201
|
Handke LD, Slater SR, Conlon KM, O'Donnell ST, Olson ME, Bryant KA, Rupp ME, O'Gara JP, Fey PD. σBand SarA independently regulate polysaccharide intercellular adhesin production inStaphylococcus epidermidis. Can J Microbiol 2007; 53:82-91. [PMID: 17496953 DOI: 10.1139/w06-108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The production of polysaccharide intercellular adhesin (PIA) is an essential process in foreign body infections mediated by Staphylococcus epidermidis. Transcriptional regulation of the icaADBC operon, the genes responsible for production of enzymes that synthesize PIA, is multi-factorial and involves at least SarA and σB. Transcriptional and promoter fusion studies revealed that the decreased transcription of the icaADBC operon observed in a S. epidermidis 1457 sigB mutant is not mediated through a direct interaction of σB–RNA polymerase at the icaADBC promoter region but instead through the upregulation of IcaR, a known repressor of icaADBC transcription. Transcriptional analysis of a 1457 sigB–icaR double mutant confirmed that the decreased icaADBC transcript in 1457 sigB is IcaR dependent. Furthermore, primer extension studies suggest that the icaR promoter appears to be σAdependent, suggesting that σBindirectly controls icaR transcription through an unknown pathway. In addition, it was confirmed that the loss of SarA results in the loss of icaADBC transcription and PIA production in S. epidermidis. It was further demonstrated, through the over-production of SarA in 1457 sigB, that the loss of sarP1 promoter activity in 1457 sigB has little or no effect on the loss of PIA production in this mutant. Finally, it was demonstrated that PIA production could be restored in both 1457 sigB and 1457 sarA by complementing these mutants with a full-length icaADBC operon controlled by a cadmium-inducible noncognate promoter. It is concluded that σBand SarA operate independently of each other to regulate PIA production and biofilm development in S. epidermidis.Key words: Staphylococcus epidermidis, biofilm, σB, SarA, icaADBC.
Collapse
Affiliation(s)
- L D Handke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198-6280, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Tu Quoc PH, Genevaux P, Pajunen M, Savilahti H, Georgopoulos C, Schrenzel J, Kelley WL. Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 2006; 75:1079-88. [PMID: 17158901 PMCID: PMC1828571 DOI: 10.1128/iai.01143-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus produces biofilm and this mode of colonization facilitates infections that are often difficult to treat and engender high morbidity and mortality. We have exploited bacteriophage Mu transposition methods to create an insertional mutant library in a highly biofilm-forming S. aureus clinical isolate. Our screen identified 38 insertions in 23 distinct genes together with one intergenic region that significantly reduced biofilm formation. Nineteen insertions were mapped in loci not previously known to affect biofilm in this organism. These include insertions in codY, srrA, mgrA, and fmtA, a putative DEAD-box helicase, two members of the zinc-metallo-beta lactamase/beta-CASP family, and a hypothetical protein with a GGDEF motif. Fifteen insertions occurred in the icaADBC operon, which produces intercellular adhesion antigen (PIA) and is important for biofilm formation in many strains of S. aureus and Staphylococcus epidermidis. Obtaining a high proportion of independent Em-Mu disruptions in icaADBC demonstrated both the importance of PIA for biofilm formation in this clinical strain and the strong validation of the screening procedure that concomitantly uncovered additional mutants. All non-ica mutants were further analyzed by immunoblotting and biochemical fractionation for perturbation of PIA and wall teichoic acid. PIA levels were diminished in the majority of non-ica insertional mutants. Three mutant strains were chosen and were functionally complemented for restored biofilm formation by transformation with plasmids carrying the cloned wild-type gene under the control of a xylose-inducible promoter. This is a comprehensive collection of biofilm-defective mutants that underscores the multifactorial genetic program underlying the establishment of biofilm in this insidious pathogen.
Collapse
Affiliation(s)
- Patrick H Tu Quoc
- Division of Infectious Diseases, University Hospital of Geneva, 24 rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | | | |
Collapse
|
203
|
Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA, Knobloch JKM. Biofilm formation in medical device-related infection. Int J Artif Organs 2006; 29:343-59. [PMID: 16705603 DOI: 10.1177/039139880602900404] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medical device-associated infections, most frequently caused by coagulase-negative staphylococci, especially Staphylococcus epidermidis, are of increasing importance in modern medicine. Regularly, antimicrobial therapy fails without removal of the implanted device. The most important factor in the pathogenesis of medical device-associated staphylococcal infections is the formation of adherent, multilayered bacterial biofilms. There is urgent need for an increased understanding of the functional factors involved in biofilm formation, the regulation of their expression, and the interaction of those potential virulence factors in device related infection with the host. Significant progress has been made in recent years which may ultimately lead to new rational approaches for better preventive, therapeutic, and diagnostic measures.
Collapse
Affiliation(s)
- D Mack
- Medical Microbiology and Infectious Diseases, The School of Medicine, University of Wales Swansea, Swansea, UK.
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
Staphylococcus epidermidis is the most common cause of orthopaedic prosthetic device infections. Polysaccharide intercellular adhesin (PIA) is important in the pathogenesis of intravascular catheter-associated infection, and has an essential role in cellular aggregation and biofilm formation. However, the role of PIA in orthopaedic infections is less well understood. We used genetically defined strains of S. epidermidis in an in vitro adherence assay to assess the importance of PIA in the adherence to various orthopaedic biomaterials. On all biomaterials tested (zirconia, ultra-high molecular weight polyethylene, polymethylmethacrylate, cobalt chromium, titanium, stainless steel, and silastic), PIA-positive S. epidermidis 1457 exhibited greater levels of adherence thanS. epidermidis 1457 M10, an isogenic icaA Tn917 mutant. PIA appears to play a critical role in the adherence of S. epidermidis to orthopaedic biomaterials, and may serve as an important virulence determinant in orthopaedic prosthetic device infections.
Collapse
Affiliation(s)
- M E Olson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
205
|
Kwakman PHS, te Velde AA, Vandenbroucke-Grauls CMJE, van Deventer SJH, Zaat SAJ. Treatment and prevention of Staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2. Antimicrob Agents Chemother 2006; 50:3977-83. [PMID: 17000746 PMCID: PMC1693978 DOI: 10.1128/aac.00575-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biomaterial-associated infections (BAI) are the major cause of failure of indwelling medical devices and are predominantly caused by staphylococci, especially Staphylococcus epidermidis. We investigated the in vitro microbicidal activity of the synthetic antimicrobial peptide bactericidal peptide 2 (BP2) and its efficacy in a murine model of S. epidermidis BAI. BP2 showed potent microbicidal activity at micromolar concentrations against a broad spectrum of microorganisms, including antibiotic-resistant bacteria. The staphylocidal activity of BP2 was not affected by physiological salt concentrations and was only slightly affected by the presence of human plasma. In the BAI model, injection of BP2 (5 mg/kg of body weight) 1 h after challenge with S. epidermidis resulted in an 80% reduction in the number of culture-positive implants and a 100-fold reduction in survival of S. epidermidis in peri-implant tissue at 24 h postchallenge. When BP2 was injected along implants 3 h prior to bacterial challenge, the median numbers of CFU cultured from biomaterial implants and peri-implant tissue were reduced by 85% and 90%, respectively. In conclusion, BP2 has potent, broad-spectrum in vitro microbicidal activity and showed potent in vivo activity in a murine model of S. epidermidis biomaterial-associated infection.
Collapse
Affiliation(s)
- Paulus H S Kwakman
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
206
|
Mack D, Davies AP, Harris LG, Rohde H, Horstkotte MA, Knobloch JKM. Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem 2006; 387:399-408. [PMID: 16955256 DOI: 10.1007/s00216-006-0745-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/03/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Medical device-associated infections, most frequently caused by coagulase-negative staphylococci, especially Staphylococcus epidermidis, are of increasing importance in modern medicine. The formation of adherent, multilayered bacterial biofilms is the most important factor in the pathogenesis of these infections, which regularly fail to respond to appropriate antimicrobial therapy. Progress in elucidating the factors functional in elaboration of S. epidermidis biofilms and the regulation of their expression with a special emphasis on the role of quorum sensing are reviewed. Significant progress has been made in recent years, which provides the rationale for developing better preventive, therapeutic and diagnostic measures.
Collapse
Affiliation(s)
- Dietrich Mack
- Medical Microbiology and Infectious Diseases, The School of Medicine, Swansea University, Grove Building, Singleton Park, Swansea, SA2 8PP, UK.
| | | | | | | | | | | |
Collapse
|
207
|
Resch A, Leicht S, Saric M, Pásztor L, Jakob A, Götz F, Nordheim A. Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 2006; 6:1867-77. [PMID: 16470655 DOI: 10.1002/pmic.200500531] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathogenic staphylococci can form biofilms in which they show a higher resistance to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have an altered metabolic activity. Here, 2-D PAGE was used to identify secreted, cell wall-associated and cytoplasmic proteins expressed in Staphylococcus aureus after 8 and 48 h of growth. The proteins were separated at pH ranges of 4-7 or 6-11. The protein patterns revealed significant differences in 427 protein spots; from these, 258 non-redundant proteins were identified using ESI-MS/MS. Biofilm cells expressed higher levels of proteins associated with cell attachment and peptidoglycan synthesis, and in particular fibrinogen-binding proteins. Enzymes involved in pyruvate and formate metabolism were upregulated. Furthermore, biofilm cells expressed more staphylococcal accessory regulator A protein (SarA), which corroborates the positive effect of SarA on the expression of the intercellular adhesion operon ica and biofilm growth. In contrast, proteins, such as proteases and particularly immunodominant antigen A (IsaA) and staphylococcal secretory antigen (SsaA), were found in lower amounts. The RNA expression profiling largely supports the proteomic data. The results were mapped onto KEGG pathways.
Collapse
Affiliation(s)
- Alexandra Resch
- Mikrobielle Genetik, Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
208
|
Chaw KC, Manimaran M, Tay FEH. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 2006; 49:4853-9. [PMID: 16304145 PMCID: PMC1315927 DOI: 10.1128/aac.49.12.4853-4859.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper, we report on the potential use of atomic force microscopy (AFM) as a tool to measure the intermolecular forces in biofilm structures and to study the effect of silver ions on sessile Staphylococcus epidermidis cell viability and stability. We propose a strategy of destabilizing the biofilm matrix by reducing the intermolecular forces within the extracellular polymeric substances (EPSs) using a low concentration (50 ppb) of silver ions. Our AFM studies on the intermolecular forces within the EPSs of S. epidermidis RP62A and S.epidermidis 1457 biofilms suggest that the silver ions can destabilize the biofilm matrix by binding to electron donor groups of the biological molecules. This leads to reductions in the number of binding sites for hydrogen bonds and electrostatic and hydrophobic interactions and, hence, the destabilization of the biofilm structure.
Collapse
Affiliation(s)
- K C Chaw
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669
| | | | | |
Collapse
|
209
|
Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 2006; 74:488-96. [PMID: 16369005 PMCID: PMC1346618 DOI: 10.1128/iai.74.1.488-496.2006] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nosocomial infections caused by Staphylococcus epidermidis are characterized by biofilm formation on implanted medical devices. Quorum-sensing regulation plays a major role in the biofilm development of many bacterial pathogens. Here, we describe luxS, a quorum-sensing system in staphylococci that has a significant impact on biofilm development and virulence. We constructed an isogenic DeltaluxS mutant strain of a biofilm-forming clinical isolate of S. epidermidis and demonstrated that luxS signaling is functional in S. epidermidis. The mutant strain showed increased biofilm formation in vitro and enhanced virulence in a rat model of biofilm-associated infection. Genetic complementation and addition of autoinducer 2-containing culture filtrate restored the wild-type phenotype, demonstrating that luxS repressed biofilm formation through a cell-cell signaling mechanism based on autoinducer 2 secretion. Enhanced production of the biofilm exopolysaccharide polysaccharide intercellular adhesin in the mutant strain is presumably the major cause of the observed phenotype. The agr quorum-sensing system has previously been shown to impact biofilm development and biofilm-associated infection in a way similar to that of luxS, although by regulation of different factors. Our study indicates a general scheme of quorum-sensing regulation of biofilm development in staphylococci, which contrasts with that observed in many other bacterial pathogens.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Suzuki T, Kawamura Y, Uno T, Ohashi Y, Ezaki T. Prevalence of Staphylococcus epidermidis strains with biofilm-forming ability in isolates from conjunctiva and facial skin. Am J Ophthalmol 2005; 140:844-850. [PMID: 16310462 DOI: 10.1016/j.ajo.2005.05.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/28/2005] [Accepted: 05/31/2005] [Indexed: 11/16/2022]
Abstract
PURPOSE To compare the prevalence of biofilm-forming strains of Staphylococcus epidermidis in the conjunctival and facial skin microflora. DESIGN Experimental study. METHODS The prevalence of biofilm-forming ability of 10 S epidermidis strains obtained from the conjunctival sac of healthy volunteers was compared with 40 strains obtained from the facial skin of healthy volunteers. The ability to form biofilm was determined by the presence of the icaA gene, and the production of biofilm was examined by qualitative (Congo red agar [CRA]) and quantitative (microtiter plate) assays. Additionally, the prevalence of 36 S epidermidis strains obtained from the conjunctival sac of precataract patients to form biofilm was investigated. RESULTS The icaA gene was detected in 60% of the isolates from the conjunctival sac of volunteers and 15% of those from the facial skin. Fifty percent of the isolates from the conjunctiva of volunteers and 5% from the facial skin were CRA positive. Biofilm production was significantly greater in isolates from the conjunctiva of volunteers. Of the nine pairs of isolates found in the same volunteers, six conjunctival sac isolates were positive for the icaA gene with biofilm-forming ability except one strain, whereas only one of the facial skin isolates was positive for the icaA gene and none exhibited biofilm-forming phenotype. Sixty-nine percent and 44% of the isolates from the conjunctival sac of precataract patients were positive for icaA gene and CRA test, respectively. CONCLUSIONS The prevalence of biofilm-forming S epidermidis isolates is higher in the conjunctival sac than the facial skin.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Ophthalmology, Ehime University School of Medicine, Ehime, Japan.
| | | | | | | | | |
Collapse
|
211
|
Jäger S, Mack D, Rohde H, Horstkotte MA, Knobloch JKM. Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor sigmaB. Appl Environ Microbiol 2005; 71:5577-81. [PMID: 16151151 PMCID: PMC1214654 DOI: 10.1128/aem.71.9.5577-5581.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of the polysaccharide intercellular adhesin as an energy-storage molecule, we investigated the effect of nutrient limitation on S. epidermidis biofilms. The stability of established biofilms depends on sigma(B) activity; however, the slow decay of biofilms under conditions of nutrient limitation reveal its use as an energy-storage molecule to be unlikely.
Collapse
Affiliation(s)
- Sebastian Jäger
- Universitätsklinikum Hamburg-Eppendorf, Zentrum für Klinisch-Theoretische Medizin I, Institut für Infektionsmedizin, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
212
|
Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JKM, Heilmann C, Herrmann M, Mack D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 2005; 55:1883-95. [PMID: 15752207 DOI: 10.1111/j.1365-2958.2005.04515.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because of its biofilm forming potential Staphylococcus epidermidis has evolved as a leading cause of device-related infections. The polysaccharide intercellular adhesin (PIA) is significantly involved in biofilm accumulation. However, infections because of PIA-negative strains are not uncommon, suggesting the existence of PIA-independent biofilm accumulation mechanisms. Here we found that biofilm formation in the clinically significant S. epidermidis 5179 depended on the expression of a truncated 140 kDa isoform of the 220 kDa accumulation-associated protein Aap. As expression of the truncated Aap isoform leads to biofilm formation in aap-negative S. epidermidis 1585, this domain mediates intercellular adhesion in a polysaccharide-independent manner. In contrast, expression of full-length Aap did not lead to a biofilm-positive phenotype. Obviously, to gain adhesive function, full-length Aap has to be proteolytically processed through staphylococcal proteases as demonstrated by inhibition of biofilm formation by alpha(2)-macroglobulin. Importantly, also exogenously added granulocyte proteases activated Aap, thereby inducing biofilm formation in S. epidermidis 5179 and four additional, independent clinical S. epidermidis strains. It is therefore reasonable to assume that in vivo effector mechanisms of the innate immunity can directly induce protein-dependent S. epidermidis cell aggregation and biofilm formation, thereby enabling the pathogen to evade clearance by phagocytes.
Collapse
Affiliation(s)
- Holger Rohde
- Institut für Infektionsmedizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Vuong C, Kidder JB, Jacobson ER, Otto M, Proctor RA, Somerville GA. Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 2005; 187:2967-73. [PMID: 15838022 PMCID: PMC1082835 DOI: 10.1128/jb.187.9.2967-2973.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production.
Collapse
Affiliation(s)
- Cuong Vuong
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Labortories, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
214
|
Resch A, Rosenstein R, Nerz C, Götz F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 2005; 71:2663-76. [PMID: 15870358 PMCID: PMC1087559 DOI: 10.1128/aem.71.5.2663-2676.2005] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is well known that biofilm formation by pathogenic staphylococci on implanted medical devices leads to "chronic polymer-associated infections." Bacteria in these biofilms are more resistant to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have altered metabolic activity. To determine which genes are up-regulated in Staphylococcus aureus biofilm cells, we carried out a comparative transcriptome analysis. Biofilm growth was simulated on dialysis membranes laid on agar plates. Staphylococci were cultivated planktonically in Erlenmeyer flasks with shaking. mRNA was isolated at five time points from cells grown under both conditions and used for hybridization with DNA microarrays. The gene expression patterns of several gene groups differed under the two growth conditions. In biofilm cells, the cell envelope appeared to be a very active compartment since genes encoding binding proteins, proteins involved in the synthesis of murein and glucosaminoglycan polysaccharide intercellular adhesin, and other enzymes involved in cell envelope synthesis and function were significantly up-regulated. In addition, evidence was obtained that formate fermentation, urease activity, the response to oxidative stress, and, as a consequence thereof, acid and ammonium production are up-regulated in a biofilm. These factors might contribute to survival, persistence, and growth in a biofilm environment. Interestingly, toxins and proteases were up-regulated under planktonic growth conditions. Physiological and biochemical tests for the up-regulation of urease, formate dehydrogenase, proteases, and the synthesis of staphyloxanthin confirmed the microarray data.
Collapse
Affiliation(s)
- Alexandra Resch
- Mikrobielle Genetik, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
215
|
Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 2005; 73:3007-17. [PMID: 15845508 PMCID: PMC1087347 DOI: 10.1128/iai.73.5.3007-3017.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus and coagulase-negative staphylococci, primarily Staphylococcus epidermidis, are recognized as a major cause of nosocomial infections associated with the use of implanted medical devices. It has been established that clinical isolates often produce a biofilm, which is involved in adherence to biomaterials and provides enhanced resistance of bacteria against host defenses and antibiotic treatments. It has been thought that the staphylococcal biofilm contains two polysaccharides, one responsible for primary cell adherence to biomaterials (polysaccharide/adhesin [PS/A]) and an antigen that mediates bacterial aggregation (polysaccharide intercellular adhesin [PIA]). In the present paper we present an improved procedure for preparation of PIA that conserves its labile substituents and avoids contamination with by-products. Based on structural analysis of the polysaccharide antigens and a thorough overview of the previously published data, we concluded that PIA from S. epidermidis is structurally identical to the recently described poly-beta-(1-->6)-N-acetylglucosamine from PS/A-overproducing strain S. aureus MN8m. We also show that another carbohydrate-containing polymer, extracellular teichoic acid (EC TA), is an essential component of S. epidermidis RP62A biofilms. We demonstrate that the relative amounts of extracellular PIA and EC TA produced depend on the growth conditions. Moderate shaking or static culture in tryptic soy broth favors PIA production, while more EC TA is produced in brain heart infusion medium.
Collapse
Affiliation(s)
- Irina Sadovskaya
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral-Côte d'Opale, Quai Masset, Bassin Napoléon, BP 120, 62327 Boulogne-sur-mer Cedex, France
| | | | | | | | | |
Collapse
|
216
|
Knobloch JKM, Jäger S, Huck J, Horstkotte MA, Mack D. mecA is not involved in the sigmaB-dependent switch of the expression phenotype of methicillin resistance in Staphylococcus epidermidis. Antimicrob Agents Chemother 2005; 49:1216-9. [PMID: 15728932 PMCID: PMC549230 DOI: 10.1128/aac.49.3.1216-1219.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lack of sigma(B) activity reduces methicillin resistance in heterogeneous Staphylococcus epidermidis 1057, whereas inactivation of the anti-sigma factor RsbW switched the phenotype to homogeneous expression of resistance. Oxacillin induction of mecA transcription is reduced in a sigma(B)-negative strain. However, mecA is not involved in the switch of expression phenotype.
Collapse
Affiliation(s)
- Johannes K-M Knobloch
- Universitätsklinikum Hamburg-Eppendorf, Zentrum für Klinisch-Theoretische Medizin, Institut für Infektionsmedizin, Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
217
|
Fluckiger U, Ulrich M, Steinhuber A, Döring G, Mack D, Landmann R, Goerke C, Wolz C. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun 2005; 73:1811-9. [PMID: 15731082 PMCID: PMC1064907 DOI: 10.1128/iai.73.3.1811-1819.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Biofilm formation of Staphylococcus epidermidis and S. aureus is mediated by the polysaccharide intercellular adhesin (PIA) encoded by the ica operon. We used a device-related animal model to investigate biofilm formation, PIA expression (immunofluorescence), and ica transcription (quantitative transcript analysis) throughout the course of infection by using two prototypic S. aureus strains and one S. epidermidis strain as well as corresponding ica mutants. During infection, the ica mutants were growth attenuated when inoculated in competition with the corresponding wild-type strains but not when grown singly. A typical biofilm was observed at the late course of infection. Only in S. aureus RN6390, not in S. aureus Newman, were PIA and ica-specific transcripts detectable after anaerobic growth in vitro. However, both S. aureus strains were PIA positive in vivo by day 8 of infection. ica transcription preceded PIA expression and biofilm formation in vivo. In S. epidermidis, both PIA and ica expression levels were elevated compared to those in the S. aureus strains in vitro as well as in vivo and were detectable throughout the course of infection. In conclusion, in S. aureus, PIA expression is dependent on the genetic background of the strain as well as on strong inducing conditions, such as those dominating in vivo. In S. epidermidis, PIA expression is elevated and less vulnerable to environmental conditions.
Collapse
Affiliation(s)
- Ursula Fluckiger
- Division of Infectious Diseases and Department of Research, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JKM, Ramasubbu N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 2005; 186:8213-20. [PMID: 15576769 PMCID: PMC532409 DOI: 10.1128/jb.186.24.8213-8220.2004] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are composed of bacterial cells embedded in an extracellular polysaccharide matrix. A major component of the Escherichia coli biofilm matrix is PGA, a linear polymer of N-acetyl-D-glucosamine residues in beta(1,6) linkage. PGA mediates intercellular adhesion and attachment of cells to abiotic surfaces. In this report, we present genetic and biochemical evidence that PGA is also a major matrix component of biofilms produced by the human periodontopathogen Actinobacillus actinomycetemcomitans and the porcine respiratory pathogen Actinobacillus pleuropneumoniae. We also show that PGA is a substrate for dispersin B, a biofilm-releasing glycosyl hydrolase produced by A. actinomycetemcomitans, and that an orthologous dispersin B enzyme is produced by A. pleuropneumoniae. We further show that A. actinomycetemcomitans PGA cross-reacts with antiserum raised against polysaccharide intercellular adhesin, a staphylococcal biofilm matrix polysaccharide that is genetically and structurally related to PGA. Our findings confirm that PGA functions as a biofilm matrix polysaccharide in phylogenetically diverse bacterial species and suggest that PGA may play a role in intercellular adhesion and cellular detachment and dispersal in A. actinomycetemcomitans and A. pleuropneumoniae biofilms.
Collapse
Affiliation(s)
- Jeffrey B Kaplan
- Medical Science Building, Room C-636, 185 S. Orange Ave., Newark, NJ 07103, USA.
| | | | | | | | | | | | | |
Collapse
|
219
|
Itoh Y, Wang X, Hinnebusch BJ, Preston JF, Romeo T. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 2005; 187:382-7. [PMID: 15601723 PMCID: PMC538831 DOI: 10.1128/jb.187.1.382-387.2005] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymeric beta-1,6-N-acetyl-D-glucosamine (poly-beta-1,6-GlcNAc) has been implicated as an Escherichia coli and Staphylococcus epidermidis biofilm adhesin, the formation of which requires the pgaABCD and icaABCD loci, respectively. Enzymatic hydrolysis of poly-beta-1,6-GlcNAc, demonstrated for the first time by chromatography and mass spectrometry, disrupts biofilm formation by these species and by Yersinia pestis and Pseudomonas fluorescens, which possess pgaABCD homologues.
Collapse
Affiliation(s)
- Yoshikane Itoh
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
220
|
Arciola CR, Campoccia D, Baldassarri L, Donati ME, Pirini V, Gamberini S, Montanaro L. Detection of biofilm formation inStaphylococcus epidermidis from implant infections. Comparison of a PCR-method that recognizes the presence ofica genes with two classic phenotypic methods. J Biomed Mater Res A 2005; 76:425-30. [PMID: 16270350 DOI: 10.1002/jbm.a.30552] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biofilm-forming ability is increasingly being recognized as an important virulence factor in Staphylococcus epidermidis. This study compares three different techniques for the detection of biofilm-positive strains. The presence of icaA and icaD genes responsible for biofilm synthesis was investigated by a PCR method in a collection of 80 S. epidermidis strains isolated from orthopedic implant infections. The results from molecular analysis were compared with those obtained by two classic phenotypic methods, the Congo red agar (CRA) plate test and the microtiter plate test (MtP). Fifty-seven percent of all the examined strains were found icaA/icaD-positive, of which only three were not positive for CRA test. Differently, by the MtP method, 66% of the strains were found to be biofilm-producers but only a limited agreement with the PCR-method was noticeable because of the observation of (icaA/icaD+)/MtP- strains (8%) and of a surprising ambiguous result of (icaA/icaD-)/MtP+ strains (16%). The category of the weak biofilm-producers provided the highest contribution to these mismatching results (10%). The better agreement between the CRA plate test with the molecular detection of ica genes indicates the former as a reliable test for the phenotypic characterization of virulence of clinical isolates. However, MtP method remains a precious tool for the in vitro screening of different biomaterials for the adhesive properties using a reference strain.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
221
|
Itoh Y, Wang X, Hinnebusch BJ, Preston JF, Romeo T. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 2005. [PMID: 15601723 DOI: 10.1128/jb.187.1.382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Polymeric beta-1,6-N-acetyl-D-glucosamine (poly-beta-1,6-GlcNAc) has been implicated as an Escherichia coli and Staphylococcus epidermidis biofilm adhesin, the formation of which requires the pgaABCD and icaABCD loci, respectively. Enzymatic hydrolysis of poly-beta-1,6-GlcNAc, demonstrated for the first time by chromatography and mass spectrometry, disrupts biofilm formation by these species and by Yersinia pestis and Pseudomonas fluorescens, which possess pgaABCD homologues.
Collapse
Affiliation(s)
- Yoshikane Itoh
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
222
|
Boulmedais F, Frisch B, Etienne O, Lavalle P, Picart C, Ogier J, Voegel JC, Schaaf P, Egles C. Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials 2004; 25:2003-11. [PMID: 14741614 DOI: 10.1016/j.biomaterials.2003.08.039] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adhesion of bacteria at the surface of implanted materials is the first step in microbial infection, leading to post-surgical complications. In order to reduce this adhesion, we show that poly(L-lysine)/poly(L-glutamic acid) (PLL/PGA) multilayers ending by several PLL/PGA-g-PEG bilayers can be used, PGA-g-PEG corresponding to PGA grafted by poly(ethylene glycol). Streaming potential and quartz crystal microbalance-dissipation measurements were used to characterize the buildup of these films. The multilayer films terminated by PGA and PGA-g-PEG were found to adsorb an extremely small amount of serum proteins as compared to a bare silica surface but the PGA ending films do not reduce bacterial adhesion. On the other hand, the adhesion of Escherichia coli bacteria is reduced by 72% on films ending by one (PLL/PGA-g-PEG) bilayer and by 92% for films ending by three (PLL/PGA-g-PEG) bilayers compared to bare substrate. Thus, our results show the ability of PGA-g-PEG to be inserted into multilayer films and to drastically reduce both protein adsorption and bacterial adhesion. This kind of anti-adhesive films represents a new and very simple method to coat any type of biomaterials for protection against bacterial adhesion and therefore limiting its pathological consequences.
Collapse
Affiliation(s)
- F Boulmedais
- Institut Charles Sadron, UPR 22 CNRS, 6 rue Boussingault, 67083 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Conlon KM, Humphreys H, O'Gara JP. Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J Bacteriol 2004; 186:6208-19. [PMID: 15342591 PMCID: PMC515138 DOI: 10.1128/jb.186.18.6208-6219.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/10/2004] [Indexed: 11/20/2022] Open
Abstract
Expression of ica operon-mediated biofilm formation in Staphylococcus epidermidis RP62A is subject to phase variable regulation. Reversible transposition of IS256 into icaADBC or downregulation of icaADBC expression are two important mechanisms of biofilm phenotypic variation. Interestingly, the presence of IS256 was generally associated with a more rapid rate of phenotypic variation, suggesting that IS256 insertions outside the ica locus may affect ica transcription. Consistent with this, we identified variants with diminished ica expression, which were associated with IS256 insertions in the sigmaB activator rsbU or sarA. Biofilm development and ica expression were activated only by ethanol and not NaCl in rsbU::IS256 insertion variants, which were present in approximately 11% of all variants. sigmaB activity was impaired in rsbU::IS256 variants, as evidenced by reduced expression of the sigmaB-regulated genes asp23, csb9, and rsbV. Moreover, expression of sarA, which is sigmaB regulated, and SarA-regulated RNAIII were also suppressed. A biofilm-forming phenotype was restored to rsbU::IS256 variants only after repeated passage and was not associated with IS256 excision from rsbU. Only one sarA::IS256 insertion mutant was identified among 43 biofilm-negative variants. Both NaCl and ethanol-activated ica expression in this sarA::IS256 variant, but only ethanol increased biofilm development. Unlike rsbU::IS256 variants, reversion of the sarA::IS256 variant to a biofilm-positive phenotype was accompanied by precise excision of IS256 from sarA and restoration of normal ica expression. These data identify new roles for IS256 in ica and biofilm phenotypic variation and demonstrate the capacity of this element to influence the global regulation of transcription in S. epidermidis.
Collapse
Affiliation(s)
- Kevin M Conlon
- Department of Microbiology, RCSI Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | | | | |
Collapse
|
224
|
Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JKM, Peters G, Rohde H, Herrmann M. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 2004; 294:203-12. [PMID: 15493831 DOI: 10.1016/j.ijmm.2004.06.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biomaterial-associated infections, most frequently caused by Staphylococcus epidermidis and Staphylococcus aureus, are of increasing importance in modern medicine. Regularly, antimicrobial therapy fails without removal of the implanted device. The most important factor in the pathogenesis of biomaterial-associated staphylococcal infections is the formation of adherent, multilayered bacterial biofilms. In this review, recent insights regarding factors functional in biofilm formation of S. epidermidis, their role in pathogenesis, and regulation of their expression are presented. Similarly, in S. aureus the biofilm mode of growth affects gene expression and the overall metabolic status. Experimental approaches for analysis of differential expression of genes involved in these adaptive responses and evolving patterns of gene expression are discussed.
Collapse
Affiliation(s)
- Dietrich Mack
- Institut für Infektionsmedizin, Zentrum für Klinisch-Theoretische Medizin I, Universitätsklinikum Hamburg-Eppendorf Martinistr 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Knobloch JKM, Jäger S, Horstkotte MA, Rohde H, Mack D. RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor sigmaB by repression of the negative regulator gene icaR. Infect Immun 2004; 72:3838-48. [PMID: 15213125 PMCID: PMC427440 DOI: 10.1128/iai.72.7.3838-3848.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/27/2004] [Accepted: 04/02/2004] [Indexed: 01/31/2023] Open
Abstract
Transposon mutagenesis of rsbU leads to a biofilm-negative phenotype in Staphylococcus epidermidis. However, the pathway of this regulatory mechanism was unknown. To investigate the role of RsbU in the regulation of the alternative sigma factor sigma(B) and biofilm formation, we generated different mutants of the sigma(B) operon in S. epidermidis strains 1457 and 8400. The genes rsbU, rsbV, rsbW, and sigB, as well as the regulatory cascade rsbUVW and the entire sigma(B) operon, were deleted. Transcriptional analysis of sarA and the sigma(B)-dependent gene asp23 revealed the functions of RsbU and RsbV as positive regulators and of RsbW as a negative regulator of sigma(B) activity, indicating regulation of sigma(B) activity similar to that characterized for Bacillus subtilis and Staphylococcus aureus. Phenotypic characterization of the mutants revealed that the dramatic decrease of biofilm formation in rsbU mutants is mediated via sigma(B), indicating a crucial role for sigma(B) in S. epidermidis pathogenesis. However, biofilm formation in mutants defective in sigma(B) or its function could be restored in the presence of subinhibitory ethanol concentrations. Transcriptional analysis revealed that icaR is up-regulated in mutants lacking sigma(B) function but that icaA transcription is down-regulated in these mutants, indicating a sigma(B)-dependent regulatory intermediate negatively regulating IcaR. Supplementation of growth media with ethanol decreased icaR transcription, leading to increased icaA transcription and a biofilm-positive phenotype, indicating that the ethanol-dependent induction of biofilm formation is mediated by IcaR. This icaR-dependent regulation under ethanol induction is mediated in a sigma(B)-independent manner, suggesting at least one additional regulatory intermediate in the biofilm formation of S. epidermidis.
Collapse
Affiliation(s)
- Johannes K-M Knobloch
- Universitätsklinikum Hamburg-Eppendorf, Zentrum für Klinisch-Theoretische Medizin I, Institut für Infektionsmedizin, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
226
|
Handke LD, Conlon KM, Slater SR, Elbaruni S, Fitzpatrick F, Humphreys H, Giles WP, Rupp ME, Fey PD, O'Gara JP. Genetic and phenotypic analysis of biofilm phenotypic variation in multiple Staphylococcus epidermidis isolates. J Med Microbiol 2004; 53:367-374. [PMID: 15096544 DOI: 10.1099/jmm.0.05372-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Production of biofilm in Staphylococcus epidermidis is mediated through enzymes produced by the four-gene operon ica and is subject to phenotypic variation. The purpose of these experiments was to investigate the regulation of ica and icaR transcription in phenotypic variants produced by multiple unrelated isolates of S. epidermidis. Ten isolates were chosen for the study, four of which contained IS256. IS256 mediates a reversible inactivation of ica in approximately 30 % of phenotypic variants. All ten strains produced at least two types of phenotypic variant (intermediate and smooth) in which biofilm formation was significantly impaired. Reversion studies indicated that all phenotypic variants were stable after overnight growth, but began to revert to other phenotypic forms after 5 days of incubation at 37 degrees C. ica transcriptional analysis was performed on phenotypic variants from three IS256-negative isolates; 1457, SE5 and 14765. This analysis demonstrated that ica transcription was significantly reduced in the majority of phenotypic variants, although two variants from SE5 and 1457 produced wild-type quantities of ica transcript. Analysis of seven additional phenotypic variants from SE5 revealed that ica expression was only reduced in three. Expression of icaR transcript was unaffected in all smooth phenotypic variants. Mutations within ica were identified in two SE5 variants with wild-type levels of ica transcription. It is concluded that mutation and transcriptional regulation of ica are the primary mechanisms that govern phenotypic variation of biofilm formation within IS256-negative S. epidermidis.
Collapse
Affiliation(s)
- L D Handke
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - K M Conlon
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - S R Slater
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - S Elbaruni
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - F Fitzpatrick
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - H Humphreys
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - W P Giles
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - M E Rupp
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - P D Fey
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J P O'Gara
- Departments of Pathology and Microbiology1 and Internal Medicine3, University of Nebraska Medical Center, Omaha, NE, USA 2Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland 4Department of Biology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
227
|
Wang X, Preston JF, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 2004; 186:2724-34. [PMID: 15090514 PMCID: PMC387819 DOI: 10.1128/jb.186.9.2724-2734.2004] [Citation(s) in RCA: 465] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 01/27/2004] [Indexed: 11/20/2022] Open
Abstract
Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched beta-1,6-N-acetyl-D-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-beta-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria.
Collapse
Affiliation(s)
- Xin Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
228
|
Wang X, Preston JF, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 2004. [PMID: 15090514 DOI: 10.1128/jb.186.9.2724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched beta-1,6-N-acetyl-D-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-beta-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria.
Collapse
Affiliation(s)
- Xin Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
229
|
Maira-Litran T, Kropec A, Goldmann D, Pier GB. Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine 2004; 22:872-9. [PMID: 15040940 DOI: 10.1016/j.vaccine.2003.11.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Staphylococci have become the most common causes of nosocomial bacterial infections, and this fact, along with increasing problems associated with antimicrobial resistance, spurs the need for finding immunotherapeutic alternatives to prevent and possibly treat these infections. Most virulent, clinical isolates of both coagulase-negative staphylococci (CoNS) and Staphylococcus aureus carry the ica locus which encodes proteins that synthesize a polymer of beta-1-6 linked N-acetyl glucosamine residues (PNAG). Animal studies have shown purified PNAG can elicit protective immunity against both CoNS and S. aureus, suggesting its potential as a broadly protective vaccine for many clinically important strains of staphylococci.
Collapse
Affiliation(s)
- Tomas Maira-Litran
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
230
|
Lim Y, Jana M, Luong TT, Lee CY. Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J Bacteriol 2004; 186:722-9. [PMID: 14729698 PMCID: PMC321492 DOI: 10.1128/jb.186.3.722-729.2004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Both Staphylococcus aureus and S. epidermidis are capable of forming biofilm on biomaterials. We used Tn917 mutagenesis to identify a gene, rbf, affecting biofilm formation in S. aureus NCTC8325-4. Sequencing revealed that Rbf contained a consensus region signature of the AraC/XylS family of regulators, suggesting that Rbf is a transcriptional regulator. Insertional duplication inactivation of the rbf gene confirmed that the gene was involved in biofilm formation on polystyrene and glass. Phenotypic analysis of the wild type and the mutant suggested that the rbf gene mediates the biofilm formation of S. aureus at the multicellular aggregation stage rather than at initial attachment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the mutation resulted in the loss of an approximately 190-kDa protein. Biofilm production by the mutant could be restored by complementation with a 2.5-kb DNA fragment containing the rbf gene. The rbf-specific mutation affected the induction of biofilm formation by glucose and a high concentration of NaCl but not by ethanol. The mutation did not affect the transcription of the ica genes previously shown to be required for biofilm formation. Taken together, our results suggest that the rbf gene is involved in the regulation of the multicellular aggregation step of S. aureus biofilm formation in response to glucose and salt and that this regulation may be mediated through the 190-kDa protein.
Collapse
Affiliation(s)
- Yong Lim
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
231
|
Knobloch JKM, Nedelmann M, Kiel K, Bartscht K, Horstkotte MA, Dobinsky S, Rohde H, Mack D. Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl Environ Microbiol 2004; 69:5812-8. [PMID: 14532029 PMCID: PMC201197 DOI: 10.1128/aem.69.10.5812-5818.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.
Collapse
Affiliation(s)
- Johannes K-M Knobloch
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JKM, Horstkotte MA, Mack D. Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 2003; 185:2879-86. [PMID: 12700267 PMCID: PMC154395 DOI: 10.1128/jb.185.9.2879-2886.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 01/21/2003] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation in Staphylococcus epidermidis depends, in the majority of the strains, on the activity of the icaADBC locus. The expression of the operon that encodes the synthetic enzymes of the intercellular polysaccharide adhesin (PIA) depends on a variety of exogenic environmental conditions and is, at least in part, regulated by the alternative sigma factor sigma(B). We investigated the transcriptional regulation of the ica operon and the respective phenotypes expressed under growth conditions differing in the content of glucose in the growth medium. In the presence of glucose, S. epidermidis exhibited a PIA- and biofilm-positive phenotype whereas ica transcription was down-regulated in the postexponential and stationary phases of growth. Surprisingly, maximum transcription of ica was detectable in the stationary phase of growth in the absence of glucose despite the expression of a PIA- and biofilm-negative phenotype. In vitro enzymatic assays and phenotypic characterization showed that the abundant amount of ica mRNA was functionally active because induction of stationary-phase cells with glucose led to immediate PIA synthesis. Induction of biofilm formation could be completely inhibited by chloramphenicol, which, given at a later stage of biofilm accumulation, also inhibited further development of preformed biofilm, indicating that continuous translation of an additional, icaADBC-independent factor is required for the expression of a biofilm-positive phenotype.
Collapse
Affiliation(s)
- Sabine Dobinsky
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
233
|
Fitzpatrick F, Humphreys H, Smyth E, Kennedy CA, O'Gara JP. Environmental regulation of biofilm formation in intensive care unit isolates of Staphylococcus epidermidis. J Hosp Infect 2002; 52:212-8. [PMID: 12419274 DOI: 10.1053/jhin.2002.1309] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Staphylococcus epidermidis is a common cause of prosthetic device-related infection in the intensive care unit (ICU). The environmentally regulated ica operon encodes a polysaccharide adhesin which is a key virulence determinant in the development of S. epidermidis biofilms. To evaluate the capacity of ICU S. epidermidis isolates to form biofilm, we measured biofilm production by 18 isolates associated with device-related infection and 20 contaminating isolates that were not associated with clinically diagnosed infection. Biofilm assays were performed in brain-heart infusion (BHI) medium and in BHI supplemented with salt, ethanol or subinhibitory tetracycline, all of which have the potential to promote biofilm formation. Polymerase chain reaction (PCR) was used to screen for the presence of the ica genes. A significant proportion of S. epidermidis strains associated with device-related infections (89%) were found to contain the ica locus compared with 50% of contaminating isolates (P = 0.01). However only four of 26 (15.3%) of all ica-positive isolates were biofilm-positive when grown in BHI medium, indicating that no significant association existed between the presence of the ica locus and biofilm-forming capacity, under standard growth conditions. In contrast the number of ica-positive isolates that were biofilm-positive under stress-inducing growth conditions or in the presence of subinhibitory tetracycline increased significantly to 73% (P = 0.02). These findings suggest that the presence of the ica locus alone is not sufficient for biofilm formation and that regulation of biofilm formation under altered growth conditions, which may exist in the in vivo environment, also plays a possible role in the pathogenesis of biomaterial-related S. epidermidis infections.
Collapse
Affiliation(s)
- F Fitzpatrick
- Department of Microbiology, RCSI Education and Research Centre, Smurfit Building, Royal College of Surgeons in Ireland, Dubliq, Ireland
| | | | | | | | | |
Collapse
|
234
|
Conlon KM, Humphreys H, O'Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 2002; 184:4400-8. [PMID: 12142410 PMCID: PMC135245 DOI: 10.1128/jb.184.16.4400-4408.2002] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation in Staphylococcus epidermidis is dependent upon the ica operon-encoded polysaccharide intercellular adhesin, which is subject to phase-variable and environmental regulation. The icaR gene, located adjacent to the ica operon, appears to be a member of the tetR family of transcriptional regulators. In the reference strain RP62A, reversible inactivation of the ica operon by IS256 accounts for 25 to 33% of phase variants. In this study, icaA and icaR regulation were compared in RP62A and a biofilm-forming clinical isolate, CSF41498, in which IS256 is absent. Predictably, ica operon expression was detected only in wild-type CSF41498 and RP62A but not in non-IS256-generated phase variants. In contrast, the icaR gene was not expressed in RP62A phase variants but was expressed in CSF41498 variants. An icaR::Em(r) insertion mutation in CSF41498 resulted in an at least a 5.8-fold increase in ica operon expression but did not significantly alter regulation of the icaR gene itself. Activation of ica operon transcription by ethanol in CSF41498 was icaR dependent. In contrast, a small but significant induction of ica by NaCl and glucose (NaCl-glucose) was observed in the icaR::Em(r) mutant. In addition, transcription of the icaR gene itself was not significantly affected by NaCl-glucose but was repressed by ethanol. Expression of the ica operon was induced by ethanol or NaCl-glucose in phase variants of CSF41498 (icaR+) but not in RP62A variants (icaR deficient). These data indicate that icaR encodes a repressor of ica operon transcription required for ethanol but not NaCl-glucose activation of ica operon expression and biofilm formation.
Collapse
Affiliation(s)
- Kevin M Conlon
- Department of Microbiology, RCSI Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | | | | |
Collapse
|
235
|
Ohara-Nemoto Y, Ikeda Y, Kobayashi M, Sasaki M, Tajika S, Kimura S. Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis. Microb Pathog 2002; 33:33-41. [PMID: 12127798 DOI: 10.1006/mpat.2002.0515] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel extracellular endopeptidase, designated GluSE, was purified from Staphylococcus epidermidis ATCC 14990 cultured by the dialysis membrane technique, and the structural gene (gseA) was cloned. GluSE was a 27kDa, glutamic acid-specific protease, and the optimal pH was 8.0. The proteolytic activity was specifically inhibited with diisopropyl fluorophosphate, indicating that it is a serine protease. The gseA encoded a single polypeptide of 282 amino acids with a deduced molecular weight of 30,809, in which the first 19 N-terminal amino acids completely matched the deduced sequence starting at Val-67, suggesting that GluSE is synthesized with a propeptide. The amino acid sequence of GluSE exhibited 50.5% identity to Staphylococcus aureus V8-protease (GluV8). Although GluSE lacks a C-terminal 12 repeats of the PBN/PBZ tripeptide of GluV8, a catalytic triad of His-117, Asp-159 and Ser-235 was conserved in GluSE. Southern hybridization analysis revealed that gseA exists as a single copy on the chromosomal DNA. The finding that production of GluSE was obviously observed in the adherent culture conditions of the dialysis membrane technique, but not in the planktonic culture conditions, strongly suggests that GluSE could be involved in an important etiologic process in S.epidermidis infection leading to multiple tissue damages.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Microbiology, Iwate Medical University School of Dentistry, Morioka, Japan.
| | | | | | | | | | | |
Collapse
|
236
|
Abstract
OBJECTIVE To determine whether fibrin-coated central venous catheters have a higher infection rate, and spawn more septic emboli, than uncoated catheters after exposure to bacteremia. DESIGN Animal study comparing catheter infection and blood cultures of fibrin-coated and uncoated catheters exposed to bacteremia. SETTING Animal laboratory. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTIONS A total of 210 rats had catheters placed with the proximal end buried subcutaneously. Rats were divided into three groups: tail vein bacterial injection on day 0 (no fibrin group) or on day 10 (fibrin group), or no injection/saline injection (control, n = 40). Bacterial injections were 1 x 108 colony forming units of either Staphylococcus epidermidis (n = 100) or Enterobacter cloacae (n = 60). Animals were killed 3 days after injection. Blood cultures were obtained via cardiac puncture, and catheters were removed via the chest. Half of the catheter was rolled onto agar and the other half was placed in trypticase soy broth. Plates and broth were incubated at 37 degrees C for 48 hrs. The presence of >15 colonies on roll plates, or growth in broth, was accepted as a positive sign of infection. Microscopy was performed on day 20-10 catheters. Thirty animals without catheters had bacterial injections and underwent blood culture 3 days after injection. MEASUREMENTS AND MAIN RESULTS Catheter infection with S. epidermidis occurred in 32% of roll plates and 80% of broth from the fibrin group vs. 4% and 20% from the no fibrin group (p <.01 for each). Catheter infection with E. cloacae occurred in 50% of roll plates and 80% of broth from the fibrin group vs. 0% and 12% from the no fibrin group (p <.01 for each). Positive blood cultures occurred in 47 of 68 animals from the fibrin group vs. 8 of 68 from the no fibrin group (p <.01). Microscopy showed a fibrin sheath on 20 of 20 catheters. Without catheters, 30 of 30 blood cultures were negative. CONCLUSION The fibrin sheath significantly enhanced catheter-related infection and persistent bacteremia.
Collapse
Affiliation(s)
- John R Mehall
- Department of Pediatric Surgery, Arkansas Children's Hospital, the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | |
Collapse
|
237
|
Abstract
The process of surface adhesion and biofilm development is a survival strategy employed by virtually all bacteria and refined over millions of years. This process is designed to anchor microorganisms in a nutritionally advantageous environment and to permit their escape to greener pastures when essential growth factors have been exhausted. Bacterial attachment to a surface can be divided into several distinct phases, including primary and reversible adhesion, secondary and irreversible adhesion, and biofilm formation. Each of these phases is ultimately controlled by the expression of one or more gene products. Ultrastructurally, the mature bacterial biofilm resembles an underwater coral reef containing pyramidal or mushroom-shaped microcolonies of organisms embedded within an extracellular glycocalyx, with channels and cavities to allow the exchange of nutrients and waste. The biofilm protects its inhabitants from predators, dehydration, biocides, and other environmental extremes while regulating population growth and diversity through primitive cell signals. From a physiological standpoint, surface-bound bacteria behave quite differently from their planktonic counterparts. Recognizing that bacteria naturally occur as surface-bound and often polymicrobic communities, the practice of performing antimicrobial susceptibility tests using pure cultures and in a planktonic growth mode should be questioned. That this model does not reflect conditions found in nature might help explain the difficulties encountered in the management and treatment of biomedical implant infections.
Collapse
Affiliation(s)
- W Michael Dunne
- Department of Pathology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA.
| |
Collapse
|
238
|
Abstract
The process of surface adhesion and biofilm development is a survival strategy employed by virtually all bacteria and refined over millions of years. This process is designed to anchor microorganisms in a nutritionally advantageous environment and to permit their escape to greener pastures when essential growth factors have been exhausted. Bacterial attachment to a surface can be divided into several distinct phases, including primary and reversible adhesion, secondary and irreversible adhesion, and biofilm formation. Each of these phases is ultimately controlled by the expression of one or more gene products. Ultrastructurally, the mature bacterial biofilm resembles an underwater coral reef containing pyramidal or mushroom-shaped microcolonies of organisms embedded within an extracellular glycocalyx, with channels and cavities to allow the exchange of nutrients and waste. The biofilm protects its inhabitants from predators, dehydration, biocides, and other environmental extremes while regulating population growth and diversity through primitive cell signals. From a physiological standpoint, surface-bound bacteria behave quite differently from their planktonic counterparts. Recognizing that bacteria naturally occur as surface-bound and often polymicrobic communities, the practice of performing antimicrobial susceptibility tests using pure cultures and in a planktonic growth mode should be questioned. That this model does not reflect conditions found in nature might help explain the difficulties encountered in the management and treatment of biomedical implant infections.
Collapse
Affiliation(s)
- W Michael Dunne
- Department of Pathology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA.
| |
Collapse
|
239
|
Abstract
The genetic and molecular basis of biofilm formation in staphylococci is multifaceted. The ability to form a biofilm affords at least two properties: the adherence of cells to a surface and accumulation to form multilayered cell clusters. A trademark is the production of the slime substance PIA, a polysaccharide composed of beta-1,6-linked N-acetylglucosamines with partly deacetylated residues, in which the cells are embedded and protected against the host's immune defence and antibiotic treatment. Mutations in the corresponding biosynthesis genes (ica operon) lead to a pleiotropic phenotype; the cells are biofilm and haemagglutination negative, less virulent and less adhesive on hydrophilic surfaces. ica expression is modulated by various environmental conditions, appears to be controlled by SigB and can be turned on and off by insertion sequence (IS) elements. A number of biofilm-negative mutants have been isolated in which polysaccharide intercellular adhesin (PIA) production appears to be unaffected. Two of the characterized mutants are affected in the major autolysin (atlE) and in D-alanine esterification of teichoic acids (dltA). Proteins have been identified that are also involved in biofilm formation, such as the accumulation-associated protein (AAP), the clumping factor A (ClfA), the staphylococcal surface protein (SSP1) and the biofilm-associated protein (Bap). Concepts for the prevention of obstinate polymer-associated infections include the search for new anti-infectives active in biofilms and new biocompatible materials that complicate biofilm formation and the development of vaccines.
Collapse
Affiliation(s)
- Friedrich Götz
- Department of Microbial Genetics, Universität Tübingen, Waldhäuser Str. 70/8, D-72076 Tübingen, Germany.
| |
Collapse
|
240
|
Mack D, Sabottke A, Dobinsky S, Rohde H, Horstkotte MA, Knobloch JKM. Differential expression of methicillin resistance by different biofilm-negative Staphylococcus epidermidis transposon mutant classes. Antimicrob Agents Chemother 2002; 46:178-83. [PMID: 11751130 PMCID: PMC127015 DOI: 10.1128/aac.46.1.178-183.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation mediated by polysaccharide intercellular adhesin (PIA) is the major virulence factor of Staphylococcus epidermidis and is often associated with methicillin resistance. Transposon Tn917 insertions leading to a biofilm-negative phenotype in the biofilm-producing S. epidermidis strain 1457 (mecA-negative) were transferred into the methicillin-resistant, biofilm-producing S. epidermidis 1057 (mecA-positive) by transduction. According to their phenotypes and genotypes, the mutants could be separated into genetic classes I to IV (D. Mack, H. Rohde, S. Dobinsky, J. Riedewald, M. Nedelmann, J. K. M. Knobloch, H.-A. Elsner, and H. H. Feucht, Infect. Immun. 68:3799-3807, 2000). All transductants of S. epidermidis 1057 had phenotypes for biofilm formation similar to those of the corresponding mutants of S. epidermidis 1457. With a mecA-specific probe, identical hybridization patterns were observed for wild-type S. epidermidis 1057 and all the transductants. There were minor changes in oxacillin MICs for Class II and III transductants compared to those for wild-type S. epidermidis 1057. On population analysis, S. epidermidis 1057 displayed a heterogeneous expression type of resistance with an oxacillin MIC of > or =6 microg/ml for more than 90% of the cells. An almost identical profile was observed with biofilm-negative class I mutants, where the transposon insertions inactivate the icaADBC gene locus essential for PIA synthesis. In contrast, class III mutants were more sensitive to oxacillin with a MIC of < or =1 microg/ml for more than 90% of the cells. The class IV mutant displayed homogeneous resistance with a MIC of > or =50 microg/ml for more than 90% of the cells. On oxacillin gradient plates, the class II mutant displayed decreased resistance. Apparently, different independent mutations leading to a biofilm-negative phenotype of S. epidermidis by influencing expression of icaADBC on the level of transcription significantly influence the expression of methicillin resistance. However, transcription of mecA was not significantly altered in the different transductants compared to the wild type, independent of mecA induction with oxacillin, indicating that other mechanisms influencing phenotypic expression of methicillin resistance are involved.
Collapse
Affiliation(s)
- Dietrich Mack
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Federal Republic of Germany.
| | | | | | | | | | | |
Collapse
|
241
|
Dobinsky S, Bartscht K, Mack D. Influence of Tn917 insertion on transcription of the icaADBC operon in six biofilm-negative transposon mutants of Staphylococcus epidermidis. Plasmid 2002; 47:10-7. [PMID: 11798281 DOI: 10.1006/plas.2001.1554] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insertion of Tn917 into the icaADBC operon determines a biofilm-negative phenotype in biofilm-producing Staphylococcus epidermidis due to the inactivation of the genes responsible for the synthesis of the polysaccharide intercellular adhesin. We previously characterized six isogenic biofilm-negative transposon mutants of S. epidermidis 1457 with Tn917 insertions in either icaA or icaC. Northern blot analysis using ica- and Tn917-specific probes revealed that ica sequences located upstream and downstream of the transposon insertion site were still transcribed in five mutants in which Tn917 was inserted in the same transcriptional orientation. Outward-directed transcription initiating from within the transposon resulted in the complete expression of individual ica genes. Our results indicate that not only the inactivation of the entire operon but the isolated interruption of individual icaA and icaC genes led to a biofilm-negative phenotype in S. epidermidis. Tn917 mutagenesis may also result in the activation of genes located downstream of the insertion site.
Collapse
Affiliation(s)
- Sabine Dobinsky
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg, D-20246, Germany.
| | | | | |
Collapse
|
242
|
Polonio RE, Mermel LA, Paquette GE, Sperry JF. Eradication of biofilm-forming Staphylococcus epidermidis (RP62A) by a combination of sodium salicylate and vancomycin. Antimicrob Agents Chemother 2001; 45:3262-6. [PMID: 11600396 PMCID: PMC90822 DOI: 10.1128/aac.45.11.3262-3266.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a major cause of infections associated with indwelling medical devices. Biofilm production is an important virulence attribute in the pathogenesis of device-related infections. Therefore, elimination of these biofilms is an ideal treatment. Salicylate (5 mM) combined with 1 microg of vancomycin per ml inhibited biofilm formation by S. epidermidis (RP62A) by >or=99.9%. When biofilm-coated polystyrene beads were exposed to 5 mM sodium salicylate and 4 microg of vancomycin per ml (one-half the minimum biofilm eradication concentration), there was a >99.9% reduction in viable count.
Collapse
Affiliation(s)
- R E Polonio
- Department of Biochemistry, Microbiology and Molecular Genetics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
243
|
Dobinsky S, Mack D. Efficient RNA isolation method for analysis of transcription in sessile Staphylococcus epidermidis biofilm cultures. Methods Enzymol 2001; 336:255-62. [PMID: 11398403 DOI: 10.1016/s0076-6879(01)36594-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S Dobinsky
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | |
Collapse
|
244
|
Rupp ME, Fey PD. In vivo models to evaluate adhesion and biofilm formation by Staphylococcus epidermidis. Methods Enzymol 2001; 336:206-15. [PMID: 11398400 DOI: 10.1016/s0076-6879(01)36591-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M E Rupp
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
245
|
Mack D, Bartscht K, Fischer C, Rohde H, de Grahl C, Dobinsky S, Horstkotte MA, Kiel K, Knobloch JK. Genetic and biochemical analysis of Staphylococcus epidermidis biofilm accumulation. Methods Enzymol 2001; 336:215-39. [PMID: 11398401 DOI: 10.1016/s0076-6879(01)36592-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- D Mack
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Deighton MA, Capstick J, Domalewski E, van Nguyen T. Methods for studying biofilms produced by Staphylococcus epidermidis. Methods Enzymol 2001; 336:177-95. [PMID: 11403072 DOI: 10.1016/s0076-6879(01)36589-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- M A Deighton
- Department of Biotechnology and Environmental Biology, Royal Melbourne Institute of Technology, Bundoora 3083, Victoria, Australia
| | | | | | | |
Collapse
|
247
|
Affiliation(s)
- S E Cramton
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
248
|
Labit CM, Claeys GW, Verbraeken HE, Verschraegen GL. Methicillin resistance of bacteria isolated from vitreous fluid from patients undergoing vitrectomy. Eur J Ophthalmol 2001; 11:160-5. [PMID: 11456018 DOI: 10.1177/112067210101100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to compare the resistance patterns of bacteria in vitreous fluid from patients undergoing vitrectomy for diagnostic reasons, with bacteria of other nosocomial infections. METHODS Vitreous fluid samples (n=144) were obtained from 133 patients undergoing vitrectomy for endophthalmitis, and 11 for uveitis as suspected endophthalmitis. They were Gram stained and cultured. Antibiotic susceptibility tests were run on all isolates. RESULTS Gram stains were positive in 45/144 cases (31%), among which 38/45 (84%) were confirmed by a positive culture. Cultures were positive in 74/144 patients (51%) with mainly coagulase-negative staphylococci (n = 44) and Staphylococcus aureus (n = 13). In 133 patients endophthalmitis occurred after lens implantation (80 cases) and in 53 cases there was another origin (e.g. corneal transplantation, endogenous). In 26/80 post-lens implantation infections, culture remained negative; 32 infections occurred with coagulase-negative staphylococci, 10 with Staphylococcus aureus, 9 with streptococci and 3 with gram-negative bacteria. For endophthalmitis, ophthalmologists in our institution give an intraocular injection of vanccmycin and ceftazidim after vitrectomy. Among the 44 isolates of coagulase-negative staphylococci, 12 (27%) were resistant to methicillin. This is in contrast to other hospital-related coagulase-negative staphylococcus infections in general, and the resistance rate is 75% in our hospital. Only 2/13 Staphylococcus aureus isolates were methicillin-resistant. CONCLUSIONS We conclude that isolates of coagulase-negative staphylococci from vitreous fluid are less resistant to methicillin than those isolated in other nosocomial infections.
Collapse
Affiliation(s)
- C M Labit
- Laboratory of Bacteriology and Virology, University Hospital, RUG, Gent, Belgium
| | | | | | | |
Collapse
|
249
|
Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 2001; 183:2624-33. [PMID: 11274123 PMCID: PMC95180 DOI: 10.1128/jb.183.8.2624-2633.2001] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 01/04/2001] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a common pathogen in medical device-associated infections. Its major pathogenetic factor is the ability to form adherent biofilms. The polysaccharide intercellular adhesin (PIA), which is synthesized by the products of the icaADBC gene cluster, is essential for biofilm accumulation. In the present study, we characterized the gene locus inactivated by Tn917 insertions of two isogenic, icaADBC-independent, biofilm-negative mutants, M15 and M19, of the biofilm-producing bacterium S. epidermidis 1457. The insertion site was the same in both of the mutants and was located in the first gene, rsbU, of an operon highly homologous to the sigB operons of Staphylococcus aureus and Bacillus subtilis. Supplementation of Trypticase soy broth with NaCl (TSB(NaCl)) or ethanol (TSB(EtOH)), both of which are known activators of sigB, led to increased biofilm formation and PIA synthesis by S. epidermidis 1457. Insertion of Tn917 into rsbU, a positive regulator of alternative sigma factor sigma(B), led to a biofilm-negative phenotype and almost undetectable PIA production. Interestingly, in TSB(EtOH), the mutants were enabled to form a biofilm again with phenotypes similar to those of the wild type. In TSB(NaCl), the mutants still displayed a biofilm-negative phenotype. No difference in primary attachment between the mutants and the wild type was observed. Similar phenotypic changes were observed after transfer of the Tn917 insertion of mutant M15 to the independent and biofilm-producing strain S. epidermidis 8400. In 11 clinical S. epidermidis strains, a restriction fragment length polymorphism of the sigB operon was detected which was independent of the presence of the icaADBC locus and a biofilm-positive phenotype. Obviously, different mechanisms are operative in the regulation of PIA expression in stationary phase and under stress induced by salt or ethanol.
Collapse
Affiliation(s)
- J K Knobloch
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
250
|
Bechert T, Steinrücke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nat Med 2000; 6:1053-6. [PMID: 10973328 DOI: 10.1038/79568] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- T Bechert
- Clinic for Children and Adolescents, University of Erlangen-Nuremberg, Loschgestr. 15, 91054 Erlangen, Germany.
| | | | | |
Collapse
|