In addition, CBP and p300 are degraded by the 26 S proteasome pathway leading to an overall decrease in the levels of the CBP/p300 proteins. Furthermore, we provide evidence that Mdm2 (murine double minute 2), in the presence of active H-Ras or N-Ras, induces CBP/p300 degradation in NIH 3T3 cells. These findings support a novel mechanism for modulating other signalling transduction pathways that require these common co-activators.
Collapse
Key Words
- acetylation
- camp-response-element-binding-protein-binding protein/p300 (cbp/p300)
- histone acetyltransferase activity (hat activity)
- murine double minute 2 (mdm2)
- nih 3t3 cell
- ras pathway
- alln, n-acetyl-l-leucyl-l-leucylnorleucinal
- creb, camp-response-element-binding protein
- cbp, creb-binding protein
- cs, calf serum
- dapi, 4′,6-diamidino-2-phenylindole
- erk, extracellular-signal-regulated kinase
- gds, guanine nucleotide dissociation stimulator
- gst, glutathione s-transferase
- ha, haemagglutinin
- hat, histone acetyltransferase
- hdac, histone deacetylase
- mapk, mitogen-activated protein kinase
- mdm2, murine double minute 2
- mek, mapk/erk kinase
- p/caf, p300/cbp-associated factor
- pdgf, platelet-derived growth factor
- pi3k, phosphoinositide 3-kinase
- ra, retinoic acid
- ral-bd, ral-binding domain
- rts, rubinstein–taybi syndrome
- sirna, small interfering rna
- tafii, tata-box-binding-protein-associated factor
- tgase, transglutaminase
- tk, thymidine kinase
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- *Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas (CSIC), Parc Cientific de Barcelona (PCB), Josep Samitier 1–5, 08028 Barcelona, Spain
| | - José Luis Oliva
- †Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Susana García-Vargas
- †Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Ester Valls
- *Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas (CSIC), Parc Cientific de Barcelona (PCB), Josep Samitier 1–5, 08028 Barcelona, Spain
| | - José M. Rojas
- †Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Marian A. Martínez-Balbás
- *Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas (CSIC), Parc Cientific de Barcelona (PCB), Josep Samitier 1–5, 08028 Barcelona, Spain
| |
Collapse
|
214
|
Davis S, Laroche S. Mitogen-activated protein kinase/extracellular regulated kinase signalling and memory stabilization: a review. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:61-72. [PMID: 16681801 DOI: 10.1111/j.1601-183x.2006.00230.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The function of mitogen-activated protein kinase (MAPK) in neurons has been the subject of considerable scrunity of late, and recent studies have given new insights into how this signalling cascade can regulate gene expression following cell-surface receptor activation. At the same time, a wealth of experimental data has demonstrated that the MAPK cascade is critically involved in the mechanisms underlying the type of enduring modification of neural networks required for the stability of memories, emphasizing the high level of interest in this signalling molecule. In this review, we briefly outline the main molecular events and mechanisms of the regulation of the MAPK cascade leading to transcriptional activation and summarize recent advances in our understanding of the functional role of this molecular signalling cascade in regulating brain plasticity, memory consolidation and memory reconsolidation.
Collapse
Affiliation(s)
- Sabrina Davis
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS UMR 8620, Université Paris Sud, Orsay, France.
| | | |
Collapse
|
215
|
Jang JW, Boxer RB, Chodosh LA. Isoform-specific ras activation and oncogene dependence during MYC- and Wnt-induced mammary tumorigenesis. Mol Cell Biol 2006; 26:8109-21. [PMID: 16908535 PMCID: PMC1636749 DOI: 10.1128/mcb.00404-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that c-MYC-induced mammary tumorigenesis in mice proceeds via a preferred secondary pathway involving spontaneous activating mutations in Kras2 (C. M. D'Cruz, E. J. Gunther, R. B. Boxer, J. L. Hartman, L. Sintasath, S. E. Moody, J. D. Cox, S. I. Ha, G. K. Belka, A. Golant, R. D. Cardiff, and L. A. Chodosh, Nat. Med. 7:235-239, 2001). In contrast, we now demonstrate that Wnt1-induced mammary tumorigenesis proceeds via a pathway that preferentially activates Hras1. In addition, we find that expression of oncogenic forms of Kras2 and Hras1 from their endogenous promoters has markedly different consequences for the progression of tumors to oncogene independence. Spontaneous activating Kras2 mutations occurring in either MYC- or Wnt1-induced tumors were strongly associated with oncogene-independent tumor growth following MYC or Wnt1 downregulation. In contrast, Hras1-mutant Wnt1-induced tumors consistently remained oncogene dependent. Additionally, Kras2-mutant tumors exhibited substantially higher levels of ras-GTP, phospho-Erk1/2, and phospho-Mek1/2 compared to Hras1-mutant tumors, suggesting the involvement of the ras/mitogen-activated protein kinase (MAPK) pathway in the acquisition of oncogene independence. Consistent with this, by use of carcinogen-induced ras mutations as well as knock-in mice harboring a latent activated Kras2 allele, we demonstrate that Kras2 activation strongly synergizes with both c-MYC and Wnt1 in mammary tumorigenesis and promotes the progression of tumors to oncogene independence. Together, our findings support a model for tumorigenesis in which c-MYC and Wnt1 select for the outgrowth of cells harboring mutations in specific ras isoforms and that these secondary mutations, in turn, determine the extent of ras/MAPK pathway activation and the potential for oncogene-independent growth.
Collapse
Affiliation(s)
- Joanne W Jang
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
216
|
Castellano E, De Las Rivas J, Guerrero C, Santos E. Transcriptional networks of knockout cell lines identify functional specificities of H-Ras and N-Ras: significant involvement of N-Ras in biotic and defense responses. Oncogene 2006; 26:917-33. [PMID: 16909116 DOI: 10.1038/sj.onc.1209845] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We characterized differential gene expression profiles of fibroblast cell lines harboring single or double-homozygous null mutations in H-ras and N-ras. Whereas the expression level of the individual H-, N- and K-ras genes appeared unaffected by the presence or absence of the other ras loci, significant differences were observed between the expression profiles of cells missing N-ras and/or H-ras. Absence of N-ras produced much stronger effects than absence of H-ras over the profile of the cellular transcriptome. N-ras(-/-) and H-ras(-/-) fibroblasts displayed rather antagonistic expression profiles and the transcriptome of H-ras(-/-) cells was significantly closer to that of wild-type fibroblasts than to that of N-ras(-/-) cells. Classifying all differentially expressed genes into functional categories suggested specific roles for H-Ras and N-Ras. It was particularly striking in N-ras(-/-) cells the upregulation of a remarkable number of immunity-related genes, as well as of several loci involved in apoptosis. Reverse-phase protein array assays demonstrated in the same N-ras(-/-) cells the overexpression and nuclear migration of tyrosine phosphorylated signal transducer and activator of transcription 1 (Stat1) which was concomitant with transcriptional activation mediated by interferon-stimulated response elements. Significantly enhanced numbers of apoptotic cells were also detected in cultures of N-ras(-/-) cells. Our data support the notion that different Ras isoforms play functionally distinct cellular roles and indicate that N-Ras is significantly involved in immune modulation/host defense and apoptotic responses.
Collapse
Affiliation(s)
- E Castellano
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer (CSIC-USAL), University of Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
217
|
McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA, D'Assoro AB, Salisbury JL, Mazzarino MC, Stivala F, Libra M. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. ACTA ACUST UNITED AC 2006; 46:249-79. [PMID: 16854453 DOI: 10.1016/j.advenzreg.2006.01.004] [Citation(s) in RCA: 502] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip-1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip-1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Among the effector molecules connected with the group of cell surface receptors, Ras proteins have essential roles in transducing extracellular signals to diverse intracellular events, by controlling the activities of multiple signaling pathways. For over 20 years since the discovery of Ras proteins, an enormous amount of knowledge has been accumulated as to how the proteins function in overlapping or distinct fashions. The signaling networks they regulate are very complex due to their multiple functions and cross-talks. Much attention has been paid to the pathological role of Ras in tumorigenesis. In particular, human tumors very frequently express Ras proteins constitutively activated by point mutations. Up to date, three members of the Ras family have been identified, namely H-Ras, K-Ras (A and B), and N-Ras. Although these Ras isoforms function in similar ways, many evidences also support the distinct molecular function of each Ras protein. This review summarizes differential functions of Ras and highlights the current view of the distinct signaling network regulated by each Ras for its contribution to the malignant phenotypic conversion of breast epithelial cells. Four issues are addressed in this review: (1) Ras proteins, (2) membrane localization of Ras, (3) effector molecules downstream of Ras, (4) Ras signaling in invasion. In spite of the accumulation of information on the differential functions of Ras, much more remains to be elucidated to understand the Ras-mediated molecular events of malignant phenotypic conversion of cells in a greater detail.
Collapse
Affiliation(s)
- Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea.
| |
Collapse
|
219
|
Abstract
Aldosterone acts via the mineralocorticoid receptor to regulate gene expression. A number of aldosterone-induced genes have been characterized in the distal colon and/or the distal nephron. Using the Xenopus kidney-derived A6 cell line, the K-ras transcript of the K-ras gene was identified as aldosterone induced, with a role in epithelial sodium transport. This study sought to establish whether K-ras expression is also increased in mammalian epithelia in vivo in response to aldosterone. RNA was extracted from the kidney and distal colon of rats treated with aldosterone or dexamethasone. Northern blot analysis and real-time RT-PCR were performed using probes and primers specific for the K-rasA isoform and for total K-ras. The expression of both total K-ras and of the A isoform is induced in the distal colon by aldosterone and by dexamethasone. Given the relative abundances of the two isoforms, this would appear to indicate induction of both isoforms. The time course of the response is consistent with a primary transcriptional response. In contrast to the documented up-regulation in the amphibian kidney, we did not observe regulation by corticosteroids in the kidney. However, regulation in a subpopulation of cells cannot be excluded.
Collapse
Affiliation(s)
- Francine E Brennan
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | |
Collapse
|
220
|
Lee SK, Kim JM, Lee MY, Son KH, Yeom YI, Kim CH, Shin Y, Koh JS, Han DC, Kwon BM. Confirmation of a linkage between H-Ras and MMP-13 expression as well as MMP-9 by chemical genomic approach. Int J Cancer 2006; 118:2172-81. [PMID: 16331612 DOI: 10.1002/ijc.21610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As farnesylation of the Ras protein by farnesyl transferase is a critical step for the Ras functional activity, the farnesyl transferase inhibitor could affect H-Ras functions and the inhibitors such as arteminolide, SCH66336 and LB42908 completely inhibited Ras-farnesylation. However, they did not induce apoptosis of H-Ras-transformed cells with concentration for blocking H-Ras farnesylation. To determine the antitumor effects of the inhibitors, it was analyzed through the expression profile of genes, regulated by activated H-Ras or FTIs by using cDNA microarray. On the basis of the results, the relationship between H-Ras and MMPs expression was confirmed by RT-PCR, Western bolt, zymographic analysis and angiogenesis assay. Our results suggested that activation of MMP-13 as well as MMP-9 induced by H-Ras is involved in angiogenesis and with farnesyl transferase inhibitors, in part, exerts their anticancer effects. We confirmed that MMP-13 is a critical H-Ras target gene through chemical genomic approaches with farnesyl transferase inhibitors.
Collapse
Affiliation(s)
- Su-Kyung Lee
- Korea Research Institute of Bioscience and Biotechnology, Yoosunggu, Taejon 305-600, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Munchhof AM, Li F, White HA, Mead LE, Krier TR, Fenoglio A, Li X, Yuan J, Yang FC, Ingram DA. Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet 2006; 15:1858-69. [PMID: 16648142 DOI: 10.1093/hmg/ddl108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetic inactivation of tumor suppressor genes initiates human cancers. However, interaction of accessory cells with the tumor-initiating cell within the microenvironment is often required for tumor progression. This paradigm is relevant to understanding neurofibroma development in neurofibromatosis type I patients. Somatic inactivation of the Nf1 tumor suppressor gene, which encodes neurofibromin, is necessary but not sufficient to initiate neurofibroma development. In contrast, neurofibromas occur with high penetrance in mice in which Nf1 is ablated in Schwann cells in the context of a heterozygous mutant (Nf1+/-) microenvironment. Neurofibromas are highly vascularized, and recent studies suggest that Nf1+/- mice have increased angiogenesis in vivo. However, the function of neurofibromin in human endothelial cells (ECs) and the biochemical mechanism by which neurofibromin regulates neoangiogenesis are not known. Utilizing Nf1+/- mice, primary human ECs and endothelial progenitor cells harvested from NF1 patients, we identified a discrete Ras effector pathway, which alters the proliferation and migration of neurofibromin-deficient ECs in response to neurofibroma-derived growth factors both in vitro and in vivo. Thus, these studies identify a unique biochemical pathway in Nf1+/- ECs as a potential therapeutic target in the neurofibroma microenvironment.
Collapse
Affiliation(s)
- Amy M Munchhof
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D. Differential modification of Ras proteins by ubiquitination. Mol Cell 2006; 21:679-87. [PMID: 16507365 DOI: 10.1016/j.molcel.2006.02.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/10/2006] [Accepted: 02/14/2006] [Indexed: 01/18/2023]
Abstract
Ras proteins are essential components of signal transduction pathways that control cell proliferation, differentiation, and survival. It is well recognized that the functional versatility of Ras proteins is accomplished through their differential compartmentalization, but the mechanisms that control their spatial segregation are not fully understood. Here we show that HRas is subject to ubiquitin conjugation, whereas KRas is refractory to this modification. The membrane-anchoring domain of HRas is necessary and sufficient to direct the mono- and diubiquitination of HRas. Ubiquitin attachment to HRas stabilizes its association with endosomes and modulates its ability to activate the Raf/MAPK signaling pathway. Therefore, differential ubiquitination of Ras proteins may control their location-specific signaling activities.
Collapse
Affiliation(s)
- Natalia Jura
- Department of Molecular Genetics and Microbiology, Stony Brook University, New York 11794, USA
| | | | | | | |
Collapse
|
223
|
Quatela SE, Philips MR. Ras signaling on the Golgi. Curr Opin Cell Biol 2006; 18:162-7. [PMID: 16488589 DOI: 10.1016/j.ceb.2006.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/09/2006] [Indexed: 11/17/2022]
Abstract
The discovery that Ras proteins are modified by enzymes restricted to the endoplasmic reticulum and Golgi apparatus and that, at steady state, a significant pool of Ras is localized on the Golgi has led to the hypothesis that Ras can become activated on and signal from intracellular membranes. Fluorescent probes capable of showing when and where in living cells Ras becomes activated together with studies of Ras proteins stringently tethered to intracellular membranes have confirmed this hypothesis. Thus, recent studies of Ras have contributed to the rapidly expanding field of compartmentalized signaling.
Collapse
Affiliation(s)
- Steven E Quatela
- Department of Pharmacology, MSB 251, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
224
|
Lin L, Su Z, Lebedeva IV, Gupta P, Boukerche H, Rai T, Barber GN, Dent P, Sarkar D, Fisher PB. Activation of Ras/Raf protects cells from melanoma differentiation-associated gene-5-induced apoptosis. Cell Death Differ 2006; 13:1982-93. [PMID: 16575407 DOI: 10.1038/sj.cdd.4401899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Melanoma differentiation-associated gene-5 (mda-5) was the first molecule identified in nature whose encoded protein embodied the unique structural combination of an N-terminal caspase recruitment domain and a C-terminal DExD/H RNA helicase domain. As suggested by its structure, cumulative evidences documented that ectopic expression of mda-5 leads to growth inhibition and/or apoptosis in various cell lines. However, the signaling pathways involved in mda-5-mediated killing have not been elucidated. In this study, we utilized either genetically modified cloned rat embryo fibroblast cells overexpressing different functionally and structurally distinct oncogenes or human pancreatic and colorectal carcinoma cells containing mutant active ras to resolve the role of the Ras/Raf signaling pathway in mda-5-mediated growth inhibition/apoptosis induction. Rodent and human tumor cells containing constitutively activated Raf/Raf/MEK/ERK pathways were resistant to mda-5-induced killing and this protection was antagonized by intervening in this signal transduction cascade either by directly inhibiting ras activity using an antisense strategy or by targeting ras-downstream factors, such as MEK1/2, with the pharmacological inhibitor PD98059. The present findings provide a further example of potential cross-talk between growth-inhibitory and growth-promoting pathways in which the ultimate balance of these factors defines cellular homeostasis, leading to survival or induction of programmed cell death.
Collapse
Affiliation(s)
- L Lin
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Srirangam A, Mitra R, Wang M, Gorski JC, Badve S, Baldridge LA, Hamilton J, Kishimoto H, Hawes J, Li L, Orschell CM, Srour EF, Blum JS, Donner D, Sledge GW, Nakshatri H, Potter DA. Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clin Cancer Res 2006; 12:1883-96. [PMID: 16551874 PMCID: PMC2727652 DOI: 10.1158/1078-0432.ccr-05-1167] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE These studies were designed to determine whether ritonavir inhibits breast cancer in vitro and in vivo and, if so, how. EXPERIMENTAL DESIGN Ritonavir effects on breast cancer cell growth were studied in the estrogen receptor (ER)-positive lines MCF7 and T47D and in the ER-negative lines MDA-MB-436 and MDA-MB-231. Effects of ritonavir on Rb-regulated and Akt-mediated cell proliferation were studied. Ritonavir was tested for inhibition of a mammary carcinoma xenograft. RESULTS ER-positive estradiol-dependent lines (IC50, 12-24 micromol/L) and ER-negative (IC50, 45 micromol/L) lines exhibit ritonavir sensitivity. Ritonavir depletes ER-alpha levels notably in ER-positive lines. Ritonavir causes G1 arrest, depletes cyclin-dependent kinases 2, 4, and 6 and cyclin D1 but not cyclin E, and depletes phosphorylated Rb and Ser473 Akt. Ritonavir induces apoptosis independent of G1 arrest, inhibiting growth of cells that have passed the G1 checkpoint. Myristoyl-Akt, but not activated K-Ras, rescues ritonavir inhibition. Ritonavir inhibited a MDA-MB-231 xenograft and intratumoral Akt activity at a clinically attainable serum Cmax of 22 +/- 8 micromol/L. Because heat shock protein 90 (Hsp90) substrates are depleted by ritonavir, ritonavir effects on Hsp90 were tested. Ritonavir binds Hsp90 (K(D), 7.8 micromol/L) and partially inhibits its chaperone function. Ritonavir blocks association of Hsp90 with Akt and, with sustained exposure, notably depletes Hsp90. Stably expressed Hsp90alpha short hairpin RNA also depletes Hsp90, inhibiting proliferation and sensitizing breast cancer cells to low ritonavir concentrations. CONCLUSIONS Ritonavir inhibits breast cancer growth in part by inhibiting Hsp90 substrates, including Akt. Ritonavir may be of interest for breast cancer therapeutics and its efficacy may be increased by sustained exposure or Hsp90 RNA interference.
Collapse
Affiliation(s)
- Anjaiah Srirangam
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
| | - Ranjana Mitra
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
| | | | - Sunil Badve
- Department of Pathology, Indiana University, Indianapolis, Indiana
| | | | - Justin Hamilton
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | | | - John Hawes
- Department of Chemistry and Biology, Miami University, Oxford, Ohio
| | - Lang Li
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | | | - Edward F. Srour
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Janice S. Blum
- Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| | - David Donner
- Department of Surgery, University of California, San Francisco, California
| | - George W. Sledge
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Pathology, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Surgery, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| | - David A. Potter
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
226
|
Qin B, Ariyama H, Baba E, Tanaka R, Kusaba H, Harada M, Nakano S. Activated Src and Ras induce gefitinib resistance by activation of signaling pathways downstream of epidermal growth factor receptor in human gallbladder adenocarcinoma cells. Cancer Chemother Pharmacol 2006; 58:577-84. [PMID: 16532343 DOI: 10.1007/s00280-006-0219-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 02/17/2006] [Indexed: 11/30/2022]
Abstract
PURPOSE Although gefitinib, a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been demonstrated to exhibit its antitumor activity by the blockade of EGF receptor, the role of signaling pathways downstream of EGFR in gefitinib sensitivity remains unknown. In this study, we investigated the mechanistic role of Src and Ras, major oncogene products implicated in the pathogenesis of many human cancers in gefitinib sensitivity. METHODS Using parental and v-src- or c-H-ras-transfected HAG-1 human gallbladder adenocarcinoma cell lines, effects of gefitinib on cytotoxicity, cell cycle purtubation and apoptosis, and tyrosine phosphorylation of EGFR, Akt, and Erk were determined by WST-1 assay, flow cytometry, and Western blots, respectively. RESULTS Activated Ras and Src conferred a strong resistance to gefitinib by nearly 30-fold and 200-fold, respectively. Gefitinib induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, with progressive expansion of apoptotic cell population in parental HAG-1 cells, but these effects were completely abolished in v-src- or c-H-ras-transfected cell line. Upon gefitinib treatment, EGFR activation and subsequent downstream activation through Erk and Akt were significantly inhibited in HAG-1 cells. By contrast, gefinitib failed to inhibit the activation of both Akt and Erk in v-src-transfected cells and Erk, but not Akt in c-H-ras-transfected cells, despite the blockade of EGFR activation in these respective cell lines. Treatment of v-src-transfected cells with herbimycin A, a Src tyrosine kinase inhibitor, partially reversed the gefitinib resistance, with concomitant inhibition of Akt and Erk. CONCLUSION Our results suggest that activated Ras and Src could induce gefitinib resistance by activating either or both of Akt and Erk signaling pathways, thus providing a strategic rationale for assessment of these specific signaling molecules downstream of EGFR to customize treatment.
Collapse
Affiliation(s)
- Baoli Qin
- First Department of Internal Medicine and Department of Biosystemic Science of Medicine, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, 812-8582, Higashi-Ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
227
|
Beloueche-Babari M, Jackson LE, Al-Saffar NMS, Eccles SA, Raynaud FI, Workman P, Leach MO, Ronen SM. Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol Cancer Ther 2006; 5:187-96. [PMID: 16432178 DOI: 10.1158/1535-7163.mct-03-0220] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) is an attractive target for novel mechanism-based anticancer treatment. We used magnetic resonance (MR) spectroscopy (MRS) to detect biomarkers of PI3K signaling inhibition in human breast cancer cells. MDA-MB-231, MCF-7, and Hs578T cells were treated with the prototype PI3K inhibitor LY294002, and the (31)P MR spectra of cell extracts were monitored. In every case, LY294002 treatment was associated with a significant decrease in phosphocholine levels by up to 2-fold (P < 0.05). In addition, a significant increase in glycerophosphocholine levels by up to 5-fold was also observed (P <or= 0.05), whereas the content of glycerophosphoethanolamine, when detectable, did not change significantly. Nucleotide triphosphate levels did not change significantly in MCF-7 and MDA-MB-231 cells but decreased by approximately 1.3-fold in Hs578T cells (P = 0.01). The changes in phosphocholine and glycerophosphocholine levels seen in cell extracts were also detectable in the (31)P MR spectra of intact MDA-MB-231 cells following exposure to LY294002. When treated with another PI3K inhibitor, wortmannin, MDA-MB-231 cells also showed a significant decrease in phosphocholine content by approximately 1.25-fold relative to the control (P < 0.05), whereas the levels of the remaining metabolites did not change significantly. Our results indicate that PI3K inhibition in human breast cancer cells by LY294002 and wortmannin is associated with a decrease in phosphocholine levels.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJS. Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 2006; 26:2130-45. [PMID: 16507992 PMCID: PMC1430276 DOI: 10.1128/mcb.26.6.2130-2145.2006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/07/2005] [Accepted: 12/23/2005] [Indexed: 11/20/2022] Open
Abstract
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.
Collapse
Affiliation(s)
- Zhiping Wang
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Brown JK, Hollenberg MD, Jones CA. Tryptase activates phosphatidylinositol 3-kinases proteolytically independently from proteinase-activated receptor-2 in cultured dog airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 290:L259-69. [PMID: 16155087 DOI: 10.1152/ajplung.00215.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mast cell tryptase is a potent mitogen for many cells in the airways and lung, but the cellular mechanisms for its growth stimulatory effects are poorly understood. Our major goal was to determine whether tryptase activates phosphatidylinositol 3-kinases (PI 3-kinases) in cultured dog tracheal smooth muscle cells to induce its mitogenic effects. After exposure to tryptase, cells were lysed. Immunocomplexes prepared from the lysates using an antibody to the p85 subunit of PI 3-kinase, but not using anti-phosphotyrosine antibodies, possessed increased capacity to phosphorylate inositol on its D3 hydroxyl group. Tryptase also increased phosphorylation of Akt, a downstream target of PI 3-kinases. This effect was abolished by one PI 3-kinase inhibitor, wortmannin, and attenuated by another, LY-294004, which also blocked tryptase's mitogenic effects. Treatment of tryptase with p-amidino phenylmethanesulfonyl fluoride, to abolish its proteolytic activity irreversibly, inhibited its stimulatory effects on Akt phosphorylation. Proteinase-activated receptor-2 (PAR-2)-activating peptides failed to increase Akt phosphorylation in cultured dog tracheal smooth muscle cells, but the PAR-2-activating peptides did induce brisk increases in Akt phosphorylation in Madin-Darby canine kidney cells. We concluded that tryptase activates PI 3-kinases in cultured dog tracheal smooth muscle cells to induce its potent mitogenic effects. These effects of tryptase on PI 3-kinases appear to occur via novel proteolytic mechanisms independent from PAR-2. Also, tryptase, although comparable in mitogenic potency to platelet-derived growth factor (PDGF), induces considerably less tyrosine phosphorylation on proteins than occur in response to PDGF.
Collapse
Affiliation(s)
- James K Brown
- Pulmonary and Critical Care Medicine Section, Dept. of Veterans Affairs Medical Center, and Department of Medicine, University of California San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
230
|
The Role of Phosphoinositide 3-Kinase-Akt Signaling in Virus Infection. APOPTOSIS, CELL SIGNALING, AND HUMAN DISEASES 2006. [PMCID: PMC7120950 DOI: 10.1007/978-1-59745-199-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
231
|
Hendry BM, Khwaja A, Qu QY, Shankland SJ. Distinct functions for Ras GTPases in the control of proliferation and apoptosis in mouse and human mesangial cells. Kidney Int 2006; 69:99-104. [PMID: 16374429 DOI: 10.1038/sj.ki.5000029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous work, we have demonstrated that Ras GTPases regulate proliferation in a range of human renal cells. The present work compares human and mouse mesangial cell (HMC and MMC) responses to specific knockdown of Ras genes with antisense oligonucleotides (AS-oligos), and examines the role of the p21 (cip1) and p27 (kip1) cyclin-dependent kinase inhibitors in these responses in mouse cells. HMC and MMC were lipofectin transfected with ras-targeted AS-oligo at 200-400 nM for 18 h followed by growth of cells in 20% serum for 18-72 h. Cell proliferation was assessed with an MTS assay and bromodeoxyuridine (BrdU) uptake. Apoptosis was quantified using nuclear stain with Hoechst 33342 dye. In MMC, Ha-ras AS-oligo caused an increase in apoptosis from <2% to 10-15% of cells after 18 h in serum (P<0.01). Control, Ki-ras and N-ras AS-oligos had minimal effects on apoptosis. BrdU uptake studies showed that BrdU+ve MMC were increased by 20-40% (P<0.05) after Ha-ras AS-oligo at 24 h; other ras AS-oligos were inactive. HMC number was reduced by 40-80% (P<0.01) at 48-72 h by both Ha-ras and Ki-ras AS-oligos. These actions were associated with reductions in BrdU+ve cells. In HMC, the ras AS-oligos did not induce apoptosis. p21(-,-) MMC showed exaggerated apoptotic responses to Ha-Ras AS-oligo. In mouse cells, Ha-Ras expression appears necessary to prevent apoptotic cell death; Ras expression does not appear necessary for cells to progress through the cell cycle. In human cells, Ras does not appear necessary to prevent apoptosis but Ha-Ras and Ki-Ras appear to be required for cell cycle progression.
Collapse
Affiliation(s)
- B M Hendry
- Department of Renal Medicine, King's College London, London, UK.
| | | | | | | |
Collapse
|
232
|
Avruch J, Praskova M, Ortiz-Vega S, Liu M, Zhang XF. Nore1 and RASSF1 Regulation of Cell Proliferation and of the MST1/2 Kinases. Methods Enzymol 2006; 407:290-310. [PMID: 16757333 DOI: 10.1016/s0076-6879(05)07025-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The six human Nore1/RASSF genes encode a family of putative tumor suppressor proteins, each expressed as multiple mRNA splice variants. The predominant isoforms of these noncatalytic polypeptides are characterized by the presence in their carboxyterminal segments of a Ras-Association (RA) domain followed by a SARAH domain. The expression of the RASSF1A and Nore1A isoforms is extinguished selectively by gene loss and/or epigenetic mechanisms in a considerable fraction of epithelial cancers and cell lines derived therefrom, and reexpression usually suppresses the proliferation and tumorigenicity of these cells. RASSF1A/Nore1A can cause cell cycle delay in G1 and/or M and may promote apoptosis. The founding member, Nore1A, binds preferentially through its RA domain to the GTP-charged forms of Ras, Rap-1, and several other Ras subfamily GTPases with high affinity. By contrast, RASSF1, despite an RA domain 50% identical to Nore1, exhibits relatively low affinity for Ras-like GTPases but may associate with Ras-GTP indirectly. Each of the RASSF polypeptides, including the C. elegans ortholog encoded by T24F1.3, binds to the Ste20-related protein kinases MST1 and MST2 through the SARAH domains of each partner. The recombinant MST1/2 kinases, spontaneous dimers, autoactivate in vitro through an intradimer transphosphorylation of the activation loop, and the Nore1/RASSF1 polypeptides inhibit this process. Recombinant MST1 is strongly activated in vivo by recruitment to the membrane; the recombinant MST1 that is bound to RasG12V through Nore1A is activated; however, the bulk of MST1 is not. Endogenous complexes of MST1 with both Nore1A and RASSF1A are detectable, and Nore1A/MST1 can associate with endogenous Ras in response to serum addition. Nevertheless, the physiological functions of the Nore1/RASSF polypeptides in mammalian cells, as well as the role of the MST1/2 kinases in their growth-suppressive actions, remain to be established. The Drosophila MST1/2 ortholog hippo is a negative regulator of cell cycle progression and is necessary for developmental apoptosis. Overexpression of mammalian MST1 or MST2 promotes apoptosis, as does overexpression of mutant active Ki-Ras. Interference with the ability of endogenous MST1/2 to associate with the Nore1/RASSF polypeptides inhibits Ras-induced apoptosis. At present, however, the relevance of Ki-Ras-induced apoptosis to the physiological functions of c-Ras and to the growth-regulating actions of spontaneously occurring oncogenic Ras mutants is not known.
Collapse
Affiliation(s)
- Joseph Avruch
- Department of Molecular Biology and Diabetes Unit, Medical Services, Massachusetts General Hospital, USA
| | | | | | | | | |
Collapse
|
233
|
Takemoto Y, Watanabe H, Uchida K, Matsumura K, Nakae K, Tashiro E, Shindo K, Kitahara T, Imoto M. Chemistry and Biology of Moverastins, Inhibitors of Cancer Cell Migration, Produced by Aspergillus. ACTA ACUST UNITED AC 2005; 12:1337-47. [PMID: 16356851 DOI: 10.1016/j.chembiol.2005.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/08/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
Cancer cell migration is a required step in cancer metastasis. We screened for inhibitors of cancer cell migration of microbial origin, and obtained moverastin, a member of the cylindrol family, from Aspergillus sp. F7720. However, the results of an NMR spectroscopic analysis raised the possibility that moverastin is a mixture of two diastereomers. Separation of the C-10 epimers of synthetic moverastin and a bioassay revealed that both diastereomers (moverastins A and B) had inhibitory effects on cell migration. Furthermore, we demonstrated that moverastins A and B inhibited FTase in vitro, and they also inhibited both the membrane localization of H-Ras and the activation of the PI3K/Akt pathway in EC17 cells. Thus, moverastins inhibited the migration of tumor cells by inhibiting the farnesylation of H-Ras, and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yasushi Takemoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Lim KH, Counter CM. Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 2005; 8:381-92. [PMID: 16286246 DOI: 10.1016/j.ccr.2005.10.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/13/2005] [Accepted: 10/21/2005] [Indexed: 11/17/2022]
Abstract
While tumors become addicted to oncogenes like Ras, the microenvironment in which tumor cells reside changes during tumorigenesis; the cells are surrounded initially by normal tissue and later by tumor tissue. Hence, we asked if Ras exerts its oncogenic effects through the same set of effectors during different stages of tumorigenesis. We now show in human cells that the Ras effector pathways MAPK, RalGEF, and PI3K are required to initiate tumor growth. Conversely, activation of the PI3K/AKT pathway replaced Ras once tumors formed, although other effectors were still activated independently of Ras, presumably by factors provided upon the establishment of a tumor microenvironment. Thus, as tumorigenesis progresses the addiction of cancers to their initiating oncogene is reduced to, at least in the case of Ras, the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Kian-Huat Lim
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
235
|
Shalom-Feuerstein R, Cooks T, Raz A, Kloog Y. Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res 2005; 65:7292-300. [PMID: 16103080 DOI: 10.1158/0008-5472.can-05-0775] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Galectin-3 (Gal-3), a pleiotropic carbohydrate-binding protein, is a selective binding partner of activated K-Ras-GTP. Because both proteins are antiapoptotic and associated with cancer progression, we questioned the possible functional role of Gal-3 in K-Ras activation. We found that overexpression of Gal-3 in human breast cancer cells (BT-549/Gal-3) coincided with a significant increase in wild-type (wt) K-Ras-GTP coupled with loss in wt N-Ras-GTP, whereas the nononcogenic Gal-3 mutant proteins [Gal-3(S6E) and Gal-3(G182A)] failed to induce the Ras isoform switch. Only wt Gal-3 protein coimmunoprecipitated and colocalized with oncogenic K-Ras, resulting in its activation with radical alterations in Ras signaling pathway, whereby the activation of AKT and Ral was suppressed and shifted to the activation of extracellular signal-regulated kinase (ERK). Specific inhibitors for Ras or mitogen-activated protein/ERK kinase (farnesylthiosalicylic acid and UO126, respectively) inhibited Gal-3-mediated apoptotic resistance and anchorage-independent growth functions. In conclusion, this study shows that Gal-3 confers on BT-549 human breast carcinoma cells several oncogenic functions by binding to and activation of wt K-Ras, suggesting that some of the molecular functions of Gal-3 are, at least in part, a result of K-Ras activation.
Collapse
Affiliation(s)
- Ruby Shalom-Feuerstein
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
236
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part II): Intermediate signaling molecules. ACTA ACUST UNITED AC 2005; 5:247-57. [PMID: 16078861 DOI: 10.2165/00129785-200505040-00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This is the second part of a four-part review on potential therapeutic targeting of oncogenes. The previous part introduced the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes, which we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part I included a discussion of growth factors and tyrosine kinases. This portion of the review covers intermediate signaling molecules and the various strategies used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
237
|
Cengel KA, McKenna WG. Molecular targets for altering radiosensitivity: lessons from Ras as a pre-clinical and clinical model. Crit Rev Oncol Hematol 2005; 55:103-16. [PMID: 16006139 DOI: 10.1016/j.critrevonc.2005.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 01/01/2005] [Accepted: 02/03/2005] [Indexed: 11/19/2022] Open
Abstract
Ras activation has been correlated with malignant and metastatic cancer phenotypes and poor prognosis for cancer patients. In the preclinical setting, Ras activation by mutation or EGFR amplification results in increased clonogenic cell survival and decreased tumor growth delay following irradiation. Activation of the Ras pathway has also been associated with increased risk of local failure and decreased overall survival in patients receiving radiotherapy. Prenyltransferase inhibitors target the post-translational processing of Ras and have been shown to increase the radiosensitivity of human cancer cell lines. In the clinical setting, these inhibitors have been used with concurrent radiotherapy in a small number of phase I clinical trials with acceptable toxicity. Therefore, inhibiting Ras activation represents a promising molecular approach for radiosensitization in cancer therapy.
Collapse
Affiliation(s)
- Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street, 2 Donner, Philadelphia, PA 19104, USA
| | | |
Collapse
|
238
|
Zhang J, Lodish HF. Identification of K-ras as the major regulator for cytokine-dependent Akt activation in erythroid progenitors in vivo. Proc Natl Acad Sci U S A 2005; 102:14605-10. [PMID: 16203968 PMCID: PMC1253609 DOI: 10.1073/pnas.0507446102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite intensive investigation, controversial results have been obtained concerning the precise signaling pathway(s) regulated by K-ras in different cell types. We show that in primary fetal liver erythroid progenitors, erythropoietin activates all three Ras isoforms, but preferentially N- and K-ras. In K-ras(-/-) fetal liver cells (FLC), erythropoietin- or stem cell factor-dependent Akt activation is greatly reduced, whereas other pathways including Stat5 and p44/p42 MAP kinase are activated normally. We further studied the effects of reduced cytokine-dependent Akt activation in erythroid differentiation. We find that freshly isolated K-ras(-/-) FLC show an approximately 7-fold increase of apoptosis and delayed erythroid differentiation, but only at the stage of erythroid progenitors and very early erythroblasts. When K-ras(-/-) erythroid progenitors are cultured in vitro, there is a significant delay in erythroid differentiation but little increase in apoptosis. Furthermore, we show that partial pharmacologic inhibition of the phosphatidylinositol 3-kinase/Akt pathway in wild-type erythroid progenitors leads to a delay in erythroid differentiation similar to that observed in K-ras(-/-) FLC. Taken together, our data identify K-ras as the major regulator for cytokine-dependent Akt activation, which is important for erythroid differentiation in vivo.
Collapse
Affiliation(s)
- Jing Zhang
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
239
|
Hancock JF, Prior IA. Electron microscopic imaging of Ras signaling domains. Methods 2005; 37:165-72. [PMID: 16288888 PMCID: PMC3351669 DOI: 10.1016/j.ymeth.2005.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 05/24/2005] [Indexed: 10/25/2022] Open
Abstract
Ras isoform-specific signaling from the plasma membrane appears to be regulated by interactions with distinct functional microdomains. We have developed protocols allowing the generation of 2-D spatial maps describing cell surface microdomain distributions. The combined electron microscopic (EM)-statistics approach provides nanometer scale resolution allowing both inner and outer leaflet domains to be visualized and cross-correlated with each other or with a protein of interest. In particular, the technique has allowed the interaction of Ras isoforms with signaling microdomains and proteins regulating these compartments to be screened. By allowing detailed monitoring of cell surface organization and compartmentalization, the approach has widespread potential for studies of plasma membrane-dependent cell biology, including regulated signaling and membrane trafficking.
Collapse
Affiliation(s)
- John F. Hancock
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Ian A. Prior
- The Physiological Laboratory, University of Liverpool, UK
| |
Collapse
|
240
|
Abstract
The ras genes give rise to a family of related GTP-binding proteins that exhibit potent transforming potential. Mutational activation of Ras proteins promotes oncogenesis by disturbing a multitude of cellular processes, such as gene expression, cell cycle progression and cell proliferation, as well as cell survival, and cell migration. Ras signalling pathways are well known for their involvement in tumour initiation, but less is known about their contribution to invasion and metastasis. This review summarises the role and mechanisms of Ras signalling, especially the role of the Ras effector cascade Raf/MEK/ERK, as well as the phosphatidylinositol 3-kinase/Akt pathway in Ras-mediated transformation and tumour progression. In addition, it discusses the impact of Rho GTPases on Ras-mediated transformation and metastasis.
Collapse
Affiliation(s)
- Klaudia Giehl
- Department of Pharmacology and Toxicology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
241
|
Lommerse PHM, Snaar-Jagalska BE, Spaink HP, Schmidt T. Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci 2005; 118:1799-809. [PMID: 15860728 DOI: 10.1242/jcs.02300] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies show that the partitioning of the small GTPase H-Ras in different types of membrane microdomains is dependent on guanosine 5'-triphosphate (GTP)-loading of H-Ras. Detailed knowledge about the in vivo dynamics of this phenomenon is limited. In this report, the effect of the activation of H-Ras on its microdomain localization was studied by single-molecule fluorescence microscopy. Individual human H-Ras molecules fused to the enhanced yellow fluorescent protein (eYFP) were imaged in the dorsal plasma membrane of live mouse cells and their diffusion behavior was analyzed. The diffusion of a constitutively inactive (S17N) and constitutively active (G12V) mutant of H-Ras was compared. Detailed analysis revealed that for both mutants a major, fast-diffusing population and a minor, slow-diffusing population were present. The slow-diffusing fraction of the active mutant was confined to 200 nm domains, which were not observed for the inactive mutant. In line with these results we observed that the slow-diffusing fraction of wild-type H-Ras became confined to 200 nm domains upon insulin-induced activation of wild-type H-Ras. This activation-dependent localization of H-Ras to 200 nm domains, for the first time directly detected in live cells, supports the proposed relationship between H-Ras microdomain localization and activation.
Collapse
Affiliation(s)
- Piet H M Lommerse
- Department of Biophysics, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | | | | | | |
Collapse
|
242
|
Janssen KP, Abal M, Abala M, El Marjou F, Louvard D, Robine S. Mouse models of K-ras-initiated carcinogenesis. Biochim Biophys Acta Rev Cancer 2005; 1756:145-54. [PMID: 16126346 DOI: 10.1016/j.bbcan.2005.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/25/2005] [Accepted: 07/25/2005] [Indexed: 12/30/2022]
Abstract
Activating mutations of the oncogene K-ras are found in one third of all human cancers. Much of our knowledge on K-ras signal transduction and its influence on tumor initiation and progression comes from in vitro studies with cell lines. However, mouse models of human cancer allow a much more faithful recapitulation of the human disease, and the in vivo perspective is crucial for our understanding of neoplasia. In recent years, several new murine models for K-ras-induced tumorigenesis have been described. They allow new insights into the specific role that oncogenic K-ras proteins play in different solid tumors, and they permit the molecular dissection of the pathways that are initiated by somatic mutations in subsets of cells. Key advances have been made by the use of tissue-specific and inducible control of expression, which is achieved by the Cre/LoxP technology or the tetracycline system. from these sophisticated models, a common picture emerges: The effects of K-ras on tumor initiation depend strongly on the cellular context, and different tissues vary in their susceptibility to K-ras transformation.
Collapse
Affiliation(s)
- Klaus-Peter Janssen
- Morphogenesis and intracellular signalling, UMR 144, Institut Curie-CNRS, 26 rue d'Ulm 75248 Paris Cedex-05, France
| | | | | | | | | | | |
Collapse
|
243
|
Gomez GA, Daniotti JL. H-Ras dynamically interacts with recycling endosomes in CHO-K1 cells: involvement of Rab5 and Rab11 in the trafficking of H-Ras to this pericentriolar endocytic compartment. J Biol Chem 2005; 280:34997-5010. [PMID: 16079139 DOI: 10.1074/jbc.m506256200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-, N-, and K-Ras are isoforms of Ras proteins, which undergo different lipid modifications at the C terminus. These post-translational events make possible the association of Ras proteins both with the inner plasma membrane and to the cytosolic surface of endoplasmic reticulum and Golgi complex, which is also required for the proper function of these proteins. To better characterize the intracellular distribution and sorting of Ras proteins, constructs were engineered to express the C-terminal domain of H- and K-Ras fused to variants of green fluorescent protein. Using confocal microscopy, we found in CHO-K1 cells that H-Ras, which is palmitoylated and farnesylated, localized at the recycling endosome in addition to the inner leaflet of the plasma membrane. In contrast, K-Ras, which is farnesylated and nonpalmitoylated, mainly localized at the plasma membrane. Moreover, we demonstrate that sorting signals of H- and K-Ras are contained within the C-terminal domain of these proteins and that palmitoylation on this region of H-Ras might operate as a dominant sorting signal for proper subcellular localization of this protein in CHO-K1 cells. Using selective photobleaching techniques, we demonstrate the dynamic nature of H-Ras trafficking to the recycling endosome from plasma membrane. We also provide evidence that Rab5 and Rab11 activities are required for proper delivery of H-Ras to the endocytic recycling compartment. Using a chimera containing the Ras binding domain of c-Raf-1 fused to a fluorescent protein, we found that a pool of GTP-bound H-Ras localized on membranes from Rab11-positive recycling endosome after serum stimulation. These results suggest that H-Ras present in membranes of the recycling endosome might be activating signal cascades essential for the dynamic and function of the organelle.
Collapse
Affiliation(s)
- Guillermo Alberto Gomez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | |
Collapse
|
244
|
Peyker A, Rocks O, Bastiaens PIH. Imaging activation of two Ras isoforms simultaneously in a single cell. Chembiochem 2005; 6:78-85. [PMID: 15637661 DOI: 10.1002/cbic.200400280] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fluorescence resonance energy transfer (FRET) microscopy approaches have been used to study protein interactions in living cells. Up to now, due to the spectral requirements for FRET detection, this has been limited to the measurement of single protein interactions. Here we present a novel time-resolved fluorescence imaging method for simultaneously monitoring the activation state of two proteins in a single cell. A Ras sensor, consisting of fluorescently labelled Ras and a fluorescently labelled Ras binding domain (RBD) of Raf, which reads out Ras activation by its interaction with RBD as a FRET signal, has been adapted for this purpose. By using yellow (YFP) and cyan (CFP) versions of the green fluorescent protein from Aquorea victoria as donors and a tandem construct of Heteractis crispa Red (tHcRed) as acceptor for both donors, two independent FRET signals can be measured at the same time. Measuring the YFP and CFP donor lifetimes by fluorescence-lifetime imaging microscopy (FLIM) allows us to distinguish the two different FRET signals in a single cell. Using this approach, we show that different Ras isoforms and mutants that localize to the plasma membrane, to the Golgi or to both compartments display distinct activation profiles upon growth-factor stimulation; this indicates that there is a differential regulation in cellular compartments. The method presented here is especially useful when studying spatiotemporal aspects of protein regulation as part of larger cellular signalling networks.
Collapse
Affiliation(s)
- Anna Peyker
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
245
|
Plowman SJ, Hancock JF. Ras signaling from plasma membrane and endomembrane microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:274-83. [PMID: 16039730 DOI: 10.1016/j.bbamcr.2005.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/30/2005] [Accepted: 06/10/2005] [Indexed: 11/29/2022]
Abstract
Ras proteins are compartmentalized by dynamic interactions with both plasma membrane microdomains and intracellular membranes. The mechanisms underlying Ras compartmentalization involve a series of protein/lipid, lipid/lipid and cytoskeleton interactions, resulting in the generation of discrete microdomains from which Ras operates. Segregation of Ras proteins to these different platforms regulates the formation of Ras signaling complexes and the generation of discrete signal outputs. This temporal and spatial modulation of Ras signal transduction provides a mechanism for the generation of different biological outcomes from different Ras isoforms, as well as flexibility in the signal output from a single activated isoform.
Collapse
Affiliation(s)
- S J Plowman
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
246
|
Kocher HM, Senkus R, Moorhead J, Al-Nawab M, Patel AG, Benjamin IS, Hendry BM. Expression of Ras GTPase isoforms in normal and diseased pancreas. Pancreatology 2005; 5:205-14. [PMID: 15855817 DOI: 10.1159/000085273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 07/06/2004] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ki-Ras is well studied in its oncogenic form in relation to pancreatic pathologies. However, the individual contribution of each of the wild-type Ras isoforms (Ha-, Ki-, and N-) in pancreatic cells in health and disease is unknown. METHODS Archival formalin-fixed, paraffin-embedded specimens of normal (n = 6) and malignant pancreas (n = 35) were used for immuno-histochemical detection of Ras isoforms using a modified polymer system. In addition, immunogold labelling for Ras isoforms was done for subcellular localisation under electron microscopy. RESULTS Pancreatic ductal cells expressed Ha-Ras in the cytoplasm, with Ki-Ras in the apical region and N-Ras (50% of cases) in a supranuclear distribution. Pancreatic acinar cells express all three isoforms with some nuclear expression of Ki-Ras and supranuclear expression of N-Ras. Islets show Ki- and Ha-Ras mainly with differential expression of Ha-Ras (beta cells showing less Ha-Ras and more Ki-Ras than alpha cells). Electron microscopy shows that Ha-Ras is mainly localised in the endoplasmic reticulum and Golgi apparatus of the acinar cells with some plasma membrane localisation of Ki-Ras in the ductal cells. There was no change in any of the Ras isoform expression in the ductal or acinar cells in various malignancies studied (Mann-Whitney U test, p > 0.1). CONCLUSIONS Ras isoforms have distinct and separate cellular and subcellular distribution that may persist even in the malignantly transformed state. Understanding this distinct functional distribution patterns in detail is an essential step if mutant Ki-Ras is to be targeted in the pancreas by genetic or molecular therapeutic tools.
Collapse
Affiliation(s)
- Hemant M Kocher
- Department of Surgery, King's College Hospital, Guy's King's and St Thomas' School of Medicine, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
247
|
Al-Assar O, Crouch DH. Inactivation of MAP kinase signalling in Myc transformed cells and rescue by LiCl inhibition of GSK3. Mol Cancer 2005; 4:13. [PMID: 15811177 PMCID: PMC1083420 DOI: 10.1186/1476-4598-4-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Accepted: 04/05/2005] [Indexed: 01/13/2023] Open
Abstract
c-Myc oncogene is an important regulator of cell cycle and apoptosis, and its dysregulated expression is associated with many malignancies. Myc is instrumental in directly or indirectly regulating the progression through the G1 phase and G1/S transition, and transformation by Myc results in perturbed cell cycle. Also contributory to the control of G1 is the Ras effector pathway Raf/MEK/ERK MAP kinase. Together with GSK3, ERK plays an important role in the critical hierarchical phosphorylation of S62/T58 controlling Myc protein levels. Therefore, our main aim was to examine the levels of MAPK in Myc transformed cells in light of the roles of ERK in cell cycle and control of Myc protein levels. We found that active forms of ERK were barely detectable in v-Myc (MC29) transformed cells. Furthermore, we could only detect reduced levels of activated ERK in c-Myc transformed cells compared to the non-transformed primary chick embryo fibroblast cells. The addition of LiCl inhibited GSK3 and successfully restored the levels of ERK in v-Myc and c-Myc transformed cells to those found in non-transformed cells. In addition, LiCl stabilised Myc protein in the non-transformed and c-Myc transformed cells but not in v-Myc transformed cells. These results can provide an important insight into the role of MAPK in the mechanism of Myc induced transformation and carcinogenesis.
Collapse
Affiliation(s)
- Osama Al-Assar
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
- Institute for Cancer Studies, Division of Genomic Medicine, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Dorothy H Crouch
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
248
|
Halaschek-Wiener J, Wacheck V, Kloog Y, Jansen B. Ras inhibition leads to transcriptional activation of p53 and down-regulation of Mdm2: two mechanisms that cooperatively increase p53 function in colon cancer cells. Cell Signal 2005; 16:1319-27. [PMID: 15337531 DOI: 10.1016/j.cellsig.2004.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2003] [Revised: 03/30/2004] [Accepted: 04/04/2004] [Indexed: 02/07/2023]
Abstract
Activated Ras, operating through the Raf/MEK/ERK pathway, is known to regulate transcription of both Mdm2 and its inhibitor p19ARF, resulting in opposing effects on the tumor suppressor protein p53. We show here that a decrease in Ras in SW480 cells induced either by the Ras inhibitor farnesylthiosalicylic acid (FTS) or by K-Ras antisense oligonucleotides, resulted in a similar increase in p53 protein. The increase in p53 was accompanied by an increase in p21(waf1/cip1) mRNA transcripts and protein. Consistent with the Ras/Raf/MEK/ERK-mediated control of Mdm2, treatment of SW480 cells with the Ras inhibitor FTS caused a marked (80%) decrease in Mdm2, which itself would account for the increase in p53. However, FTS also caused a 1.6-fold increase in p53 mRNA, indicative of a Ras-dependent mechanism that regulates p53 transcription. Thus, oncogenic Ras appears to attenuate p53 in SW480 cells by two independent regulatory mechanisms, the one leading to increased Mdm2-dependent p53 degradation and the other leading to a decrease in p53 transcription.
Collapse
Affiliation(s)
- Julius Halaschek-Wiener
- Department of Clinical Pharmacology, Section of Experimental Oncology and Molecular Pharmacology, University of Vienna, Währinger Gürtel 18-20, A-1090, Austria.
| | | | | | | |
Collapse
|
249
|
Kocher HM, Senkus R, Al-Nawab M, Hendry BM. Subcellular distribution of Ras GTPase isoforms in normal human kidney. Nephrol Dial Transplant 2005; 20:886-91. [PMID: 15741206 DOI: 10.1093/ndt/gfh744] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ras GTPase isoforms have been implicated in proliferative renal disease and are known to have differential cellular expression in kidney. However, their exact subcellular location in various cells is unknown. METHODS Immunogold labelling for Ras isoforms (Harvey, Kirsten and Neural) was performed for subcellular localization under electron microscopy in fresh normal kidney specimens, obtained from the opposite pole of kidneys removed for renal cell cancer. RESULTS There was prominent staining shown by Ha-Ras only on the glomerular foot processes as compared with basement membrane or the endothelial cells. Mesangial cells showed intense staining in the cytosol with Ha-Ras (absent in the nucleus), minimal staining with Ki-Ras and none with N-Ras. In both the proximal and distal convoluted tubules, there was a clear staining of the mitochondria with Ha-Ras, with mild cytosolic staining with all of the isoforms. CONCLUSIONS Ras isoforms have distinct and separate subcellular distributions in normal kidney cells. Understanding the functional aspects of this distribution pattern is essential if Ras is to be targeted by genetic or molecular therapeutic tools.
Collapse
Affiliation(s)
- Hemant M Kocher
- Department of Health National Clinician Scientist, Tumour Biology Laboratory, Cancer Research UK Clinical Centre Queen Mary's School of Medicine & Dentistry at Barts & The London, John Vane Science Centre, London, UK.
| | | | | | | |
Collapse
|
250
|
Rowinsky EK, Patnaik A. The development of protein farnesyltransferase and other ras-directed therapeutics for malignant diseases. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728214.5.2.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|