201
|
Abstract
Mesenchymal stem cells can be obtained with ease from dental/oral tissue, making them an attractive source of autologous stem cells. They offer a biological solution for restoring damaged dental tissues such as vital pulp engineering, regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. Dental mesenchymal stem cells share properties with mesenchymal stem cells from bone marrow and there is a considerable potential for these cells to be used in different stem-cell-based therapies, such as bone and muscle regeneration. In addition, their immunosuppressive-immunomodulatory properties make these cells a suitable source for treating immunodisorders like systematic lupus erythematosus. In addition, gingival tissue might also be a very good source of epithelial cells used in the treatment of severe ocular surface disorders. Being such an accessible source for different stem cells, the tooth and the attached gingival tissue (usually discarded in the clinics) represent an ideal source of autologous or allogeneic stem cells that can be used in the treatment of many clinical conditions in dentistry and medicine.
Collapse
|
202
|
Bakopoulou A, Kritis A, Andreadis D, Papachristou E, Leyhausen G, Koidis P, Geurtsen W, Tsiftsoglou A. Angiogenic Potential and Secretome of Human Apical Papilla Mesenchymal Stem Cells in Various Stress Microenvironments. Stem Cells Dev 2015. [PMID: 26203919 DOI: 10.1089/scd.2015.0197] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cells from the apical papilla (SCAP) of human adult teeth are considered an accessible source of cells with angiogenic properties. The aims of this study were to investigate the endothelial transdifferentiation of SCAP, the secretion of pro- and antiangiogenic factors from SCAP, and the paracrine effects of SCAP when exposed to environmental stress to stimulate tissue damage. SCAP were exposed to serum deprivation (SD), glucose deprivation (GD), and oxygen deprivation/hypoxia (OD) conditions, individually or in combination. Endothelial transdifferentiation was evaluated by in vitro capillary-like formation assays, real-time polymerase chain reaction, western blot, and flow cytometric analyses of angiogenesis-related markers; secretome by antibody arrays and enzyme-linked immunosorbent assays (ELISA); and paracrine impact on human umbilical vein endothelial cells (HUVECs) by in vitro transwell migration and capillary-like formation assays. The short-term exposure of SCAP to glucose/oxygen deprivation (GOD) in the presence, but mainly in deprivation, of serum (SGOD) elicited a proangiogenesis effect indicated by expression of angiogenesis-related genes involved in vascular endothelial growth factor (VEGF)/VEGFR and angiopoietins/Tie pathways. This effect was unachievable under SD in normoxia, suggesting that the critical microenvironmental condition inducing rapid endothelial shift of SCAP is the combination of SGOD. Interestingly, SCAP showed high adaptability to these adverse conditions, retaining cell viability and acquiring a capillary-forming phenotype. SCAP secreted higher numbers and amounts of pro- (angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (serpin-E1, TIMP-1, TSP-1) under SGOD compared with SOD or SD alone. Finally, secretome obtained under SGOD was most effective in inducing migration and capillary-like formation by HUVECs. These data provide new evidence on the microenvironmental factors favoring endothelial transdifferentiation of SCAP, uncovering the molecular mechanisms regulating their fate. They also validate the angiogenic properties of their secretome giving insights into preconditioning strategies enhancing their therapeutic potential.
Collapse
Affiliation(s)
- Athina Bakopoulou
- 1 Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece .,2 Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH) , Hannover, Germany
| | - Aristeidis Kritis
- 3 Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Dimitrios Andreadis
- 4 Department of Oral Medicine and Pathology, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Eleni Papachristou
- 1 Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Gabriele Leyhausen
- 2 Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH) , Hannover, Germany
| | - Petros Koidis
- 1 Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| | - Werner Geurtsen
- 2 Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH) , Hannover, Germany
| | - Asterios Tsiftsoglou
- 5 Laboratory of Pharmacology, School of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.) , Thessaloniki, Greece
| |
Collapse
|
203
|
Conde MCM, Chisini LA, Demarco FF, Nör JE, Casagrande L, Tarquinio SBC. Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. Int Endod J 2015; 49:543-50. [PMID: 26101143 DOI: 10.1111/iej.12489] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/17/2015] [Indexed: 01/02/2023]
Abstract
Stem cell-based therapy (SC-BT) is emerging as an alternative for endodontic therapies. The interaction between stem cells and scaffolds plays a crucial role in the generation of a 'friendly cell' microenvironment. The aim of this systematic review was to explore techniques applied to regenerate the pulp-dentine complex tissue using SC-BT. An electronic search into the SciVerse Scopus (SS), ISI Web Science (IWS) and Entrez PubMed (EP) using specific keywords was performed. Specific inclusion and exclusion criteria were predetermined. The search yielded papers, out of which full-text papers were included in the final analyses. Data extraction pooled the results in four main topics: (a) influence of the chemical properties of the scaffolds over cell behaviour; (b) influence of the physical characteristics of scaffolds over cell behaviour; (c) strategies applied to improve the stem cell/scaffold interface; and (d) influence of cue microenvironment on stem cell differentiation towards odontoblast-like cells and pulp-like tissue formation. The relationship between the scaffolds, the environment and the growth factors released from dentine are critical for de novo pulp tissue regeneration. The preconditioning of dentine walls with ethylenediaminetetraacetic acid (EDTA) was imperative for successful pulp-dentine complex regeneration. An analyses of the grouped results revealed that pulp regeneration was an attainable goal.
Collapse
Affiliation(s)
- M C M Conde
- Post Graduation Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - L A Chisini
- Post Graduation Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - F F Demarco
- Post Graduation Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post graduation program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - J E Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - L Casagrande
- Department of Oral Surgery and Orthopedics, Pediatric Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - S B C Tarquinio
- Department of Semiology and Clinics, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
204
|
Kim S, Song JS, Jeon M, Shin DM, Kim SO, Lee JH. Ectopic Hard Tissue Formation by Odonto/Osteogenically In Vitro Differentiated Human Deciduous Teeth Pulp Stem Cells. Calcif Tissue Int 2015; 97:80-9. [PMID: 25894066 DOI: 10.1007/s00223-015-9989-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/24/2015] [Indexed: 01/03/2023]
Abstract
There have been many attempts to use the pulp tissue from human deciduous teeth for dentin or bone regeneration. The objective of this study was to determine the effects of odonto/osteogenic in vitro differentiation of deciduous teeth pulp stem cells (DTSCs) on their in vivo hard tissue-forming potential. DTSCs were isolated from extracted deciduous teeth using the outgrowth method. These cells were exposed to odonto/osteogenic stimuli for 4 and 8 days (Day 4 and Day 8 groups, respectively), while cells in the control group were cultured in normal medium. The in vitro differentiated DTSCs and the control DTSCs were transplanted subcutaneously into immunocompromised mice with macroporous biphasic calcium phosphate and sacrificed at 8 weeks post-implantation. The effect of odonto/osteogenic in vitro differentiation was evaluated using alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction (RT-PCR). The in vivo effect was evaluated by qualitative RT-PCR, assessment of ALP activity, histologic analysis, and immunohistochemical staining. The amount of hard tissue was greater in Day 4 group than Day 8 group (p = 0.014). However, Day 8 group generated lamellar bone-like structure, which was immunonegative to anti-human dentin sialoprotein with significantly low expression level of DSPP compared with the control group (p = 0.008). This study demonstrates that odonto/osteogenic in vitro differentiation of DTSCs enhances the formation of bone-like tissue, instead of dentin-like tissue, when transplanted subcutaneously using MBCP as a carrier. The odonto/osteogenic in vitro differentiation of DTSCs may be an effective modification that enhances in vivo bone formation by DTSCs.
Collapse
Affiliation(s)
- Seunghye Kim
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, Korea
| | | | | | | | | | | |
Collapse
|
205
|
Aquapuncture Using Stem Cell Therapy to Treat Mdx Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:132706. [PMID: 26074983 PMCID: PMC4444575 DOI: 10.1155/2015/132706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/19/2015] [Indexed: 01/29/2023]
Abstract
Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to absence or decrease of dystrophin protein generating progressive muscle degeneration. Cell therapy using mesenchymal stem cell (MSC) has been described as a treatment to DMD. In this work, MSC derived from deciduous teeth, called stem cells from human exfoliated deciduous teeth (SHED), were injected in acupoint as an alternative therapy to minimize muscle degeneration in twenty-two mdx mice. The treatment occurred three times with intervals of 21 days, and animals were analyzed four times: seven days prior treatment (T-7); 10 days after first treatment (T10); 10 days after second treatment (T31); and 10 days after third treatment (T52). Animals were evaluated by wire test for estimate strength and blood was collected to perform a creatinine phosphokinase analysis. After euthanasia, cranial tibial muscles were collected and submitted to histological and immunohistochemistry analyses. Treated groups presented improvement of strength and reduced creatinine phosphokinase levels. Also, a slight dystrophin increase was observed in tibial cranial muscle when aquapuncture was associated SHED. All therapies have minimized muscle degeneration, but the association of aquapuncture with SHED appears to have better effect, reducing muscle damage, suggesting a therapeutic value.
Collapse
|
206
|
Carvalho YKD, Argôlo-Neto NM, Ambrósio CE, Oliveira LDJD, Rocha ARD, Silva JBD, Carvalho MAMD, Alves FR. Isolation, expansion and differentiation of cellular progenitors obtained from dental pulp of agouti (Dasyprocta prymnolopha Wagler, 1831). PESQUISA VETERINARIA BRASILEIRA 2015. [DOI: 10.1590/s0100-736x2015000600018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract: The study aimed to isolate, expand, differentiate and characterize progenitor cells existent in the dental pulp of agouti. The material was washed with PBS solution and dissociated mechanically with the aid of a scalpel blade on plates containing culture medium D-MEM/F-12, and incubated at 5% CO2-37⁰C. The growth curve, CFU assay, osteogenic/adipogenic differentiation and characterization were obtained from the isolation. The cells began to be released from the explant tissue around the 7th day of culture. By day 22 of culture, cells reached 80% confluence. At the UFC test, 81 colonies were counted with 12 days of cultivation. The growth curves before and after freezing showed a regular growth with intense proliferation and clonogenic potential. The cell differentiation showed formation of osteoblasts and fat in culture, starting at 15 days of culture in a specific medium. Flow cytometry (FACs) was as follows: CD34 (positive), CD14 (negative), CD45 (negative), CD73 (positive), CD79 (negative), CD90 (positive), CD105 (positive), demonstrating high specificity and commitment of isolated cells with mesenchymal stem cells strains. These results suggest the existence of a cell population of stem cells with mesenchymal features from the isolated tissue in the explants of agouti dental pulp, a potential model for study of stem cell strains obtained from the pulp tissue.
Collapse
|
207
|
Hilkens P, Meschi N, Lambrechts P, Bronckaers A, Lambrichts I. Dental Stem Cells in Pulp Regeneration: Near Future or Long Road Ahead? Stem Cells Dev 2015; 24:1610-22. [PMID: 25869156 DOI: 10.1089/scd.2014.0510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although regenerative endodontic procedures have yielded an impressive body of favorable outcomes, the treatment of necrotic immature permanent teeth in particular remains to be a challenge. Recent advances in dental stem cell (DSC) research have gained increasing insight in their regenerative potential and prospective use in the formation of viable dental tissues. Numerous studies have already reported successful dental pulp regeneration following application of dental pulp stem cells, stem cells from the apical papilla, or dental follicle precursor cells in different in vivo models. Next to responsive cells, dental tissue engineering also requires the support of an appropriate scaffold material, ranging from naturally occurring polymers to treated dentin matrix components. However, the routine use and banking of DSCs still holds some major challenges, such as culture-associated differences, patient-related variability, and the effects of culture medium additives. Only in-depth evaluation of these problems and the implementation of standardized models and protocols will effectively lead to better alternatives for patients who no longer benefit from current treatment protocols.
Collapse
Affiliation(s)
- Petra Hilkens
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| | - Nastaran Meschi
- 2 Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven , Leuven, Belgium
| | - Paul Lambrechts
- 2 Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven , Leuven, Belgium
| | - Annelies Bronckaers
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| | - Ivo Lambrichts
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| |
Collapse
|
208
|
Werle SB, Lindemann D, Steffens D, Demarco FF, de Araujo FB, Pranke P, Casagrande L. Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig 2015; 20:75-81. [PMID: 25898896 DOI: 10.1007/s00784-015-1477-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The objectives of this study are to isolate, cultivate, and characterize stem cells from the pulp of carious deciduous teeth (SCCD) and compare them to those retrieved from sound deciduous teeth (SHED--stem cells from human exfoliated deciduous teeth). MATERIAL AND METHODS Cells were obtained of dental pulp collected from sound (n = 10) and carious (n = 10) deciduous human teeth. Rate of isolation, proliferation assay (0, 1, 3, 5, and 7 days), STRO-1, mesenchymal (CD29, CD73, and CD90) and hematopoietic surface marker expression (CD14, CD34, CD45, HLA-DR), and differentiation capacity were evaluated. RESULTS Isolation success rates were 70 and 80 % from the carious and sound groups, respectively. SCCD and SHED presented similar proliferation rate. There were no statistical differences between the groups for the tested surface markers. The cells from sound and carious deciduous teeth were positive for CD29, CD73, and CD90 and negative for CD14, CD34, CD45, and HLA-DR and were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. CONCLUSION SCCD demonstrated a similar pattern of proliferation, immunophenotypical characteristics, and differentiation ability as those obtained from sound deciduous teeth. These SCCD represent a feasible source of stem cells. CLINICAL RELEVANCE Decayed deciduous teeth have been usually discarded once the pulp tissue could be damaged and the activity of stem cells compromised. These findings show that stem cells from carious deciduous teeth can be applicable source for cell-based therapies in tissue regeneration.
Collapse
Affiliation(s)
- Stefanie Bressan Werle
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniele Lindemann
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniela Steffens
- Stem Cell Laboratory and Stem Cell Research Institute, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Flávio Fernando Demarco
- Department of Operatory Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Fernando Borba de Araujo
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pranke
- Stem Cell Laboratory and Stem Cell Research Institute, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Head of Hematology and Stem Cell Laboratory and Stem Cell Research Institute, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Casagrande
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
209
|
Conde CM, Demarco FF, Casagrande L, Alcazar JC, Nör JE, Tarquinio SBC. Influence of poly-L-lactic acid scaffold's pore size on the proliferation and differentiation of dental pulp stem cells. Braz Dent J 2015; 26:93-8. [PMID: 25831096 DOI: 10.1590/0103-6440201300032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 12/16/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the influence of the poly-L-lactic acid (PLLA)-based scaffold's pore size on the proliferation and differentiation of dental pulp stem cells (DPSCs). The scaffolds were prepared in pulp chambers of 1-mm-thick tooth slices from third molars using salt crystals (150-250 µm or 251-450 µm) as porogen. DPSC (1x105 cells) were seeded in the scaffolds with different pore sizes, and cultured in 24-well plates. The cell proliferation was evaluated using the WST-1 assay after 3-21 days. Furthermore, RT-PCR was used to assess the differentiation of the DPSCs into odontoblasts, using markers of odontoblastic differentiation (DSPP, DSP-1 and MEPE). RNA from human odontoblasts was used as control. Cell proliferation rate was similar in both scaffolds except at the 14th day period, in which the cells seeded in the scaffolds with larger pores showed higher proliferation (p<0.05). After 21 days DPSCs seeded in both evaluated scaffolds were able of expressing odontoblastic markers DMP-1, DSPP and MEPE. In summary, both scaffolds tested in this study allowed the proliferation and differentiation of DPSCs into odontoblast-like cells.
Collapse
Affiliation(s)
- Cristian Muniz Conde
- Post-Graduate Program in Dentistry, Dental School, UFPel - Federal University of Pelotas, Pelotas, RS, Brazil
| | - Flávio Fernando Demarco
- Post-Graduate Program in Dentistry, Dental School, UFPel - Federal University of Pelotas, Pelotas, RS, Brazil
| | - Luciano Casagrande
- Department of Oral Surgery and Orthopedics, Dental School, UFRGS - Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Carlos Alcazar
- Post-Graduate Program in Dentistry, Dental School, UFPel - Federal University of Pelotas, Pelotas, RS, Brazil
| | - Jacques Eduardo Nör
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, UMICH - University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
210
|
Kim BC, Kim SY, Kwon YD, Choe SC, Han DW, Hwang YS. Mycoplasma detection and elimination are necessary for the application of stem cell from human dental apical papilla to tissue engineering and regenerative medicine. Biomater Res 2015; 19:6. [PMID: 26331077 PMCID: PMC4552274 DOI: 10.1186/s40824-015-0028-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recently, postnatal stem cells from dental papilla with neural crest origin have been considered as one of potent stem cell sources in regenerative medicine regarding their multi-differentiation capacity and relatively easy access. However, almost human oral tissues have been reported to be infected by mycoplasma which gives rise to oral cavity in teeth, and mycoplasma contamination of ex-vivo cultured stem cells from such dental tissues and its effect on stem cell culture has received little attention. RESULTS In this study, mycoplama contamination was evaluated with stem cells from apical papilla which were isolated from human third molar and premolars from various aged patients undergoing orthodontic therapy. The ex-vivo expanded stem cells from apical papilla were found to express stem cell markers such as Stro-1, CD44, nestin and CD133, but mycoplama contamination was detected in almost all cell cultures of the tested 20 samples, which was confirmed by mycoplasma-specific gene expression and fluorescence staining. Such contaminated mycoplasma could be successfully eliminated using elimination kit, and proliferation test showed decreased proliferation activity in mycoplasma-contaminated cells. After elimination of contaminated mycoplasma, stem cells from apical papilla showed osteogenic and neural lineage differentiation under certain culture conditions. CONCLUSION Our study proposes that the evaluation of mycoplasma contamination and elimination process might be required in the use of stem cells from apical papilla for their potent applications to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - So Yeon Kim
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Yong-Dae Kwon
- Department of Oral Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Sung Chul Choe
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 609-735 Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| |
Collapse
|
211
|
Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A, Liu S. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015; 33:627-38. [PMID: 25447379 DOI: 10.1002/stem.1909] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Junjun Liu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Fang Yu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Yao Sun
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Beizhan Jiang
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Wenjun Zhang
- Translational Center for Stem Cell Research, Tongji Hospital; Tongji University School of Medicine; Shanghai People's Republic of China
| | - Jianhua Yang
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Guo-Tong Xu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Aibin Liang
- Translational Center for Stem Cell Research, Tongji Hospital; Tongji University School of Medicine; Shanghai People's Republic of China
| | - Shangfeng Liu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| |
Collapse
|
212
|
Stem Cells from Dental Tissue for Regenerative Dentistry and Medicine. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
213
|
Ahadian S, Ostrovidov S, Fujie T, Parthiban SP, Kaji H, Sampathkumar K, Ramalingam M, Khademhosseini A. Microfabrication and Nanofabrication Techniques. STEM CELL BIOLOGY AND TISSUE ENGINEERING IN DENTAL SCIENCES 2015:207-219. [DOI: 10.1016/b978-0-12-397157-9.00017-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
214
|
Keller LV, Kökten T, Kuchler-Bopp S, Lesot H. Tooth Organ Engineering. STEM CELL BIOLOGY AND TISSUE ENGINEERING IN DENTAL SCIENCES 2015:359-368. [DOI: 10.1016/b978-0-12-397157-9.00032-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
215
|
Cementum and Periodontal Ligament Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:207-36. [PMID: 26545752 DOI: 10.1007/978-3-319-22345-2_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unique anatomy and composition of the periodontium make periodontal tissue healing and regeneration a complex process. Periodontal regeneration aims to recapitulate the crucial stages of wound healing associated with periodontal development in order to restore lost tissues to their original form and function and for regeneration to occur, healing events must progress in an ordered and programmed sequence both temporally and spatially, replicating key developmental events. A number of procedures have been employed to promote true and predictable regeneration of the periodontium. Principally, the approaches are based on the use of graft materials to compensate for the bone loss incurred as a result of periodontal disease, use of barrier membranes for guided tissue regeneration and use of bioactive molecules. More recently, the concept of tissue engineering has been integrated into research and applications of regenerative dentistry, including periodontics, to aim to manage damaged and lost oral tissues, through reconstruction and regeneration of the periodontium and alleviate the shortcomings of more conventional therapeutic options. The essential components for generating effective cellular based therapeutic strategies include a population of multi-potential progenitor cells, presence of signalling molecules/inductive morphogenic signals and a conductive extracellular matrix scaffold or appropriate delivery system. Mesenchymal stem cells are considered suitable candidates for cell-based tissue engineering strategies owing to their extensive expansion rate and potential to differentiate into cells of multiple organs and systems. Mesenchymal stem cells derived from multiple tissue sources have been investigated in pre-clinical animal studies and clinical settings for the treatment and regeneration of the periodontium.
Collapse
|
216
|
Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. Periodontol 2000 2014; 67:251-67. [DOI: 10.1111/prd.12070] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 12/26/2022]
|
217
|
Abstract
Lymphedema is a medically irreversible condition for which currently conservative and surgical therapies are either ineffective or impractical. The potential use of progenitor and stem cell-based therapies has offered a paradigm that may provide alternative treatment options for lymphatic disorders. Moreover, basic research, preclinical studies, as well as clinical trials have evaluated the therapeutic potential of various cell therapies in the field of lymphatic regeneration medicine. Among the available cell approaches, mesenchymal stem cells (MSCs) seem to be the most promising candidate mainly due to their abundant sources and easy availability as well as evitable ethical and immunological issues confronted with embryonic stem cells and induced pluripotent stem cells. In this context, the purpose of this review is to summarize various cell-based therapies for lymphedema, along with strengths and weaknesses of these therapies in the clinical application for lymphedema treatment. Particularly, we will highlight the use of MSCs for lymphatic regeneration medicine. In addition, the future perspectives of MSCs in the field of lymphatic regeneration will be discussed.
Collapse
Affiliation(s)
- Shuqun Qi
- 1 State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University , Chengdu, China
| | | |
Collapse
|
218
|
|
219
|
Liu Y, Chen C, Liu S, Liu D, Xu X, Chen X, Shi S. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J Dent Res 2014; 94:209-18. [PMID: 25394850 DOI: 10.1177/0022034514557672] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stem cells from exfoliated deciduous teeth (SHED) possess multipotent differentiation and immunomodulatory properties. They have been used for orofacial bone regeneration and autoimmune disease treatment. In this study, we show that acetylsalicylic acid (ASA) treatment is able to significantly improve SHED-mediated osteogenic differentiation and immunomodulation. Mechanistically, ASA treatment upregulates the telomerase reverse transcriptase (TERT)/Wnt/β-catenin cascade, leading to improvement of SHED-mediated bone regeneration, and also upregulates TERT/FASL signaling, leading to improvement of SHED-mediated T-cell apoptosis and ameliorating disease phenotypes in dextran sodium sulfate-induced colitis mice. These data indicate that ASA treatment is a practical approach to improving SHED-based cell therapy.
Collapse
Affiliation(s)
- Y Liu
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - C Chen
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - D Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - X Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - X Chen
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - S Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
220
|
Osteo-/Odontogenic Differentiation of Induced Mesenchymal Stem Cells Generated through Epithelial–Mesenchyme Transition of Cultured Human Keratinocytes. J Endod 2014; 40:1796-801. [DOI: 10.1016/j.joen.2014.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/06/2014] [Accepted: 07/11/2014] [Indexed: 01/11/2023]
|
221
|
Today prospects for tissue engineering therapeutic approach in dentistry. ScientificWorldJournal 2014; 2014:151252. [PMID: 25379516 PMCID: PMC4212630 DOI: 10.1155/2014/151252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/09/2014] [Indexed: 02/08/2023] Open
Abstract
In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.
Collapse
|
222
|
Doğan A, Demirci S, Şahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int 2014; 39:94-103. [PMID: 25077982 DOI: 10.1002/cbin.10357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/11/2014] [Indexed: 12/26/2022]
Abstract
Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | | | | |
Collapse
|
223
|
Abstract
Navigation technology is applied successfully in oral and maxillofacial surgery. Laser beams are used for caries removal. With nanodentistry, it is possible to maintain comprehensive oral health care. Nanorobots induce oral analgesia, desensitize teeth, and manipulate the tissue. They can also be used for preventive, restorative, and curative procedures. Strategies to engineer tissue can be categorized into 3 major classes: conductive, inductive, and cell transplantation approaches. Several populations of cells with stem cell properties have been isolated from different parts of the tooth.
Collapse
Affiliation(s)
- Roya Zandparsa
- Tufts University School of Dentistry, Postgraduate Prosthodontics Division, 1 Kneeland Street, Boston, MA 02111, USA.
| |
Collapse
|
224
|
|
225
|
de Souza Costa CA, Hebling J, Scheffel DL, Soares DG, Basso FG, Ribeiro APD. Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent Mater 2014; 30:769-84. [DOI: 10.1016/j.dental.2014.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/05/2014] [Accepted: 04/25/2014] [Indexed: 01/09/2023]
|
226
|
Comparative analysis of proliferation and differentiation potentials of stem cells from inflamed pulp of deciduous teeth and stem cells from exfoliated deciduous teeth. BIOMED RESEARCH INTERNATIONAL 2014; 2014:930907. [PMID: 25045714 PMCID: PMC4090480 DOI: 10.1155/2014/930907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Stem cells isolated from exfoliated deciduous teeth (SHEDs) are highly capable of proliferation and differentiation, and they represent good cell sources for mesenchymal stem cell- (MSC-) mediated dental tissue regeneration, but the supply of SHEDs is limited. A previous study found that stem cells could be isolated from inflamed tissues, but it is unknown whether primary dental pulp diagnosed with irreversible pulpitis might contain stem cells with appropriate tissue regeneration capacity. In this study, we aimed to isolate stem cells from both inflamed pulps of deciduous teeth (SCIDs) and SHEDs from Chinese children and to compare their proliferation and differentiation potentials. Our results showed that SCIDs were positive for cell surface markers, including CD105, CD90, and CD146, and they had high proliferation ability and osteogenic, adipogenic, and chondrogenic differentiation potentials. There was no significant difference in proliferation and differentiation potentials between SCIDs and SHEDs. The mRNA of inflammatory factors, including IL-1β, IL-6, and TNF-α, was expressed at similar levels in SCIDs and SHEDs, but SCIDs secreted more TNF-α protein. In conclusion, our in vitro results showed that SCIDs have proliferation and differentiation potentials similar to those of SHEDs. Thus, SCIDs represent a new potentially applicable source for MSC mediated tissue regeneration.
Collapse
|
227
|
Kawanabe N, Fukushima H, Ishihara Y, Yanagita T, Kurosaka H, Yamashiro T. Isolation and characterization of SSEA-4-positive subpopulation of human deciduous dental pulp cells. Clin Oral Investig 2014; 19:363-71. [DOI: 10.1007/s00784-014-1260-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/13/2014] [Indexed: 01/07/2023]
|
228
|
Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol 2014; 59:970-6. [PMID: 24949827 DOI: 10.1016/j.archoralbio.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to isolate and cultivate cells from the pulp of 7-day-cryopreserved intact deciduous human teeth and evaluate the effect of cryopreservation on dental pulp stem cell (DPSC) characteristics. DESIGN Twenty-six deciduous teeth were collected and allocated in two groups: immediate cell isolation (non-cryopreserved group) and intact cryopreserved (cryopreserved group). The teeth were cryopreserved in dimethylsulfoxide solution and recovered after 7 days. The success rate of isolation, proliferation, surface markers (CD14, CD29, CD34, CD45, CD73, CD90, and HLA-DR), differentiation capacity, and morphology were evaluated. RESULTS Isolation success rate was 61% and 30% for the non-cryopreserved and cryopreserved groups, respectively. There were no statistical differences between the groups for the tested surface markers. The cells in both groups were capable of differentiating into three mesenchymal lineages. No statistical differences between the groups were observed through the time course proliferation assay (0, 1, 3, 5, and 7 days); however, the mean time between isolation and the fifth passage was shorter for the non-cryopreserved group (p=0.035). The morphology of the cells was considered altered in the cryopreserved group. CONCLUSION DPSCs were obtained from cryopreserved intact deciduous teeth without changes in the immunophenotypical characteristics and differentiation ability; however, lower culture rates, proliferation potential, and morphological alterations were observed in relation to the control group.
Collapse
|
229
|
Eubanks EJ, Tarle SA, Kaigler D. Tooth Storage, Dental Pulp Stem Cell Isolation, and Clinical Scale Expansion without Animal Serum. J Endod 2014; 40:652-7. [DOI: 10.1016/j.joen.2014.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/11/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
|
230
|
Abstract
Emerging understanding about interactions between stem cells, scaffolds, and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a subpopulation of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic factors give rise to a pulplike tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells despite the well-known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals in which access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled-release device for angiogenic factors. The aim of this article was to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans.
Collapse
Affiliation(s)
- Evandro Piva
- Department of Operative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil; Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Adriana F Silva
- Department of Operative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil; Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| |
Collapse
|
231
|
Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, Williams BO, Sharpe PT, Bardet C, Mah SJ, Helms JA. Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 2014; 29:892-901. [PMID: 23996396 PMCID: PMC4541795 DOI: 10.1002/jbmr.2088] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/12/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022]
Abstract
Odontoblasts, cementoblasts, ameloblasts, and osteoblasts all form mineralized tissues in the craniofacial complex, and all these cell types exhibit active Wnt signaling during postnatal life. We set out to understand the functions of this Wnt signaling, by evaluating the phenotypes of mice in which the essential Wnt chaperone protein, Wntless was eliminated. The deletion of Wls was restricted to cells expressing Osteocalcin (OCN), which in addition to osteoblasts includes odontoblasts, cementoblasts, and ameloblasts. Dentin, cementum, enamel, and bone all formed in OCN-Cre;Wls(fl/fl) mice but their homeostasis was dramatically affected. The most notable feature was a significant increase in dentin volume and density. We attribute this gain in dentin volume to a Wnt-mediated misregulation of Runx2. Normally, Wnt signaling stimulates Runx2, which in turn inhibits dentin sialoprotein (DSP); this inhibition must be relieved for odontoblasts to differentiate. In OCN-Cre;Wls(fl/fl) mice, Wnt pathway activation is reduced and Runx2 levels decline. The Runx2-mediated repression of DSP is relieved and odontoblast differentiation is accordingly enhanced. This study demonstrates the importance of Wnt signaling in the homeostasis of mineralized tissues of the craniofacial complex.
Collapse
Affiliation(s)
- Won Hee Lim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA; Department of Orthodontics, School of Dentistry & Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Bulit F, Grad I, Manoil D, Simon S, Wataha JC, Filieri A, Feki A, Schrenzel J, Lange N, Bouillaguet S. Antimicrobial Activity and Cytotoxicity of 3 Photosensitizers Activated with Blue Light. J Endod 2014; 40:427-31. [DOI: 10.1016/j.joen.2013.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 01/16/2023]
|
233
|
|
234
|
Ejeian F, Baharvand H, Nasr-Esfahani MH. Hedgehog signalling is dispensable in the proliferation of stem cells from human exfoliated deciduous teeth. Cell Biol Int 2014; 38:480-7. [PMID: 24353013 DOI: 10.1002/cbin.10227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
Abstract
The hedgehog (Hh) signalling pathway is one of the key regulators in development with a dual role in cell fate specification, proliferation, and survival on different target cells. We have investigated the effect of recombinant sonic hedgehog (r-SHH) on extracted multipotent stem cells from human exfoliated deciduous teeth (SHED), which represent a potential stem cell population for therapeutic applications. Cell proliferation and cycle assays shown that r-SHH did not have a distinctive effect on cell cycle progression, nor did it increase cell number over a wide range of concentrations. Quantitative polymerase chain reaction (Q-PCR) also suggests that r-SHH treatment has no demonstrable influence on expression of proliferative genes (CCNE1 and KI67); in contrast, the anti-proliferative gene (CDKN1A) is overexpressed in response to SHH. Our findings have suggested the possibility that SHEDs demonstrate a different potential from human bone marrow mesenchymal stem cells (h-BMSCs) and dorsal neural progenitor in response to growth factors such as SHH.
Collapse
Affiliation(s)
- Fatemeh Ejeian
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | | |
Collapse
|
235
|
About I. Pulp Vascularization and Its Regulation by the Microenvironment. THE DENTAL PULP 2014:61-74. [DOI: 10.1007/978-3-642-55160-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
236
|
Yeasmin S, Ceccarelli J, Vigen M, Carrion B, Putnam AJ, Tarle SA, Kaigler D. Stem cells derived from tooth periodontal ligament enhance functional angiogenesis by endothelial cells. Tissue Eng Part A 2013; 20:1188-96. [PMID: 24147894 DOI: 10.1089/ten.tea.2013.0512] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential, which could make them a very attractive cell population for utilization in regenerative cell therapies.
Collapse
Affiliation(s)
- Shamima Yeasmin
- 1 Department of Periodontics and Oral Medicine, University of Michigan , Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
237
|
What and where are the stem cells for Dentistry? ACTA ACUST UNITED AC 2013; 34:13-8. [DOI: 10.1016/j.sdj.2013.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 01/09/2023]
|
238
|
Liu W, Gong Q, Ling J, Zhang W, Liu Z, Quan J. Role of miR-424 on angiogenic potential in human dental pulp cells. J Endod 2013; 40:76-82. [PMID: 24331995 DOI: 10.1016/j.joen.2013.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/10/2013] [Accepted: 09/19/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Growing evidence shows microRNAs (miRNAs) regulate numerous cellular processes. The purpose of this study was to investigate whether miRNAs can regulate the commitment of human dental pulp cells (hDPCs) to the angiogenic fate. METHODS The hDPCs were induced to differentiate into the vascular lineage. Gene expression of endothelial markers (vWF and CD31) on day 7 after induction was analyzed by using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).The miRNA expression profiling of endothelial differentiation was performed by microarray and was validated by qRT-PCR analysis. The hDPCs were infected by recombinant lentivirus to overexpress or knock down miR-424 stably, and the biological effects of miR-424 on the endothelial differentiation of hDPCs were further investigated. The tube formation ability and the amount of endothelial markers (vWF and KDR) were evaluated by Matrigel assay and Western blotting. Target genes of miR-424 were further determined by bioinformatic algorithms and Western blotting. RESULTS After endothelial differentiation, the expression of vWF and CD31 increased significantly in hDPCs. Microarray data showed that the miR-424 expression level was down-regulated on day 7. The qRT-PCR revealed a time-dependent decrease, with significant differences detected on day 1 and day 7 (P < .05). Knockdown of miR-424 expression in hDPCs promoted endothelial differentiation, with increased tube formation and up-regulated expression of vWF and KDR. In contrast, overexpression of miR-424 inhibited their differentiation. In addition, miR-424 was predicted to target vascular endothelial growth factor and KDR. Overexpression of miR-424 decreased vascular endothelial growth factor and KDR protein levels, whereas miR-424 inhibition significantly elevated them. CONCLUSIONS This study demonstrated that miR-424 may play a negative role in regulating endothelial differentiation of hDPCs, and inhibition of miR-424 may contribute to dental pulp repair and regeneration.
Collapse
Affiliation(s)
- Wei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
| | - Wen Zhang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Zhaohui Liu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jingjing Quan
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
239
|
Rosa V, Zhang Z, Grande R, Nör J. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013; 92:970-5. [PMID: 24056227 PMCID: PMC3797540 DOI: 10.1177/0022034513505772] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/28/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022] Open
Abstract
The clinical translation of stem-cell-based dental pulp regeneration will require the use of injectable scaffolds. Here, we tested the hypothesis that stem cells from exfoliated deciduous teeth (SHED) can generate a functional dental pulp when injected into full-length root canals. SHED survived and began to express putative markers of odontoblastic differentiation after 7 days when mixed with Puramatrix™ (peptide hydrogel), or after 14 days when mixed with recombinant human Collagen (rhCollagen) type I, and injected into the root canals of human premolars in vitro. Roots of human premolars injected with scaffolds (Puramatrix™ or rhCollagen) containing SHED were implanted subcutaneously into immunodeficient mice (CB-17 SCID). We observed pulp-like tissues with odontoblasts capable of generating new tubular dentin throughout the root canals. Notably, the pulp tissue engineered with SHED injected with either Puramatrix™ or rhCollagen type I presented similar cellularity and vascularization when compared with control human dental pulps. Analysis of these data, collectively, demonstrates that SHED injected into full-length human root canals differentiate into functional odontoblasts, and suggests that such a strategy might facilitate the completion of root formation in necrotic immature permanent teeth.
Collapse
Affiliation(s)
- V. Rosa
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, Brazil
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Z. Zhang
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - R.H.M. Grande
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, Brazil
| | - J.E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering
- Department of Otolaryngology, University of Michigan School of Medicine
| |
Collapse
|
240
|
Fournier BPJ, Larjava H, Häkkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev 2013; 22:3157-77. [PMID: 23944935 DOI: 10.1089/scd.2013.0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Postnatal connective tissues contain phenotypically heterogeneous cells populations that include distinct fibroblast subpopulations, pericytes, myofibroblasts, fibrocytes, and tissue-specific mesenchymal stem cells (MSCs). These cells play key roles in tissue development, maintenance, and repair and contribute to various pathologies. Depending on the origin of tissue, connective tissue cells, including MSCs, have different phenotypes. Understanding the identity and specific functions of these distinct tissue-specific cell populations may allow researchers to develop better treatment modalities for tissue regeneration and find novel approaches to prevent pathological conditions. Interestingly, MSCs from adult oral mucosal gingiva possess distinct characteristics, including neural crest origin, multipotent differentiation capacity, fetal-like phenotype, and potent immunomodulatory properties. These characteristics and an easy, relatively noninvasive access to gingival tissue, and fast tissue regeneration after tissue biopsy make gingiva an attractive target for cell isolation for therapeutic purposes aiming to promote tissue regeneration and fast, scar-free wound healing. The purpose of this review is to discuss the identity, phenotypical heterogeneity, and function of gingival MSCs and summarize what is currently known about their properties, role in scar-free healing, and their future therapeutic potential.
Collapse
Affiliation(s)
- Benjamin P J Fournier
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia , Vancouver, Canada
| | | | | |
Collapse
|
241
|
Souron JB, Petiet A, Decup F, Tran XV, Lesieur J, Poliard A, Le Guludec D, Letourneur D, Chaussain C, Rouzet F, Opsahl Vital S. Pulp cell tracking by radionuclide imaging for dental tissue engineering. Tissue Eng Part C Methods 2013; 20:188-97. [PMID: 23789732 DOI: 10.1089/ten.tec.2013.0148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulp engineering with dental mesenchymal stem cells is a promising therapy for injured teeth. An important point is to determine the fate of implanted cells in the pulp over time and particularly during the early phase following implantation. Indeed, the potential engraftment of the implanted cells in other organs has to be assessed, in particular, to evaluate the risk of inducing ectopic mineralization. In this study, our aim was to follow by nuclear imaging the radiolabeled pulp cells after implantation in the rat emptied pulp chamber. For that purpose, indium-111-oxine (¹¹¹In-oxine)-labeled rat pulp cells were added to polymerizing type I collagen hydrogel to obtain a pulp equivalent. This scaffold was implanted in the emptied pulp chamber space in the upper first rat molar. Labeled cells were then tracked during 3 weeks by helical single-photon emission computed tomography (SPECT)/computed tomography performed on a dual modality dedicated small animal camera. Negative controls were performed using lysed radiolabeled cells obtained in a hypotonic solution. In vitro data indicated that ¹¹¹In-oxine labeling did not affect cell viability and proliferation. In vivo experiments allowed a noninvasive longitudinal follow-up of implanted living cells for at least 3 weeks and indicated that SPECT signal intensity was related to implanted cell integrity. Notably, there was no detectable systemic release of implanted cells from the tooth. In addition, histological analysis of the samples showed mitotically active fibroblastic cells as well as neoangiogenesis and nervous fibers in pulp equivalents seeded with entire cells, whereas pulp equivalents prepared from lysed cells were devoid of cell colonization. In conclusion, our study demonstrates that efficient labeling of pulp cells can be achieved and, for the first time, that these cells can be followed up after implantation in the tooth by nuclear imaging. Furthermore, it appears that grafted cells retained the label and are viable to follow the repair process. This technique is expected to be of major interest for monitoring implanted cells in innovative therapies for injured teeth.
Collapse
Affiliation(s)
- Jean-Baptiste Souron
- 1 EA2496, Dental School, University Paris Descartes PRES Sorbonne Paris Cité , Montrouge, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Ajay Sharma L, Sharma A, Dias GJ. Advances in regeneration of dental pulp--a literature review. ACTA ACUST UNITED AC 2013; 6:85-98. [PMID: 23946258 DOI: 10.1111/jicd.12064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022]
Abstract
This review summarizes the biological response of dentin-pulp complexes to a variety of stimuli and responses to current treatment therapies and reviews the role of tissue engineering and its application in regenerative endodontics. An electronic search was undertaken based on keywords using Medline/PubMed, Embase, Web of Science and Ovid database resources up to March 2012 to identify appropriate articles, supplemented by a manual search using reference lists from relevant articles. Inclusion criteria were mainly based on different combinations of keywords and restricted to articles published in English language only. Biological approaches based on tissue engineering principles were found to offer the possibility of restoring natural tooth vitality, with distinct evidence that regeneration of lost dental tissues is possible. Studies to formulate an ideal restorative material with regenerative properties, however, are still under way. Further research with supporting clinical studies is required to identify the most effective and safe treatment therapy.
Collapse
Affiliation(s)
- Lavanya Ajay Sharma
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
243
|
Sukarawan W, Nowwarote N, Kerdpon P, Pavasant P, Osathanon T. Effect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teeth. Odontology 2013; 102:160-6. [PMID: 23872868 DOI: 10.1007/s10266-013-0124-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/02/2013] [Indexed: 11/24/2022]
Abstract
Human dental pulp of exfoliated deciduous teeth contains the population of cells that exhibited mesenchymal stem cell (MSC) characters. Though, a cell amplification process is indeed required to secure an adequate cell number for such a potential employment. Several publications suggested the alteration of MSCs upon in vitro culture, for example, the decrease in proliferation and the loss of stem cell characters. Here, we investigated an influence of basic fibroblast growth factor (bFGF) on stem cells isolated from human exfoliated deciduous teeth (SHEDs) with respect to cell proliferation, colony forming unit efficiency and stem cell marker expression in both short- and long-term cultures. For short-term bFGF treatment, SHEDs were treated with bFGF for 48 h. While, in long-term bFGF supplementation, SHEDs were maintained in culture and continuous passage upon confluence in medium supplemented with bFGF. Cells at passage (P) 5 and 10 were employed for characterization. Our results showed that short-term bFGF treatment enhanced OCT4, REX1, and NANOG mRNA expression as well as colony forming unit ability. The FGFR inhibitor pretreatment was able to attenuate the influence of bFGF on pluripotent stem cell marker expression, confirming bFGF function. In addition, cells cultured in high passage number had decreased in cell proliferation, colony forming unit capacity, and pluripotent stem cell maker mRNA expression. However, bFGF supplementation in culture medium enhanced both pluripotent stem cell marker expression and colony forming unit capacity in later passage, though the effect was not robust. Together, these results indicate that high passage number may attenuate pluripotent properties of SHEDs and bFGF supplementation could be the beneficial approach to maintain SHEDs' stemness properties.
Collapse
Affiliation(s)
- Waleerat Sukarawan
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand,
| | | | | | | | | |
Collapse
|
244
|
Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I. Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 2013; 17:1969-83. [PMID: 23846214 DOI: 10.1007/s00784-013-1030-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 07/01/2013] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Stem cell-based therapies are considered to be a promising treatment method for several clinical conditions such as Alzheimer's disease, Parkinson's disease, spinal cord injury, and many others. However, the ideal stem cell type for stem cell-based therapy remains to be elucidated. DISCUSSION Stem cells are present in a variety of tissues in the embryonic and adult human body. Both embryonic and adult stem cells have their advantages and disadvantages concerning the isolation method, ethical issues, or differentiation potential. The most described adult stem cell population is the mesenchymal stem cells due to their multi-lineage (trans)differentiation potential, high proliferative capacity, and promising therapeutic values. Recently, five different cell populations with mesenchymal stem cell characteristics were identified in dental tissues: dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle precursor cells, and stem cells from apical papilla. CONCLUSION Each dental stem cell population possesses specific characteristics and advantages which will be summarized in this review. Furthermore, the neural characteristics of dental pulp stem cells and their potential role in (peripheral) neural regeneration will be discussed.
Collapse
Affiliation(s)
- W Martens
- Biomedical Research Institute, Laboratory of Morphology, Hasselt University, Campus Diepenbeek, Agoralaan, Building C, 3590, Diepenbeek, Belgium,
| | | | | | | | | |
Collapse
|
245
|
About I. Dentin-pulp regeneration: the primordial role of the microenvironment and its modification by traumatic injuries and bioactive materials. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/etp.12038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
246
|
Gosau M, Götz W, Felthaus O, Ettl T, Jäger A, Morsczeck C. Comparison of the differentiation potential of neural crest derived progenitor cells from apical papilla (dNC-PCs) and stem cells from exfoliated deciduous teeth (SHED) into mineralising cells. Arch Oral Biol 2013; 58:699-706. [PMID: 23261253 DOI: 10.1016/j.archoralbio.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Recently, cells from the apical papilla of retained human third molars (dental neural crest-derived progenitor cells, dNC-PCs) have been isolated and characterised as multipotent progenitor cells. Nonetheless, molecular processes during differentiation into mineralising cells are still unknown. This study evaluated the osteogenic/odontogenic differentiation of dNC-PCs under in vitro conditions and compared these cells with already known odontoblast precursor cells (dental stem cells from exfoliated human deciduous teeth, SHED). METHODS The differentiation of dNC-PCs and SHED under in vitro conditions was verified by Alizarin red staining (mineralisation), alkaline phosphatase activity and the expression of osteogenic/odontogenic markers (RT-PCRs). The genome wide expression-profiles were investigated with Affymetrix DNA-microarrays and the cell migration with a gel spot cell migration assay. RESULTS In our study dNC-PCs differentiated like SHED in mineralising cells. The expression of odontoblast markers suggested that dNC-PCs and SHED differentiated into different types of odontoblasts. This supposition was supported by genome wide gene expression profiles of dNC-PCs and SHED after cell differentiation. Typical biological processes of undifferentiated cells, for example "mitosis", were regulated in dNC-PCs. In SHED biological processes like "response to wounding" or "cell migration" were regulated, which are associated with replacement odontoblasts and their precursors. Moreover, a gel-spot assay revealed that SHED migrated faster than dNC-PCs. CONCLUSION Our results suggest that dNC-PCs are precursors for primary odontoblasts, whereas SHED differentiate into replacement odontoblasts. These different odontogenic differentiation potentials of dNC-PCs and SHED have to be considered for cellular therapies and tissue engineering approaches in the future.
Collapse
Affiliation(s)
- Martin Gosau
- Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
247
|
Nemotic human dental pulp fibroblasts promote human dental pulp stem cells migration. Exp Cell Res 2013; 319:1544-52. [DOI: 10.1016/j.yexcr.2013.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/20/2013] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
|
248
|
Differentiation of mesenchymal stem cells from human umbilical cord tissue into odontoblast-like cells using the conditioned medium of tooth germ cells in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:218543. [PMID: 23762828 PMCID: PMC3666309 DOI: 10.1155/2013/218543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/08/2013] [Indexed: 12/31/2022]
Abstract
The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research.
Collapse
|
249
|
Masthan KMK, Sankari SL, Babu NA, Gopalakrishnan T. Mystery inside the tooth: the dental pulp stem cells. J Clin Diagn Res 2013; 7:945-7. [PMID: 23814752 DOI: 10.7860/jcdr/2013/5379.2984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/12/2013] [Indexed: 01/09/2023]
Abstract
Stem cells are distinguished by their ability to differentiate into different types of cells in the body and to self-replicate. During the recent years, stem cells have been used extensively in the field of medicine for the repair and regeneration of defective tissues and organs. However, the knowledge on the stem cell technology is increasing quickly in all medical disciplines and it dictates the need for new protective approaches in all fields, which include reparative dentistry. Stem cell therapy constitutes a common challenge for dentists as well as for biotechnologists. The aim of this study was to review the knowledge which was related to stem cells and to consider the possibility of use of stem cell populations and their technology in the future clinical applications, to cure diseases like Parkinsonism, Juvenile diabetes, certain forms of cancer, spinal injuries and heart problems.
Collapse
Affiliation(s)
- K M K Masthan
- Professor & Head of the Department, Department of Oral Pathology and Microbiology, Sree Balaji Dental College & Hospital, Bharath University Pallikaranai, Chennai-600064 India
| | | | | | | |
Collapse
|
250
|
Virtej A, Løes S, Iden O, Bletsa A, Berggreen E. Vascular endothelial growth factors signalling in normal human dental pulp: a study of gene and protein expression. Eur J Oral Sci 2013; 121:92-100. [PMID: 23489898 DOI: 10.1111/eos.12019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 02/02/2023]
Abstract
In the well-vascularized dental pulp vascular endothelial growth factor A (VEGF-A) is expressed. Vascular endothelial growth factor A is a member of the VEGF family, which includes VEGFs-B, -C, and -D. The latter three have not been investigated in the pulp. Vascular endothelial growth factors C and D are the only ligands for vascular endothelial growth factor receptor (VEGFR)-3, which is usually expressed in lymphatic endothelium. They can also activate VEGFR-2, the main angiogenic receptor. We aimed to study VEGFs signalling in human dental pulp at the gene level and to identify the cellular source for protein expression using immunolabelling. All VEGFs (-A, -B, -C, and -D) were expressed in the pulp and may exert both autocrine and paracrine effects in blood vessels and immune cells found to be equipped with VEGFRs-2 and -3. Lymphatic vessel endothelial hyaluronan receptor-positive macrophages, known to be involved in angiogenesis, were found in the pulp, whereas lymphatic vessels were not detected. Twenty-six of 84 VEGF signalling genes, including VEGFR-3, were expressed at a significantly higher level in the pulp than in the control periodontal ligament. In conclusion, the normal human pulp represents a tissue with relatively high VEGF signalling involving both immune responses and vascular activity.
Collapse
Affiliation(s)
- Anca Virtej
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|