201
|
Fitzpatrick F, Humphreys H, Smyth E, Kennedy CA, O'Gara JP. Environmental regulation of biofilm formation in intensive care unit isolates of Staphylococcus epidermidis. J Hosp Infect 2002; 52:212-8. [PMID: 12419274 DOI: 10.1053/jhin.2002.1309] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Staphylococcus epidermidis is a common cause of prosthetic device-related infection in the intensive care unit (ICU). The environmentally regulated ica operon encodes a polysaccharide adhesin which is a key virulence determinant in the development of S. epidermidis biofilms. To evaluate the capacity of ICU S. epidermidis isolates to form biofilm, we measured biofilm production by 18 isolates associated with device-related infection and 20 contaminating isolates that were not associated with clinically diagnosed infection. Biofilm assays were performed in brain-heart infusion (BHI) medium and in BHI supplemented with salt, ethanol or subinhibitory tetracycline, all of which have the potential to promote biofilm formation. Polymerase chain reaction (PCR) was used to screen for the presence of the ica genes. A significant proportion of S. epidermidis strains associated with device-related infections (89%) were found to contain the ica locus compared with 50% of contaminating isolates (P = 0.01). However only four of 26 (15.3%) of all ica-positive isolates were biofilm-positive when grown in BHI medium, indicating that no significant association existed between the presence of the ica locus and biofilm-forming capacity, under standard growth conditions. In contrast the number of ica-positive isolates that were biofilm-positive under stress-inducing growth conditions or in the presence of subinhibitory tetracycline increased significantly to 73% (P = 0.02). These findings suggest that the presence of the ica locus alone is not sufficient for biofilm formation and that regulation of biofilm formation under altered growth conditions, which may exist in the in vivo environment, also plays a possible role in the pathogenesis of biomaterial-related S. epidermidis infections.
Collapse
Affiliation(s)
- F Fitzpatrick
- Department of Microbiology, RCSI Education and Research Centre, Smurfit Building, Royal College of Surgeons in Ireland, Dubliq, Ireland
| | | | | | | | | |
Collapse
|
202
|
Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ. sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 2002; 184:5457-67. [PMID: 12218034 PMCID: PMC135357 DOI: 10.1128/jb.184.19.5457-5467.2002] [Citation(s) in RCA: 567] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accessory sigma factor sigmaB controls a general stress response that is thought to be important for Staphylococcus aureus survival and may contribute to virulence. The strain of choice for genetic studies, 8325-4, carries a small deletion in rsbU, which encodes a positive regulator of sigmaB activity. Consequently, to enable the role of sigmaB in virulence to be addressed, we constructed an rsbU(+) derivative, SH1000, using a method that does not leave behind an antibiotic resistance marker. The phenotypic properties of SH1000 (8325-4 rsbU(+)) were characterized and compared to those of 8325-4, the rsbU mutant, parent strain. A recognition site for sigmaB was located in the promoter region of katA, the gene encoding the sole catalase of S. aureus, by primer extension analysis. However, catalase expression and activity were similar in SH1000 (8325-4 rsbU(+)), suggesting that this promoter may have a minor role in catalase expression under normal conditions. Restoration of sigmaB activity in SH1000 (8325-4 rsbU(+)) resulted in a marked decrease in the levels of the exoproteins SspA and Hla, and this is likely to be mediated by reduced expression of agr in this strain. By using Western blotting and a sarA-lacZ reporter assay, the levels of SarA were found to be similar in strains 8325-4 and SH1000 (8325-4 rsbU(+)) and sigB mutant derivatives of these strains. This finding contrasts with previous reports that suggested that SarA expression levels are altered when they are measured transcriptionally. Inactivation of sarA in each of these strains resulted in an expected decrease in agr expression; however, the relative level of agr in SH1000 (8325-4 rsbU(+)) remained less than the relative levels in 8325-4 and the sigB mutant derivatives. We suggest that SarA is not likely to be the effector in the overall sigmaB-mediated effect on agr expression.
Collapse
Affiliation(s)
- Malcolm J Horsburgh
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, England S10 2TN
| | | | | | | | | | | |
Collapse
|
203
|
Abstract
A biofilm may be defined as a microbially derived, sessile community characterized by cells that attach to an interface, embed in a matrix of exopolysaccharide, and demonstrate an altered phenotype. This review covers the current understanding of the nature of biofilms and the impact that molecular interactions may have on biofilm development and phenotype using the motile gram-negative rod Pseudomonas aeruginosa and the nonmotile gram-positive cocci Staphylococcus aureus as examples.
Collapse
Affiliation(s)
- Mark E Shirtliff
- Center for Biofilm Engineering, Montana State University, Bozeman 59717, USA
| | | | | |
Collapse
|
204
|
Conlon KM, Humphreys H, O'Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 2002; 184:4400-8. [PMID: 12142410 PMCID: PMC135245 DOI: 10.1128/jb.184.16.4400-4408.2002] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation in Staphylococcus epidermidis is dependent upon the ica operon-encoded polysaccharide intercellular adhesin, which is subject to phase-variable and environmental regulation. The icaR gene, located adjacent to the ica operon, appears to be a member of the tetR family of transcriptional regulators. In the reference strain RP62A, reversible inactivation of the ica operon by IS256 accounts for 25 to 33% of phase variants. In this study, icaA and icaR regulation were compared in RP62A and a biofilm-forming clinical isolate, CSF41498, in which IS256 is absent. Predictably, ica operon expression was detected only in wild-type CSF41498 and RP62A but not in non-IS256-generated phase variants. In contrast, the icaR gene was not expressed in RP62A phase variants but was expressed in CSF41498 variants. An icaR::Em(r) insertion mutation in CSF41498 resulted in an at least a 5.8-fold increase in ica operon expression but did not significantly alter regulation of the icaR gene itself. Activation of ica operon transcription by ethanol in CSF41498 was icaR dependent. In contrast, a small but significant induction of ica by NaCl and glucose (NaCl-glucose) was observed in the icaR::Em(r) mutant. In addition, transcription of the icaR gene itself was not significantly affected by NaCl-glucose but was repressed by ethanol. Expression of the ica operon was induced by ethanol or NaCl-glucose in phase variants of CSF41498 (icaR+) but not in RP62A variants (icaR deficient). These data indicate that icaR encodes a repressor of ica operon transcription required for ethanol but not NaCl-glucose activation of ica operon expression and biofilm formation.
Collapse
Affiliation(s)
- Kevin M Conlon
- Department of Microbiology, RCSI Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | | | | |
Collapse
|
205
|
Nadon CA, Bowen BM, Wiedmann M, Boor KJ. Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 2002; 70:3948-52. [PMID: 12065541 PMCID: PMC128067 DOI: 10.1128/iai.70.7.3948-3952.2002] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Listeria monocytogenes positive regulatory factor A protein (PrfA) is initiated from either of two promoters immediately upstream of prfA (prfAp(1) and prfAp(2)) or from the upstream plcA promoter. We demonstrate that prfAp(2) is a functional sigma(B)-dependent promoter and that a sigB deletion mutation affects the virulence phenotype of L. monocytogenes. Thus, the alternative sigma factor sigma(B) contributes to virulence in L. monocytogenes.
Collapse
Affiliation(s)
- Celine A Nadon
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
206
|
Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, Von Holy A, Brözel VS. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 2002; 68:2770-80. [PMID: 12039732 PMCID: PMC123966 DOI: 10.1128/aem.68.6.2770-2780.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus, a dairy-associated toxigenic bacterium, readily forms biofilms on various surfaces and was used to gain a better understanding of biofilm development by gram-positive aerobic rods. B. cereus DL5 was shown to readily adapt to an attached mode of growth, with dense biofilm structures developing within 18 h after inoculation when glass wool was used as a surface. Two-dimensional gel electrophoresis (2DE) revealed distinct and reproducible phenotypic differences between 2- and 18-h-old biofilm and planktonic cells (grown both in the presence and in the absence of glass wool). Whereas the 2-h-old biofilm proteome indicated expression of 15 unique proteins, the 18-h-old biofilm proteome contained 7 uniquely expressed proteins. Differences between the microcolony (2-h) proteome and the more developed biofilm (18-h) proteome were largely due to up- and down-regulation of the expression of a multitude of proteins. Selected protein spots excised from 2DE gels were subjected to N-terminal sequencing and identified with high confidence. Among the proteins were catabolic ornithine carbamoyltransferase and L-lactate dehydrogenase. Interestingly, increased levels of YhbH, a member of the sigma 54 modulation protein family which is strongly induced in response to environmental stresses and energy depletion via both sigma(B) and sigma(H), could be observed within 2 h in both attached cells and planktonic cultures growing in the presence of glass wool, indicating that this protein plays an important role in regulation of the biofilm phenotype. Distinct band differences were also found between the extracellular proteins of 18-h-old cultures grown in the presence and in the absence of glass wool.
Collapse
Affiliation(s)
- Marinda C Oosthuizen
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, 2050, South Africa.
| | | | | | | | | | | | | |
Collapse
|
207
|
Sakoulas G, Eliopoulos GM, Moellering RC, Wennersten C, Venkataraman L, Novick RP, Gold HS. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 2002; 46:1492-502. [PMID: 11959587 PMCID: PMC127153 DOI: 10.1128/aac.46.5.1492-1502.2002] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The majority of infections with glycopeptide intermediate-level resistant Staphylococcus aureus (GISA) originate in biomedical devices, suggesting a possible increased ability of these strains to produce biofilm. Loss of function of the accessory gene regulator (agr) of S. aureus has been suggested to confer an enhanced ability to bind to polystyrene. We studied agr in GISA, hetero-GISA, and related glycopeptide-susceptible S. aureus isolates. All GISA strains from diverse geographic origins belong to agr group II. All GISA strains were defective in agr function, as demonstrated by their inability to produce delta-hemolysin. Hetero-GISA isolate A5940 demonstrated a nonsense mutation in agrA that was not present in a pulsed-field gel electrophoresis-indistinguishable vancomycin-susceptible isolate from the same patient. Various other agr point mutations were noted in several clinical GISA and hetero-GISA isolates. A laboratory-generated agr-null strain demonstrated a small but reproducible increase in vancomycin heteroresistance after growth in vitro in subinhibitory concentrations of vancomycin. This was not seen in the isogenic agr group II parent strain in which agr was intact. The in vitro bactericidal activity of vancomycin was attenuated in the agr-null strain compared to the parent strain. These findings imply that compromised agr function is advantageous to clinical isolates of S. aureus toward the development of vancomycin heteroresistance, perhaps through the development of vancomycin tolerance.
Collapse
Affiliation(s)
- George Sakoulas
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
208
|
Knobloch JKM, Horstkotte MA, Rohde H, Kaulfers PM, Mack D. Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemother 2002; 49:683-7. [PMID: 11909845 DOI: 10.1093/jac/49.4.683] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pathogenesis of Staphylococcus epidermidis is correlated with biofilm formation. We investigated the effect of three common alcoholic skin disinfectants, ethanol, n-propanol and isopropanol, on the biofilm formation of 37 clinical, icaADBC-positive S. epidermidis isolates. In alcohol-supplemented media 18 strains displayed increased biofilm expression. Sixteen of 19 strains were generally incapable of biofilm formation. In three representative isolates, the increase in biofilm formation was paralleled by increased polysaccharide intercellular adhesin synthesis. Regarding the widespread use of alcoholic skin disinfectants, it is possible that the alcohol-inducible biofilm phenotype of S. epidermidis could add to the development of foreign body-related infections.
Collapse
Affiliation(s)
- Johannes K-M Knobloch
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
209
|
Abstract
The opportunistic human pathogen Staphylococcus epidermidis has become the most important cause of nosocomial infections in recent years. Its pathogenicity is mainly due to the ability to form biofilms on indwelling medical devices. In a biofilm, S. epidermidis is protected against attacks from the immune system and against antibiotic treatment, making S. epidermidis infections difficult to eradicate.
Collapse
Affiliation(s)
- Cuong Vuong
- Rocky Mountain Laboratories, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 903 S 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
210
|
de Silva GDI, Kantzanou M, Justice A, Massey RC, Wilkinson AR, Day NPJ, Peacock SJ. The ica operon and biofilm production in coagulase-negative Staphylococci associated with carriage and disease in a neonatal intensive care unit. J Clin Microbiol 2002; 40:382-8. [PMID: 11825946 PMCID: PMC153361 DOI: 10.1128/jcm.40.02.382-388.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are a major cause of sepsis in the neonatal intensive care unit (NICU). We evaluated the hypothesis that the ica operon and biofilm production are associated with CoNS disease in this setting. CoNS associated with bacteremia or blood culture contamination and from the skin of infants with CoNS bacteremia or healthy controls were obtained during a prospective case-control study on a busy NICU. A total of 180 strains were identified, of which 122 (68%) were Staphylococcus epidermidis and the remainder were S. capitis (n = 29), S. haemolyticus (n = 11), S. hominis (n = 9), S. warneri (n = 8), and S. auricularis (n = 1). The presence of the genes icaA, icaB, icaC, and icaD was determined by PCR, and biofilm production was examined using qualitative (Congo red agar [CRA]) and quantitative (microtiter plate) techniques. There were no significant differences in the presence of the ica operon or CRA positivity among the four groups of strains. However, quantitative biofilm production was significantly greater in strains isolated from either the blood or the skin of neonates with S. epidermidis bacteremia. We conclude that the quantity of biofilm produced may be associated with the ability to cause CoNS infection. This conclusion suggests that the regulation of biofilm expression may play a central role in the disease process.
Collapse
Affiliation(s)
- G D I de Silva
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
211
|
The ica operon and biofilm production in coagulase-negative Staphylococci associated with carriage and disease in a neonatal intensive care unit. J Clin Microbiol 2002. [PMID: 11825946 PMCID: PMC153361 DOI: 10.1128/jcm.40.2.382-388.2002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are a major cause of sepsis in the neonatal intensive care unit (NICU). We evaluated the hypothesis that the ica operon and biofilm production are associated with CoNS disease in this setting. CoNS associated with bacteremia or blood culture contamination and from the skin of infants with CoNS bacteremia or healthy controls were obtained during a prospective case-control study on a busy NICU. A total of 180 strains were identified, of which 122 (68%) were Staphylococcus epidermidis and the remainder were S. capitis (n = 29), S. haemolyticus (n = 11), S. hominis (n = 9), S. warneri (n = 8), and S. auricularis (n = 1). The presence of the genes icaA, icaB, icaC, and icaD was determined by PCR, and biofilm production was examined using qualitative (Congo red agar [CRA]) and quantitative (microtiter plate) techniques. There were no significant differences in the presence of the ica operon or CRA positivity among the four groups of strains. However, quantitative biofilm production was significantly greater in strains isolated from either the blood or the skin of neonates with S. epidermidis bacteremia. We conclude that the quantity of biofilm produced may be associated with the ability to cause CoNS infection. This conclusion suggests that the regulation of biofilm expression may play a central role in the disease process.
Collapse
|
212
|
Mack D, Sabottke A, Dobinsky S, Rohde H, Horstkotte MA, Knobloch JKM. Differential expression of methicillin resistance by different biofilm-negative Staphylococcus epidermidis transposon mutant classes. Antimicrob Agents Chemother 2002; 46:178-83. [PMID: 11751130 PMCID: PMC127015 DOI: 10.1128/aac.46.1.178-183.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation mediated by polysaccharide intercellular adhesin (PIA) is the major virulence factor of Staphylococcus epidermidis and is often associated with methicillin resistance. Transposon Tn917 insertions leading to a biofilm-negative phenotype in the biofilm-producing S. epidermidis strain 1457 (mecA-negative) were transferred into the methicillin-resistant, biofilm-producing S. epidermidis 1057 (mecA-positive) by transduction. According to their phenotypes and genotypes, the mutants could be separated into genetic classes I to IV (D. Mack, H. Rohde, S. Dobinsky, J. Riedewald, M. Nedelmann, J. K. M. Knobloch, H.-A. Elsner, and H. H. Feucht, Infect. Immun. 68:3799-3807, 2000). All transductants of S. epidermidis 1057 had phenotypes for biofilm formation similar to those of the corresponding mutants of S. epidermidis 1457. With a mecA-specific probe, identical hybridization patterns were observed for wild-type S. epidermidis 1057 and all the transductants. There were minor changes in oxacillin MICs for Class II and III transductants compared to those for wild-type S. epidermidis 1057. On population analysis, S. epidermidis 1057 displayed a heterogeneous expression type of resistance with an oxacillin MIC of > or =6 microg/ml for more than 90% of the cells. An almost identical profile was observed with biofilm-negative class I mutants, where the transposon insertions inactivate the icaADBC gene locus essential for PIA synthesis. In contrast, class III mutants were more sensitive to oxacillin with a MIC of < or =1 microg/ml for more than 90% of the cells. The class IV mutant displayed homogeneous resistance with a MIC of > or =50 microg/ml for more than 90% of the cells. On oxacillin gradient plates, the class II mutant displayed decreased resistance. Apparently, different independent mutations leading to a biofilm-negative phenotype of S. epidermidis by influencing expression of icaADBC on the level of transcription significantly influence the expression of methicillin resistance. However, transcription of mecA was not significantly altered in the different transductants compared to the wild type, independent of mecA induction with oxacillin, indicating that other mechanisms influencing phenotypic expression of methicillin resistance are involved.
Collapse
Affiliation(s)
- Dietrich Mack
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Federal Republic of Germany.
| | | | | | | | | | | |
Collapse
|
213
|
Rohde H, Knobloch JK, Horstkotte MA, Mack D. Correlation of Staphylococcus aureus icaADBC genotype and biofilm expression phenotype. J Clin Microbiol 2001; 39:4595-6. [PMID: 11797608 PMCID: PMC88600 DOI: 10.1128/jcm.39.12.4595-4596.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
214
|
Kies S, Otto M, Vuong C, Götz F. Identification of the sigB operon in Staphylococcus epidermidis: construction and characterization of a sigB deletion mutant. Infect Immun 2001; 69:7933-6. [PMID: 11705980 PMCID: PMC98894 DOI: 10.1128/iai.69.12.7933-7936.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Accepted: 08/15/2001] [Indexed: 11/20/2022] Open
Abstract
The role of the alternative sigma factor sigma(B) in Staphylococcus epidermidis was investigated by the construction, complementation, and characterization of a sigB deletion mutant. Electrophoretic analyses confirmed a profound influence of sigma(B) on the expression of exoproteins and cytoplasmic proteins. Detailed investigation revealed reduced lipase and enhanced protease activity in the sigma(B) mutant. Furthermore, no significant influence of sigma(B) on heterologous biofilm formation or on the activity of the global regulator agr was detected.
Collapse
Affiliation(s)
- S Kies
- Mikrobielle Genetik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
215
|
Price CW, Fawcett P, Cérémonie H, Su N, Murphy CK, Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 2001; 41:757-74. [PMID: 11532142 DOI: 10.1046/j.1365-2958.2001.02534.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria respond to diverse growth-limiting stresses by producing a large set of general stress proteins. In Bacillus subtilis and related Gram-positive pathogens, this response is governed by the sigma(B) transcription factor. To establish the range of cellular functions associated with the general stress response, we compared the transcriptional profiles of wild and mutant strains under conditions that induce sigma(B) activity. Macroarrays representing more than 3900 annotated reading frames of the B. subtilis genome were hybridized to (33)P-labelled cDNA populations derived from (i) wild-type and sigB mutant strains that had been subjected to ethanol stress; and (ii) a strain in which sigma(B) expression was controlled by an inducible promoter. On the basis of their significant sigma(B)-dependent expression in three independent experiments, we identified 127 genes as prime candidates for members of the sigma(B) regulon. Of these genes, 30 were known previously or inferred to be sigma(B) dependent by other means. To assist in the analysis of the 97 new genes, we constructed hidden Markov models (HMM) that identified possible sigma(B) recognition sequences preceding 21 of them. To test the HMM and to provide an independent validation of the hybridization experiments, we mapped the sigma(B)-dependent messages for seven representative genes. For all seven, the 5' end of the message lay near typical sigma(B) recognition sequences, and these had been predicted correctly by the HMM for five of the seven examples. Lastly, all 127 gene products were assigned to functional groups by considering their similarity to known proteins. Notably, products with a direct protective function were in the minority. Instead, the general stress response increased relative message levels for known or predicted regulatory proteins, for transporters controlling solute influx and efflux, including potential drug efflux pumps, and for products implicated in carbon metabolism, envelope function and macromolecular turnover.
Collapse
Affiliation(s)
- C W Price
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|