201
|
Zhang Q, Zhu D, Ding J, Zheng F, Zhou S, Lu T, Zhu YG, Qian H. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. ENVIRONMENT INTERNATIONAL 2019; 131:104965. [PMID: 31284112 DOI: 10.1016/j.envint.2019.104965] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 05/21/2023]
Abstract
The use of pesticides to ensure global food security is the most important pest control strategy in modern agriculture but causes extensive soil pollution. This pollution involves potential risks to human health and ecosystems. In addition to soil animal growth, the adverse impact of pesticides on the gut microbiomes of nontarget soil fauna remains largely unknown. Here, the effect of the fungicide azoxystrobin (AZ) on soil and the gut microbiota of soil animals (Enchytraeus crypticus) was studied. The tested concentrations of AZ altered the bacterial community in the soil and E. crypticus gut and were slightly toxic with respect to E. crypticus adult mortality and reproduction. The most abundant bacterial phylum, Proteobacteria, significantly increased in response to the 2 and 5 mg/kg AZ treatments, which implied a disordered unhealthy gut bacterial community. Furthermore, bacterial community analysis between the soil and gut showed that the main effect of AZ on the gut microbiota was directly through AZ, not soil microbiota. In addition, AZ exposure significantly enhanced the number and total abundance of antibiotic resistance genes (ARGs) in the E. crypticus gut; these genes may enter the soil food web to affect higher trophic levels and cause a more serious ecological risk. Our study reported the effect of pesticides on the gut of soil animals and on the enrichment of ARGs as global emerging contaminants, revealing unknown potential impacts of fungicides on ecosystem services and sustainable food production.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Ding
- University of the Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Fei Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuyidan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
202
|
Wang Y, Liu F, Zhu B, Gao GF. Metagenomic data screening reveals the distribution of mobilized resistance genes tet(X), mcr and carbapenemase in animals and humans. J Infect 2019; 80:121-142. [PMID: 31521740 DOI: 10.1016/j.jinf.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Yanan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
203
|
Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The Landscape of Genetic Content in the Gut and Oral Human Microbiome. Cell Host Microbe 2019; 26:283-295.e8. [PMID: 31415755 PMCID: PMC6716383 DOI: 10.1016/j.chom.2019.07.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Despite substantial interest in the species diversity of the human microbiome and its role in disease, the scale of its genetic diversity, which is fundamental to deciphering human-microbe interactions, has not been quantified. Here, we conducted a cross-study meta-analysis of metagenomes from two human body niches, the mouth and gut, covering 3,655 samples from 13 studies. We found staggering genetic heterogeneity in the dataset, identifying a total of 45,666,334 non-redundant genes (23,961,508 oral and 22,254,436 gut) at the 95% identity level. Fifty percent of all genes were "singletons," or unique to a single metagenomic sample. Singletons were enriched for different functions (compared with non-singletons) and arose from sub-population-specific microbial strains. Overall, these results provide potential bases for the unexplained heterogeneity observed in microbiome-derived human phenotypes. One the basis of these data, we built a resource, which can be accessed at https://microbial-genes.bio.
Collapse
Affiliation(s)
- Braden T Tierney
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Zhen Yang
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
| | - Jacob M Luber
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marc Beaudin
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marsha C Wibowo
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Christina Baek
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Aleksandar D Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
204
|
Wang WW, Jia HJ, Zhang HJ, Wang J, Lv HY, Wu SG, Qi GH. Supplemental Plant Extracts From Flos lonicerae in Combination With Baikal skullcap Attenuate Intestinal Disruption and Modulate Gut Microbiota in Laying Hens Challenged by Salmonella pullorum. Front Microbiol 2019; 10:1681. [PMID: 31396190 PMCID: PMC6668501 DOI: 10.3389/fmicb.2019.01681] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary inclusions of baicalin and chlorogenic acid were beneficial for intestinal health in pigs. Nevertheless, it is unknown whether these plant-derived products had protection for intestine against bacterial challenge in chickens. This study was aimed at evaluating the potential mitigating effects of plant extracts (PE) from Flos lonicerae combined with Baikal skullcap (the active components are chlorogenic acid and baicalin) on intestinal disruption and dysbacteriosis induced by Salmonella pullorum in laying hens. A total of 216 41-week-old layers were randomly divided into 3 groups (6 replicates per group): negative control (NC), S. pullorum-infected positive control (PC), and the S. pullorum-infected group with supplementation of PE at 1000 mg/kg. All birds except those in NC were challenged with S. pullorum at the end of 4 weeks of the experiment. S. pullorum challenge impaired (P < 0.05) the production performance (egg production, feed intake, and feed efficiency) of laying hens, increased (P < 0.05) serum endotoxin content and frequency of Salmonella-positive organs, as well as up-regulated (P < 0.05) ileal expression of pro-inflammatory cytokines including IFNG, TNFA, IL8, and IL1B, whereas PE addition reversed (P < 0.05) these changes and increased (P < 0.05) ileal IL10 expression. Supplemental PE moderated ileal microbiota dysbiosis in challenged birds, characterized by a reduced abundance of Firmicutes along with increased abundances of Bacteroidetes (Bacteroides), Deferribacteres and several butyrate-producers such as Prevotellaceae, Faecalibacterium, Blautia, Butyricicoccus, Lachnoclostridium, and Olsenella, which may assist with energy harvesting and boost anti-inflammatory capacity of host. The decreased abundance of Firmicutes with the increased abundance of Bacteroidetes caused by PE addition had positive correlations with the decreased expression of ileal pro-inflammatory cytokines. The increased abundances of Bacteroidetes (Bacteroides) and Prevotellaceae following PE addition were also positively correlated with the improvement of performance (egg production and feed intake) of laying hens. Collectively, supplemental PE from Flos lonicerae in combination with Baikal skullcap alleviated S. pullorum-induced intestinal disruption and performance impairment in laying hens, which could be at least partially responsible by the modulation of gut microbial composition.
Collapse
Affiliation(s)
- Wei-wei Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-jie Jia
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Shu-geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
205
|
Mantilla MJ, Torres Sáez RG. Enfoque metagenómico para la caracterización del microbioma de aves corral. Revisión. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n2.78390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El pollo y el huevo son una fuente importante de proteína para el ser humano a nivel mundial. La producción de estos alimentos se ha intensificado durante los últimos años y se prevé que se produzca alrededor de 150 millones de toneladas de carne de pollo en 2020 (OCDE / FAO, 2018). Sin embargo, uno de los mayores problemas ligados a los procesos de producción avícola lo constituyen las enfermedades infecciosas ocasionadas por microorganismos patógenos. Entre los más relevantes se encuentran microorganismos como Salmonella ssp, Campylobacter spp, y Escherichia coli. Por lo tanto, es importante comprender los mecanismos implicados en la colonización de microorganismos patógenos que afectan a las aves de corral y sus interacciones con la microbiota gastrointestinal las cuales son clave en la mejora de la absorción de nutrientes y el fortalecimiento del sistema inmune, que influye en el crecimiento, el bienestar y la salud de las aves de corral. Sin embargo, hay poca información relacionada con la microbiota gastrointestinal de pollos parrilleros y gallinas productoras de huevo. Hasta hace poco, la caracterización se limitaba a los microorganismos que podían recuperarse a través de cultivos tradicionales. Por lo anterior, en el último tiempo se ha intensificado el uso de técnicas moleculares, entre las que se destaca la metagenómica, la cual ofrece una alternativa para una mejor comprensión de las interacciones bacterianas, la identificación de genes de resistencia a los antibióticos, identificación de elementos genéticos móviles, y el diseño de estrategias para intervenciones más efectivas con el objetivo de romper la cadena de transmisión de microorganismos patógenos durante el ciclo de producción avícola. En esta revisión, se describen los principales enfoques metagenómicos para el estudio de microbiomas de aves de corral, las técnicas de secuenciación y herramientas bioinformáticas usadas para su caracterización.
Collapse
|
206
|
Gong Y, Yang H, Wang X, Xia W, Lv W, Xiao Y, Zou X. Early Intervention With Cecal Fermentation Broth Regulates the Colonization and Development of Gut Microbiota in Broiler Chickens. Front Microbiol 2019; 10:1422. [PMID: 31293552 PMCID: PMC6603130 DOI: 10.3389/fmicb.2019.01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the effect of fermentation broth from broiler cecal content on the colonization and development of the gut microbiota in newly hatched broiler chicks. The fermentation broth was made by a chemostat system using the cecal content from a donor chicken as the source of inoculum. A total of 120 newly hatched broiler chicks were randomly divided into two groups. One group (F group) was orally inoculated with the fermentation broth, and the other (C group) was treated with an equal amount of sterile PBS solution. 16S rRNA gene sequencing was used to investigate the differences in the cecal microbiota of the broiler chickens between the two groups on days 1, 3, 7, 14, and 28. Moreover, the concentrations of short-chain fatty acids (SCFAs) in the cecal contents were analyzed by gas chromatography. The results showed that the abundances of genera Escherichia-Shigella and Enterococcus decreased sharply in the F group on days 1 and 3 by the early intervention with cecal fermentation broth. In contrast, the relative abundance of the genus Bacteroides on days 1, 3, and 7, and the family Ruminococcaceae on days 1, 3, and 28 increased in the F group, respectively. In terms of SCFAs, the concentrations of acetate on day 28, propionic acid on days 1, 3, 7, 14, and 28, butyrate on day 1, and isovalerate on day 14 were significantly higher in the F group compared with the C group. Overall, these results suggest that early intervention with cecal fermentation broth could have beneficial effects on broilers gut health, which might be attributed to the alterations in the gut microbial composition and the increased concentrations of SCFAs.
Collapse
Affiliation(s)
- Yujie Gong
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenrui Xia
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wentao Lv
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
207
|
Abstract
The domestic chicken is the cornerstone of animal agriculture worldwide, with a flock population exceeding 40 billion birds/year. It serves as an economically valuable source of protein globally. The microbiome of poultry has important effects on chicken growth, feed conversion, immune status, and pathogen resistance. The aim of our research was to develop a gnotobiotic chicken model appropriate for the study chicken gut microbiota function. Our experimental model shows that young germfree chicks are able to colonize diverse sets of gut bacteria. Therefore, besides the use of this model to study mechanisms of gut microbiota interactions in the chicken gut, it could be also used for applied aspects such as determining the safety and efficacy of new probiotic strains derived from chicken gut microbiota. A gnotobiotic Gallus gallus (chicken) model was developed to study the dynamics of intestinal microflora from hatching to 18 days of age employing metagenomics. Intestinal samples were collected from a local population of feral chickens and administered orally to germfree 3-day-old chicks. Animals were euthanized on days 9 and 18 postinoculation, and intestinal samples were collected and subjected to metagenomic analysis. On day 18, the five most prevalent phyla were Bacteroidetes (43.03 ± 3.19%), Firmicutes (38.51 ± 2.67%), Actinobacteria (6.77 ± 0.7%), Proteobacteria (6.38 ± 0.7%), and Spirochaetes (2.71 ± 0.55%). Principal-coordinate analysis showed that the day 18 variables clustered more closely than the day 9 variables, suggesting that the microbial communities had changed temporally. The Morista-Horn index values ranged from 0.7 to 1, indicating that the communities in the inoculum and in the day 9 and day 18 samples were more similar than dissimilar. The predicted functional profiles of the microbiomes of the inoculum and the day 9 and day 18 samples were also similar (values of 0.98 to 1). These results indicate that the gnotobiotic chicks stably maintained the phylogenetic diversity and predicted metabolic functionality of the inoculum community. IMPORTANCE The domestic chicken is the cornerstone of animal agriculture worldwide, with a flock population exceeding 40 billion birds/year. It serves as an economically valuable source of protein globally. The microbiome of poultry has important effects on chicken growth, feed conversion, immune status, and pathogen resistance. The aim of our research was to develop a gnotobiotic chicken model appropriate for the study chicken gut microbiota function. Our experimental model shows that young germfree chicks are able to colonize diverse sets of gut bacteria. Therefore, besides the use of this model to study mechanisms of gut microbiota interactions in the chicken gut, it could be also used for applied aspects such as determining the safety and efficacy of new probiotic strains derived from chicken gut microbiota.
Collapse
|
208
|
Chen Y, Ni J, Li H. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken. BMC Vet Res 2019; 15:77. [PMID: 30841884 PMCID: PMC6404333 DOI: 10.1186/s12917-019-1822-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The gut microbiota is closely correlated with host health and is strongly influenced by food composition. Chinese herbs are usually used as natural feed additives in livestock production. Therefore, the present study assessed the influence of diet supplementation with green tea and mulberry leaf powders on the chicken gut microbiota. The gut microbiota compositions were determined using 16S rDNA sequencing. RESULTS Enhanced relative abundances of Bacteroides, Prevotella, and Megamonas were found in the chicken gut when mulberry leaf powder was added to diet. Conversely, a higher abundance of potentially pathogenic Gallibacterium was found in the chicken gut when the diet was supplemented with green tea powder. These results indicated that green tea powder and mulberry leaf powder can greatly affect the gut microbiota of chickens by changing their compositions. CONCLUSIONS It is imperative to examine and evaluate the effects of Chinese herbs on animal health before they are introduced as feed additives in animal production.
Collapse
Affiliation(s)
- Yuan Chen
- School of Life Science, Huizhou University, Huizhou, 516007 China
| | - Jiajia Ni
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280 China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515 China
| | - Hongwei Li
- School of Life Science, Huizhou University, Huizhou, 516007 China
| |
Collapse
|
209
|
Aguirre M, Vuorenmaa J, Valkonen E, Kettunen H, Callens C, Haesebrouck F, Ducatelle R, Van Immerseel F, Goossens E. In-feed resin acids reduce matrix metalloproteinase activity in the ileal mucosa of healthy broilers without inducing major effects on the gut microbiota. Vet Res 2019; 50:15. [PMID: 30795808 PMCID: PMC6387527 DOI: 10.1186/s13567-019-0633-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The chicken gut is constantly exposed to harmful molecules and microorganisms which endanger the integrity of the intestinal wall. Strengthening intestinal mucosal integrity is a key target for feed additives that aim to promote intestinal health in broilers. Recently, dietary inclusion of resin-based products has been shown to increase broiler performance. However, the mode of action is still largely unexplored. Coniferous resin acids are known for their anti-microbial, anti-inflammatory and wound-healing properties, all properties that might support broiler intestinal health. In the current study, the effect of pure resin acids on broiler intestinal health was explored. Ross 308 broilers were fed a diet supplemented with coniferous resin acids for 22 days, after which the effect on both the intestinal microbiota as well as on the intestinal tissue morphology and activity of host collagenases was assessed. Dietary inclusion of resin acids did not alter the morphology of the healthy intestine and only minor effects on the intestinal microbiota were observed. However, resin acids-supplementation reduced both duodenal inflammatory T cell infiltration and small intestinal matrix metalloproteinase (MMP) activity towards collagen type I and type IV. Reduced breakdown of collagen type I and IV might indicate a protective effect of resin acids on intestinal barrier integrity by preservation of the basal membrane and the extracellular matrix. Further studies are needed to explore the protective effects of resin acids on broiler intestinal health under sub-optimal conditions and to elaborate our knowledge on the mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Marisol Aguirre
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | | | - Eija Valkonen
- Hankkija Ltd, Peltokuumolantie 4, 05800, Hyvinkää, Finland
| | | | - Chana Callens
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
210
|
Li CL, Wang J, Zhang HJ, Wu SG, Hui QR, Yang CB, Fang RJ, Qi GH. Intestinal Morphologic and Microbiota Responses to Dietary Bacillus spp. in a Broiler Chicken Model. Front Physiol 2019; 9:1968. [PMID: 30705639 PMCID: PMC6344408 DOI: 10.3389/fphys.2018.01968] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
Dietary inclusion of probiotic Bacillus spp. beneficially affect the broiler chickens by balancing the properties of the indigenous microbiota causing better growth performance. The effects of three Bacillus spp. on the growth performance, intestinal morphology and the compositions of jejunal microflora were investigated in broiler chickens. A total of 480 1-day-old male Arbor Acres broilers were randomly divided into four groups. All groups had six replicates and 20 birds were included in each replicate. The control birds were fed with a corn-soybean basal diet, while three treatment diets were supplemented with Bacillus coagulans TBC169, B. subtilis PB6, and B. subtilis DSM32315 with a dosage of 1 × 109 cfu/kg, respectively. The experiment lasted for 42 days. The compositions and diversity of jejunal microflora were analyzed by MiSeq high-throughput sequencing. The B. coagulans TBC169 group showed marked improvements of growth performance, nutrient digestibility and intestinal morphology compared with the other B. subtilis treatments. B. coagulans TBC169 supplementation improved the average body weight (BW), average daily weight gain (ADG), total tract apparent digestibility of crude protein and gross energy (GE), and reduced feed conversion rate (FCR) compared with the control group (P < 0.05). The villus height to crypt depth ratio (VH/CD) of jejunum and duodenum was increased in the birds fed with B. coagulans TBC169 compared with the control group (P < 0.05). However, two B. subtilis treatments presented more positive variation of the jejunum microflora of chickens than that in the B. coagulans TBC169 group. B. subtilis PB6 and B. subtilis DSM32315 treatments improved the diversity of jejunal microbiota on day 21 compared with the control (P < 0.05), while which were decreased on day 42 (P < 0.05). The supplementation with B. coagulans TBC169 significantly improved the proportion of Firmicutes, otherwise two B. subtilis significantly improved the proportion of Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria at the phylum level during starter phase and decreased the proportion of Bacteroidetes during growing phase compared with the control. The supplementation with B.subtilis DSM32315 significantly improved the proportion of Clostridiales during starter phase, whereas two B. subtilis significantly improved the proportion of Pseudomonas, Burkholderia, Prevotella, DA101 during growing phase at the genus level compared with the control. In conclusion, the dietary supplementation with probiotic Bacillus spp. strains improved body weight and intestinal morphology in broiler chickens, which might be associated with the gut microbiota.
Collapse
Affiliation(s)
- Cheng-liang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian-ru Hui
- Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Cheng-bo Yang
- Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Re-jun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guang-hai Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|