201
|
Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 2013; 3:3442. [PMID: 24309385 PMCID: PMC3853658 DOI: 10.1038/srep03442] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/20/2013] [Indexed: 11/11/2022] Open
Abstract
Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach.
Collapse
|
202
|
In vitro biocompatibility and antibacterial efficacy of a degradable poly(L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles. Ann Biomed Eng 2013; 42:1482-93. [PMID: 24150238 DOI: 10.1007/s10439-013-0929-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
Silver nanoparticles (Ag-nps) are currently used as a natural biocide to prevent undesired bacterial growth in clothing, cosmetics and medical products. The objective of the study was to impart antibacterial properties through the incorporation of Ag-nps at increasing concentrations to electrospun degradable 50:50 poly(L-lactide-co-epsilon-caprolactone) scaffolds for skin tissue engineering applications. The biocompatibility of the scaffolds containing Ag-nps was evaluated with human epidermal keratinocytes (HEK); cell viability and proliferation were evaluated using Live/Dead and alamarBlue viability assays following 7 and 14 days of cell culture on the scaffolds. Significant decreases in cell viability and proliferation were noted for the 1.0 mg(Ag) g(scaffold)(-1) after 7 and 14 days on Ag-nps scaffolds. After 14 days, scanning electron microscopy revealed a confluent layer of HEK on the surface of the 0.0 and 0.1 mg(Ag) g(scaffold)(-1). Both 0.5 and 1.0 mg(Ag) g(scaffold)(-1) were capable of inhibiting both Gram positive and negative bacterial strains. Uniaxial tensile tests revealed a significant (p < 0.001) decrease in the modulus of elasticity following Ag-nps incorporation compared to control. These findings suggest that a scaffold containing between 0.5 and 1.0 mg(Ag) g(scaffold)(-1) is both biocompatible and antibacterial, and is suitable for skin tissue engineering graft scaffolds.
Collapse
|
203
|
Anti-biofilm efficacy of low temperature processed AgCl-TiO2 nanocomposite coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 34:62-8. [PMID: 24268234 DOI: 10.1016/j.msec.2013.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/28/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022]
Abstract
Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol-gel coatings of AgCl-TiO2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl-TiO2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl-TiO2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation.
Collapse
|
204
|
Fathy M, Badawi A, Mazrouaa AM, Mansour NA, Ghazy EA, Elsabee MZ. Styrene N-vinylpyrrolidone metal-nanocomposites as antibacterial coatings against Sulfate Reducing Bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4063-70. [PMID: 23910315 DOI: 10.1016/j.msec.2013.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 05/09/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Affiliation(s)
- M Fathy
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomor St., Nasr City, 11727 Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
205
|
Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids Surf B Biointerfaces 2013; 113:429-34. [PMID: 24140741 DOI: 10.1016/j.colsurfb.2013.09.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/02/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3.
Collapse
|
206
|
Jeon JO, Kim S, Choi E, Shin K, Cha K, So IS, Kim SJ, Jun E, Kim D, Ahn HJ, Lee BH, Lee SH, Kim IS. Designed nanocage displaying ligand-specific Peptide bunches for high affinity and biological activity. ACS NANO 2013; 7:7462-71. [PMID: 23927443 DOI: 10.1021/nn403184u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein-cage nanoparticles are promising multifunctional platforms for targeted delivery of imaging and therapeutic agents owing to their biocompatibility, biodegradability, and low toxicity. The major advantage of protein-cage nanoparticles is the ability to decorate their surfaces with multiple functionalities through genetic and chemical modification to achieve desired properties for therapeutic and/or diagnostic purposes. Specific peptides identified by phage display can be genetically fused onto the surface of cage proteins to promote the association of nanoparticles with a particular cell type or tissue. Upon symmetrical assembly of the cage, peptides are clustered on the surface of the cage protein in bunches. The resulting PBNC (peptide bunches on nanocage) offers the potential of synergistically increasing the avidity of the peptide ligands, thereby enhancing their blocking ability for therapeutic purposes. Here, we demonstrated a proof-of-principle of PBNCs, fusing the interleukin-4 receptor (IL-4R)-targeting peptide, AP-1, identified previously by phage display, with ferritin-L-chain (FTL), which undergoes 24-subunit assembly to form highly stable AP-1-containing nanocage proteins (AP1-PBNCs). AP1-PBNCs bound specifically to the IL-4R-expressing cell line, A549, and their binding and internalization were specifically blocked by anti-IL-4R antibody. AP1-PBNCs exhibited dramatically enhanced binding avidity to IL-4R compared with AP-1 peptide, measured by surface plasmon resonance spectroscopy. Furthermore, treatment with AP1-PBNCs in a murine model of experimental asthma diminished airway hyper-responsiveness and eosinophilic airway inflammation along with decreased mucus hyperproduction. These findings hold great promise for the application of various PBNCs with ligand-specific peptides in therapeutics for different diseases, such as cancer.
Collapse
Affiliation(s)
- Jae Og Jeon
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University , Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Functional copolymer/organo-MMT nanoarchitectures: self-assembled core-shell morphology of poly(maleic anhydride-alt-α-olefin)/organo-MMT nanocomposites. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-1016-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
208
|
García-Argüelles S, Serrano MC, Gutiérrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9525-9534. [PMID: 23808373 DOI: 10.1021/la401353r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial infection related to the implantation of medical devices represents a serious clinical complication, with dramatic consequences for many patients. In past decades, numerous attempts have been made to develop materials with antibacterial and/or antifouling properties by the incorporation of antibiotic and/or antiseptic compounds. In this context, deep eutectic solvents (DESs) are acquiring increasing interest not only as efficient carriers of active principle ingredients (APIs) but also as assistant platforms for the synthesis of a wide repertoire of polymer-related materials. Herein, we have successfully prepared biodegradable poly(octanediol-co-citrate) polyesters with acquired antibacterial properties by the DES-assisted incorporation of quaternary ammonium or phosphonium salts into the polymer network. In the resulting polymers, the presence of these salts (i.e., choline chloride, tetraethylammonium bromide, hexadecyltrimethylammonium bromide, and methyltriphenylphosphonium bromide) inhibits bacterial growth in the early postimplantation steps, as tested in cultures of Escherichia coli on solid agar plates. Later, positive polymer cytocompatibility is expected to support cell colonization, as anticipated from in vitro preliminary studies with L929 fibroblasts. Finally, the attractive elastic properties of these polyesters permit matching those of soft tissues such as skin. For all of these reasons, we envisage the utility of some of these antibacterial, biocompatible, and biodegradable polyesters as potential candidates for the preparation of antimicrobial wound dressings. These results further emphasize the enormous versatility of DES-assisted synthesis for the incorporation, in the synthesis step, of a wide palette of APIs into polymeric networks suitable for biomedical applications.
Collapse
Affiliation(s)
- Sara García-Argüelles
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
209
|
Srivastava P, Bragança J, Ramanan SR, Kowshik M. Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 2013; 17:821-31. [PMID: 23884709 DOI: 10.1007/s00792-013-0563-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/09/2013] [Indexed: 11/29/2022]
Abstract
Numerous bacteria, fungi, yeasts and viruses have been exploited for biosynthesis of highly structured metal sulfide and metallic nanoparticles. Haloarchaea (salt-loving archaea) of the third domain of life Archaea, on the other hand have not yet been explored for nanoparticle synthesis. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (AgNPs) by the haloarchaeal isolate Halococcus salifodinae BK3. The culture on adaptation to silver nitrate exhibited growth kinetics similar to that of the control. NADH-dependent nitrate reductase was involved in silver tolerance, reduction, synthesis of AgNPs, and exhibited metal-dependent increase in enzyme activity. The AgNPs preparation was characterized using UV-visible spectroscopy, XRD, TEM and EDAX. The XRD analysis of the nanoparticles showed the characteristic Bragg peaks of face-centered cubic silver with crystallite domain size of 22 and 12 nm for AgNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The average particle size obtained from TEM analysis was 50.3 and 12 nm for AgNPs synthesized in NTYE and HNB, respectively. This is the first report on the synthesis of silver nanoparticles by haloarchaea.
Collapse
Affiliation(s)
- Pallavee Srivastava
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, 403 726, Goa, India
| | | | | | | |
Collapse
|
210
|
Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg Chem Appl 2013; 2013:871097. [PMID: 23970844 PMCID: PMC3732601 DOI: 10.1155/2013/871097] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 11/17/2022] Open
Abstract
The nanoparticles used in this study were prepared from AgNO3 using NaBH4 in the presence of capping agents such as citrate, sodium dodecyl sulfate, and polyvinylpyrrolidone. The formed nanoparticles were characterized with UV-Vis, TEM, and XRD. The generation of silver nanoparticles was confirmed from the appearance of yellow colour and an absorption maximum between 399 and 404 nm. The produced nanoparticles were found to be spherical in shape and polydisperse. For citrate, SDS, and PVP capped nanoparticles, the average particle sizes were 38.3 ± 13.5, 19.3 ± 6.0, and 16.0 ± 4.8 nm, respectively. The crystallinity of the nanoparticles in FCC structure is confirmed from the SAED and XRD patterns. Also, the combined antibacterial activity of these differently capped nanoparticles with selected antibiotics (streptomycin, ampicillin, and tetracycline) was evaluated on model Gram-negative and Gram-positive bacteria, employing disc diffusion assay. The activity of the tested antibiotics was enhanced in combination with all the stabilized nanoparticles, against both the Gram classes of bacteria. The combined effects of silver nanoparticles and antibiotics were more prominent with PVP capped nanoparticles as compared to citrate and SDS capped ones. The results of this study demonstrate potential therapeutic applications of silver nanoparticles in combination with antibiotics.
Collapse
|
211
|
Krajewski S, Prucek R, Panacek A, Avci-Adali M, Nolte A, Straub A, Zboril R, Wendel HP, Kvitek L. Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood. Acta Biomater 2013; 9:7460-8. [PMID: 23523936 DOI: 10.1016/j.actbio.2013.03.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/01/2013] [Accepted: 03/13/2013] [Indexed: 11/18/2022]
Abstract
Due to their antibacterial effects, the use of silver nanoparticles (AgNPs) in a great variety of medical applications like coatings of medical devices has increased markedly in the last few years. However, blood in contact with AgNPs may induce adverse effects, thereby altering hemostatic functions. The objective of this study was to investigate the hemocompatibility of AgNPs in whole blood. Human whole blood (n=6) was treated with different AgNPs concentrations (1, 3 and 30mgl(-1)) or with saline/blank solutions as controls before being circulated in an in vitro Chandler-loop model for 60min at 37°C. Before and after circulation, various hematologic markers were investigated. Based on the hematologic parameters measured, no profound changes were observed in the groups treated with AgNP concentrations of 1 or 3mgl(-1). AgNP concentrations of 30mgl(-1) induced hemolysis of erythrocytes and α-granule secretion in platelets, increased CD11b expression on granulocytes, increased coagulation markers thrombin-antithrombin-III complex, kallikrein-like and FXIIa-like activities as well as complementing cascade activation. Overall, we provide for the first time a comprehensive evaluation including all hematologic parameters required to reliably assess the hemocompatibility of AgNPs. We strongly recommend integrating these hemocompatibility tests to preclinical test procedures prior to in vivo application of new AgNP-based therapies.
Collapse
Affiliation(s)
- Stefanie Krajewski
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Rodríguez-Delgado MG, Yáñez-Flores IG, Sánchez-Valdes S, Rodriguez-Fernandez OS, Betancourt-Galindo R, Lozano-Ramirez T, Ramirez-Vargas E, Ortega-Ortiz H. Preparation and characterization of acrylic acid/itaconic acid hydrogel coatings containing silver nanoparticles. J Appl Polym Sci 2013. [DOI: 10.1002/app.39375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Saul Sánchez-Valdes
- Centro de Investigación en Química Aplicada; Saltillo; Coahuila; 25294; Mexico
| | | | | | | | | | | |
Collapse
|
213
|
Shirwaiker RA, Samberg ME, Cohen PH, Wysk RA, Monteiro-Riviere NA. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:191-204. [PMID: 23335493 PMCID: PMC3638956 DOI: 10.1002/wnan.1201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials play a significant role in biomedical research and applications because of their unique biological, mechanical, and electrical properties. In recent years, they have been utilized to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopedic residual hardware devices (e.g., hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopedic implants is also discussed, the focus being on a low-intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The article concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these.
Collapse
Affiliation(s)
- Rohan A Shirwaiker
- Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | |
Collapse
|
214
|
Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite. Colloids Surf B Biointerfaces 2013; 110:191-8. [PMID: 23732794 DOI: 10.1016/j.colsurfb.2013.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/27/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Nanocomposites consisting of diatomaceous earth particles and silver nanoparticles (silver NPs) with high antimicrobial activity were prepared and characterized. For the purpose of nanocomposite preparation, silver NPs with an average size of 28nm prepared by modified Tollens process were used. Nanocomposites were prepared using poly(diallyldimethylammonium) chloride (PDDA) as an interlayer substance between diatomite and silver NPs which enables to change diatomite original negative surface charge to positive one. Due to strong electrostatic interactions between negatively charged silver NPs and positively charged PDDA-modified diatomite, Ag/PDDA-diatomite nanocomposites with a high content of silver (as high as 46.6mgAg/1g of diatomite) were prepared. Because of minimal release of silver NPs from prepared nanocomposites to aqueous media (<0.3mg Ag/1g of nanocomposite), the developed nanocomposites are regarded as a potential useful antimicrobial material with a long-term efficiency showing no risk to human health or environment. All the prepared nanocomposites exhibit a high bactericidal activity against Gram-negative and Gram-positive bacteria and fungicidal activity against yeasts at very low concentrations as low as 0.11g/L, corresponding to silver concentration of 5mg/L. Hence, the prepared nanocomposites constitute a promising candidate suitable for the microbial water treatment in environmental applications.
Collapse
|
215
|
Tran PA, Webster TJ. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. NANOTECHNOLOGY 2013; 24:155101. [PMID: 23519147 DOI: 10.1088/0957-4484/24/15/155101] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bacteria colonization on medical devices remains one of the most serious complications following implantation. Traditional antibiotic treatment has proven ineffective, creating an increasingly high number of drug-resistant bacteria. Polymeric medical devices represent a significant portion of the total medical devices used today due to their excellent mechanical properties (such as durability, flexibility, etc). However, many polymers (such as polyvinyl chloride (PVC), polyurethane (PU) and silicone) become readily colonized and infected by bacteria immediately after use. Therefore, in this study, a novel antimicrobial coating was developed to inhibit bacterial growth on PVC, PU and silicone. Specifically, here, the aforementioned polymeric substrates were coated with selenium (Se) nanoparticles in situ. The Se-coated substrates were characterized using scanning electron microscopy, energy dispersive x-ray spectroscopy and bacteria assays. Most importantly, bacterial growth was significantly inhibited on the Se-coated substrates compared to their uncoated counterparts. The reduction of bacteria growth directly correlated with the density of Se nanoparticles on the coated substrate surfaces. In summary, these results demonstrate that Se should be further studied as a novel anti-bacterial polymeric coating material which can decrease bacteria functions without the use of antibiotics.
Collapse
Affiliation(s)
- Phong A Tran
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Australia
| | | |
Collapse
|
216
|
Lima R, Feitosa LO, Ballottin D, Marcato PD, Tasic L, Durán N. Cytotoxicity and genotoxicity of biogenic silver nanoparticles. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/429/1/012020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
217
|
Adhikari MD, Goswami S, Panda BR, Chattopadhyay A, Ramesh A. Membrane-directed high bactericidal activity of (gold nanoparticle)-polythiophene composite for niche applications against pathogenic bacteria. Adv Healthc Mater 2013. [PMID: 23184755 DOI: 10.1002/adhm.201200278] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The use of nanoscale materials as bactericidal agents represents a novel paradigm in the development of therapeutics against drug-resistant pathogenic bacteria. In this paper the antimicrobial activity of a water soluble (gold nanoparticle)-polythiophene (AuNP-PTh) composite against common bacterial pathogens is reported. The nanocomposite is broad-spectrum in its bactericidal activity and exhibits a membrane-directed mode of action on target pathogens. The therapeutic potency of AuNP-PTh is demonstrated by experiments which reveal that the nanocomposite can breach the outer membrane defense barrier of Gram-negative pathogens for subsequent killing by a hydrophobic antibiotic, inhibit the growth of model gastrointestinal pathogens in simulated gastric fluid, and significantly eradicate bacterial biofilms. The high bacterial selectivity and lack of cytotoxicity on human cells augers well for future therapeutic application of the nanocomposite against clinically relevant pathogenic bacteria.
Collapse
Affiliation(s)
- Manab Deb Adhikari
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | | | | | | |
Collapse
|
218
|
Gopinath V, Velusamy P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 106:170-4. [PMID: 23376272 DOI: 10.1016/j.saa.2012.12.087] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/21/2012] [Accepted: 12/30/2012] [Indexed: 05/12/2023]
Abstract
In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml(-1). The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.
Collapse
Affiliation(s)
- V Gopinath
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai 603 203, India
| | | |
Collapse
|
219
|
Development and Characterization of Semi-IPN Silver Nanocomposite Hydrogels for Antibacterial Applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/243695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sodium carboxymethyl cellulose/poly(acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) semi-interpenetrating polymer network (semi-IPN) hydrogels were prepared by using free radical polymerization technique. Silver nanoparticles were formed by reduction of silver nitrate in semi-IPN hydrogels with sodium borohydrate at room temperature. UV-visible spectroscopy, thermogravimetrical analysis, X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize the formation of silver nanoparticles in hydrogels. SEM images indicated clearly the formation of group of silver nanoparticles with size range of 10–20 nm. The sizes of silver nanoparticles were also supported by transmission electron microscopy results. The semi-IPN silver nanocomposite hydrogels reported here might be a potentially smart material in the range of applications of antibacterial activity.
Collapse
|
220
|
Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 2013; 113:4708-54. [PMID: 23488929 DOI: 10.1021/cr300288v] [Citation(s) in RCA: 524] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sonja Eckhardt
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | | | | | | | | | | |
Collapse
|
221
|
|
222
|
Koseki H, Asahara T, Shida T, Yoda I, Horiuchi H, Baba K, Osaki M. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins. Int J Nanomedicine 2013; 8:593-9. [PMID: 23429667 PMCID: PMC3575175 DOI: 10.2147/ijn.s39201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 11/23/2022] Open
Abstract
Background: Pin site infection is the most common and significant complication of external fixation. In this work, the efficacy of pins coated with titanium dioxide (TiO2) for inhibition of infection was compared with that of stainless steel control pins in an in vivo study. Methods: Pins contaminated with an identifiable Staphylococcus aureus strain were inserted into femoral bone in a rat model and exposed to ultraviolet A light for 30 minutes. On day 14, the animals were sacrificed and the bone and soft tissue around the pin were retrieved. The clinical findings and histological findings were evaluated in 60 samples. Results: Clinical signs of infection were present in 76.7% of untreated pins, but in only 36.7% of TiO2-coated pins. The histological bone infection score and planimetric rate of occupation for bacterial colonies and neutrophils in the TiO2-coated pin group were lower than those in the control group. The bone-implant contact ratio of the TiO2-coated pin group was significantly higher (71.4%) than in the control pin group (58.2%). The TiO2 was successful in decreasing infection both clinically and histomorphometrically. Conclusion: The photocatalytic bactericidal effect of TiO2 is thought to be useful for inhibiting pin site infection after external fixation.
Collapse
Affiliation(s)
- Hironobu Koseki
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
223
|
Albanese A, Tsoi KM, Chan WCW. Simultaneous Quantification of Cells and Nanomaterials by Inductive-Coupled Plasma Techniques. ACTA ACUST UNITED AC 2013; 18:99-104. [DOI: 10.1177/2211068212457039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
224
|
Manikprabhu D, Lingappa K. Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jopr.2013.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
225
|
Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 2013; 14:1629-54. [PMID: 23344060 PMCID: PMC3565338 DOI: 10.3390/ijms14011629] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/27/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.
Collapse
Affiliation(s)
- Sachiko Kaihara Nitta
- Enzyme Research Team, RIKEN Biomass Engineering Program, RIKEN, Saitama 351-0198, Japan; E-Mail:
| | - Keiji Numata
- Enzyme Research Team, RIKEN Biomass Engineering Program, RIKEN, Saitama 351-0198, Japan; E-Mail:
| |
Collapse
|
226
|
Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms. J Appl Microbiol 2013; 114:1175-83. [PMID: 23231706 DOI: 10.1111/jam.12102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/13/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. METHODS AND RESULTS Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. CONCLUSIONS In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. SIGNIFICANCE AND IMPACT OF THE STUDY This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections.
Collapse
Affiliation(s)
- D R Monteiro
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba/São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
227
|
|
228
|
Wani IA, Khatoon S, Ganguly A, Ahmed J, Ahmad T. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids Surf B Biointerfaces 2013; 101:243-50. [DOI: 10.1016/j.colsurfb.2012.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|
229
|
Chernousova S, Epple M. Silber als antibakterielles Agens: Ion, Nanopartikel, Metall. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205923] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
230
|
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2012; 52:1636-53. [PMID: 23255416 DOI: 10.1002/anie.201205923] [Citation(s) in RCA: 1339] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/22/2012] [Indexed: 12/12/2022]
Abstract
The antibacterial action of silver is utilized in numerous consumer products and medical devices. Metallic silver, silver salts, and also silver nanoparticles are used for this purpose. The state of research on the effect of silver on bacteria, cells, and higher organisms is summarized. It can be concluded that the therapeutic window for silver is narrower than often assumed. However, the risks for humans and the environment are probably limited.
Collapse
Affiliation(s)
- Svitlana Chernousova
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| | | |
Collapse
|
231
|
Hosseinkhani M, Montazer M, Eskandarnejad S, Rahimi M. Simultaneous in situ synthesis of nano silver and wool fiber fineness enhancement using sulphur based reducing agents. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
232
|
dos Santos CA, Jozala AF, Pessoa A, Seckler MM. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology 2012. [PMID: 23193983 PMCID: PMC3570368 DOI: 10.1186/1477-3155-10-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNps) have attracted much interest in biomedical engineering, since they have excellent antimicrobial properties. Therefore, AgNps have often been considered for incorporation into medical products for skin pathologies to reduce the risk of contamination. This study aims at evaluating the antimicrobial effectiveness of AgNps stabilized by pluronic™ F68 associated with other polymers such as polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). METHODS AgNps antimicrobial activity was evaluated using the minimum inhibitory concentration (MIC) method. The action spectrum was evaluated for different polymers associated with pluronic™ F68 against the gram negative bacteria P. aeuroginosa and E. coli and the gram positive bacteria S. Aureus. RESULTS AgNps stabilized with PVP or PVA and co-stabilized with pluronic™ F68 are effective against E. coli and P. aeruginosa microorganisms, with MIC values as low as 0.78% of the concentration of the original AgNps dispersion. The antimicrobial action against S. aureus is poor, with MIC values not lower than 25%. CONCLUSIONS AgNps stabilized by different polymeric systems have shown improved antimicrobial activity against gram-negative microorganisms in comparison to unstabilized AgNps. Co-stabilization with the bioactive copolymer pluronic™ F68 has further enhanced the antimicrobial effectiveness against both microorganisms. A poor effectiveness has been found against the gram-positive S. aureus microorganism. Future assays are being delineated targeting possible therapeutic applications.
Collapse
Affiliation(s)
- Carolina Alves dos Santos
- Department of Chemical Engineering of the Polytechnic School, University of São Paulo (USP), São Paulo, Brazil.
| | | | | | | |
Collapse
|
233
|
Anas A, Jiya J, Rameez MJ, Anand PB, Anantharaman MR, Nair S. Sequential interactions of silver-silica nanocomposite (Ag-SiO2 NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium. Lett Appl Microbiol 2012; 56:57-62. [PMID: 23083417 DOI: 10.1111/lam.12015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/24/2022]
Abstract
UNLABELLED The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO(2) NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO(2) NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO(2) NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis, while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. Pseudomonas aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μg ml(-1) concentration of Ag-SiO(2) NC. The cell wall integrity reduced with increasing time and reached a plateau of 70% in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μg ml(-1) Ag-SiO(2) NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO(2) NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability. SIGNIFICANCE AND IMPACT OF STUDY Although the synthesis, structural characteristics and biofunction of silver nanoparticles are well understood, their application in antimicrobial therapy is still at its infancy as only a small number of microorganisms are tested to be sensitive to nanoparticles. A thorough knowledge of the mode of interaction of nanoparticles with bacteria at subcellular level is mandatory for any clinical application. The present study deals with the interactions of Ag-SiO2NC with the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, which would contribute substantially in strengthening the therapeutic applications of silver nanoparticles.
Collapse
Affiliation(s)
- A Anas
- Council of Scientific and Industrial Research (CSIR), National Institute of Oceanography (NIO), Cochin, India.
| | | | | | | | | | | |
Collapse
|
234
|
Raja K, Saravanakumar A, Vijayakumar R. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 97:490-494. [PMID: 22835939 DOI: 10.1016/j.saa.2012.06.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/06/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.
Collapse
Affiliation(s)
- K Raja
- Center of Advanced study in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai, Tamilnadu, India.
| | | | | |
Collapse
|
235
|
Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles Against Human Pathogens. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0061-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
236
|
Acevedo-Parra HR, Torres-Vitela MR, Castillo-Ortega MM, Bautista F, Puig JE, Nuño-Donlucas SM. Synthesis by Emulsion Polymerization of Poly(butyl acrylate-co-silver acrylate) Ionomers and Evaluation of their Possible Applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.714681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
237
|
Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 2012; 33:6593-603. [DOI: 10.1016/j.biomaterials.2012.06.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/02/2012] [Indexed: 12/30/2022]
|
238
|
Kumar V, Jolivalt C, Pulpytel J, Jafari R, Arefi-Khonsari F. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J Biomed Mater Res A 2012; 101:1121-32. [DOI: 10.1002/jbm.a.34419] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 11/11/2022]
|
239
|
Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces 2012; 102:300-6. [PMID: 23006569 DOI: 10.1016/j.colsurfb.2012.07.039] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 11/20/2022]
Abstract
Antibacterial action of silver nanoparticles (AgNP) on Gram-negative bacteria (planctonic cells and biofilms) is reported in this study. AgNP of 8.3 nm in diameter stabilized by hydrolyzed casein peptides strongly inhibited biofilms formation of Escherichia coli AB1157, Pseudomonas aeruginosa PAO1 and Serratia proteamaculans 94 in concentrations of 4-5 μg/ml, 10 μg/ml and 10-20 μg/ml, respectively. The viability of E. coli AB1157 cells in biofilms was considerably reduced by AgNP concentrations above 100 to -150 μg/ml. E. coli strains with mutations in genes responsible for the repair of DNA containing oxidative lesions (mutY, mutS, mutM, mutT, nth) were less resistant to AgNP than wild type strains. This suggests that these genes may be involved in the repair of DNA damage caused by AgNP. E. coli mutants deficient in excision repair, SOS-response and in the synthesis of global regulators RpoS, CRP protein and Lon protease present similar resistance to AgNP as wild type cells. LuxI/LuxR Quorum Sensing systems did not participate in the control of sensitivity to AgNP of Pseudomonas and Serratia. E. coli mutant strains deficient in OmpF or OmpC porins were 4-8 times more resistant to AgNP as compared to the wild type strain. This suggests that porins have an important function related AgNP antibacterial effects.
Collapse
Affiliation(s)
- M A Radzig
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq.2, 123182 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
240
|
Sathiyanarayanan G, Kiran GS, Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B Biointerfaces 2012; 102:13-20. [PMID: 23006551 DOI: 10.1016/j.colsurfb.2012.07.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 11/16/2022]
Abstract
The polysaccharides are emerging as stabilizing and reducing agents for nanoparticles synthesis, however the commercial polysaccharides are not economically viable. Therefore, the exopolysaccharide from microbial origin such as bioflocculants are promising alternate for the synthesis and stabilization of nanoparticles. In this report, a bioflocculant (MSBF17) was produced from marine sponge-associated Bacillus subtilis MSBN17 under submerged fermentation using the economical substrates. The production was statistically optimized with most significant factors such as palm jaggery, NH(4)NO(2), K(2)HPO(4) and NaCl. The maximum bioflocculant production obtained with statistically optimized medium was 13.42 g/l. Based on the biochemical composition and FT-IR analysis, the flocculant compound was predicted as a polysaccharide derivative. The flocculating activity of the MSBF17 was invariably considerable at high salinity and temperature. It was found that the nano-scale silver can be synthesized in reverse micelles using the bioflocculant as stabilizer. The silver nanoparticles (AgNPs) were characterized by UV-spectroscopy, FT-IR and TEM analysis. The AgNPs were spherical shaped (60 nm) and stable for 5 months. Therefore, the bioflocculant-mediated synthesis of nanomaterials can be considered as environmental benign greener approach.
Collapse
Affiliation(s)
- G Sathiyanarayanan
- Microbial Genomics Research Group (MGRG), Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | | |
Collapse
|
241
|
Du H, Lo TM, Sitompul J, Chang MW. Systems-level analysis of Escherichia coli response to silver nanoparticles: The roles of anaerobic respiration in microbial resistance. Biochem Biophys Res Commun 2012; 424:657-62. [DOI: 10.1016/j.bbrc.2012.06.134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
|
242
|
You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 2012; 39:9193-201. [PMID: 22722996 PMCID: PMC7089021 DOI: 10.1007/s11033-012-1792-8] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 06/09/2012] [Indexed: 11/23/2022]
Abstract
Nanotechnology is a highly promising field, with nanoparticles produced and utilized in a wide range of commercial products. Silver nanoparticles (AgNPs) has been widely used in clothing, electronics, bio-sensing, the food industry, paints, sunscreens, cosmetics and medical devices, all of which increase human exposure and thus the potential risk related to their short- and long-term toxicity. Many studies indicate that AgNPs are toxic to human health. Interestingly, the majority of these studies focus on the interaction of the nano-silver particle with single cells, indicating that AgNPs have the potential to induce the genes associated with cell cycle progression, DNA damage and mitochondrial associated apoptosis. AgNPs administered through any method were subsequently detected in blood and were found to cause deposition in several organs. There are very few studies in rats and mice involving the in vivo bio-distribution and toxicity, organ accumulation and degradation, and the possible adverse effects and toxicity in vivo are only slowly being recognized. In the present review, we summarize the current data associated with the increased medical usage of nano-silver and its related nano-materials, compare the mechanism of antibiosis and discuss the proper application of nano-silver particles.
Collapse
Affiliation(s)
- Chuangang You
- Department of Burns, 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | | | | | | | | | | | | |
Collapse
|
243
|
Raboel PH, Bartek J, Andresen M, Bellander BM, Romner B. Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods-A Review. Crit Care Res Pract 2012; 2012:950393. [PMID: 22720148 PMCID: PMC3376474 DOI: 10.1155/2012/950393] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/28/2012] [Accepted: 03/27/2012] [Indexed: 02/06/2023] Open
Abstract
Monitoring of intracranial pressure (ICP) has been used for decades in the fields of neurosurgery and neurology. There are multiple techniques: invasive as well as noninvasive. This paper aims to provide an overview of the advantages and disadvantages of the most common and well-known methods as well as assess whether noninvasive techniques (transcranial Doppler, tympanic membrane displacement, optic nerve sheath diameter, CT scan/MRI and fundoscopy) can be used as reliable alternatives to the invasive techniques (ventriculostomy and microtransducers). Ventriculostomy is considered the gold standard in terms of accurate measurement of pressure, although microtransducers generally are just as accurate. Both invasive techniques are associated with a minor risk of complications such as hemorrhage and infection. Furthermore, zero drift is a problem with selected microtransducers. The non-invasive techniques are without the invasive methods' risk of complication, but fail to measure ICP accurately enough to be used as routine alternatives to invasive measurement. We conclude that invasive measurement is currently the only option for accurate measurement of ICP.
Collapse
Affiliation(s)
- P. H. Raboel
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, DK-2100, Copenhagen, Denmark
| | - J. Bartek
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, DK-2100, Copenhagen, Denmark
- Department of Neurosurgery, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - M. Andresen
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, DK-2100, Copenhagen, Denmark
| | - B. M. Bellander
- Department of Neurosurgery, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - B. Romner
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, DK-2100, Copenhagen, Denmark
| |
Collapse
|
244
|
Ashraf S, Akhtar N, Ghauri MA, Rajoka MI, Khalid ZM, Hussain I. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity. NANOSCALE RESEARCH LETTERS 2012; 7:267. [PMID: 22625664 PMCID: PMC3492125 DOI: 10.1186/1556-276x-7-267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/23/2012] [Indexed: 05/23/2023]
Abstract
Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics.
Collapse
Affiliation(s)
- Sumaira Ashraf
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, 38000, Pakistan
- Department of Chemistry, School of Science & Engineering (SSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt, 54792, Pakistan
| | - Nasrin Akhtar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Afzal Ghauri
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Ibrahim Rajoka
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, 38000, Pakistan
- Department of Bioinformatics and Biotechnology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Zafar M Khalid
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, 38000, Pakistan
| | - Irshad Hussain
- Department of Chemistry, School of Science & Engineering (SSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt, 54792, Pakistan
| |
Collapse
|
245
|
Patil SV, Borase HP, Patil CD, Salunke BK. Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential. Appl Biochem Biotechnol 2012; 167:776-90. [DOI: 10.1007/s12010-012-9710-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
246
|
Ernest V, Shiny PJ, Mukherjee A, Chandrasekaran N. Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase. Carbohydr Res 2012; 352:60-64. [PMID: 22405762 DOI: 10.1016/j.carres.2012.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 11/17/2022]
Abstract
Silver nanoparticles (AgNPs) are proven to be an effective catalytic material for various applications due to their excellent optical and electronic properties. In this paper, we describe a novel approach for the degradation of starch using the catalytic behaviour of AgNPs in an enzyme catalysed reaction of starch hydrolysis by α-amylase. AgNPs were synthesized by soluble starch reducing silver nitrate to silver atoms. An increase of 4.7-fold in reducing sugar formation and 1.5 times faster enzyme activity confirmed the catalytic activity of AgNPs as a nanocatalyst. Surprisingly, starch degradation tests revealed that 9.9 mg of starch was hydrolysed within 5 min, which corroborates with the reducing sugar assay. In short, the present study paves way for the faster degradation of starch by immobilizing the enzyme onto the surface of the AgNP, which could be a promising application in the food industry.
Collapse
Affiliation(s)
- Vinita Ernest
- Center for Nanobiotechnology, VIT University, Vellore 14, India
| | | | | | | |
Collapse
|
247
|
Wu J, Wang L, He J, Zhu C. In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells. Contraception 2012; 85:509-18. [DOI: 10.1016/j.contraception.2011.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/15/2011] [Accepted: 09/29/2011] [Indexed: 11/28/2022]
|
248
|
Coneski PN, Fulmer PA, Wynne JH. Enhancing the fouling resistance of biocidal urethane coatings via surface chemistry modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7039-7048. [PMID: 22480389 DOI: 10.1021/la300749a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A group of novel cross-linked polyurethane materials with varying ratios of hydroxyl-terminated macrodiols and tethered quaternary ammonium biocides have been prepared. The resulting materials had a wide range of thermal, mechanical, and surface properties, dictated by the macrodiol composition and biocide concentration. The complex interplay between surface chemistry and biocide concentration was shown to have a profound effect on the fouling resistance of these materials. While the combination of quaternary ammonium salt (QAS) diols with poly(tetramethylene oxide) macrodiols did not result in any enhancement of fouling resistance, addition of biocides to poly(ethylene glycol)-containing urethanes resulted in up to a 90% increase in biocidal activity compared to control materials while reducing the ability for microbes to adhere to the surface by an additional 60%. Materials prepared with polybutadiene macrodiols underwent a thermally induced oxidation, resulting in partial decomposition of the quaternary ammonium salt biocide and joint antimicrobial activity arising from remaining QAS and peroxide compounds.
Collapse
Affiliation(s)
- Peter N Coneski
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375, United States
| | | | | |
Collapse
|
249
|
Devi AS, Ogawa Y, Shimoji Y, Balakumar S, Ponnuraj K. Collagen adhesin-nanoparticle interaction impairs adhesin's ligand binding mechanism. Biochim Biophys Acta Gen Subj 2012; 1820:819-28. [PMID: 22538248 DOI: 10.1016/j.bbagen.2012.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pathogenic bacteria specifically recognize extracellular matrix (ECM) molecules of the host (e.g. collagen, fibrinogen and fibronectin) through their surface proteins known as MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) and initiate colonization. On implantation, biomaterials easily get coated with these ECM molecules and the MSCRAMMs mediate bacterial adherence to biomaterials. With the rapid rise in antibiotic resistance, designing alternative strategies to reduce/eliminate bacterial colonization is absolutely essential. METHODS The Rhusiopathiae surface protein B (RspB) is a collagen-binding MSCRAMM of Erysipelothrix rhusiopathiae. It also binds to abiotic surfaces. The crystal structure of the collagen-binding region of RspB (rRspB31-348) reported here revealed that RspB also binds collagen by a unique ligand binding mechanism called "Collagen Hug" which is a common theme for collagen-binding MSCRAMMs of many Gram-positive bacteria. Here, we report the interaction studies between rRspB31-348 and silver nanoparticles using methods like gel shift assay, gel permeation chromatography and circular dichroism spectroscopy. RESULTS The "Collagen Hug" mechanism was inhibited in the presence of silver nanoparticles as rRspB31-348 was unable to bind to collagen. The total loss of binding was likely because of rRspB31-348 and silver nanoparticle protein corona formation and not due to the loss of the structural integrity of rRspB31-348 on binding with nanoparticles as observed from circular dichroism experiments. GENERAL SIGNIFICANCE Interaction of rRspB31-348 with silver nanoparticle impaired its ligand binding mechanism. Details of this inhibition mechanism may be useful for the development of antimicrobial materials and antiadhesion drugs.
Collapse
Affiliation(s)
- Aribam Swarmistha Devi
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600 025, India
| | | | | | | | | |
Collapse
|
250
|
Mbatia HW, Kennedy DP, Burdette SC. Understanding the Relationship Between Photolysis Efficiency and Metal Binding Using ArgenCast Photocages. Photochem Photobiol 2012; 88:844-50. [DOI: 10.1111/j.1751-1097.2012.01136.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|