201
|
Loguercio Polosa P, Roberti M, Musicco C, Gadaleta MN, Quagliariello E, Cantatore P. Cloning and characterisation of mtDBP, a DNA-binding protein which binds two distinct regions of sea urchin mitochondrial DNA. Nucleic Acids Res 1999; 27:1890-9. [PMID: 10101198 PMCID: PMC148398 DOI: 10.1093/nar/27.8.1890] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cDNA for the sea urchin mitochondrial D-loop-binding protein (mtDBP), a 40 kDa protein which binds two homologous regions of mitochondrial DNA (the D-loop region and the boundary between the oppositely transcribed ND5 and ND6 genes), has been cloned. Four different 3'-untranslated regions have been detected that are related to each other in pairs and do not contain the canonical polyadenylation signal. The in vitro synthesised mature protein (348 amino acids), deprived of the putative signal sequence, binds specifically to its DNA target sequence and produces a DNase I footprint identical to that given by the natural protein. mtDBP contains two leucine zippers, one of which is bipartite, and two small N- and C-terminal basic domains. A deletion mutation analysis of the recombinant protein has shown that the N-terminal region and the two leucine zippers are necessary for the binding. Furthermore, evidence was provided that mtDBP binds DNA as a monomer. This rules out a dimerization role for the leucine zippers and rather suggests that intramolecular interactions between leucine zippers take place. A database search has revealed as the most significative homology a match with the human mitochondrial transcription termination factor (mTERF), a protein that also binds DNA as a monomer and contains three leucine zippers forming intramolecular interactions. These similarities, and the observation that mtDBP-binding sites contain the 3'-ends of mtRNAs coded by opposite strands and the 3'-end of the D-loop structure, point to a dual function of the protein in modulating sea urchin mitochondrial DNA transcription and replication.
Collapse
Affiliation(s)
- P Loguercio Polosa
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari and the Centro Studi sui Mitocondri e Metabolismo Energetico, CNR, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
202
|
Gallagher PG, Sabatino DE, Romana M, Cline AP, Garrett LJ, Bodine DM, Forget BG. A human beta-spectrin gene promoter directs high level expression in erythroid but not muscle or neural cells. J Biol Chem 1999; 274:6062-73. [PMID: 10037687 DOI: 10.1074/jbc.274.10.6062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Spectrin is an erythrocyte membrane protein that is defective in many patients with abnormalities of red blood cell shape including hereditary spherocytosis and elliptocytosis. It is expressed not only in erythroid tissues but also in muscle and brain. We wished to determine the regulatory elements that determine the tissue-specific expression of the beta-spectrin gene. We mapped the 5'-end of the beta-spectrin erythroid cDNA and cloned the 5'-flanking genomic DNA containing the putative beta-spectrin gene promoter. Using transfection of promoter/reporter plasmids in human tissue culture cell lines, in vitro DNase I footprinting analyses, and gel mobility shift assays, a beta-spectrin gene erythroid promoter with two binding sites for GATA-1 and one site for CACCC-related proteins was identified. All three binding sites were required for full promoter activity; one of the GATA-1 motifs and the CACCC-binding motif were essential for activity. The beta-spectrin gene promoter was able to be transactivated in heterologous cells by forced expression of GATA-1. In transgenic mice, a reporter gene directed by the beta-spectrin promoter was expressed in erythroid tissues at all stages of development. Only weak expression of the reporter gene was detected in muscle and brain tissue, suggesting that additional regulatory elements are required for high level expression of the beta-spectrin gene in these tissues.
Collapse
Affiliation(s)
- P G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8021, USA.
| | | | | | | | | | | | | |
Collapse
|
203
|
Electric birefringence of recombinant spectrin segments 14, 14–15, 14–16, and 14–17 from Drosophila α-spectrin. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0167-4838(99)00014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
204
|
Yokota M, Tani E, Tsubuki S, Yamaura I, Nakagaki I, Hori S, Saido TC. Calpain inhibitor entrapped in liposome rescues ischemic neuronal damage. Brain Res 1999; 819:8-14. [PMID: 10082855 DOI: 10.1016/s0006-8993(98)01334-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transient forebrain ischemia induces activation of calpain and proteolysis of a neuronal cytoskeleton, fodrin, in gerbil hippocampus. This phenomenon precedes delayed neuronal death in hippocampal CA1 neurons. We examined effects of a calpain inhibitor on delayed neuronal death after transient forebrain ischemia. In gerbils, a selective calpain inhibitor entrapped in liposome was given transvenously and 30 min later, 5-min forebrain ischemia was produced by occlusion of both common carotid arteries. On day 7, CA1 neuronal damage was examined in the hippocampal slices stained with cresyl violet. Calpain-induced proteolysis of fodrin was also examined by immunohistochemistry and immunoblot. Additionally, to assure entrapment of the inhibitor by CA1 neurons, the inhibitor-liposome complex was labeled with FITC and given to gerbils. Fluorescence in the hippocampal slices was examined by confocal laser scanning microscope. Selective CA1 neuronal damage induced by forebrain ischemia was prevented by administration of the inhibitor in a dose-dependent manner. Calpain-induced proteolysis of fodrin was also extinguished by the calpain inhibitor in a dose-dependent manner. Bright fluorescence of the FITC-labeled inhibitor was observed in the CA1 neurons. The data show an important role of calpain in the development of the ischemic delayed neuronal death. Calpain seems to produce neuronal damage by degrading neuronal cytoskeleton. Our data also show a palliative effect of the calpain inhibitor on the neurotoxic damage, which offers a new and potent treatment of transient forebrain cerebral ischemia.
Collapse
Affiliation(s)
- M Yokota
- Department of Neurosurgery, Hyogo College of Medicine, Mukogawacho 1-1, Nishinomiya, Hyogo 663, Japan.
| | | | | | | | | | | | | |
Collapse
|
205
|
Rief M, Pascual J, Saraste M, Gaub HE. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 1999; 286:553-61. [PMID: 9973570 DOI: 10.1006/jmbi.1998.2466] [Citation(s) in RCA: 401] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spectrin repeats fold into triple helical coiled-coils comprising approximately 106 amino acid residues. Using an AFM-related technique we measured the force required to mechanically unfold these repeats to be 25 to 35 pN. Under tension, individual spectrin repeats unfold independently and in an all-or-none process. The dependence of the unfolding forces on the pulling speed reveals that the corresponding unfolding potential is shallow with an estimated width of 1.5 nm. When the unfolded polypeptide strand is relaxed, several domains refold within less than a second. The unfolding forces of the alpha-helical spectrin domains are five to ten times lower than those found in domains with beta-fold, like immunoglobulin or fibronectin Ill domains, where the tertiary structure is stabilized by hydrogen bonds between adjacent strands. This shows that the forces stabilizing the coiled-coil lead to a mechanically much weaker structure than multiple hydrogen-bonded beta-sheets.
Collapse
Affiliation(s)
- M Rief
- Lehrstuhl für angewandte Physik, Ludwig-Maximilians Universität M unchen, Amalienstrasse 54, München, D-80799, Germany
| | | | | | | |
Collapse
|
206
|
Papa I, Astier C, Kwiatek O, Raynaud F, Bonnal C, Lebart MC, Roustan C, Benyamin Y. Alpha actinin-CapZ, an anchoring complex for thin filaments in Z-line. J Muscle Res Cell Motil 1999; 20:187-97. [PMID: 10412090 DOI: 10.1023/a:1005489319058] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CapZ is a widely distributed and highly conserved, heterodimeric protein, that nucleates actin polymerization and binds to the barbed ends of actin filaments, preventing the addition or loss of actin monomers. CapZ interaction with actin filaments was shown to be of high affinity and decreased in the presence of PIP2. CapZ was located in nascent Z-lines during skeletal muscle myofibrillogenesis before the striated appearance of thin filaments in sarcomers. In this study, the stabilization and the anchorage of thin filaments were explored through identification of CapZ partners in the Z-line. Fish (sea bass) striated white muscle and its related Z-line proteins were selected since they correspond to the simplest Z-line organization. We report here the interaction between purified CapZ and alpha-actinin, a major component of Z filaments and polar links in Z-discs. Affinity of CapZ for alpha-actinin, estimated by fluorescence and immunochemical assays, is in the microM range. This association was found to be independent of actin and shown to be weakened in the presence of phosphoinositides. Binding contacts on the alpha-actinin molecule lie in the 55 kDa repetitive domain. A model including CapZ/alpha-actinin/titin/actin interactions is proposed considering Luther's 3D Z-line reconstruction.
Collapse
Affiliation(s)
- I Papa
- Laboratoire de Motilité Cellulaire EPHE, UMR 5539, Université des Sciences et Techniques du Languedoc, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Hayes MV, Sessions RB, Brady RL, Clarke AR. Engineered assembly of intertwined oligomers of an immunoglobulin chain. J Mol Biol 1999; 285:1857-67. [PMID: 9917417 DOI: 10.1006/jmbi.1998.2415] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Domain 1 of CD2 (CD2.D1) forms a conventional Ig fold stabilised by non-covalent antiparallel contacts between beta-strands. Removing two residues from the middle of the protein sequence, where the polypeptide chain normally folds back upon itself, stabilises an open conformation. In this modified molecule, the optimum evolved contacts between side-chains can only be satisfied through the antiparallel association of two chains to create a symmetrical pair of pseudo-domains. Here, we describe the dynamics of the switch between monomeric and dimeric states and demonstrate the extension of this novel underlying principle to trimer and tetramer formation. The ability of a protein molecule to form higher-order antiparallel structures is reminiscent of the behaviour of hairpins, duplexes, three-way and Holliday junctions in DNA.
Collapse
Affiliation(s)
- M V Hayes
- Department of Biochemistry School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| | | | | | | |
Collapse
|
208
|
Cherry L, Menhart N, Fung LW. Interactions of the alpha-spectrin N-terminal region with beta-spectrin. Implications for the spectrin tetramerization reaction. J Biol Chem 1999; 274:2077-84. [PMID: 9890967 DOI: 10.1074/jbc.274.4.2077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectrin of the erythrocyte membrane skeleton is composed of alpha- and beta-spectrin, which associate to form heterodimers and tetramers. It has been suggested that a fractional domain (helix C) in the amino-terminal region of alpha-spectrin (Nalpha region) bundles with another fractional domain in the carboxyl-terminal region of beta-spectrin (Cbeta region) to yield a triple alpha-helical bundle and that this helical bundling is largely responsible for tetramer formation. However, there are certain objections to assigning a preeminent role to this helical bundling in the tetramerization reactions. We prepared several recombinant peptides of alpha-spectrin fragments spanning only the Nalpha region (lacking the dimer nucleation site) and quantitatively studied their interaction with beta-spectrin. We found that a majority of the interactions were localized, as expected, in the Nalpha-helix C region but that there was also some contribution from the nonhomologous region. More importantly, the temperature and ionic strength dependence of this interaction in our model peptides was different from that in intact spectrin. We suggest that, although the regions involving the putative helical bundling in alpha- and beta-spectrin undoubtedly play a significant role in tetramerization, regions distal to the Nalpha-helix C region in spectrin are also involved in tetramer formation. Structural flexibility and lateral interactions may play a role in spectrin tetramerization.
Collapse
Affiliation(s)
- L Cherry
- Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA
| | | | | |
Collapse
|
209
|
Van Troys M, Vandekerckhove J, Ampe C. Structural modules in actin-binding proteins: towards a new classification. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:323-48. [PMID: 9990286 DOI: 10.1016/s0167-4889(98)00152-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of actin binding proteins for which (part of) the three-dimensional structure is known, is steadily increasing. This has led to a picture in which defined structural modules with actin binding capacity are shared between different actin binding proteins. A classification of these based on their common three-dimensional modules appears a logical future step and in this review we provide an initial list starting from the currently known structures. The discussed cases illustrate that a comparison of the similarities and variations within the common structural actin binding unit of different members of a particular class may ultimately provide shortcuts for defining their actin target site and for understanding their effect on actin dynamics. Within this concept, the multitude of possible interactions by an extensive, and still increasing, list of actin binding proteins becomes manageable because they can be presented as variations upon a limited number of structural themes. We discuss the possible evolutionary routes that may have produced the present array of actin binding modules.
Collapse
Affiliation(s)
- M Van Troys
- Flanders Interuniversity Institute for Biotechnology, Department of Biochemistry, Faculty of Medicine, University of Gent, Belgium
| | | | | |
Collapse
|
210
|
Abstract
To probe for a lever arm action in the kinesin stepping mechanism, we engineered a rodlike extension piece into the tail of rat kinesin at various points close to the head-tail junction and measured its effects on the temperature dependence of velocity in microtubule gliding assays. The insert comprised two contiguous alpha-actinin triple-coil repeats and was predicted to fold into a stiff rodlike module about 11 nm long. The effects of this module were greater the closer it was placed to the head-tail junction. When inserted distal to the head-tail junction, at Asn401 in the dimeric K partial differential401GST, the insert had no effect. When inserted closer to the heads at Val376 into K partial differential376GST, the insert slowed progress below 22 degreesC but accelerated progress to approximately 125% of wild type above 22 degreesC. The most dramatic effect of the synthetic lever occurred when it was inserted very close to the head-neck junction, at Glu340 into the single-headed construct K partial differential340GST. This construct was immotile without the insert, but motile with it, at about 30% of the velocity of the dimeric control. The alpha-actinin module thus confers some gain-of-function when inserted close to the head-neck junction but not when placed distal to it. The data exclude the presence of a lever arm C-terminal to Val376 in the kinesin tail but suggest that a short-throw lever arm may be present, N-terminal to Val376 and contiguous with the head-neck junction at Ala339.
Collapse
Affiliation(s)
- M Mazumdar
- Molecular Motors Group, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | |
Collapse
|
211
|
Amann KJ, Renley BA, Ervasti JM. A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem 1998; 273:28419-23. [PMID: 9774469 DOI: 10.1074/jbc.273.43.28419] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dystrophin rod domain is composed of 24 spectrin-like repeats and was thought to act mainly as a flexible spacer between the amino-terminal actin binding domain and carboxyl-terminal membrane-associated domains. We previously demonstrated that a fragment of the dystrophin rod domain also binds F-actin. However, the nature and extent of rod domain association with F-actin is presently unclear. To begin addressing these questions, we characterized two recombinant proteins representing adjacent regions of the dystrophin rod. DYS1416 (amino acids 1416-1880) bound F-actin with a Kd of 14.2 +/- 5.2 microM and a stoichiometry of 1 mol:mol of actin. However, DYS1030 (amino acids 1030-1494) failed to bind F-actin, suggesting that not all rod domain repeats are capable of binding F-actin. Interestingly, DYS1416 corresponds to a unique region of the dystrophin rod rich in basic amino acids, whereas DYS1030 is composed mainly of acidic repeats. This observation suggested that DYS1416 may interact with acidic actin filaments through an electrostatic interaction. Supporting this hypothesis, actin binding by DYS1416 was dramatically inhibited by increasing ionic strength. We suggest that electrostatic interactions between basic spectrin-like repeats and actin filaments may contribute to the actin binding activity of other members of the actin cross-linking protein family.
Collapse
Affiliation(s)
- K J Amann
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
212
|
Beck K, Brodsky B. Supercoiled protein motifs: the collagen triple-helix and the alpha-helical coiled coil. J Struct Biol 1998; 122:17-29. [PMID: 9724603 DOI: 10.1006/jsbi.1998.3965] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The collagen triple-helix and the alpha-helical coiled coil represent the two basic supercoiled multistranded protein motifs. Originally they were characterized in fibrous proteins, but have been found more recently in a number of other proteins containing rod-shaped domains. Coiled-coil domains are responsible for the oligomerization of proteins, as well as other specific functions, while the triple-helix domains associate to form supramolecular structures and bind a variety of ligands. Both structures were originally solved by fiber diffraction, and recent crystallographic studies on small proteins and peptide models have confirmed the structure and provided molecular details. The differences in the molecular conformations of these two motifs and the interactions stabilizing these conformations are discussed. The molecular structures of both motifs constrain the amino acid sequence to recognizable patterns, requiring the (Gly-X-Y)n repeating sequence for the collagen triple-helix and a less stringent heptad repeat requirement (h-x-x-h-x-x-x)n for the coiled-coil domains, where h represents hydrophobic residues. The features and roles of these supercoiled domains in proteins are considered when they are found adjacent in the same protein.
Collapse
Affiliation(s)
- K Beck
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey, 08854-5636, USA
| | | |
Collapse
|
213
|
Murray AJ, Head JG, Barker JJ, Brady RL. Engineering an intertwined form of CD2 for stability and assembly. NATURE STRUCTURAL BIOLOGY 1998; 5:778-82. [PMID: 9731771 DOI: 10.1038/1816] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amino-terminal domain of CD2 has the remarkable ability to fold in two ways: either as a monomer or as an intertwined, metastable dimer. Here we show that it is possible to differentially stabilize either fold by engineering the CD2 sequence, mimicking random mutagenesis events that could occur during molecular evolution. Crystal structures of a hinge-deletion mutant, which is stable as an intertwined dimer, reveal domain rotations that enable the protein to further assemble to a tetramer. These results demonstrate that a variety of folds can be adopted by a single polypeptide sequence, and provide guidance for the design of proteins capable of further assembly.
Collapse
Affiliation(s)
- A J Murray
- Department of Biochemistry and Centre for Molecular Recognition, University of Bristol, University Walk, UK
| | | | | | | |
Collapse
|
214
|
Rivero F, Kuspa A, Brokamp R, Matzner M, Noegel AA. Interaptin, an actin-binding protein of the alpha-actinin superfamily in Dictyostelium discoideum, is developmentally and cAMP-regulated and associates with intracellular membrane compartments. J Biophys Biochem Cytol 1998; 142:735-50. [PMID: 9700162 PMCID: PMC2148174 DOI: 10.1083/jcb.142.3.735] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In a search for novel members of the alpha-actinin superfamily, a Dictyostelium discoideum genomic library in yeast artificial chromosomes (YAC) was screened under low stringency conditions using the acting-binding domain of the gelation factor as probe. A new locus was identified and 8.6 kb of genomic DNA were sequenced that encompassed the whole abpD gene. The DNA sequence predicts a protein, interaptin, with a calculated molecular mass of 204,300 D that is constituted by an actin-binding domain, a central coiled-coil rod domain and a membrane-associated domain. In Northern blot analyses a cAMP-stimulated transcript of 5.8 kb is expressed at the stage when cell differentiation occurs. Monoclonal antibodies raised against bacterially expressed interaptin polypeptides recognized a 200-kD developmentally and cAMP-regulated protein and a 160-kD constitutively expressed protein in Western blots. In multicellular structures, interaptin appears to be enriched in anterior-like cells which sort to the upper and lower cups during culmination. The protein is located at the nuclear envelope and ER. In mutants deficient in interaptin development is delayed, but the morphology of the mature fruiting bodies appears normal. When starved in suspension abpD- cells form EDTA-stable aggregates, which, in contrast to wild type, dissociate. Based on its domains and location, interaptin constitutes a potential link between intracellular membrane compartments and the actin cytoskeleton.
Collapse
Affiliation(s)
- F Rivero
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
215
|
Werner EB, Taylor WR, Holder AA. A Plasmodium chabaudi protein contains a repetitive region with a predicted spectrin-like structure. Mol Biochem Parasitol 1998; 94:185-96. [PMID: 9747969 DOI: 10.1016/s0166-6851(98)00067-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
cDNA and genomic DNA clones covering the entire open reading frame (ORF) for a Plasmodium chabaudi 96V protein were isolated. From the first ATG codon the intronless gene codes for a 229-kDa protein. Antisera raised against recombinant polypeptides coded by two different regions of the gene reacted with a 240/225-kDa doublet on Western blots of parasite extracts. In immunofluorescence studies the same sera detected the antigen at the apical end of the merozoite, possibly in rhoptry organelles. In Western blotting experiments the recombinant polypeptides were recognised by antibodies induced by natural infection. A 364-amino acid residue repetitive region, based on 32 11-mer repeats divided by two 6-mer repeats into three blocks, is located in the centre of the protein. Analysis of this repetitive region led us to propose a model in which each of the three units forms an alpha-helical coiled-coil triple-helix containing a possible leucine-histidine zipper. Each unit resembles in structure the units present in spectrin. The repeat region is flanked by predicted heptad based alpha-helical coiled-coil regions, and we propose that the protein forms a dimer. The 229-kDa protein has the overall character of a cytoskeletal protein. We have named the 229-kDa protein repetitive organellar protein (ROPE) and suggest that ROPE may be involved in the process of invasion, possibly by interacting with the erythrocyte cytoskeleton, and that the leucine histidine-zipper may be involved in molecular mimicry of spectrin.
Collapse
Affiliation(s)
- E B Werner
- Division of Parasitology, National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
216
|
Dhermy D, Galand C, Bournier O, Cynober T, Méchinaud F, Tchemia G, Garbarz M. Hereditary spherocytosis with spectrin deficiency related to null mutations of the beta-spectrin gene. Blood Cells Mol Dis 1998; 24:251-61. [PMID: 9714702 DOI: 10.1006/bcmd.1998.0190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spectrin deficiency is the most common deficiency found in HS. It is heterogeneous in terms of clinical expression, inheritance (dominant or recessive) and underlying genetic defects (related to alpha- or beta-spectrin gene defects or secondary to ankyrin gene defects). We studied a sampling of French dominant HS families, selected after linkage analyses, and found the presence of mutations resulting in the silencing of the mutant beta-spectrin allele. In three HS families, one haploid set of beta-spectrin mRNA was undectectable. In two families, a deletion of 8 bases (leading to a frameshift and a premature stop codon) and a nonsense mutation were identified, respectively. In the third HS family, we were unable to characterize a relevant mutation but the loss of heterozygosity at the cDNA level suggested the presence of a null mutation of the beta-spectrin allele. Sequencing of the beta-spectrin gene has also uncovered several new polymorphisms in the coding region of the beta-spectrin gene which will be very useful for detecting loss of heterozygosity at the cDNA level and designating the beta-spectrin gene as the culprit one.
Collapse
Affiliation(s)
- D Dhermy
- INSERM U409, Centre Claude Bernard, Faculté X. Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
217
|
Ziemnicka-Kotula D, Xu J, Gu H, Potempska A, Kim KS, Jenkins EC, Trenkner E, Kotula L. Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton. J Biol Chem 1998; 273:13681-92. [PMID: 9593709 DOI: 10.1074/jbc.273.22.13681] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectrin is a widely expressed protein with specific isoforms found in erythroid and nonerythroid cells. Spectrin contains an Src homology 3 (SH3) domain of unknown function. A cDNA encoding a candidate spectrin SH3 domain-binding protein was identified by interaction screening of a human brain expression library using the human erythroid spectrin (alphaI) SH3 domain as a bait. Five isoforms of the alphaI SH3 domain-binding protein mRNA were identified in human brain. Mapping of SH3 binding regions revealed the presence of two alphaI SH3 domain binding regions and one Abl-SH3 domain binding region. The gene encoding the candidate spectrin SH3 domain-binding protein has been located to human chromosome 10p11.2 --> p12. The gene belongs to a recently identified family of tyrosine kinase-binding proteins, and one of its isoforms is identical to e3B1, an eps8-binding protein (Biesova, Z., Piccoli, C., and Wong, W. T. (1997)Oncogene 14, 233-241). Overexpression of the green fluorescent protein fusion of the SH3 domain-binding protein in NIH3T3 cells resulted in cytoplasmic punctate fluorescence characteristic of the reticulovesicular system. This fluorescence pattern was similar to that obtained with the anti-human erythroid spectrin alphaI SigmaI/betaI SigmaI antibody in untransfected NIH3T3 cells; in addition, the anti-alphaI SigmaI/betaI SigmaI antibody also stained Golgi apparatus. Immunofluorescence obtained using antibodies against alphaI SigmaI/++betaI SigmaI spectrin and Abl tyrosine kinase but not against alphaII/betaII spectrin colocalized with the overexpressed green fluorescent protein-SH3-binding protein. Based on the conservation of the spectrin SH3 binding site within members of this protein family and published interactions, a general mechanism of interactions of tyrosine kinases with the spectrin-based membrane skeleton is proposed.
Collapse
Affiliation(s)
- D Ziemnicka-Kotula
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Viel A, Gee MS, Tomooka L, Branton D. Motifs involved in interchain binding at the tail-end of spectrin. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1384:396-404. [PMID: 9659401 DOI: 10.1016/s0167-4838(98)00036-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Segments 20-22 of alpha-spectrin and 1-3 of beta-spectrin are required for high avidity interchain binding at the tail-end of the molecule. Here, sequence analysis guided by the crystal structure of spectrin's repeating segments was used to redefine the boundaries of a repetitive beta segment that is critical for interchain binding and demonstrate the contribution of non-repetitive spectrin segments in high avidity interchain binding. Our results show that several motifs together are required for high avidity binding, indicating that interchain binding at the tail-end of the spectrin molecule depends on the long distance coordination of several different elements. We also explored the role of unusual motifs contained in beta segments involved in interchain binding. A row of basic residues and a row of small hydrophobic residues were found not to be required for interchain binding, suggesting that their conservation among species reflects functions unrelated to interchain binding. The octamer between segments beta 2 and beta 3 that maintains a specific register between true binding sites was found to have an indirect role in interchain binding by stabilizing neighboring segments. A 5-residue domain in segment beta 2 (EKPPK) was required for interchain binding because it sustains normal helix-helix interactions within segments beta 2.
Collapse
Affiliation(s)
- A Viel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
219
|
Nicolas G, Pedroni S, Fournier C, Gautero H, Craescu C, Dhermy D, Lecomte MC. Spectrin self-association site: characterization and study of beta-spectrin mutations associated with hereditary elliptocytosis. Biochem J 1998; 332 ( Pt 1):81-9. [PMID: 9576854 PMCID: PMC1219454 DOI: 10.1042/bj3320081] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of hereditary elliptocytosis (HE) cases are related to a spectrin dimer (SpD) self-association defect. The severity of haemolysis is correlated with the extent of the SpD self-association defect, which itself depends on the location of the mutation regarding the tetramerization site. This site is presumed to involve the first C helix of the alpha chain and the last two helices, A and B, of the beta chain to reconstitute a triple helical structure (A, B and C), as observed along spectrin. Using recombinant peptides, we demonstrated that the first C helix of the alpha chain and the last two helices of the beta chain alone are not sufficient to establish interactions, which only occurred when a complete triple-helical repeat was added to each partner. One adjacent repeat is necessary to stabilize the conformation of both N- and C-terminal structures directly involved in the interaction site and is sufficient to generate a binding affinity similar to that observed in the native molecule. Producing peptides carrying a betaHE mutation, we reproduced the tetramerization defect as observed in patients. Therefore, the betaW2024R and betaW2061R mutations, which replace the invariant tryptophan and a residue located in the hydrophobic core, respectively, affect alpha-beta interactions considerably. In contrast, the betaA2013V mutation, which modifies a residue located outside any presumed interacting regions, has a minor effect on the interaction.
Collapse
Affiliation(s)
- G Nicolas
- INSERM U409, Faculté de Médecine Bichat, 75870 Paris cedex 18, France
| | | | | | | | | | | | | |
Collapse
|
220
|
Schneider JP, Lombardi A, DeGrado WF. Analysis and design of three-stranded coiled coils and three-helix bundles. FOLDING & DESIGN 1998; 3:R29-40. [PMID: 9565750 DOI: 10.1016/s1359-0278(98)00011-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-stranded coiled coils and three-helix bundles are increasingly being identified in proteins. Design and engineering on the scaffolds of these motifs is a potential route towards combating associated viral infections as well as introducing novel functional sites.
Collapse
Affiliation(s)
- J P Schneider
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104-6059, USA
| | | | | |
Collapse
|
221
|
Abstract
The study of proteins that bind filamentous actin (F-actin) is entering an exciting stage as more and more structures are determined. After more than 50 years in which the focus was on muscle proteins, emphasis has recently shifted towards understanding the complex interplay among actin-binding molecules in non-muscle cells. To date, the binding sites for eight classes of filament-binding molecules have been determined by combining low- to intermediate-resolution maps obtained by electron microscopy with atomic structures determined by X-ray crystallography and NMR. Recent results have dramatically accentuated the importance of filament geometry and actin conformation in defining these interactions.
Collapse
Affiliation(s)
- A McGough
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
222
|
Yan Y, Li Y, Munshi S, Sardana V, Cole JL, Sardana M, Steinkuehler C, Tomei L, De Francesco R, Kuo LC, Chen Z. Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2.2 A resolution structure in a hexagonal crystal form. Protein Sci 1998; 7:837-47. [PMID: 9568891 PMCID: PMC2143993 DOI: 10.1002/pro.5560070402] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The crystal structure of the NS3 protease of the hepatitis C virus (BK strain) has been determined in the space group P6(3)22 to a resolution of 2.2 A. This protease is bound with a 14-mer peptide representing the central region of the NS4A protein. There are two molecules of the NS3(1-180)-NS4A(21'-34') complex per asymmetric unit. Each displays a familiar chymotrypsin-like fold that includes two beta-barrel domains and four short alpha-helices. The catalytic triad (Ser-139, His-57, and Asp-81) is located in the crevice between the beta-barrel domains. The NS4A peptide forms an almost completely enclosed peptide surface association with the protease. In contrast to the reported H strain complex of NS3 protease-NS4A peptide in a trigonal crystal form (Kim JL et al., 1996, Cell 87:343-355), the N-terminus of the NS3 protease is well-ordered in both molecules in the asymmetric unit of our hexagonal crystal form. The folding of the N-terminal region of the NS3 protease is due to the formation of a three-helix bundle as a result of crystal packing. When compared with the unbound structure (Love RA et al., 1996, Cell 87:331-342), the binding of the NS4A peptide leads to the ordering of the N-terminal 28 residues of the NS3 protease into a beta-strand and an alpha-helix and also causes local rearrangements important for a catalytically favorable conformation at the active site. Our analysis provides experimental support for the proposal that binding of an NS4A-mimicking peptide, which increases catalytic rates, is necessary but not sufficient for formation of a well-ordered, compact and, hence, highly active protease molecule.
Collapse
Affiliation(s)
- Y Yan
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Young P, Ferguson C, Bañuelos S, Gautel M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J 1998; 17:1614-24. [PMID: 9501083 PMCID: PMC1170509 DOI: 10.1093/emboj/17.6.1614] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disk, the anchoring plane of thin (actin) filaments, links titin (also called connectin) and actin filaments from opposing sarcomere halves in a lattice connected by alpha-actinin. We demonstrate by protein interaction analysis that two types of titin interactions are involved in the assembly of alpha-actinin into the Z-disk. Titin interacts via a single binding site with the two central spectrin-like repeats of the outermost pair of alpha-actinin molecules. In the central Z-disk, titin can interact with multiple alpha-actinin molecules via their C-terminal domains. These interactions allow the assembly of a ternary complex of titin, actin and alpha-actinin in vitro, and are expected to constrain the path of titin in the Z-disk. In thick skeletal muscle Z-disks, titin filaments cross over the Z-disk centre by approximately 30 nm, suggesting that their alpha-actinin-binding sites overlap in an antiparallel fashion. The combination of our biochemical and ultrastructural data now allows a molecular model of the sarcomeric Z-disk, where overlapping titin filaments and their interactions with the alpha-actinin rod and C-terminal domain can account for the essential ultrastructural features.
Collapse
Affiliation(s)
- P Young
- European Molecular Biology Laboratory, Postfach 10 22 09, 69012 Heidelberg, Germany
| | | | | | | |
Collapse
|
224
|
Abstract
Filamentous actin structures possess unique biophysical and biochemical properties and are required for cell locomotion, cell division, compartmentalization and morphological processes. The site-specific assembly and disassembly of these structures are directed by actin-regulatory proteins. This article reviews how structural studies are now defining the atomic details of small modular domains present in actin-regulatory proteins responsible for crosslinking, severing and capping of actin filaments, as well as for localization of actin filament assembly. These studies have identified three modular strategies for the design of proteins that regulate the actin cytoskeleton.
Collapse
Affiliation(s)
- Y A Puius
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
225
|
Abstract
The dipole interaction model is used to investigate the effects of interactions between helices and supertwisting of helices by determining whether the predicted UV absorption and CD spectra for the three-helix bundle and coiled coil are significantly different from spectra for the single straight alpha-helix. Crystallographic data by Yan et al. for alpha-spectrin are used to construct a three-helix bundle of poly(L-alanine) modeling the protein. Backbone torsion angles represented by Fourier series are used to generate supertwisted helices and coiled coil models of poly(L-alanine) that have pitch, radius, and residue repeat similar to experimental crystallographic data on tropomyosin. Calculated CD spectra are compared with available experimental data. Theoretical spectra for the three-helix bundle and the supertwisted structures are quite similar to predictions for the straight alpha-helix of the same length with similar torsion angles, suggesting that CD is primarily dependent on the average backbone conformation and would not be a sensitive tool for distinguishing between single straight helices and closely packed or twisted alpha-helices.
Collapse
Affiliation(s)
- K A Bode
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
226
|
|
227
|
The Exon 46-Encoded Sequence Is Essential for Stability of Human Erythroid α-Spectrin and Heterodimer Formation. Blood 1997. [DOI: 10.1182/blood.v90.10.4188] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman erythroid α-spectrin alleles responsible for hereditary elliptocytosis (αHE alleles) undergo increased incorporation into red blood cell membranes when the polymorphism αLELY (LELY: Low Expression LYon) occurs in trans. The αLELY polymorphism is characterized by a mutation in exon 40 at codon 1857 (CTA → GTA, Leu → Val) and the partial (50%) skipping of exon 46, which encodes residues 2177-2182 (Wilmotte et al, J Clin Invest 91:2091, 1993). Both of these peptide sequence alterations are located within the region of the α-chain involved in initiating heterodimer assembly, and either or both mutations could potentially contribute to decreased incorporation of α-chains from the αLELY allele in heterozygotes into red blood cell membranes. These possibilities were evaluated by testing the protease resistance and in vitro binding properties of normal and mutant recombinant 4-motif α subunit peptides containing the dimer initiation region. The two forms of α spectrin produced by alternative mRNA splicing of the αLELY allele were represented by α18-211857, a peptide with the codon 1857 mutation and retaining the exon 46 encoded sequence, and α18-211857-Δ46, a peptide carrying both the 1857 codon mutation and the exon 46 deletion. The properties of these two recombinant peptides were compared with α18-21, a peptide with the normal sequence at codon 1857 and retaining the exon 46 encoded sequence. The codon 1857 mutation does not adversely affect dimer formation, but it is responsible for the increased trypsin cleavage between the αIV and αV domains that was the characteristic feature initially used to identify the αLELY (SpαV/41) polymorphism (Alloisio et al, J Clin Invest 87:2169, 1991). Deletion of the six amino acids encoded by exon 46 perturbs folding of the α21 motif, because this region of the α18-211857-Δ46 peptide is rapidly degraded and this recombinant peptide is unusually prone to self-aggregation. Exon 46 deletion reduces, but does not eliminate, dimerization. Comparison of mild trypsin proteolytic products from an αLELY homozygote and the two αLELY recombinant peptides strongly suggests that little, if any, of the 50% of the α chains from the αLELY allele that contain the exon 46 deletion are incorporated into the mature erythroid membrane. Based on the in vitro analysis of recombinant αLELY peptides, the inability of detectable amounts of exon 46− α chains to assemble into the mature membrane skeleton in vivo is probably due to a combination of decreased dimer binding affinity and increased proteolytic degradation of these mutant chains.
Collapse
|
228
|
Pascual J, Pfuhl M, Walther D, Saraste M, Nilges M. Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. J Mol Biol 1997; 273:740-51. [PMID: 9356261 DOI: 10.1006/jmbi.1997.1344] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytoskeletal proteins belonging to the spectrin family have an elongated structure composed of repetitive units. The three-dimensional solution structure of the 16th repeat from chicken brain alpha-spectrin (R16) has been determined by NMR spectroscopy and distance geometry-simulated annealing calculations. We used a total of 1035 distance restraints, which included 719 NOE-based values obtained by applying the ambiguous restraints for iterative assignment (ARIA) method. In addition, we performed a direct refinement against 1H-chemical shifts. The final ensemble of 20 structures shows an average RMSD of 1.52 A from the mean for the backbone atoms, excluding loops and N and C termini. R16 is made up of three antiparallel alpha-helices separated by two loops, and folds into a left-handed coiled-coil. The basic unit of spectrin is an antiparallel heterodimer composed of two homologous chains, beta and alpha. These assemble a tetramer via a mechanism that relies on the completion of a single repeat by association of the partial repeats located at the C terminus of the beta-chain (two helices) and at the N terminus of the alpha-chain (one helix). This tetramer is the assemblage able to cross-link actin filaments. Model building by homology of the "tetramerization" repeat from human erythrocyte spectrin illuminates the possible role of point mutations which cause hemolytic anemias.
Collapse
Affiliation(s)
- J Pascual
- European Molecular Biology Laboratory, Meyerhofstr. 1, Heidelberg, 69012, Germany
| | | | | | | | | |
Collapse
|
229
|
Pellegrino S, Zhang S, Garritsen A, Simonds WF. The coiled-coil region of the G protein beta subunit. Mutational analysis of Ggamma and effector interactions. J Biol Chem 1997; 272:25360-6. [PMID: 9312156 DOI: 10.1074/jbc.272.40.25360] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The beta and gamma subunits of the heterotrimeric G proteins remain tightly associated throughout the signaling cycle as the betagamma dimer interacts with Galpha, receptors, and effectors. A coiled-coil structure involving alpha-helical segments at the N termini of the beta and gamma subunits contributes to the dimerization interface and has been implicated in effector signaling in yeast. Scanning mutagenesis of the coiled-coil region of the mammalian beta1 subunit was performed to examine the effect of point mutations on betagamma assembly and effector signaling in COS cell cotransfection assays. In addition to the E10K mutation described previously, mutations A11E, L14E, and I18E in beta1 were found to block betagamma association, as evidenced by the failure of the Gbeta mutants to undergo cytosolic translocation with cotransfected nonisoprenylated Ggamma. Although none of 14 beta1 point mutations prevented the betagamma-dependent activation of the c-Jun N-terminal kinase (JNK) effector pathway, the D20K point mutation enhanced JNK but not phospholipase C-beta2 activation. These findings implicate the coiled-coil region of Gbeta in JNK signaling, provide further evidence that the structural features of the betagamma complex mediating effector regulation may differ among effectors, and identify single codons in the mammalian beta subunit where mutation might yield a phenotype of defective signal transduction.
Collapse
Affiliation(s)
- S Pellegrino
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
230
|
Abstract
We now know that the evolution of multidomain proteins has frequently involved genetic duplication events. These, however, are sometimes difficult to trace because of low sequence similarity between duplicated segments. Spectrin, the major component of the membrane skeleton that provides elasticity to the cell, contains tandemly repeated sequences of 106 amino acid residues. The same repeats are also present in alpha-actinin, dystrophin and utrophin. Sequence alignments and phylogenetic trees of these domains allow us to interpret the evolutionary relationship between these proteins, concluding that spectrin evolved from alpha-actinin by an elongation process that included two duplications of a block of seven repeats. This analysis shows how a modular protein unit can be used in the evolution of large cytoskeletal structures.
Collapse
Affiliation(s)
- J Pascual
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
231
|
Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. The SH3 domain of Eps8 exists as a novel intertwined dimer. NATURE STRUCTURAL BIOLOGY 1997; 4:739-43. [PMID: 9303002 DOI: 10.1038/nsb0997-739] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SH3 domains are structurally well-characterized as monomeric modular units of protein structure that mediate protein-protein recognition in numerous signal transduction proteins. The X-ray crystallographic structure of the Eps8 SH3 domain reveals a novel variation of the canonical SH3 fold: the SH3 domain from Eps8 is a dimer formed by strand interchange. In addition, co-immunoprecipitation experiments show that intact Eps8 is multimeric in vivo. Hence, the SH3 domain of Eps8 may represent a dimerization motif.
Collapse
Affiliation(s)
- K V Kishan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|
232
|
Sharf Y, Knubovets T, Dayan D, Hirshberg A, Akselrod S, Navon G. The source of NMR-detected motional anisotropy of water in blood vessel walls. Biophys J 1997; 73:1198-204. [PMID: 9284287 PMCID: PMC1181019 DOI: 10.1016/s0006-3495(97)78152-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
2H Double quantum-filtered (DQF) NMR spectroscopy of deuterated water is sensitive to the presence of order in biological systems. This is because the only nuclei that are detected are those with residual quadrupolar interactions due to their anisotropic motion. In the present study, samples of aorta, coronary and carotid arteries, and vena cava were studied in parallel by 2H DQF NMR and by light microscopy. The average quadrupolar splitting, calculated from the NMR data, varies considerably among the different blood vessels, with high reproducibility for each type of vessel. Polarization microscopy examinations using collagen-specific staining with picrosirius red, have shown a variety of color profiles for the different blood vessels. These reflect different physical modes of aggregation (packing and thickness) of collagen fibers. A correlation was found between the NMR parameters and the color profiles of the picrosirius red-stained sections. Treating the blood vessels with 90% formic acid resulted in the elimination of the 2H DQF NMR signal. Histological analysis demonstrated a complete degradation of collagen and muscle, whereas the elastin filaments were preserved. Evidence is given that the 2H DQF NMR signal is dominated by the contribution of water molecules interacting with the collagen fibers.
Collapse
Affiliation(s)
- Y Sharf
- School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
233
|
Pantazatos DP, MacDonald RI. Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit. J Biol Chem 1997; 272:21052-9. [PMID: 9261107 DOI: 10.1074/jbc.272.34.21052] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As reported previously (MacDonald, R. I., Musacchio, A., Holmgren, R. A., and Saraste, M. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 1299-1303), an unfolded peptide was obtained by site-directed mutagenesis of Trp-22 to Ala in the cloned, wild type 17th repeating unit (alpha17) of chicken brain alpha-spectrin. Trp occurs in position 22 of nearly all repeating units of spectrin. In the present study, Trp-22 was mutated to Phe or to Tyr to compare thermodynamic stabilities of urea-induced unfolding of alpha16 and mutants thereof. alpha16 was chosen for this study instead of alpha17, because alpha16 has two tryptophans, allowing urea-induced unfolding to be tracked by the fluorescence of the Trp remaining in each mutant peptide and by circular dichroism in the far UV. The free energies of unfolding of W22Y and W22F were 50% that of alpha16, showing that Trp-22 is crucial in stabilizing the triple helical bundle motif of the spectrin repeating unit. Mutation of the moderately conserved Trp-95 of alpha16 to Val, which occupies position 95 in alpha17, also yielded a peptide with 50% of the free energy of unfolding of alpha16. Thus, the thermodynamic stability of a given spectrin repeating unit may depend on both moderately and highly conserved tryptophans. Different structural roles of Trp-22 and Trp-95 in alpha16 are suggested by the slightly higher wavelength of maximum emission of Trp-22, the greater acrylamide quenching of Trp-95 than Trp-22, and the longer lifetime of Trp-95. For comparison with alpha16, urea-induced unfolding of spectrin dimer isolated from human red cells was monitored by far UV-CD and by tryptophan fluorescence. Thermodynamic parameters could not be rigorously derived for the stability of spectrin dimer because unfolding of spectrin dimer involved more than two states, unlike unfolding of cloned repeating units. However, the similar midpoints of CD-monitored denaturation curves of alpha16 and spectrin dimer, i. e. 2.7 and 3.2 M urea, respectively, indicate that investigation of cloned repeating units of spectrin can provide physiologically relevant information on these structures.
Collapse
Affiliation(s)
- D P Pantazatos
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
234
|
Spectrin St Claude, a Splicing Mutation of the Human α-Spectrin Gene Associated With Severe Poikilocytic Anemia. Blood 1997. [DOI: 10.1182/blood.v89.12.4584] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAn α-spectrin variant with increased susceptibility to tryptic digestion, αII/47, was previously observed in a child with severe, recessively inherited, poikilocytic anemia. The molecular basis of this variant, spectrin St Claude, has now been identified as a splicing mutation of the α-spectrin gene due to a T → G mutation in the 3′ acceptor splice site of exon 20. This polypyrimidine tract mutation creates a new acceptor splice site, AT → AG, and leads to the production of two novel mRNAs. One mRNA contains a 12 intronic nucleotide insertion upstream of exon 20. This insertion introduces a termination codon into the reading frame and is predicted to encode a truncated protein (108 kD) that lacks the nucleation site and thus cannot be assembled in the membrane. In the other mRNA, there is in-frame skipping of exon 20, predicting a truncated (277 kD) α-spectrin chain. The homozygous propositus has only truncated 277 kD α-spectrin chains in his erythrocyte membranes. His heterozygous parents are clinically and biochemically normal. This allele was identified in 3% of asymptomatic individuals from Benin, Africa.
Collapse
|
235
|
Sliz P, Engelmann R, Hengstenberg W, Pai EF. The structure of enzyme IIAlactose from Lactococcus lactis reveals a new fold and points to possible interactions of a multicomponent system. Structure 1997; 5:775-88. [PMID: 9261069 DOI: 10.1016/s0969-2126(97)00232-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is responsible for the binding, transmembrane transport and phosphorylation of numerous sugar substrates. The system is also involved in the regulation of a variety of metabolic and transcriptional processes. The PTS consists of two non-specific energy coupling components, enzyme I and a heat stable phosphocarrier protein (HPr), as well as several sugar-specific multiprotein permeases known as enzymes II. In most cases, enzymes IIA and IIB are located in the cytoplasm, while enzyme IIC acts as a membrane channel. Enzyme IIAlactose belongs to the lactose/cellobiose-specific family of enzymes II, one of four functionally and structurally distinct groups. The protein, which normally functions as a trimer, is believed to separate into its subunits after phosphorylation. RESULTS The crystal structure of the trimeric enzyme IIAlactose from Lactococcus lactis has been determined at 2.3 A resolution. The subunits of the enzyme, related to each other by the inherent threefold rotational symmetry, possess interesting structural features such as coiled-coil-like packing and a methionine cluster. The subunits each comprise three helices (I, II and III) and pack against each other forming a nine-helix bundle. This helical bundle is stabilized by a centrally located metal ion and also encloses a hydrophobic cavity. The three phosphorylation sites (His78 on each monomer) are located in helices III and their sidechains protrude into a large groove between helices I and II of the neighbouring subunits. A model of the complex between phosphorylated HPr and enzyme IIAlactose has been constructed. CONCLUSIONS Enzyme IIAlactose is the first representative of the family of lactose/cellobiose-specific enzymes IIA for which a three-dimensional structure has been determined. Some of its structural features, like the presence of two histidine residues at the active site, seem to be common to all enzymes no overall structural homology is observed to any PTS proteins or to any other proteins in the Protein Data Bank. Enzyme IIAlactose shows surface complementarity to the phosphorylated form of HPr and several energetically favourable interactions between the two molecules can be predicted.
Collapse
Affiliation(s)
- P Sliz
- Department of Biochemistry, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
236
|
Abstract
The past several years have seen significant advances in our ability to recognize coiled coils from protein sequences and model their structures. New methods include a detection program based on pairwise residue correlations, a program that distinguishes two-stranded from three-stranded coiled coils and a routine for modelling the coordinates of the core residues in coiled coils. Several widely noted predictions, among them those for heterotrimeric G proteins and for cartilage oligomeric matrix protein, have been confirmed by crystal structures, and several new predictions have been made, including a model for the still hypothetical right-handed coiled coil.
Collapse
Affiliation(s)
- A Lupas
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| |
Collapse
|
237
|
Alam MR, Johnson RC, Darlington DN, Hand TA, Mains RE, Eipper BA. Kalirin, a cytosolic protein with spectrin-like and GDP/GTP exchange factor-like domains that interacts with peptidylglycine alpha-amidating monooxygenase, an integral membrane peptide-processing enzyme. J Biol Chem 1997; 272:12667-75. [PMID: 9139723 DOI: 10.1074/jbc.272.19.12667] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the integral membrane proteins that catalyze steps in the biosynthesis of neuroendocrine peptides are known to contain routing information in their cytosolic domains, the proteins recognizing this routing information are not known. Using the yeast two-hybrid system, we previously identified P-CIP10 as a protein interacting with the cytosolic routing determinants of peptidylglycine alpha-amidating monooxygenase (PAM). P-CIP10 is a 217-kDa cytosolic protein with nine spectrin-like repeats and adjacent Dbl homology and pleckstrin homology domains typical of GDP/GTP exchange factors. In the adult rat, expression of P-CIP10 is most prevalent in the brain. Corticotrope tumor cells stably expressing P-CIP10 and PAM produce longer and more highly branched neuritic processes than nontransfected cells or cells expressing only PAM. The turnover of newly synthesized PAM is accelerated in cells co-expressing P-CIP10. P-CIP10 binds to selected members of the Rho subfamily of small GTP binding proteins (Rac1, but not RhoA or Cdc42). P-CIP10 (kalirin), a member of the Dbl family of proteins, may serve as part of a signal transduction system linking the catalytic domains of PAM in the lumen of the secretory pathway to cytosolic factors regulating the cytoskeleton and signal transduction pathways.
Collapse
Affiliation(s)
- M R Alam
- Departments of Neuroscience and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
238
|
Hansen JC, Skalak R, Chien S, Hoger A. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys J 1997; 72:2369-81. [PMID: 9129841 PMCID: PMC1184433 DOI: 10.1016/s0006-3495(97)78882-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A finite-element network model is used to investigate the influence of the topology of the red blood cell membrane skeleton on its macroscopic mechanical properties. Network topology is characterized by the number of spectrin oligomers per actin junction (phi a) and the number of spectrin dimers per self-association junction (phi s). If it is assumed that all associated spectrin is in tetrameric form, with six tetramers per actin junction (i.e., phi a = 6.0 and phi s = 2.0), then the topology of the skeleton may be modeled by a random Delaunay triangular network. Recent images of the RBC membrane skeleton suggest that the values for these topological parameters are in the range of 4.2 < phi a < 5.5 and 2.1 < phi s < 2.3. Model networks that simulate these realistic topologies exhibit values of the shear modulus that vary by more than an order of magnitude relative to triangular networks. This indicates that networks with relatively sparse nontriangular topologies may be needed to model the RBC membrane skeleton accurately. The model is also used to simulate skeletal alterations associated with hereditary spherocytosis and Southeast Asian ovalocytosis.
Collapse
Affiliation(s)
- J C Hansen
- Department of Bioengineering, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
239
|
Nieset JE, Redfield AR, Jin F, Knudsen KA, Johnson KR, Wheelock MJ. Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. J Cell Sci 1997; 110 ( Pt 8):1013-22. [PMID: 9152027 DOI: 10.1242/jcs.110.8.1013] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cadherins are calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. To function in cell-cell adhesion, the transmembrane cadherin molecule must be associated with the cytoskeleton via cytoplasmic proteins known as catenins. Three catenins, alpha-catenin, beta-catenin and gamma-catenin (also known as plakoglobin), have been identified. beta-catenin or plakoglobin is associated directly with the cadherin; alpha-catenin binds to beta-catenin/plakoglobin and serves to link the cadherin/catenin complex to the actin cytoskeleton. The domains on the cadherin and betacatenin/plakoglobin that are responsible for protein-protein interactions have been mapped. However, little is known about the molecular interactions between alpha-catenin and beta-catenin/plakoglobin or about the interactions between alpha-catenin and the cytoskeleton. In this study we have used the yeast two-hybrid system to map the domains on alpha-catenin that allow it to associate with beta-catenin/plakoglobin and with alpha-actinin. We also identify a region on alpha-actinin that is responsible for its interaction with alpha-catenin. The yeast two-hybrid data were confirmed with biochemical studies.
Collapse
Affiliation(s)
- J E Nieset
- Department of Biology, University of Toledo, OH 43606, USA
| | | | | | | | | | | |
Collapse
|
240
|
Abstract
Striated muscle sarcomeres in vertebrates comprise ordered arrays of actin and myosin filaments, organized by an elaborate protein scaffold. Recent innovative work in a number of laboratories has greatly improved our knowledge of these structures, their organization and their interactions. Structural details have been reported on myosin filaments, actin filaments, Z-bands, M-bands, titin, and nebulin. Time-resolved X-ray diffraction and electron microscopy are revealing the molecular movements involved in force production and regulation.
Collapse
Affiliation(s)
- J M Squire
- Biophysics Section, Blackett Laboratory, Imperial College, London, SW7 2BZ, UK.
| |
Collapse
|
241
|
Cooper JA, Hayman W, Reed C, Kagawa H, Good MF, Saul A. Mapping of conformational B cell epitopes within alpha-helical coiled coil proteins. Mol Immunol 1997; 34:433-40. [PMID: 9307059 DOI: 10.1016/s0161-5890(97)00056-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An approach to mapping antigenic B cell epitopes within alpha-helical coiled coil proteins has been developed and applied to two proteins: Streptococcal M protein and C. elegans paramyosin protein UNC-15. Overlapping peptides derived from an alpha-helical coiled coil conformational epitope were embedded between helical flanking peptides derived from the completely unrelated GCN4 leucine zipper peptide. The resulting chimeric peptides exhibited helical propensity. Chimeric peptides were tested for antigenicity (recognition by antibody) or immunogenicity (production of appropriate antibody response). A conformational epitope within the Streptococcal M protein recognised by three mAbs spanned 12 residues. Analysis of chimeric peptides based on C. elegans UNC-15 has enabled fine mapping of the minimal B cell epitope recognised by monoclonal antibody NE1-6B2 to seven non-contiguous residues (spanning 15 residues); the footprint of contact residues involved in antibody recognition being restricted to the hydrophilic face of the helix and covering five helical turns. This chimeric peptide epitope when coupled to diphtheria toxoid was highly immunogenic in mice and antisera recognised the conformationally dependent native peptide epitope. This approach has the potential to map conformational epitopes and design minimal epitopes for use as vaccine candidates.
Collapse
Affiliation(s)
- J A Cooper
- Cooperative Research Centre for Vaccine Technology and Queensland Institute of Medical Research, Herston, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
242
|
Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J 1997; 16:1066-79. [PMID: 9118945 PMCID: PMC1169706 DOI: 10.1093/emboj/16.5.1066] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human mitochondrial transcription termination factor (mTERF) cDNA has been cloned and expressed in vitro, and two alternative precursors of the protein have been imported into isolated mitochondria and processed to the mature protein. The precursors contain a mitochondrial targeting sequence, and the mature mTERF (342 residues) exhibits three leucine zippers, of which one is bipartite, and two widely spaced basic domains. The in vitro synthesized mature protein has the expected specific binding capacity for a double-stranded oligonucleotide containing the tridecamer sequence required for directing termination, and produces a DNase I footprint very similar to that produced by the natural protein. However, in contrast to the latter, it lacks transcription termination-promoting activity in an in vitro system, pointing to another component(s) being required for making mTERF termination-competent. A detailed structure-function analysis of the recombinant protein and mutagenized versions of it by band shift assays has demonstrated that both basic domains and the three leucine zipper motifs are necessary for DNA binding. Furthermore, a variety of tests have shown that both the recombinant and the natural mTERF bind to DNA as a monomer, arguing against a dimerization role for the leucine zippers, and rather pointing, together with the results of mutagenesis experiments, to intramolecular leucine zipper interactions being required to bring the two basic domains in close register with the mTERF target DNA sequence.
Collapse
Affiliation(s)
- P Fernandez-Silva
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
243
|
Fucini P, Renner C, Herberhold C, Noegel AA, Holak TA. The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. NATURE STRUCTURAL BIOLOGY 1997; 4:223-30. [PMID: 9164464 DOI: 10.1038/nsb0397-223] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 120,000 M(r) gelation factor and alpha-actinin are among the most abundant F-actin cross-linking proteins in Dictyostelium discoideum. Both molecules are rod-shaped homodimers. Each monomer chain is comprised of an actin-binding domain and a rod domain. The rod domain of the gelation factor consists of six 100-residue repetitive segments with high internal homology. We have now determined the three-dimensional structure of segment 4 of the rod domain of the gelation factor from D. discoideum using NMR spectroscopy. The segment consists of seven beta-sheets arranged in an immunoglobulin-like (Ig) fold. This is completely different from the alpha-actinin rod domain which consists of four spectrin-like alpha-helical segments. The gelation factor is the first example of an Ig-fold found in an actin-binding protein. Two highly homologous actin-binding proteins from human with similar sequences to the gelation factor, filamin and a 280,000 M(r) actin-binding protein (ABP-280), share conserved residues that form the core of the gelation factor repetitive segment structure. Thus, the segment 4 structure should be common to this subfamily of the spectrin superfamily. The structure of segment 4 together with previously published electron microscopy data, provide an explanation for the dimerization of the whole gelation factor molecule.
Collapse
Affiliation(s)
- P Fucini
- Max Planck Institute for Biochemistry, Martinsried, F.R.G
| | | | | | | | | |
Collapse
|
244
|
Gallagher PG, Petruzzi MJ, Weed SA, Zhang Z, Marchesi SL, Mohandas N, Morrow JS, Forget BG. Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 1997; 99:267-77. [PMID: 9005995 PMCID: PMC507794 DOI: 10.1172/jci119155] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We studied an infant with severe nonimmune hemolytic anemia and hydrops fetalis at birth. His neonatal course was marked by ongoing hemolysis of undetermined etiology requiring repeated erythrocyte transfusions. He has remained transfusion-dependent for more than 2 yr. A previous sibling born with hemolytic anemia and hydrops fetalis died on the second day of life. Peripheral blood smears from the parents revealed rare elliptocytes. Examination of their erythrocyte membranes revealed abnormal mechanical stability as well as structural and functional abnormalities in spectrin. Genetic studies revealed that the proband and his deceased sister were homozygous for a mutation of betaIsigma1 spectrin, L2025R, in a region of spectrin that is critical for normal function. The importance of leucine in this position of the proposed triple helical model of spectrin repeats is highlighted by its evolutionary conservation in all beta spectrins from Drosophila to humans. Molecular modeling demonstrated the disruption of hydrophobic interactions in the interior of the triple helix critical for spectrin function caused by the replacement of the hydrophobic, uncharged leucine by a hydrophilic, positively charged arginine. This mutation must also be expressed in the betaIsigma2 spectrin found in muscle, yet pathologic and immunohistochemical examination of skeletal muscle from the deceased sibling was unremarkable.
Collapse
Affiliation(s)
- P G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Ogihara NL, Weiss MS, Degrado WF, Eisenberg D. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci 1997; 6:80-8. [PMID: 9007979 PMCID: PMC2143514 DOI: 10.1002/pro.5560060109] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The three-dimensional structure of the 29-residue designed coiled coil having the amino acid sequence acetyl-E VEALEKK VAALESK VQALEKK VEALEHG-amide has been determined and refined to a crystallographic R-factor of 21.4% for all data from 10-A to 2.1-A resolution. This molecule is called coil-VaLd because it contains valine in the a heptad positions and leucine in the d heptad positions. In the trigonal crystal, three molecules, related by a crystallographic threefold axis, form a parallel three-helix bundle. The bundles are stacked head-to-tail to form a continuous coiled coil along the c-direction of the crystal. The contacts among the three helices within the coiled coil are mainly hydrophobic: four layers of valine residues alternate with four layers of leucine residues to form the core of the bundle. In contrast, mostly hydrophilic contacts mediate the interaction between trimers: here a total of two direct protein--protein hydrogen bonds are found. Based on the structure, we propose a scheme for designing crystals of peptides containing continuous two-, three-, and four-stranded coiled coils.
Collapse
Affiliation(s)
- N L Ogihara
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine 90095-1570, USA
| | | | | | | |
Collapse
|
246
|
Menhart N, Mitchell T, Lusitani D, Topouzian N, Fung LW. Peptides with more than one 106-amino acid sequence motif are needed to mimic the structural stability of spectrin. J Biol Chem 1996; 271:30410-6. [PMID: 8940005 DOI: 10.1074/jbc.271.48.30410] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The primary sequence of human erythrocyte spectrin contains repetitive homologous sequence motifs of approximately 106 amino acids with 22 such motifs in the alpha-subunit and 17 in the beta-subunit. These homologous sequence motifs have been proposed to form domains with a triple-helical bundle type structure (Speicher, D. W., and Marchesi, V. T. (1984) Nature 311, 177-180; Parry, D. A. D., Dixon, T. W., and Cohen, C. (1992) Biophys. J. 61, 858-867). In this study, we show that these sequence motifs, while they do form compact proteolytically resistant units, are not completely independent. Peptides composed of two or three such motifs in tandem are substantially more stable than peptides composed of a single motif, as measured by proteolysis or by fluorescence or circular dichroism studies of urea or thermal denaturation. Circular dichroism and infrared spectroscopy measurements also indicate that these larger, more stable peptides exhibit greater secondary structure. In these respects, the peptides with tandem sequence motifs are more similar to intact spectrin than the peptide with a single sequence motif. Thus, we conclude that peptides with more than one sequence motif model spectrin more adequately than the peptides with one sequence motif, and that these sequence motifs are not completely independent domains.
Collapse
Affiliation(s)
- N Menhart
- Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA
| | | | | | | | | |
Collapse
|
247
|
Marfatia SM, Morais Cabral JH, Lin L, Hough C, Bryant PJ, Stolz L, Chishti AH. Modular organization of the PDZ domains in the human discs-large protein suggests a mechanism for coupling PDZ domain-binding proteins to ATP and the membrane cytoskeleton. J Cell Biol 1996; 135:753-66. [PMID: 8909548 PMCID: PMC2121072 DOI: 10.1083/jcb.135.3.753] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human homologue (hDIg) of the Drosophila discs-large tumor suppressor (DIg) is a multidomain protein consisting of a carboxyl-terminal guanylate kinase-like domain, an SH3 domain, and three slightly divergent copies of the PDZ (DHR/GLGF) domain. Here have examined the structural organization of the three PDZ domains of hDIg using a combination of protease digestion and in vitro binding measurements. Our results show that the PDZ domains are organized into two conformationally stable modules one (PDZ, consisting of PDZ domains 1 and 2, and the other (PDZ) corresponding to the third PDZ domain. Using amino acid sequencing and mass spectrometry, we determined the boundaries of the PDZ domains after digestion with endoproteinase Asp-N, trypsin, and alpha-chymotrypsin. The purified PDZ1+2, but not the PDZ3 domain, contains a high affinity binding site for the cytoplasmic domain of Shaker-type K+ channels. Similarly, we demonstrate that the PDZ1+2 domain can also specifically bind to ATP. Furthermore, we provide evidence for an in vivo interaction between hDIg and protein 4.1 and show that the hDIg protein contains a single high affinity protein 4.1-binding site that is not located within the PDZ domains. The results suggest a mechanism by which PDZ domain-binding proteins may be coupled to ATP and the membrane cytoskeleton via hDlg.
Collapse
Affiliation(s)
- S M Marfatia
- Department of Biomedical Research, St. Elizabeth's Medical Center, Tufts University of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | | | | | |
Collapse
|
248
|
Calvert R, Kahana E, Gratzer WB. Stability of the dystrophin rod domain fold: evidence for nested repeating units. Biophys J 1996; 71:1605-10. [PMID: 8874034 PMCID: PMC1233627 DOI: 10.1016/s0006-3495(96)79363-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An examination of fragments of the human dystrophin rod domain, corresponding to a single structural repeating unit, showed that a critical chain length, defined with a precision of one residue at the C-terminal end, is required for formation of the native tertiary fold. We report here that extending the chain by six residues beyond this minimum results in a large increase in conformational stability. This is not related to a change in association state of the polypeptide. The results support the conjecture that successive repeating units in the rod domain of the spectrinlike proteins form a nested structure, in which the N-terminal part of the three-helix bundle of one repeat packs into the overlapping structure of the preceding repeat. This would be expected to affect functional characteristics related to flexibility of the dystrophin rod domain.
Collapse
Affiliation(s)
- R Calvert
- Medical Research Council Muscle and Cell Motility Unit, King's College, London, UK
| | | | | |
Collapse
|
249
|
Hassoun H, Palek J. Hereditary spherocytosis: a review of the clinical and molecular aspects of the disease. Blood Rev 1996; 10:129-47. [PMID: 8932827 DOI: 10.1016/s0268-960x(96)90021-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hereditary spherocytosis is a common and very heterogeneous hemolytic anemia caused by defects of the red cell membrane proteins. In recent years, major advances in our understanding of the red cell membrane skeleton and a better characterization of its individual components have allowed a brighter insight into the pathogenesis of the disease. In this article, we present an overview of the erythrocyte skeleton and its individual constituents. We also review the clinical aspects of the disease and describe the currently known molecular defects involving the membrane proteins which have been shown to play an essential role in the underlying mechanism of hereditary spherocytosis. Finally we examine several models that have been proposed in an attempt to clarify the mechanism leading from the initial molecular insult to the clinical phenotype.
Collapse
Affiliation(s)
- H Hassoun
- Department of Biomedical Research, St. Elizabeth's Medical Center of Boston, Tufts University Medical School, MA 02135, USA
| | | |
Collapse
|
250
|
Faix J, Steinmetz M, Boves H, Kammerer RA, Lottspeich F, Mintert U, Murphy J, Stock A, Aebi U, Gerisch G. Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell 1996; 86:631-42. [PMID: 8752217 DOI: 10.1016/s0092-8674(00)80136-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cortexillins I and II of D. discoideum constitute a novel subfamily of proteins with actin-binding sites of the alpha-actinin/spectrin type. The C-terminal halves of these dimeric proteins contain a heptad repeat domain by which the two subunits are joined to form a two-stranded, parallel coiled coil, giving rise to a 19 nm tail. The N-terminal domains that encompass a consensus actin-binding sequence are folded into globular heads. Cortexillin-linked actin filaments form preferentially anti-parallel bundles that associate into meshworks. Both cortexillins are enriched in the cortex of locomoting cells, primarily at the anterior and posterior ends. Elimination of the two isoforms by gene disruption gives rise to large, flattened cells with rugged boundaries, portions of which are often connected by thin cytoplasmic bridges. The double-mutant cells are multinucleate owing to a severe impairment of cytokinesis.
Collapse
Affiliation(s)
- J Faix
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|