201
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
202
|
Mendeville M, Roemer MGM, Los-de Vries GT, Chamuleau MED, de Jong D, Ylstra B. The path towards consensus genome classification of diffuse large B-cell lymphoma for use in clinical practice. Front Oncol 2022; 12:970063. [DOI: 10.3389/fonc.2022.970063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a widely heterogeneous disease in presentation, treatment response and outcome that results from a broad biological heterogeneity. Various stratification approaches have been proposed over time but failed to sufficiently capture the heterogeneous biology and behavior of the disease in a clinically relevant manner. The most recent DNA-based genomic subtyping studies are a major step forward by offering a level of refinement that could serve as a basis for exploration of personalized and targeted treatment for the years to come. To enable consistent trial designs and allow meaningful comparisons between studies, harmonization of the currently available knowledge into a single genomic classification widely applicable in daily practice is pivotal. In this review, we investigate potential avenues for harmonization of the presently available genomic subtypes of DLBCL inspired by consensus molecular classifications achieved for other malignancies. Finally, suggestions for laboratory techniques and infrastructure required for successful clinical implementation are described.
Collapse
|
203
|
Mangolini M, Maiques-Diaz A, Charalampopoulou S, Gerhard-Hartmann E, Bloehdorn J, Moore A, Giachetti G, Lu J, Roamio Franklin VN, Chilamakuri CSR, Moutsopoulos I, Rosenwald A, Stilgenbauer S, Zenz T, Mohorianu I, D'Santos C, Deaglio S, Hodson DJ, Martin-Subero JI, Ringshausen I. Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape. Nat Commun 2022; 13:6220. [PMID: 36266281 PMCID: PMC9585083 DOI: 10.1038/s41467-022-33739-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Johannes Bloehdorn
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Andrew Moore
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Giorgia Giachetti
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | | | | | - Ilias Moutsopoulos
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Andreas Rosenwald
- Pathologisches Institut Universität Würzburg, 97080, Würzburg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer, Research Centre, Heidelberg, Germany
| | - Irina Mohorianu
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Daniel J Hodson
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ingo Ringshausen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
204
|
Pasqualucci L, Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines 2022; 10:2450. [PMID: 36289712 PMCID: PMC9599362 DOI: 10.3390/biomedicines10102450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most B cell lymphomas arise from the oncogenic transformation of B cells that have undergone the germinal center (GC) reaction of the T cell-dependent immune response, where high-affinity memory B cells and plasma cells are generated. The high proliferation of GC B cells coupled with occasional errors in the DNA-modifying processes of somatic hypermutation and class switch recombination put the cell at a risk to obtain transforming genetic aberrations, which may activate proto-oncogenes or inactivate tumour suppressor genes. Several subtypes of GC lymphomas harbor genetic mutations leading to constitutive, aberrant activation of the nuclear factor-κB (NF-κB) signaling pathway. In normal B cells, NF-κB has crucial biological roles in development and physiology. GC lymphomas highjack these activities to promote tumour-cell growth and survival. It has become increasingly clear that the separate canonical and non-canonical routes of the NF-κB pathway and the five downstream NF-κB transcription factors have distinct functions in the successive stages of GC B-cell development. These findings may have direct implications for understanding how aberrant NF-κB activation promotes the genesis of various GC lymphomas corresponding to the developmentally distinct GC B-cell subsets. The knowledge arising from these studies may be explored for the development of precision medicine approaches aimed at more effective treatments of the corresponding tumours with specific NF-κB inhibitors, thus reducing systemic toxicity. We here provide an overview on the patterns of genetic NF-κB mutations encountered in the various GC lymphomas and discuss the consequences of aberrant NF-κB activation in those malignancies as related to the biology of NF-κB in their putative normal cellular counterparts.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology & Cell Biology, The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
205
|
Gao H, Xu Y, Liu Y, Mi L, Wang X, Liu W, Zhu J, Song Y. A Comparison of Clinical Prognostic Indices in Elderly Patients with Diffuse Large B-Cell Lymphoma Treated with a Pegylated Liposomal Doxorubicin Combination Regimen in China. Cancer Manag Res 2022; 14:2711-2721. [PMID: 36133738 PMCID: PMC9482890 DOI: 10.2147/cmar.s359956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is no consensus regarding the risk stratification scores for elderly patients with diffuse large B-cell lymphoma (DLBCL). We aimed to compare the prognostic predictive ability of the current clinical scoring indices in DLBCL elderly patients treated with the R-CODP regimen (rituximab, cyclophosphamide, pegylated liposomal doxorubicin, vincristine, and prednisone). Methods We retrospectively collected the data of elderly DLBCL patients who received the R-CODP regimen as the first-line treatment. The efficacy of the regimen was evaluated. The Akaike information criteria (AIC), concordance index (C-index), and integrated discrimination improvement (IDI) were used to assess the fitness and prognostic performance of the current clinical prognostic indices. Results In the total of 158 patients enrolled, the median follow-up time was 6.7 years (95% CI: 6.3–7.9), and the 5-year OS was 52.8% (95% CI: 45.5%–61.2%). The International Prognostic Index (IPI), National Comprehensive Cancer Network-IPI (NCCN-IPI), and Elderly International Prognostic Index (E-IPI) were all significantly associated with OS (P < 0.001 for all). However, no significance was observed in 5-year OS in the low- vs low-intermediate-risk groups for IPI (P = 0.377), NCCN-IPI (P = 0.238), and E-IPI (P = 0.080). Compared with the IPI and NCCN-IPI, the E-IPI had the lowest AIC value of 747.5 and the highest C-index of 0.692. For predicting 5-year mortality, the E-IPI showed better performance (AUC: 0.715 for E-IPI vs 0.676 for IPI, P = 0.036), with the IDI of 6.29% (95% CI: 3.71%-8.88%, P < 0.001) and 4.80% (95% CI: 1.32%-8.28%, P = 0.007) compared to the IPI and NCCN-IPI, respectively. Conclusion The E-IPI might be a better prognostic prediction model in Chinese DLBCL generics treated with R-CODP for predicting 5-year mortality. However, the IPI, NCCN-IPI, and E-IPI did not seem to be able to distinguish patients with a favorable prognosis well.
Collapse
Affiliation(s)
- Hongye Gao
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yanfeng Xu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yanfei Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Lan Mi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Xiaopei Wang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Weiping Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yuqin Song
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
206
|
Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, Brousset P, Cerroni L, de Leval L, Dirnhofer S, Dogan A, Feldman AL, Fend F, Friedberg JW, Gaulard P, Ghia P, Horwitz SM, King RL, Salles G, San-Miguel J, Seymour JF, Treon SP, Vose JM, Zucca E, Advani R, Ansell S, Au WY, Barrionuevo C, Bergsagel L, Chan WC, Cohen JI, d'Amore F, Davies A, Falini B, Ghobrial IM, Goodlad JR, Gribben JG, Hsi ED, Kahl BS, Kim WS, Kumar S, LaCasce AS, Laurent C, Lenz G, Leonard JP, Link MP, Lopez-Guillermo A, Mateos MV, Macintyre E, Melnick AM, Morschhauser F, Nakamura S, Narbaitz M, Pavlovsky A, Pileri SA, Piris M, Pro B, Rajkumar V, Rosen ST, Sander B, Sehn L, Shipp MA, Smith SM, Staudt LM, Thieblemont C, Tousseyn T, Wilson WH, Yoshino T, Zinzani PL, Dreyling M, Scott DW, Winter JN, Zelenetz AD. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 2022; 140:1229-1253. [PMID: 35653592 PMCID: PMC9479027 DOI: 10.1182/blood.2022015851] [Citation(s) in RCA: 818] [Impact Index Per Article: 272.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Since the publication of the Revised European-American Classification of Lymphoid Neoplasms in 1994, subsequent updates of the classification of lymphoid neoplasms have been generated through iterative international efforts to achieve broad consensus among hematopathologists, geneticists, molecular scientists, and clinicians. Significant progress has recently been made in the characterization of malignancies of the immune system, with many new insights provided by genomic studies. They have led to this proposal. We have followed the same process that was successfully used for the third and fourth editions of the World Health Organization Classification of Hematologic Neoplasms. The definition, recommended studies, and criteria for the diagnosis of many entities have been extensively refined. Some categories considered provisional have now been upgraded to definite entities. Terminology for some diseases has been revised to adapt nomenclature to the current knowledge of their biology, but these modifications have been restricted to well-justified situations. Major findings from recent genomic studies have impacted the conceptual framework and diagnostic criteria for many disease entities. These changes will have an impact on optimal clinical management. The conclusions of this work are summarized in this report as the proposed International Consensus Classification of mature lymphoid, histiocytic, and dendritic cell tumors.
Collapse
Affiliation(s)
- Elias Campo
- Haematopathology Section, Hospital Clínic of Barcelona, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, and Laboratoire d'Excellence Toulouse Cancer, Toulouse, France
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ahmet Dogan
- Laboratory of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | | | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Mondor Institute for Biomedical Research, INSERM U955, Faculty of Medicine, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Strategic Research Program on Chronic Lymphocytic Leukemia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, CIBERONC, Pamplona, Spain
| | - John F Seymour
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Julie M Vose
- Division of Hematology-Oncology, Department of Internal Medicine, University of Nebraska Medical Center, University of Nebraska, Omaha, NE
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, and Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ranjana Advani
- Stanford Cancer Center, Blood and Marrow Transplant Program, Stanford University, Stanford, CA
| | - Stephen Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Wing-Yan Au
- Blood-Med Clinic, Hong Kong, People's Republic of China
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Andrew Davies
- Cancer Research UK Centre, Centre for Cancer Immunology, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, Hospital of Perugia, University of Perugia , Perugia, Italy
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Harvard University, Boston, MA
| | - John R Goodlad
- National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - John G Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Eric D Hsi
- Department of Pathology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC
| | - Brad S Kahl
- Oncology Division, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Won-Seog Kim
- Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, and Laboratoire d'Excellence Toulouse Cancer, Toulouse, France
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - John P Leonard
- Weill Department of Medicine, Weill Medical College, Cornell University, New York, NY
| | - Michael P Link
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - Armando Lopez-Guillermo
- Department of Hematology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Maria Victoria Mateos
- Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cancer, Universidad de Salamanca, Salamanca, Spain
| | - Elizabeth Macintyre
- Laboratoire d'Onco-Hématologie, AP-HP, Hôpital Necker-Enfants Malades, Université de Paris Cité and Institut Necker-Enfants Malades, Paris, France
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Medical College, Cornell University, New York, NY
| | - Franck Morschhauser
- Department of Hematology, Centre Hospitalier Universitaire de Lille, University Lille, Lille, France
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Marina Narbaitz
- Department of Pathology, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina and Fundacion para combatir la leucemia (FUNDALEU), Buenos Aires, Argentina
| | - Astrid Pavlovsky
- Fundación para Combatir la Leucemia (FUNDALEU), Centro de Hematología Pavlovsky, Buenos Aires, Argentina
| | - Stefano A Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Miguel Piris
- Jiménez Díaz Foundation University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Barbara Pro
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vincent Rajkumar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Steven T Rosen
- Beckman Research Institute, and Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laurie Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Sonali M Smith
- Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Catherine Thieblemont
- Service Hémato-Oncologie, AP-HP, Hôpital Saint-Louis, Paris, France
- DMU-DHI, Université de Paris-Paris Diderot, Paris, France
| | - Thomas Tousseyn
- Department of Pathology, Universitair Ziekenhuis Leuven Hospitals, Leuven, Belgium
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Pier-Luigi Zinzani
- Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seragnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL; and
| | - Andrew D Zelenetz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College, Cornell University, New York, NY
| |
Collapse
|
207
|
Hill BT, Kahl B. Upfront therapy for diffuse large B-cell lymphoma: looking beyond R-CHOP. Expert Rev Hematol 2022; 15:805-812. [DOI: 10.1080/17474086.2022.2124156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Brian T. Hill
- Taussig Cancer Institute Cleveland Clinic, Cleveland, OH, USA
| | - Brad Kahl
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
208
|
Ye S, Ying W, Lin Y, Hou Z, Su M. LncRNA OR2A1-AS1 index predicts survival in germinal center-like diffuse large B-cell lymphoma. J Clin Lab Anal 2022; 36:e24680. [PMID: 36059090 PMCID: PMC9550983 DOI: 10.1002/jcla.24680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive form of non-Hodgkin lymphoma. Long noncoding RNA (lncRNA) has been evaluated as prognostic markers in various carcinomas. However, the prognostic value of the lncRNA index in DLBCL has not been fully understood. Hence, this study aimed to identify the prognostic value of lncRNA olfactory receptor family 2 subfamily A member 1-antisense RNA 1 (OR2A1-AS1) in DLBCL. METHODS The Gene Expression Omnibus (GEO) database was used to obtain the GSE97336 dataset comprising lncRNA expression profiles. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was conducted to evaluate the expression of OR2A1-AS1 in 98 cases of DLBCL. RESULTS OR2A1-AS1 expression was considerably reduced in DLBCL patients, reduced OR2A1-AS1 expression was linked to a shorter overall survival (OS) and progression-free survival (PFS) in DLBCL patients, especially those with the germinal center B-cell-like subtype (GCB). Multivariate analysis (MVA) revealed that the OR2A1-AS1 index had prognostic significance. Patients with low OR2A1-AS1 expression have a poor prognosis. CONCLUSIONS OR2A1-AS may represent an effective predictor of patients' outcomes with DLBCL.
Collapse
Affiliation(s)
- Shuting Ye
- Department of Hematology, The First People's Hospital of Wenling, Wenling, China
| | - Weiwei Ying
- Department of Hematology, The First People's Hospital of Wenling, Wenling, China
| | - Yi Lin
- Department of Pathology, The First People's Hospital of Wenling, Wenling, China
| | - Zhengjun Hou
- Department of Traditional Chinese Medicine, The First People's Hospital of Wenling, Wenling, China
| | - Meiyun Su
- Department of Hematology, The First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
209
|
Palazón-Carrión N, Martín García-Sancho A, Nogales-Fernández E, Jiménez-Cortegana C, Carnicero-González F, Ríos-Herranz E, de la Cruz-Vicente F, Rodríguez-García G, Fernández-Álvarez R, Martínez-Banaclocha N, Gumà-Padrò J, Gómez-Codina J, Salar-Silvestre A, Rodríguez-Abreu D, Gálvez-Carvajal L, Labrador J, Guirado-Risueño M, García-Domínguez DJ, Hontecillas-Prieto L, Espejo-García P, Fernández-Román I, Provencio-Pulla M, Sánchez-Beato M, Navarro M, Marylene L, Álvaro-Naranjo T, Casanova-Espinosa M, Sánchez-Margalet V, Rueda-Domínguez A, de la Cruz-Merino L. Lenalidomide plus R-GDP (R2-GDP) in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Final Results of the R2-GDP-GOTEL Trial and Immune Biomarker Subanalysis. Clin Cancer Res 2022; 28:3658-3668. [PMID: 35727601 PMCID: PMC9433956 DOI: 10.1158/1078-0432.ccr-22-0588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE New therapeutic options are needed in relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL). Lenalidomide-based schedules can reverse rituximab refractoriness in lymphoma. PATIENTS AND METHODS In the phase II R2-GDP trial, 78 patients unsuitable for autologous stem cell transplant received treatment with the following schedule: lenalidomide 10 mg Days (D)1-14, rituximab 375 mg/m2 D1, cisplatin 60 mg/m2 D1, gemcitabine 750 mg/m2 D1 and D8, and dexamethasone 20 mg D1-3, up to 6 cycles (induction phase), followed by lenalidomide 10 mg (or last lenalidomide dose received) D1-21 every 28 days (maintenance phase). Primary endpoint was overall response rate (ORR). Secondary endpoints included progression-free survival (PFS), overall survival (OS), safety, and monitorization of key circulating immune biomarkers (EU Clinical Trials Register number: EudraCT 2014-001620-29). RESULTS After a median follow-up of 37 months, ORR was 60.2% [37.1% complete responses (CR) and 23.1% partial responses (PR)]. Median OS was 12 months (47 vs. 6 months in CR vs. no CR); median PFS was 9 months (34 vs. 5 months in CR vs. no CR). In the primary refractory population, ORR was 45.5% (21.2% CR and 24.3% PR). Most common grade 3-4 adverse events were thrombocytopenia (60.2%), neutropenia (60.2%), anemia (26.9%), infections (15.3%), and febrile neutropenia (14.1%). Complete responses were associated with a sharp decrease in circulating myeloid-derived suppressor cells and regulatory T cells. CONCLUSIONS R2-GDP schedule is feasible and highly active in R/R DLBCL, including the primary refractory population. Immune biomarkers showed differences in responders versus progressors.
Collapse
Affiliation(s)
- Natalia Palazón-Carrión
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | | | - Esteban Nogales-Fernández
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Hospital Universitario Virgen Macarena, Seville, Spain
| | | | | | | | | | | | | | - Josep Gumà-Padrò
- Department of Clinical Oncology, Hospital Universitari Sant Joan de Reus URV, IISPV, Reus, Spain
| | - José Gómez-Codina
- Department of Clinical Oncology, Hospital Universitario La Fé, Valencia, Spain
| | | | - Delvys Rodríguez-Abreu
- Department of Clinical Oncology, Hospital Universitario Insular, Las Palmas de Gran Canaria, Spain
| | - Laura Gálvez-Carvajal
- Department of Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Jorge Labrador
- Department of Hematology, Research Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - María Guirado-Risueño
- Department of Clinical Oncology, Hospital General Universitario de Elche, Elche, Spain
| | - Daniel J. García-Domínguez
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain.,Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain.,Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Pablo Espejo-García
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | | | - Mariano Provencio-Pulla
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| | - Margarita Sánchez-Beato
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, CIBERONC, Madrid, Spain
| | - Marta Navarro
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Lejeune Marylene
- Department of Pathology, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta, IISPV, URV, Tortosa, Tarragona, Spain
| | - Tomás Álvaro-Naranjo
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tortosa, Tarragona, Spain
| | | | - Victor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Antonio Rueda-Domínguez
- Department of Hematology/Clinical Oncology, Hospital Costa del Sol, Marbella, Spain.,Corresponding Authors: Luis de la Cruz-Merino, Hospital Universitario Virgen Macarena and University of Seville, Avenue Doctor Fedriani, 41009 Seville, Spain. Phone: 346-7790-2681; E-mail: ; and Antonio Rueda-Domínguez,
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain.,Corresponding Authors: Luis de la Cruz-Merino, Hospital Universitario Virgen Macarena and University of Seville, Avenue Doctor Fedriani, 41009 Seville, Spain. Phone: 346-7790-2681; E-mail: ; and Antonio Rueda-Domínguez,
| |
Collapse
|
210
|
Anagnostou T, Brody JD. In CAR T cell-treated lymphomas, the T cell rich get richer. Nat Med 2022; 28:1757-1758. [PMID: 36038630 DOI: 10.1038/s41591-022-01922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Theodora Anagnostou
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua D Brody
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
211
|
Ma D, Ma Y, Ma Y, Liu J, Gu Y, Liu N, Xiang C, Liu H, Sang W. Molecular subtyping of CD5+ diffuse large B-cell lymphoma based on DNA-targeted sequencing and Lymph2Cx. Front Oncol 2022; 12:941347. [PMID: 36081566 PMCID: PMC9445310 DOI: 10.3389/fonc.2022.941347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCD5-positive diffuse large B-cell lymphoma (CD5+ DLBCL) showed poor prognosis in the rituximab era, with limited research on its genetic characteristics and cell of origin (COO). We aimed to demonstrate the molecular characteristics of CD5+ DLBCL and to discover potential prognostic factors.MethodsWe included 24 cases of CD5+ DLBCL and 23 CD5-negative (CD5-) counterparts and collected their clinicopathological features. Targeted DNA sequencing of 475 lymphoma-related genes was performed, and all cases were assigned to distinct genetic subtypes using the LymphGen tool. The COO was determined by the Lymph2Cx assay. The Kaplan–Meier method and Cox proportional hazards model were applied to identify the possible prognostic factors.ResultsCompared with their CD5- counterparts, patients with CD5+ DLBCL tended to have a worse prognosis and a higher incidence of MYD88L265P and CD79B double mutation (MCD) subtype (54.17%, P = 0.005) and activated B cell-like (ABC) subtype (62.5%, P = 00017), as determined by next-generation sequencing and Lymph2Cx, respectively. Moreover, PIM1, MYD88, and KMT2D mutations were detected more frequently in CD5+ DLBCL cases (P < 0.05). According to multivariate analysis, MYC/BCL2 double expression and ABC subtype were correlated with unfavorable overall survival (OS). High mRNA expression of SERPINA9 and MME showed a significant correlation with a better OS, and high expression of MME showed a significant correlation with better progression-free survival in CD5+ DLBCL.ConclusionThe genetic profile of CD5+ DLBCL is characterized by PIM1, MYD88, and KMT2D mutations, with a higher incidence of MCD and ABC subtypes. MYC/BCL2 double expression, ABC subtype, and mRNA expression of SERPINA9 and MME are independently predictive of the prognosis of CD5+ DLBCL.
Collapse
Affiliation(s)
- Dongshen Ma
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuhan Ma
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Ma
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jia Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Gu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nian Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hui Liu, ; Wei Sang,
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hui Liu, ; Wei Sang,
| |
Collapse
|
212
|
Fanelli A, Marconato L, Licenziato L, Minoli L, Rouquet N, Aresu L. POT1 mutations are frequent and associated with Ki-67 index in canine diffuse large B-cell lymphoma. Front Vet Sci 2022; 9:968807. [PMID: 36016811 PMCID: PMC9396242 DOI: 10.3389/fvets.2022.968807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents one of the most frequent and deadliest neoplasia in dogs worldwide and is characterized by a remarkable degree of clinical heterogeneity, with poor chances to anticipate the outcome. Even if in the last years some recurrently mutated genes have been identified, the genetic origin of canine DLBCL (cDLBCL) is not yet completely understood. The aim of the present study was to assess the prevalence of POT1 mutations in cDLBCL and to elucidate the role of such gene in the pathogenesis of this tumor. Mutations in POT1 were retrieved in 34% of cases, in line with previous reports, but no significant associations with any clinico-pathological variable were identified. Likewise, POT1 mutations are not predictive of worse prognosis. Interestingly, Ki-67 index was significantly higher in dogs harboring POT1 mutations compared to wild-type ones. These results suggest that POT1 mutations may exert their pathogenic role in cDLBCL by promoting cellular proliferation.
Collapse
Affiliation(s)
- Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Turin, Italy
- *Correspondence: Antonella Fanelli
| | - Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
213
|
Xia M, David L, Teater M, Gutierrez J, Wang X, Meydan C, Lytle A, Slack GW, Scott DW, Morin RD, Onder O, Elenitoba-Johnson KS, Zamponi N, Cerchietti L, Lu T, Philippar U, Fontan L, Wu H, Melnick AM. BCL10 Mutations Define Distinct Dependencies Guiding Precision Therapy for DLBCL. Cancer Discov 2022; 12:1922-1941. [PMID: 35658124 PMCID: PMC9357155 DOI: 10.1158/2159-8290.cd-21-1566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 01/09/2023]
Abstract
Activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCL) have unfavorable outcomes and chronic activation of CARD11-BCL10-MALT1 (CBM) signal amplification complexes that form due to polymerization of BCL10 subunits, which is affected by recurrent somatic mutations in ABC-DLBCLs. Herein, we show that BCL10 mutants fall into at least two functionally distinct classes: missense mutations of the BCL10 CARD domain and truncation of its C-terminal tail. Truncating mutations abrogated a motif through which MALT1 inhibits BCL10 polymerization, trapping MALT1 in its activated filament-bound state. CARD missense mutations enhanced BCL10 filament formation, forming glutamine network structures that stabilize BCL10 filaments. Mutant forms of BCL10 were less dependent on upstream CARD11 activation and thus manifested resistance to BTK inhibitors, whereas BCL10 truncating but not CARD mutants were hypersensitive to MALT1 inhibitors. Therefore, BCL10 mutations are potential biomarkers for BTK inhibitor resistance in ABC-DLBCL, and further precision can be achieved by selecting therapy based on specific biochemical effects of distinct mutation classes. SIGNIFICANCE ABC-DLBCLs feature frequent mutations of signaling mediators that converge on the CBM complex. We use structure-function approaches to reveal that BCL10 mutations fall into two distinct biochemical classes. Both classes confer resistance to BTK inhibitors, whereas BCL10 truncations confer hyperresponsiveness to MALT1 inhibitors, providing a road map for precision therapies in ABC-DLBCLs. See related commentary by Phelan and Oellerich, p. 1844. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Liron David
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Johana Gutierrez
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Xiang Wang
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Cem Meydan
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Andrew Lytle
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, British Columbia, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, British Columbia, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, British Columbia, Canada
| | - Ryan D. Morin
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ozlem Onder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kojo S.J. Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nahuel Zamponi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Leandro Cerchietti
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tianbao Lu
- Janssen Research & Development, Springhouse, Pennsylvania
| | | | - Lorena Fontan
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
214
|
Bühler MM, Martin‐Subero JI, Pan‐Hammarström Q, Campo E, Rosenquist R. Towards precision medicine in lymphoid malignancies. J Intern Med 2022; 292:221-242. [PMID: 34875132 PMCID: PMC11497354 DOI: 10.1111/joim.13423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.
Collapse
Affiliation(s)
- Marco M. Bühler
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - José I. Martin‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University LaboratoryKarolinska University HospitalSolnaSweden
| |
Collapse
|
215
|
Lim JH, Wang JQ, Webb F, Saxena K, Tuipulotu DE, Pandey A, Man SM, Talaulikar D. Plasma cells arise from differentiation of clonal lymphocytes and secrete IgM in Waldenström Macroglobulinaemia. iScience 2022; 25:104856. [PMID: 35992066 PMCID: PMC9389254 DOI: 10.1016/j.isci.2022.104856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 10/25/2022] Open
|
216
|
Hong Y, Ren T, Wang X, Liu X, Fei Y, Meng S, Han X, Sun C, Shen H, Li L, Qiu L, Qian Z, Zhou S, Zhang H, Wang X. APR-246 triggers ferritinophagy and ferroptosis of diffuse large B-cell lymphoma cells with distinct TP53 mutations. Leukemia 2022; 36:2269-2280. [PMID: 35835991 DOI: 10.1038/s41375-022-01634-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
TP53 mutations correlate with inferior survival in many cancers. APR-246 is a compound to shift mutant p53 and exhibits anti-cancer effects. Among its effects, APR-246 facilitates the binding of restored p53 mutants to target genes and their transcription. A set of 2464 DLBCL cases from multiple cohorts including our center, was integrated to identify the type and localization of TP53 mutations and clinical impacts. APR-246 was applied in TP53-mutated DLBCL cells and xenograft mouse models to explore the anti-tumor effect. TP53 mutations frequency was 16% and TP53 mutations correlated with poor overall survival (OS) and progression-free survival (PFS) in all cases, especially in germinal center B-cell-like (GCB) and unclassified (UNC) subtypes. Notably, TP53 single mutations in the DNA binding domain (DBD) led to poor OS and PFS. Specifically, mutations in exon 7 correlated with poorer OS, while mutations in exons 5 and 6 associated with inferior PFS. APR-246 induces p53-dependent ferritinophagy of DLBCL cells with TP53 missense mutation on exon 7 and ferroptosis of DLBCL cells harboring wild-type TP53 and other TP53 mutations. TP53 mutations on exons 5, 6 and 7 are predictors of progression and survival. Targeting mutant p53 by APR-246 is a promising therapeutic approach for DLBCL patients.
Collapse
Affiliation(s)
- Yuheng Hong
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Tianyuan Ren
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Xiaoxuan Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Xia Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Yue Fei
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Shen Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Xu Han
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695-7555, USA
| | - Cong Sun
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Hongru Shen
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, CN, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China.
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China.
| |
Collapse
|
217
|
Xie W, Medeiros LJ, Li S, Tang G, Fan G, Xu J. PD-1/PD-L1 Pathway: A Therapeutic Target in CD30+ Large Cell Lymphomas. Biomedicines 2022; 10:biomedicines10071587. [PMID: 35884893 PMCID: PMC9313053 DOI: 10.3390/biomedicines10071587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein–Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL). The genetic alteration of the chromosome 9p24.1 locus, the location of PD-L1, PD-L2, and JAK2 are the main mechanisms leading to PD-L1 and PD-L2 overexpression and are frequently observed in these CD30+ large cell lymphomas. The JAK/STAT pathway is also commonly constitutively activated in these lymphomas, further contributing to the upregulated expression of PD-L1 and PD-L2. Other mechanisms underlying the overexpression of PD-L1 and PD-L2 in some cases include EBV infection and the activation of the mitogen-activated protein kinase (MAPK) pathway. These cellular and molecular mechanisms provide a scientific rationale for PD-1/PD-L1 blockade in treating patients with relapsed/refractory (R/R) disease and, possibly, in newly diagnosed patients. Given the high efficacy of PD-1 inhibitors in patients with R/R CHL and PMBL, these agents have become a standard treatment in these patient subgroups. Preliminary studies of PD-1 inhibitors in patients with R/R EBV+ DLBCL and R/R ALCL have also shown promising results. Future directions for these patients will likely include PD-1/PD-L1 blockade in combination with other therapeutic agents, such as brentuximab or traditional chemotherapy regimens.
Collapse
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
- Correspondence: ; Tel.: +1-713-794-1220; Fax: +1-713-563-3166
| |
Collapse
|
218
|
Bal E, Kumar R, Hadigol M, Holmes AB, Hilton LK, Loh JW, Dreval K, Wong JCH, Vlasevska S, Corinaldesi C, Soni RK, Basso K, Morin RD, Khiabanian H, Pasqualucci L, Dalla-Favera R. Super-enhancer hypermutation alters oncogene expression in B cell lymphoma. Nature 2022; 607:808-815. [PMID: 35794478 PMCID: PMC9583699 DOI: 10.1038/s41586-022-04906-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/25/2022] [Indexed: 12/16/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets1-5. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.
Collapse
Affiliation(s)
- Elodie Bal
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Rahul Kumar
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Mohammad Hadigol
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Laura K Hilton
- Centre for Lymphoid Cancer, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jui Wan Loh
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jasper C H Wong
- Centre for Lymphoid Cancer, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Sofija Vlasevska
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | | | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Genome Sciences Center, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Hossein Khiabanian
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Department of Genetics & Development, Columbia University, New York, NY, USA.
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA.
| |
Collapse
|
219
|
Higashi M, Momose S, Takayanagi N, Tanaka Y, Anan T, Yamashita T, Kikuchi J, Tokuhira M, Kizaki M, Tamaru JI. CD24 is a surrogate for 'immune-cold' phenotype in aggressive large B-cell lymphoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2022; 8:340-354. [PMID: 35289116 PMCID: PMC9161324 DOI: 10.1002/cjp2.266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/26/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment (TME) is a critical regulator of the development of malignant lymphoma. Therapeutics targeting the TME, especially immune checkpoint molecules, are changing the treatment strategy for lymphoma. However, the overall response to these therapeutics for diffuse large B‐cell lymphoma (DLBCL) is modest and new targets of immunotherapy are needed. To find critical immune checkpoint molecules for DLBCL, we explored the prognostic impact of immune checkpoint molecules and their ligands using publicly available datasets of gene expression profiles. In silico analysis of three independent datasets (GSE117556, GSE10846, and GSE181063) revealed that DLBCL expressing CD24 had a poor prognosis and had a high frequency of MYC aberrations. Moreover, gene set enrichment analysis showed that the ‘MYC‐targets‐hallmark’ (false discovery rate [FDR] = 0.024) and ‘inflammatory‐response‐hallmark’ (FDR = 0.001) were enriched in CD24‐high and CD24‐low DLBCL, respectively. In addition, the expression of cell‐specific markers of various immune cells was higher in CD24‐low DLBCL than in CD24‐high DLBCL. CIBERSORT analysis of the datasets showed fewer macrophages in CD24‐high DLBCL than in CD24‐low DLBCL. Additionally, immunohistochemical analysis of 335 cases of DLBCL showed that few TME cells were found in CD24‐high DLBCL, although statistical differences were not observed. These data indicate that CD24 expression suppresses immune cell components of the TME in DLBCL, suggesting that CD24 may be a target for cancer immunotherapy in aggressive large B‐cell lymphoma.
Collapse
Affiliation(s)
- Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Natsuko Takayanagi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yuka Tanaka
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Tomoe Anan
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Takahisa Yamashita
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Jun Kikuchi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Michihide Tokuhira
- Hematology, Saitama Medical Center, Japan Community Health Care Organization, Kawagoe, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
220
|
Xiang X, Gao LM, Zhang Y, Tang Y, Zhao S, Liu W, Ye Y, Zhang W. Identification of FCER1G related to Activated Memory CD4 + T Cells Infiltration by Gene Co-expression Network and Construction of a Risk Prediction Module in Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:849422. [PMID: 35711924 PMCID: PMC9196638 DOI: 10.3389/fgene.2022.849422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a group of biologically heterogeneous tumors with different prognoses. The tumor microenvironment plays a vital role in the tumorigenesis and development of DLBCL, and activated memory CD4+ T cells are an essential component of immunological cells in the lymphoma microenvironment. So far, there are few reports about activated memory CD4+T cells infiltration and related genes in the DLBCL tumor microenvironment. This study obtained the mRNA expression profile information of the testing GSE87371 dataset and another six validation datasets (GSE53786, GSE181063, GSE10846, GSE32918, GSE32018, GSE9327, GSE3892, TCGA-DLBC) from the GEO and TCGA databases. Weighted Gene Co-expression Network Analysis (WGCNA) screened gene module associated with activated memory CD4+ T cells infiltration. CIBERSORT and TIMER (immune cells infiltrating estimation analysis tools) were used to identify the relationship between activated memory CD4+ T cells and genes associated with immune infiltrating cells in the tumor microenvironment. The least absolute shrinkage and selection operator (LASSO) built the risk prediction model and verified it using nomogram and Kaplan-Meier analysis. Further functional characterization includes Gene Ontology, KEGG pathway analysis and Gene Set Enrichment Analysis (GSEA) to investigate the role and underlying mechanisms of these genes. These results suggest that the expression of FCER1G can reflect the invasion of activated memory CD4+ T cells in DLBCL, which provides a new idea for studying the tumor microenvironment and may become a potential predictive biomarker for the assessment of DLBCL.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuehua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Tang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Weiping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yunxia Ye
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
221
|
Jeong H, Cho H, Hong JY, Lee DH, Kim S, Lee K, Kang EH, Park JS, Ryu JS, Huh J, Suh C. Modified Stage Grouping of Diffuse Large B-Cell Lymphoma Involving the Same Side of the Diaphragm in the Rituximab Era. Front Oncol 2022; 12:888925. [PMID: 35712469 PMCID: PMC9197215 DOI: 10.3389/fonc.2022.888925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Among patients with diffuse large B-cell lymphoma (DLBCL) involving the same side of the diaphragm, the prognostic implications of extranodal disease or its contiguity with the nodal lesion remain unclear. In this study, patients with DLBCL treated with R-CHOP whose disease was limited to the same side of the diaphragm were included. Survival was assessed by the presence, contiguity, and number of extranodal lesions. Among the 508 patients included, overall survival (OS) and progression-free survival (PFS) did not differ according to the presence of single extranodal involvement or its anatomical contiguity with the nodal lesion. However, patients with ≥2 extranodal involvement showed significantly inferior OS and PFS. We re-classified these patients into two groups: modified stage IIEe (≥2 extranodal involvement, n=92) and modified stage II (nodal or single extranodal involvement irrespective of anatomical contiguity, n=416). This modified staging showed improved prognostic performance based on the time-dependent ROC curve compared with Ann Arbor staging. In conclusion, the survival outcomes of patients with DLBCL on the same side of the diaphragm were associated with the number of extranodal lesions, but not with the contiguity of the lesions or presence of a single extranodal involvement. Based on these results, we propose a modified staging system (modified stage IIEe and II) for these patients.
Collapse
Affiliation(s)
- Hyehyun Jeong
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyungwoo Cho
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung Yong Hong
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dae Ho Lee
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Shin Kim
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyoungmin Lee
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun Hee Kang
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung Sun Park
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Cheolwon Suh
- Lymphoma/Myeloma Program, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
222
|
Roman E, Kane E, Howell D, Lamb M, Bagguley T, Crouch S, Painter D, Patmore R, Smith A. Cohort Profile Update: The Haematological Malignancy Research Network (HMRN) UK population-based cohorts. Int J Epidemiol 2022; 51:e87-e94. [PMID: 35134983 PMCID: PMC9189975 DOI: 10.1093/ije/dyab275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| | - Eleanor Kane
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| | - Debra Howell
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| | - Maxine Lamb
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| | - Timothy Bagguley
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| | | | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK
| |
Collapse
|
223
|
Cao X, Wang Y, Zhang W, Zhong X, Gunes EG, Dang J, Wang J, Epstein AL, Querfeld C, Sun Z, Rosen ST, Feng M. Targeting macrophages for enhancing CD47 blockade-elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood 2022; 139:3290-3302. [PMID: 35134139 PMCID: PMC9164740 DOI: 10.1182/blood.2021013901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/19/2022] [Indexed: 01/16/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are often the most abundant immune cells in the tumor microenvironment (TME). Strategies targeting TAMs to enable tumor cell killing through cellular phagocytosis have emerged as promising cancer immunotherapy. Although several phagocytosis checkpoints have been identified, the desired efficacy has not yet been achieved by blocking such checkpoints in preclinical models or clinical trials. Here, we showed that late-stage non-Hodgkin lymphoma (NHL) was resistant to therapy targeting phagocytosis checkpoint CD47 due to the compromised capacity of TAMs to phagocytose lymphoma cells. Via a high-throughput screening of the US Food and Drug Administration-approved anticancer small molecule compounds, we identified paclitaxel as a potentiator that promoted the clearance of lymphoma by directly evoking phagocytic capability of macrophages, independently of paclitaxel's chemotherapeutic cytotoxicity toward NHL cells. A combination with paclitaxel dramatically enhanced the anticancer efficacy of CD47-targeted therapy toward late-stage NHL. Analysis of TME by single-cell RNA sequencing identified paclitaxel-induced TAM populations with an upregulation of genes for tyrosine kinase signaling. The activation of Src family tyrosine kinases signaling in macrophages by paclitaxel promoted phagocytosis against NHL cells. In addition, we identified a role of paclitaxel in modifying the TME by preventing the accumulation of a TAM subpopulation that was only present in late-stage lymphoma resistant to CD47-targeted therapy. Our findings identify a novel and effective strategy for NHL treatment by remodeling TME to enable the tumoricidal roles of TAMs. Furthermore, we characterize TAM subgroups that determine the efficiency of lymphoma phagocytosis in the TME and can be potential therapeutic targets to unleash the antitumor activities of macrophages.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute
| | | | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute
| | - E Gulsen Gunes
- Department of Immuno-Oncology, Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, and
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA; and
| | - Christiane Querfeld
- Department of Immuno-Oncology, Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, and
- Division of Dermatology
- Department of Pathology, and
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, and
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute
| |
Collapse
|
224
|
Papin A, Cesarman E, Melnick A. 3D chromosomal architecture in germinal center B cells and its alterations in lymphomagenesis. Curr Opin Genet Dev 2022; 74:101915. [PMID: 35550952 DOI: 10.1016/j.gde.2022.101915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells, the genome is three dimensionally (3D) organized with DNA interaction dynamics and topology changes that regulate gene expression and drive cell fate. Upon antigen stimulation, naive B cells are activated and form germinal centers (GC) for the generation of memory B cells and plasma cells. Thereby, terminal B-cell differentiation and associated humoral immune response require massive but rigorous 3D DNA reorganization. Here, we review the dynamics of genome reorganization during GC formation and the impact of its alterations on lymphomagenesis from the nucleosome structure to the higher order chromosome organization. We particularly discuss the identified architects of 3D DNA in GC B cells and the role of their mutations in B-cell lymphomas.
Collapse
Affiliation(s)
- Antonin Papin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
225
|
Panel Informativity Optimizer: An R Package to Improve Cancer Next-Generation Sequencing Panel Informativity. J Mol Diagn 2022; 24:697-709. [PMID: 35427780 DOI: 10.1016/j.jmoldx.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/22/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Mutation detection by next-generation sequencing is routinely used for cancer diagnosis. Selecting an optimal set of genes for a given cancer is not trivial as it has to optimize informativity (ie, the number of patients with at least one mutation in the panel), while minimizing panel length to reduce sequencing costs and increase sensitivity. We propose herein Panel Informativity Optimizer (PIO), an open-source software developed as an R package with a user-friendly graphical interface to help optimize cancer next-generation sequencing panel informativity. Using patient-level mutational data from either private data sets or preloaded data set of 91 independent cohorts from 31 different cancer types, PIO selects an optimal set of genomic intervals to maximize informativity and panel size in a given cancer type. Different options are offered, such as the definition of genomic intervals at the gene or exon level and the use of optimization strategy at the patient or patient per kilobase level. PIO can also propose an optimal set of genomic intervals to increase informativity of custom panels. A panel tester function is also available for panel benchmarking. Using public databases, as well as data from real-life settings, we demonstrate that PIO allows panel size reduction of up to 1000 kb, and accurately predicts the performance of custom or commercial panels.
Collapse
|
226
|
Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther 2022; 234:108123. [PMID: 35121000 DOI: 10.1016/j.pharmthera.2022.108123] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
The present review aimed to outline different types of RNAs in cancer diagnostics and treatment, and to provide novel insights into their clinical applications. RNAs, including mRNA, long non-coding (lnc)RNA, circular (circ)RNA and micro (mi)RNA, are now increasingly utilized in the diagnosis and treatment of various cancers. Each aforementioned type of RNA possess their own unique characteristics and could be aberrantly expressed as diagnostic markers or therapeutic targets in different cancers. In addition to mRNAs, which have become a promising alternative in cancer diagnostics and therapy, the uses of lncRNA, circRNA and miRNA in predictive tumor diagnostics and therapy has rapidly increased in recent years. In the present review, the mechanisms of mRNA, lncRNA, circRNA and miRNA in regulating and participating in the development of different cancers were determined, and their potential capacity in cancer diagnostics and therapy were investigated. In addition, the present review analyzed the assoaciations between different RNAs and their subsequent potential in cancer prediction and treatment.
Collapse
|
227
|
Lund S, Ngisa V, Weber K, Rutz A, Guidinger J, Hartert KT. Enrichment of TP53 alterations within GCB-like DNA subclassifications of diffuse large B-cell lymphoma after transition from de-novo to relapsed or refractory disease. Blood Res 2022; 57:164-169. [PMID: 35551110 PMCID: PMC9242832 DOI: 10.5045/br.2022.2022052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Shelby Lund
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Valentine Ngisa
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Kennedee Weber
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Alison Rutz
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Jinda Guidinger
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| | - Keenan T Hartert
- College of Science Engineering and Technology - Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, USA
| |
Collapse
|
228
|
The genomic and transcriptional landscape of primary central nervous system lymphoma. Nat Commun 2022; 13:2558. [PMID: 35538064 PMCID: PMC9091224 DOI: 10.1038/s41467-022-30050-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations.
Collapse
|
229
|
López C, Schleussner N, Bernhart SH, Kleinheinz K, Sungalee S, Sczakiel HL, Kretzmer H, Toprak UH, Glaser S, Wagener R, Ammerpohl O, Bens S, Giefing M, González Sánchez JC, Apic G, Hübschmann D, Janz M, Kreuz M, Mottok A, Müller JM, Seufert J, Hoffmann S, Korbel JO, Russell RB, Schüle R, Trümper L, Klapper W, Radlwimmer B, Lichter P, Küppers R, Schlesner M, Mathas S, Siebert R. Focal structural variants revealed by whole genome sequencing disrupt the histone demethylase KDM4C in B-cell lymphomas. Haematologica 2022; 108:543-554. [PMID: 35522148 PMCID: PMC9890021 DOI: 10.3324/haematol.2021.280005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 02/03/2023] Open
Abstract
Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.
Collapse
Affiliation(s)
- Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany,Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany,*CL and NS contributed equally as co-first authors
| | - Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany, and Experimental and Clinical Research Center, a joint cooperation between the MDC and the Charité, Berlin, Germany,*CL and NS contributed equally as co-first authors
| | - Stephan H. Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany,Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kortine Kleinheinz
- Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg, Germany
| | | | - Henrike L. Sczakiel
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany, and Experimental and Clinical Research Center, a joint cooperation between the MDC and the Charité, Berlin, Germany
| | - Helene Kretzmer
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany,Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Umut H. Toprak
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany,Hopp-Children’s Cancer Center at the NCT Heidelberg (KiTZ), Division of Neuroblastoma Genomics (B087), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany,Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany,Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany,Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Gordana Apic
- BioQuant and Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Heidelberg, Germany
| | - Daniel Hübschmann
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany,Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany,Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany, and Experimental and Clinical Research Center, a joint cooperation between the MDC and the Charité, Berlin, Germany
| | - Markus Kreuz
- Institute for Medical Informatics Statistics and Epidemiology, Leipzig, Germany
| | - Anja Mottok
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Judith M. Müller
- Klinik fur Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Julian Seufert
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steve Hoffmann
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany,Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany,Leibniz Institute on Ageing-Fritz Lipmann Institute (FLI), Computational Biology, Jena, Germany
| | - Jan O. Korbel
- EMBL Heidelberg, Genome Biology Unit, Heidelberg,, Germany
| | - Robert B. Russell
- BioQuant and Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Heidelberg, Germany
| | - Roland Schüle
- Klinik fur Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Hematopathology Section, Christian-Albrechts-University, Kiel, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK)
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg, Germany,Biomedical Informatics, Data Mining and Data Analytics, Augsburg University, Augsburg, Germany
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany, and Experimental and Clinical Research Center, a joint cooperation between the MDC and the Charité, Berlin, Germany,SM and RS contributed equally as co-senior authors
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany,Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany,SM and RS contributed equally as co-senior authors
| |
Collapse
|
230
|
Miura K, Takahashi H, Nakagawa M, Hamada T, Uchino Y, Iizuka K, Ohtake S, Iriyama N, Hatta Y, Nakamura H. Ideal dose intensity of R-CHOP in diffuse large B-cell lymphoma. Expert Rev Anticancer Ther 2022; 22:583-595. [PMID: 35472312 DOI: 10.1080/14737140.2022.2071262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The standard of care for diffuse large B-cell lymphoma (DLBCL) is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). However, its ideal dose intensity varies among cases. AREAS COVERED This review provides the latest insights on the dose intensity of R-CHOP for DLBCL patients. Specifically, we discussed the optimal dose intensity for elderly patients, the optimal number of treatment cycles for limited or advanced-stage diseases, and the role of dose-intensified therapies or adding targeted inhibitors. EXPERT OPINION Performing a comprehensive or simplified geriatric assessment can distinguish elderly DLBCL patients who will likely benefit from curative R-CHOP. Very elderly or medically unfit patients may need dose reduction in R-CHOP; the Age, Comorbidities, and Albumin index may aid decision-making. Four cycles of R-CHOP followed by two rituximab cycles comprise a new standard for low-risk, limited-stage DLBCL patients. Compared to eight cycles, six cycles of R-CHOP have similar efficacy and fewer toxicities for advanced-stage DLBCL. Dose-intensified therapy is not recommended in most DLBCL cases but may be considered for patients with double (or triple)-hit lymphoma. Applying targeted inhibitors and not merely escalating R-CHOP dose intensity through molecular subtyping will improve the treatment outcome for DLBCL.
Collapse
Affiliation(s)
- Katsuhiro Miura
- Tumor Center, Nihon University Itabashi Hospital (Director); 2Department of Hematology and Rheumatology, Nihon University School of Medicine (Associate Professor), Tokyo, Japan.,Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiromichi Takahashi
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan.,Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine (Assistant Professor), Tokyo, Japan
| | - Masaru Nakagawa
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan.,Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine (Assistant Professor), Tokyo, Japan
| | - Takashi Hamada
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihito Uchino
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhide Iizuka
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan.,Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine (Assistant Professor), Tokyo, Japan
| | - Shimon Ohtake
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriyoshi Iriyama
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihiro Hatta
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hideki Nakamura
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
231
|
Harrysson S, Eloranta S, Ekberg S, Enblad G, El-Galaly TC, Sander B, Sonnevi K, Andersson PO, Jerkeman M, Smedby KE. Outcomes of relapsed/refractory diffuse large B-cell lymphoma and influence of chimaeric antigen receptor T trial eligibility criteria in second line-A population-based study of 736 patients. Br J Haematol 2022; 198:267-277. [PMID: 35468219 PMCID: PMC9545648 DOI: 10.1111/bjh.18197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/02/2023]
Abstract
Several recently published trials investigate novel therapies for relapsed/refractory diffuse large B‐cell lymphoma (R/R DLBCL). To estimate the benefit of these therapies in the real‐world setting, comprehensive data on patients treated in clinical routine are needed. We report outcomes for 736 R/R DLBCL patients identified among all curatively treated DLBCL patients in Sweden in the period 2007–2014. Survival and associations with disease characteristics, second‐line treatment and fulfilment of chimaeric antigen receptor (CAR) T‐cell trial criteria were assessed. Median overall survival (OS) was 6.6 months (≤70 years 9.6 months, >70 years 4.9 months). Early relapse (≤12 months) was strongly associated with selection of less intensive treatment and poor survival. Among patients of at most 70 years of age, 63% started intensive second‐line treatment and 34% received autologous stem cell transplantation (ASCT). Two‐year OS among transplanted patients was 56% (early relapse ≤12 months 40%, late relapse >12 months 66%). A minority of patients 76 years (n = 178/506, 35%) fitted CAR T trial criteria. Median progression‐free survival (PFS) for patients with early relapse fitting trial criteria was 4.8 months. In conclusion, most R/R DLBCL manifest early and are often ineligible for or cannot complete intensive regimens resulting in dismal survival. Real‐world patients eligible for CAR T trials also did poorly, providing a benchmark for efficacy of novel therapies.
Collapse
Affiliation(s)
- Sara Harrysson
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Solna, Sweden
| | - Sandra Eloranta
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sara Ekberg
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tarec C El-Galaly
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Sonnevi
- Department of Hematology, Karolinska University Hospital, Solna, Sweden
| | - Per-Ola Andersson
- Department of Hematology, South Älvsborg Hospital, Borås, Sweden.,Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Mats Jerkeman
- Department of Oncology, Lund University, Lund, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
232
|
de Groot FA, de Groen RAL, van den Berg A, Jansen PM, Lam KH, Mutsaers PGNJ, van Noesel CJM, Chamuleau MED, Stevens WBC, Plaça JR, Mous R, Kersten MJ, van der Poel MMW, Tousseyn T, Woei-a-Jin FJSH, Diepstra A, Nijland M, Vermaat JSP. Biological and Clinical Implications of Gene-Expression Profiling in Diffuse Large B-Cell Lymphoma: A Proposal for a Targeted BLYM-777 Consortium Panel as Part of a Multilayered Analytical Approach. Cancers (Basel) 2022; 14:cancers14081857. [PMID: 35454765 PMCID: PMC9028345 DOI: 10.3390/cancers14081857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Gene-expression profiling (GEP) is used to study the molecular biology of lymphomas. Here, advancing insights from GEP studies in diffuse large B-cell lymphoma (DLBCL) lymphomagenesis are discussed. GEP studies elucidated subtypes based on cell-of-origin principles and profoundly changed the biological understanding of DLBCL with clinical relevance. Studies integrating GEP and next-generation DNA sequencing defined different molecular subtypes of DLBCL entities originating at specific anatomical localizations. With the emergence of high-throughput technologies, the tumor microenvironment (TME) has been recognized as a critical component in DLBCL pathogenesis. TME studies have characterized so-called "lymphoma microenvironments" and "ecotypes". Despite gained insights, unexplained chemo-refractoriness in DLBCL remains. To further elucidate the complex biology of DLBCL, we propose a novel targeted GEP consortium panel, called BLYM-777. This knowledge-based biology-driven panel includes probes for 777 genes, covering many aspects regarding B-cell lymphomagenesis (f.e., MYC signature, TME, immune surveillance and resistance to CAR T-cell therapy). Regarding lymphomagenesis, upcoming DLBCL studies need to incorporate genomic and transcriptomic approaches with proteomic methods and correlate these multi-omics data with patient characteristics of well-defined and homogeneous cohorts. This multilayered methodology potentially enhances diagnostic classification of DLBCL subtypes, prognostication, and the development of novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Fleur A. de Groot
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
| | - Ruben A. L. de Groen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
| | - Anke van den Berg
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Patty M. Jansen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - King H. Lam
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Carel J. M. van Noesel
- Department of Pathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Martine E. D. Chamuleau
- Cancer Center Amsterdam and LYMMCARE, Department of Hematology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (M.E.D.C.); (M.J.K.)
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jessica R. Plaça
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Rogier Mous
- Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Marie José Kersten
- Cancer Center Amsterdam and LYMMCARE, Department of Hematology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (M.E.D.C.); (M.J.K.)
| | - Marjolein M. W. van der Poel
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | | | - Arjan Diepstra
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Joost S. P. Vermaat
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
- Correspondence:
| |
Collapse
|
233
|
Voorhees TJ, Epperla N. Identifying aggressive subsets within diffuse large B-cell lymphoma: implications for treatment approach. Expert Rev Anticancer Ther 2022; 22:523-533. [PMID: 35390262 DOI: 10.1080/14737140.2022.2064276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION While the majority of patients diagnosed with diffuse large B-cell lymphoma (DLBCL) can be cured with front-line chemoimmunotherapy, a subset of patients with high-risk disease remain challenging to treat. Identification of high-risk DLBCL is important as future therapy options are explored. AREAS COVERED We discuss the clinical, pathologic and molecular risk stratification in DLBCL and how these factors are incorporated into the decision making for the front-line therapy. EXPERT OPINION Clinical and pathological risk stratification has long been the standard for identifying likelihood of future disease progression and overall survival; however, these prediction models lack the granularity of individual patient pathology and response to therapy. Molecular subtypes defined through whole exome sequencing have independent prognostic significance. While identifying molecular drivers of aggressive disease has provided the opportunity to analyze novel therapy combinations with front-line chemoimmunotherapy, only modest benefit has been observed when targeting DLBCL subtypes. Combining clinical, pathologic, and molecular data will likely result in significant improvement in our ability to identify the most aggressive DLBCL subsets. Novel therapies and trial designs will continue to play an important role as we target these at-risk populations in the future.
Collapse
Affiliation(s)
- Timothy J Voorhees
- James Comprehensive Cancer Center, Department of Internal Medicine, Division of Hematology, The Ohio State University
| | - Narendranath Epperla
- James Comprehensive Cancer Center, Department of Internal Medicine, Division of Hematology, The Ohio State University
| |
Collapse
|
234
|
Concurrent Composite Lymphomas Collectively Bearing Three Diagnostic Entities of Shared Clonal Origin. Hemasphere 2022; 6:e705. [PMID: 35372792 PMCID: PMC8966960 DOI: 10.1097/hs9.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
|
235
|
Wang J, Yu F, Wei W, Huang J, Shao Y, Yan J, Mao L, Yu W, Xie W, Jin J. Simplifying genetic classifiers by six mutated genes in diffuse large B-cell lymphoma. Genes Dis 2022; 10:37-40. [PMID: 37013048 PMCID: PMC10066262 DOI: 10.1016/j.gendis.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
|
236
|
Prognostic Stratification of Diffuse Large B-cell Lymphoma Using Clinico-genomic Models: Validation and Improvement of the LymForest-25 Model. Hemasphere 2022; 6:e706. [PMID: 35392483 PMCID: PMC8984321 DOI: 10.1097/hs9.0000000000000706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
|
237
|
Roh J, Cho H, Pak HK, Lee YS, Lee SW, Ryu JS, Chae EJ, Kim KW, Huh J, Choi YS, Jeong SH, Suh C, Yoon DH, Park CS. BCL2 super-expressor diffuse large B-cell lymphoma: a distinct subgroup associated with poor prognosis. Mod Pathol 2022; 35:480-488. [PMID: 34764434 DOI: 10.1038/s41379-021-00962-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Overexpression of the BCL2 protein has been reported as a poor prognostic factor for diffuse large B-cell lymphoma (DLBCL). However, there are currently no standardized criteria for evaluating BCL2 protein expression. We aimed to evaluate the prognostic value of BCL2 expression determined by immunohistochemistry (IHC), incorporating both the staining intensity and proportion, in patients with de novo DLBCL who received rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) as first-line treatment. We defined tumors with BCL2 expression in nearly all tumor cells with a uniformly strong intensity by IHC as BCL2 super-expressor. The BCL2 super-expressors (n = 35) showed significantly worse event-free survival (EFS; HR, 1.903; 95% CI, 1.159-3.126, P = 0.011) and overall survival (OS; HR, 2.467; 95% CI, 1.474-4.127, P = 0.001) compared with the non-BCL2 super-expressors (n = 234) independent of the international prognostic index (IPI), cell of origin (COO), and double expressor status in the training set (n = 269). The adverse prognostic impact of BCL2 super-expression was confirmed in the validation set (n = 195). When the survival outcomes were evaluated in the entire cohort (n = 464), BCL2 super-expressor group was significantly associated with inferior EFS and OS regardless of IPI, COO, MYC expression, and stages. BCL2 super-expressors had genetic aberrations enriched in the NOTCH and TP53 signaling pathways. This study suggests that the BCL2 super-expressor characterizes a distinct subset of DLBCL with a poor prognosis and warrants further investigation as a target population for BCL-2 inhibitors.
Collapse
Affiliation(s)
- Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Kyung Pak
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yoon Sei Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Jin Chae
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Seok Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Seong Hyun Jeong
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
238
|
Zhu Y, Fu D, Shi Q, Shi Z, Dong L, Yi H, Liu Z, Feng Y, Liu Q, Fang H, Cheng S, Wang L, Tian Q, Xu P, Zhao W. Oncogenic Mutations and Tumor Microenvironment Alterations of Older Patients With Diffuse Large B-Cell Lymphoma. Front Immunol 2022; 13:842439. [PMID: 35401516 PMCID: PMC8990904 DOI: 10.3389/fimmu.2022.842439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of diffuse large B-cell lymphoma (DLBCL) increases by age and older DLBCL are commonly related to poor prognosis. However, the clinical and biological features of older DLBCL patients remain to be determined. A total of 2,445 patients with newly diagnosed DLBCL were enrolled for clinical data analysis according to age at diagnosis, with tumor samples of 1,150 patients assessed by DNA sequencing and 385 patients by RNA sequencing. Older DLBCL presented advanced disease stage, elevated serum lactate dehydrogenase, poor performance status, multiple extranodal involvement, high percentage of double expressor subtype, and adverse clinical outcome. According to molecular features, age was positively correlated with the oncogenic mutations of PIM1, MYD88, BTG2, CD79B, TET2, BTG1, CREBBP, TBL1XR1, and with the MYD88-like genetic subtype. These oncogenic mutations were involved in B-cell receptor/NF-κB signaling, B-cell differentiation, and histone acetylation based on biological functions. Older DLBCL also manifested reduction in CD4+ naïve T and CD8+ naïve T cells, and also increased recruitment of exhausted T cells and macrophages, leading to immunosuppressive tumor microenvironment. Our work thus contributes to the understanding of aging-related oncogenic mutations and tumor microenvironment alterations in lymphoma progression, and may provide new insights to mechanism-based targeted therapy in DLBCL.
Collapse
Affiliation(s)
- Yue Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Liu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Qiang Tian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Weili Zhao, ; Pengpeng Xu,
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
- *Correspondence: Weili Zhao, ; Pengpeng Xu,
| |
Collapse
|
239
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
240
|
Genome-wide CRISPR screen identifies CDK6 as a therapeutic target in adult T-cell leukemia/lymphoma. Blood 2022; 139:1541-1556. [PMID: 34818414 PMCID: PMC8914179 DOI: 10.1182/blood.2021012734] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poor prognosis with current therapy. Here we report genome-wide CRISPR-Cas9 screening of ATLL models, which identified CDK6, CCND2, BATF3, JUNB, STAT3, and IL10RB as genes that are essential for the proliferation and/or survival of ATLL cells. As a single agent, the CDK6 inhibitor palbociclib induced cell cycle arrest and apoptosis in ATLL models with wild-type TP53. ATLL models that had inactivated TP53 genetically were relatively resistant to palbociclib owing to compensatory CDK2 activity, and this resistance could be reversed by APR-246, a small molecule activator of mutant TP53. The CRISPR-Cas9 screen further highlighted the dependence of ATLL cells on mTORC1 signaling. Treatment of ATLL cells with palbociclib in combination with mTORC1 inhibitors was synergistically toxic irrespective of the TP53 status. This work defines CDK6 as a novel therapeutic target for ATLL and supports the clinical evaluation of palbociclib in combination with mTORC1 inhibitors in this recalcitrant malignancy.
Collapse
|
241
|
Plaça JR, Diepstra A, Los T, Mendeville M, Seitz A, Lugtenburg PJ, Zijlstra J, Lam K, da Silva WA, Ylstra B, de Jong D, van den Berg A, Nijland M. Reproducibility of Gene Expression Signatures in Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14051346. [PMID: 35267654 PMCID: PMC8909016 DOI: 10.3390/cancers14051346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple gene expression profiles have been identified in diffuse large B-cell lymphoma (DLBCL). Besides the cell of origin (COO) classifier, no signatures have been reproduced in independent studies or evaluated for capturing distinct aspects of DLBCL biology. We reproduced 4 signatures in 175 samples of the HOVON-84 trial on a panel of 117 genes using the NanoString platform. The four gene signatures capture the COO, MYC activity, B-cell receptor signaling, oxidative phosphorylation, and immune response. Performance of our classification algorithms were confirmed in the original datasets. We were able to validate three of the four GEP signatures. The COO algorithm resulted in 94 (54%) germinal center B-cell (GCB) type, 58 (33%) activated B-cell (ABC) type, and 23 (13%) unclassified cases. The MYC-classifier revealed 77 cases with a high MYC-activity score (44%) and this MYC-high signature was observed more frequently in ABC as compared to GCB DLBCL (68% vs. 32%, p < 0.00001). The host response (HR) signature of the consensus clustering was present in 55 (31%) patients, while the B-cell receptor signaling, and oxidative phosphorylation clusters could not be reproduced. The overlap of COO, consensus cluster and MYC activity score differentiated six gene expression clusters: GCB/MYC-high (12%), GCB/HR (16%), GCB/non-HR (27%), COO-Unclassified (13%), ABC/MYC-high (25%), and ABC/MYC-low (7%). In conclusion, the three validated signatures identify distinct subgroups based on different aspects of DLBCL biology, emphasizing that each classifier captures distinct molecular profiles.
Collapse
Affiliation(s)
- Jessica Rodrigues Plaça
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
- Center for Cell-Based Therapy, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq), Ribeirão Preto 14051-060, Brazil;
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
| | - Tjitske Los
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Matías Mendeville
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Annika Seitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
| | - Pieternella J. Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, 3015 Rotterdam, The Netherlands;
| | - Josée Zijlstra
- Department of Hematology, Amsterdam UMC, 1105 Amsterdam, The Netherlands;
| | - King Lam
- Department of Pathology, Erasmus MC, 3015 Rotterdam, The Netherlands;
| | - Wilson Araújo da Silva
- Center for Cell-Based Therapy, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq), Ribeirão Preto 14051-060, Brazil;
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-361-2354
| |
Collapse
|
242
|
The genetic deletion and protein expression of PRDM1 and its clinical implications in diffuse large B cell lymphoma: a retrospective cohort study in China. Pathol Res Pract 2022; 233:153860. [DOI: 10.1016/j.prp.2022.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
|
243
|
Xu-Monette ZY, Wei L, Fang X, Au Q, Nunns H, Nagy M, Tzankov A, Zhu F, Visco C, Bhagat G, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, Hagemeister FB, Sun X, Han X, Go H, Ponzoni M, Ferreri AJ, Møller MB, Parsons BM, van Krieken JH, Piris MA, Winter JN, Li Y, Xu B, Albitar M, You H, Young KH. Genetic Subtyping and Phenotypic Characterization of the Immune Microenvironment and MYC/BCL2 Double Expression Reveal Heterogeneity in Diffuse Large B-cell Lymphoma. Clin Cancer Res 2022; 28:972-983. [PMID: 34980601 PMCID: PMC9137388 DOI: 10.1158/1078-0432.ccr-21-2949] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is molecularly and clinically heterogeneous, and can be subtyped according to genetic alterations, cell-of-origin, or microenvironmental signatures using high-throughput genomic data at the DNA or RNA level. Although high-throughput proteomic profiling has not been available for DLBCL subtyping, MYC/BCL2 protein double expression (DE) is an established prognostic biomarker in DLBCL. The purpose of this study is to reveal the relative prognostic roles of DLBCL genetic, phenotypic, and microenvironmental biomarkers. EXPERIMENTAL DESIGN We performed targeted next-generation sequencing; IHC for MYC, BCL2, and FN1; and fluorescent multiplex IHC for microenvironmental markers in a large cohort of DLBCL. We performed correlative and prognostic analyses within and across DLBCL genetic subtypes and MYC/BCL2 double expressors. RESULTS We found that MYC/BCL2 double-high-expression (DhE) had significant adverse prognostic impact within the EZB genetic subtype and LymphGen-unclassified DLBCL cases but not within MCD and ST2 genetic subtypes. Conversely, KMT2D mutations significantly stratified DhE but not non-DhE DLBCL. T-cell infiltration showed favorable prognostic effects within BN2, MCD, and DhE but unfavorable effects within ST2 and LymphGen-unclassified cases. FN1 and PD-1-high expression had significant adverse prognostic effects within multiple DLBCL genetic/phenotypic subgroups. The prognostic effects of DhE and immune biomarkers within DLBCL genetic subtypes were independent although DhE and high Ki-67 were significantly associated with lower T-cell infiltration in LymphGen-unclassified cases. CONCLUSIONS Together, these results demonstrated independent and additive prognostic effects of phenotypic MYC/BCL2 and microenvironment biomarkers and genetic subtyping in DLBCL prognostication, important for improving DLBCL classification and identifying prognostic determinants and therapeutic targets.
Collapse
Affiliation(s)
- Zijun Y. Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Li Wei
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosheng Fang
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingyan Au
- NeoGenomics Laboratories, Aliso Viejo, California, USA
| | - Harry Nunns
- NeoGenomics Laboratories, Aliso Viejo, California, USA
| | - Máté Nagy
- NeoGenomics Laboratories, Aliso Viejo, California, USA
| | | | - Feng Zhu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | | | - Govind Bhagat
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | | | | | - Wayne Tam
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | | | - Fredrick B. Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heounjeong Go
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Miguel A. Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bing Xu
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | | | - Hua You
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ken H. Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Cancer Institute, Durham, NC, USA
| |
Collapse
|
244
|
Roh J, Yoon DH, Lee YK, Pak HK, Kim SY, Han JH, Park JS, Jeong SH, Choi YS, Cho H, Suh C, Huh J, Lee DH, Park CS. Significance of Single-cell Level Dual Expression of BCL2 and MYC Determined With Multiplex Immunohistochemistry in Diffuse Large B-Cell Lymphoma. Am J Surg Pathol 2022; 46:289-299. [PMID: 34739417 DOI: 10.1097/pas.0000000000001830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a fatal heterogenous neoplasm. Recent clinical trials have failed partly due to nebulous criteria for defining high-risk patients. Patients with double-expresser lymphoma (DEL) have a poor prognosis and are resistant to conventional treatment. However, many diagnostic and clinical controversies still surround DEL partly due to the arbitrariness of criteria for the diagnosis of DEL. In this study, we suggest a refined method for diagnosing DEL by evaluating the concurrent expression of BCL2 and MYC at the single-cell level (dual-protein-expressing lymphoma [DUEL]). For the proof of concept, a multiplex immunofluorescence assay for CD20, BCL2, and MYC was performed and quantitatively analyzed using spectral image analysis in patients. The analysis results and clinical applicability were verified by using dual-color immunohistochemistry performed on 353 independent multicenter patients who had been uniformly treated with standard therapy. DUEL showed significantly worse overall survival (OS) and event-free survival (EFS) (P=0.00011 and 0.00035, respectively). DUEL status remained an independent adverse prognostic variable with respect to the International Prognostic Index risk and the cell of origin. Moreover, the advantage of determining DUEL status by dual-color immunohistochemistry was shown by more robust classification and more homogeneous high-risk subgroup patient identification in both training (n=271) (OS: P<0.0001; EFS: P<0.0001) and validation sets (n=82) (OS: P=0.0087; EFS: P<0.0001). This concept of DUEL is more consistent with carcinogenesis and has greater practical utility, hence it may provide a better basis for both basic and clinical research for the development of new therapeutics.
Collapse
Affiliation(s)
| | | | - Yoon Kyoung Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine
| | - Hyo-Kyung Pak
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Joon Seong Park
- Hematology-Oncology, Ajou University School of Medicine, Suwon
| | | | - Yoon Seok Choi
- Hematology-Oncology, Ajou University School of Medicine, Suwon
| | | | | | | | | | | |
Collapse
|
245
|
Evolution of therapy for limited stage diffuse large B-cell lymphoma. Blood Cancer J 2022; 12:33. [PMID: 35210407 PMCID: PMC8867133 DOI: 10.1038/s41408-021-00596-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 11/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL), with limited-stage DLBCL defined as stage I or II disease. Risk stratification, initial treatment options, and relapse patterns are distinct from advanced-stage DLBCL, but there is limited data on the impact of biologic features on outcome. Patients have excellent outcomes, with ~90% survival at 2 years. Over the past several years, sequential prospective trials and large registry studies have evaluated the optimal number of chemotherapy cycles and implemented PET-adapted approaches to reduce the need for radiotherapy. Special consideration must still be given to cases of bulky disease, extranodal disease, fully resected scenarios, and adverse biologic features such as high-grade B-cell lymphoma with double/triple hit rearrangements. This review presents the evolution of a modern management approach, with a discussion of recent treatment-defining studies.
Collapse
|
246
|
Genta S, Ghilardi G, Cascione L, Juskevicius D, Tzankov A, Schär S, Milan L, Pirosa MC, Esposito F, Ruberto T, Giovanella L, Hayoz S, Mamot C, Dirnhofer S, Zucca E, Ceriani L. Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study. Cancers (Basel) 2022; 14:cancers14041018. [PMID: 35205765 PMCID: PMC8870624 DOI: 10.3390/cancers14041018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Accurate estimation of the progression risk after first-line therapy represents an unmet clinical need in diffuse large B-cell lymphoma (DLBCL). Baseline (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) parameters, together with genetic analysis of lymphoma cells, could refine the prediction of treatment failure. We evaluated the combined impact of mutation profiling and baseline PET/CT functional parameters on the outcome of DLBCL patients treated with the R-CHOP14 regimen in the SAKK38/07 clinical trial (NCT00544219). The concomitant presence of mutated SOCS1 with wild-type CREBBP and EP300 defined a group of patients with a favorable prognosis and 2-year progression-free survival (PFS) of 100%. Using an unsupervised recursive partitioning approach, we generated a classification-tree algorithm that predicts treatment outcomes. Patients with elevated metabolic tumor volume (MTV) and high metabolic heterogeneity (MH) (15%) had the highest risk of relapse. Patients with low MTV and favorable mutational profile (9%) had the lowest risk, while the remaining patients constituted the intermediate-risk group (76%). The resulting model stratified patients among three groups with 2-year PFS of 100%, 82%, and 42%, respectively (p < 0.001).
Collapse
Affiliation(s)
- Sofia Genta
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
| | - Guido Ghilardi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Darius Juskevicius
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (D.J.); (A.T.); (S.D.)
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (D.J.); (A.T.); (S.D.)
| | - Sämi Schär
- Swiss Group for Clinical Cancer Research (SAKK) Coordinating Center, 3008 Bern, Switzerland; (S.S.); (S.H.)
| | - Lisa Milan
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
| | - Maria Cristina Pirosa
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
| | - Fabiana Esposito
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
| | - Teresa Ruberto
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
| | - Luca Giovanella
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Stefanie Hayoz
- Swiss Group for Clinical Cancer Research (SAKK) Coordinating Center, 3008 Bern, Switzerland; (S.S.); (S.H.)
| | - Christoph Mamot
- Division of Oncology, Cantonal Hospital Aarau, 5001 Aarau, Switzerland;
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (D.J.); (A.T.); (S.D.)
| | - Emanuele Zucca
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (S.G.); (M.C.P.); (F.E.); (E.Z.)
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Department of Medical Oncology, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
| | - Luca Ceriani
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; (L.M.); (T.R.); (L.G.)
- Correspondence:
| |
Collapse
|
247
|
Dissecting TET2 Regulatory Networks in Blood Differentiation and Cancer. Cancers (Basel) 2022; 14:cancers14030830. [PMID: 35159097 PMCID: PMC8834528 DOI: 10.3390/cancers14030830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Bone marrow disorders such as leukemia and myelodysplastic syndromes are characterized by abnormal healthy blood cells production and function. Uncontrolled growth and impaired differentiation of white blood cells hinder the correct development of healthy cells in the bone marrow. One of the most frequent alterations that appear to initiate this deregulation and persist in leukemia patients are mutations in epigenetic regulators such as TET2. This review summarizes the latest molecular findings regarding TET2 functions in hematopoietic cells and their potential implications in blood cancer origin and evolution. Our goal was to encompass and interlink up-to-date discoveries of the convoluted TET2 functional network to provide a more precise overview of the leukemic burden of this protein. Abstract Cytosine methylation (5mC) of CpG is the major epigenetic modification of mammalian DNA, playing essential roles during development and cancer. Although DNA methylation is generally associated with transcriptional repression, its role in gene regulation during cell fate decisions remains poorly understood. DNA demethylation can be either passive or active when initiated by TET dioxygenases. During active demethylation, transcription factors (TFs) recruit TET enzymes (TET1, 2, and 3) to specific gene regulatory regions to first catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and subsequently to higher oxidized cytosine derivatives. Only TET2 is frequently mutated in the hematopoietic system from the three TET family members. These mutations initially lead to the hematopoietic stem cells (HSCs) compartment expansion, eventually evolving to give rise to a wide range of blood malignancies. This review focuses on recent advances in characterizing the main TET2-mediated molecular mechanisms that activate aberrant transcriptional programs in blood cancer onset and development. In addition, we discuss some of the key outstanding questions in the field.
Collapse
|
248
|
Guo B, Huang Y, Duan Y, Liao C, Cen H. SGK1 mutation status can further stratify patients with germinal center B-cell-like diffuse large B-cell lymphoma into different prognostic subgroups. Cancer Med 2022; 11:1281-1291. [PMID: 35106936 PMCID: PMC8894717 DOI: 10.1002/cam4.4550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
There are over a 100 driver gene mutations in patients with diffuse large B‐cell lymphoma (DLBCL), but their clinical significance remains unclear. Here, we first analyzed the DLBCL dataset from the UK‐based Haematological Malignancy Research Network. Patients were divided into high‐ and low‐risk groups based on whether lymphoma progressed within 24 months. Genes showing significantly different frequencies between groups were selected. Survival data for patients with the selected mutant genes were analyzed. The results were validated using two other large databases to evaluate the relationship between the selected mutant genes and prognosis. The mutation frequencies of 11 genes (MYD88[L265P], SGK1, MPEG1, TP53, SPEN, NOTCH1, ETV6, TNFRSF14, MGA, CIITA, and PIM1) significantly differed between the high‐ and low‐risk groups. The relationships between these mutant genes and patient survival were analyzed. Patients who harbored SGK1 (serum and glucocorticoid‐inducible kinase 1) mutations exhibited the best prognosis. Most patients with SGK1 mutation are germinal center B‐cell (GCB) subtype. Among patients with GCB DLBCL, those harboring SGK1 mutations exhibited better prognosis than those without SGK1 mutations. Most SGK1 mutations were single‐base substitutions, primarily scattered throughout the catalytic domain‐encoding region. Multiple SGK1 mutations were identified in a single patient. Thus, SGK1 mutations are a marker of good prognosis for DLBCL and occur predominantly in the GCB subtype of DLBCL. SGK1 mutation status can further stratify patients with GCB DLBCL into different prognostic subgroups.
Collapse
Affiliation(s)
- Baoping Guo
- Department of Chemotherapy, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Yujie Huang
- Department of Chemotherapy, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Ying Duan
- Department of Chemotherapy, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Chengcheng Liao
- Department of Chemotherapy, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Hong Cen
- Department of Chemotherapy, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| |
Collapse
|
249
|
Danilov AV, Magagnoli M, Matasar MJ. Translating the Biology of Diffuse Large B-cell Lymphoma Into Treatment. Oncologist 2022; 27:57-66. [PMID: 35305092 PMCID: PMC8842307 DOI: 10.1093/oncolo/oyab004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by clinical and molecular heterogeneity; however, this heterogeneity is rarely taken into account by standard-of-care treatment approaches. While the disease was traditionally classified based on transcriptome signatures purporting the tumor cell of origin, recent classification systems have further differentiated these subtypes into clusters based on molecular and genetic features. Alongside a better understanding of the biology of the disease and the signaling pathways involved, emerging therapeutic agents may be better aimed at attacking distinct disease subsets. It is hoped that molecular subtyping at diagnosis will allow patients to be allocated to the appropriate treatment that targets their specific disease subtype, thus advancing the promise of precision medicine in lymphoma, an approach that is most needed. For high-risk disease subsets, this is particularly important, and much research is still needed to develop agents effective in this population. Here, we review recent advances in DLBCL biology and how they can be translated into clinical care.
Collapse
Affiliation(s)
| | - Massimo Magagnoli
- Humanitas Cancer Center, Humanitas Clinical and Research Center – IRCCS, Rozzano, Milan, Italy
| | | |
Collapse
|
250
|
Marino D, Pizzi M, Kotova I, Schmidt R, Schröder C, Guzzardo V, Talli I, Peroni E, Finotto S, Scapinello G, Dei Tos AP, Piazza F, Trentin L, Zagonel V, Piovan E. High ETV6 Levels Support Aggressive B Lymphoma Cell Survival and Predict Poor Outcome in Diffuse Large B-Cell Lymphoma Patients. Cancers (Basel) 2022; 14:cancers14020338. [PMID: 35053500 PMCID: PMC8774128 DOI: 10.3390/cancers14020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of prognostic factors for aggressive B-cell lymphomas still represents an unmet clinical need. We used forward phase protein arrays (FFPA) to identify proteins associated with overall survival (OS) from diagnostic formalin-fixed paraffin-embedded material of diffuse large B-cell lymphoma (DLBCL) patients (n = 47). Univariate Cox regression analysis identified numerous proteins, including immune check-point molecules (PDCD1, PDCD2 and PD1L2) and BCL2 to be significantly associated with OS. However, only ETV6 and PIM2 proteins persisted following multivariate Cox analysis. Independent validation studies by immunohistochemistry and analysis of public gene expression profiles of DLBCL confirmed a prognostic role for high ETV6 and ETV6/PIM2 ratios in DLBCL. ETV6 is a recurrently mutated/deleted gene in DLBCL for which its function in this disease entity is currently unknown. We find that ETV6 is upregulated during oncogenic transformation of germinal center B-cells and that it regulates DLBCL survival, as its acute loss results in marked apoptosis. Fluctuations in survivin (BIRC5) expression levels were associated with this phenomenon. Furthermore, an inverse correlation between ETV6 and BIRC5 expression levels was found and correlated with a response to the BIRC5 inhibitor, YM155. In conclusion, we present evidence for an oncogenic function of ETV6 in DLBCL.
Collapse
Affiliation(s)
- Dario Marino
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Marco Pizzi
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Iuliia Kotova
- Sciomics GmbH, 69151 Neckargemünd, Germany; (I.K.); (R.S.); (C.S.)
| | - Ronny Schmidt
- Sciomics GmbH, 69151 Neckargemünd, Germany; (I.K.); (R.S.); (C.S.)
| | | | - Vincenza Guzzardo
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Ilaria Talli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
| | - Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy;
| | - Silvia Finotto
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Greta Scapinello
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Angelo Paolo Dei Tos
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Francesco Piazza
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Livio Trentin
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Vittorina Zagonel
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Erich Piovan
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy;
- Correspondence: ; Tel.: +39-(049)-8215895
| |
Collapse
|