201
|
|
202
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 and 8039=(select 8039 from pg_sleep(5))-- yprg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
203
|
|
204
|
|
205
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 and 3687=2098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
206
|
|
207
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 and 6346=6346-- zrnx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
208
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 and 8039=(select 8039 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
209
|
Abstract
Autophagy is the major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles. It involves the rearrangement of subcellular membranes to sequester cargo for delivery to the lysosome where the sequestered material is degraded and recycled. For many decades, it has been known that autophagy occurs in a wide range of eukaryotic organisms and in multiple different cell types during starvation, cellular and tissue remodeling, and cell death. However, until recently, the functions of autophagy in normal development were largely unknown. The identification of a set of evolutionarily conserved genes that are essential for autophagy has opened up new frontiers for deciphering the role of autophagy in diverse biological processes. In this review, we summarize our current knowledge about the molecular machinery of autophagy and the role of the autophagic machinery in eukaryotic development.
Collapse
Affiliation(s)
- Beth Levine
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
210
|
Cakouros D, Daish TJ, Mills K, Kumar S. An arginine-histone methyltransferase, CARMER, coordinates ecdysone-mediated apoptosis in Drosophila cells. J Biol Chem 2004; 279:18467-71. [PMID: 14976192 DOI: 10.1074/jbc.m400972200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Developmentally programmed cell death is regulated by a balance between pro- and anti-death signaling. During Drosophila metamorphosis, the removal of larval tissues is dependent on the steroid hormone ecdysone, which controls the levels of pro- and anti-death molecules. Ecdysone binds to its heterodimeric receptor ecdysone receptor/ultraspiracle to mediate transcription of primary response genes. Here we show that CARMER, an arginine-histone methyltransferase, is critical in coordinating ecdysone-induced expression of Drosophila cell death genes. Ablation of CARMER blocks ecdysone-induced cell death in Drosophila cells, but not apoptosis induced by cell stress. We demonstrate that CARMER associates with the ecdysone receptor complex and modulates the ecdysone-induced transcription of a number of apoptotic genes. Thus, the chromatin-modifying protein, CARMER, modulates cell death by controlling the hormone-dependent expression of the core cell death machinery.
Collapse
|
211
|
Myohara M. Real-time observation of autophagic programmed cell death of Drosophila salivary glands in vitro. Dev Genes Evol 2004; 214:99-104. [PMID: 14658067 DOI: 10.1007/s00427-003-0374-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 11/02/2003] [Indexed: 10/26/2022]
Abstract
Autophagy, a form of programmed cell death (PCD) that is morphologically distinguished from apoptosis, is thought to be as prevalent as apoptosis, at least during development. In insect metamorphosis, the steroid hormone 20-hydroxyecdysone (ecdysone) activates autophagic PCD to eliminate larval structures that are no longer needed. However, in comparison with apoptosis, there are not many studies on the regulation mechanisms of autophagy. To provide a useful model for studying autophagic PCD, I established an in vitro culture system that enables real-time observation of the autophagic cell destruction of Drosophila salivary glands. The new system revealed that de novo gene expression was still required for the destruction of salivary glands dissected from phanerocephalic pupae. This indicates the usefulness of the system for exploring genes that participate in the last processes of autophagic PCD.
Collapse
Affiliation(s)
- Maroko Myohara
- Developmental Biology Department, National Institute of Agrobiological Sciences, Tsukuba, 305-8634, Ibaraki, Japan.
| |
Collapse
|
212
|
Simon CR, de Almeida JC. Programmed cell death inBradysia hygida (Diptera, Sciaridae) salivary glands presents apoptotic features. Genesis 2004; 40:22-31. [PMID: 15354290 DOI: 10.1002/gene.20059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work, we present biochemical and morphological evidence that the final steps of programmed cell death (PCD) in the salivary glands of the inferior Diptera, Bradysia hygida, present apoptotic characteristics. In B. hygida, elimination of salivary glands is preceded by the establishment of a typical pattern of protein synthesis; increase in caspase activity; decrease in cell volume; nuclear pyknosis; nuclear DNA breakage; changes in the actin cytoskeleton; and most importantly, destruction of giant cells via formation of apoptotic bodies containing broken DNA or cytoplasm remains. Thus, elimination of B. hygida salivary glands by this process suggests that such mode of PCD is also involved in the destruction of entire organs in insects and, therefore, adds more complexity to the regulation of tissue elimination during development.
Collapse
Affiliation(s)
- Cláudio R Simon
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
213
|
Abstract
Neurons may die as a normal physiological process during development or as a pathological process in diseases. The best-understood mechanism of neuronal cell death is apoptosis, which is regulated by an evolutionarily conserved cellular pathway that consists of the caspase family, the Bcl-2 family, and the adaptor protein Apaf-1. Apoptosis, however, may not be the only cellular mechanism that regulates neuronal cell death. Neuronal cell death may exhibit morphological features of autophagy or necrosis, which differ from that of the canonical apoptosis. This review evaluates the evidence supporting the existence of alternative mechanisms of neuronal cell death and proposes the possible existence of an evolutionarily conserved pathway of necrosis.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
214
|
Daish TJ, Cakouros D, Kumar S. Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc. Cell Death Differ 2003; 10:1348-56. [PMID: 12970673 DOI: 10.1038/sj.cdd.4401312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DRONC is an apical Drosophila caspase essential for programmed cell death during fly development. During metamorphosis, dronc gene expression is regulated by the steroid hormone ecdysone, which also regulates the levels of a number of other critical cell death proteins. As DRONC protein levels are important in determining caspase activation and initiation of cell death, we have analyzed the regulation of the dronc promoter using transgenic flies expressing a LacZ reporter gene under the control of the dronc promoter. Our results indicate that dronc expression is highly dynamic during Drosophila development, and is controlled both spatially and temporally. We demonstrate that while a 2.3 kb dronc promoter region contains most of the information required for correct gene expression, a 1.1 kb promoter region is expressed in some tissues and not others. We further demonstrate that during larval-pupal metamorphosis, two ecdysone-induced transcription factors, Broad-Complex and E93, are required for correct dronc expression. Our data suggest that the dronc promoter is regulated in a highly complex manner, and provides an ideal system to explore the temporal and spatial regulation of gene expression driven by nuclear hormone receptors.
Collapse
Affiliation(s)
- T J Daish
- Hanson Institute, IMVS, Adelaide 5000, Australia
| | | | | |
Collapse
|
215
|
Abstract
Autophagic programmed cell death occurs during the development of diverse animal groups, but the mechanisms that control this genetically regulated form of cell killing are poorly understood. Genetic studies of bulk protein degradation in yeast have provided important advances in our understanding of autophagy, and recent investigations of Drosophila autophagic cell death suggest that some of these mechanisms may be conserved. In Drosophila, several steroid-regulated genes that encode transcription regulators are required for autophagic cell death. These transcription regulators appear to activate a large number of genes that play a more direct role in cell killing, including genes that function in apoptosis such as caspases. While caspase function is required for autophagic cell death during Drosophila development, genes encoding proteins that are similar to the yeast autophagy regulators are also induced in dying salivary glands. Furthermore, numerous noncaspase proteases, cytoplasmic organizing factors, signaling molecules, and unknown factors are expressed in interesting patterns during autophagic cell death. This article reviews the current knowledge of the regulation of autophagic programmed cell death during development of Drosophila.
Collapse
Affiliation(s)
- E H Baehrecke
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| |
Collapse
|
216
|
Abstract
During insect metamorphosis, each tissue displays a unique physiological and morphological response to the steroid hormone 20-hydroxyecdysone (ecdysone). We assayed gene expression in five tissues during metamorphosis onset. Larval-specific tissues display major changes in genome-wide expression profiles, whereas tissues that survive into adulthood display few changes. In one larval tissue, the salivary gland, we used a computational approach to identify a regulatory motif and a cognate transcription factor involved in regulating a set of coexpressed genes. During the metamorphosis of another tissue, the midgut, genes encoding factors from the hedgehog, Notch, EGF, dpp, and wingless pathways are activated by the ecdysone regulatory network. Mutation of the ecdysone receptor abolishes their induction. Cell cycle genes are also activated during the initiation of midgut metamorphosis, and they are also dependent on ecdysone signaling. These results establish multiple new connections between the ecdysone regulatory network and other well-studied regulatory networks.
Collapse
Affiliation(s)
- Tong-Ruei Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
217
|
Carla' EC, Pagliara P, Piraino S, Boero F, Dini L. Morphological and ultrastructural analysis of Turritopsis nutricula during life cycle reversal. Tissue Cell 2003; 35:213-22. [PMID: 12798130 DOI: 10.1016/s0040-8166(03)00028-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hydrozoa life cycle is characterized, in normal conditions, by the alternation of a post-larval benthic polyp and an adult pelagic medusa; however, some species of Hydrozoa react to environmental stress by reverting their life cycle: i.e. an adult medusa goes back to the juvenile stage of polyp. This very uncommon life cycle could be considered as some sort of inverted metamorphosis. A morphological study of different stages during the reverted life cycle of Turritopsis nutricula led to the characterization of four different stages: healthy medusa, unhealthy medusa, four-leaf clover and cyst. The ultrastructural study of the cellular modifications (during the life cycle reversion of T. nutricula) showed the presence of both degenerative and apoptotic processes. Degeneration was prevalent during the unhealthy medusa and four-leaf clover stages, while the apoptotic rate was higher during the healthy medusa and cyst stages. The significant presence of degenerative and apoptotic processes could be related to the occurrence of a sort of metamorphosis when an adult medusa transforms itself into a polyp.
Collapse
Affiliation(s)
- E C Carla'
- Department of Biological and Environmental Science and Technology, University of Lecce, Via per Monteroni, 73100 Lecce, Italy
| | | | | | | | | |
Collapse
|
218
|
Clavería C, Torres M. Mitochondrial apoptotic pathways induced by Drosophila programmed cell death regulators. Biochem Biophys Res Commun 2003; 304:531-7. [PMID: 12729588 DOI: 10.1016/s0006-291x(03)00626-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway.
Collapse
Affiliation(s)
- Cristina Clavería
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
219
|
Ward RE, Reid P, Bashirullah A, D'Avino PP, Thummel CS. GFP in living animals reveals dynamic developmental responses to ecdysone during Drosophila metamorphosis. Dev Biol 2003; 256:389-402. [PMID: 12679111 DOI: 10.1016/s0012-1606(02)00100-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies of Drosophila metamorphosis have been hampered by our inability to visualize many of the remarkable changes that occur within the puparium. To circumvent this problem, we have expressed GFP in specific tissues of living prepupae and pupae and compiled images of these animals into time-lapse movies. These studies reveal, for the first time, the dynamics and coordination of morphogenetic movements that could only be inferred from earlier studies of dissected staged animals. We also identify responses that have not been described previously. These include an unexpected variation in some wild-type animals, where one of the first pairs of legs elongates in the wrong position relative to the second pair of legs and then relocates to its appropriate location. At later stages, the antennal imaginal discs migrate from a lateral position in the head to their final location at the anterior end, as leg and mouth structures are refined and the wings begin to fold. The larval salivary glands translocate toward the dorsal aspect of the animal and undergo massive cell death following head eversion, in synchrony with death of the abdominal muscles. These death responses fail to occur in rbp(5) mutants of the Broad-Complex (BR-C), and imaginal disc elongation and eversion is abolished in br(5) mutants of the BR-C. Leg malformations associated with the crol(3) mutation can be seen to arise from defects in imaginal disc morphogenesis during prepupal stages. This approach provides a new tool for characterizing the dynamic morphological changes that occur during metamorphosis in both wild-type and mutant animals.
Collapse
Affiliation(s)
- Robert E Ward
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, 15 North 2030 East Rm 5100, University of Utah, Salt Lake City, UT 84112-5331, USA
| | | | | | | | | |
Collapse
|
220
|
Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJM, Marra MA. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 2003; 13:358-63. [PMID: 12593804 DOI: 10.1016/s0960-9822(03)00082-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Programmed cell death (PCD), important in normal animal physiology and disease, can be divided into at least two morphological subtypes, including type I, or apoptosis, and type II, or autophagic cell death. While many molecules involved in apoptosis have been discovered and studied intensively during the past decade, autophagic cell death is not well characterized molecularly. Here we report the first comprehensive identification of molecules associated with autophagic cell death during normal metazoan development in vivo. During Drosophila metamorphosis, the larval salivary glands undergo autophagic cell death regulated by a hormonally induced transcriptional cascade. To identify and analyze the genes expressed, we examined wild-type patterns of gene expression in three predeath stages of Drosophila salivary glands using serial analysis of gene expression (SAGE) [7]. 1244 transcripts, including genes involved in autophagy, defense response, cytoskeleton remodeling, noncaspase proteolysis, and apoptosis, were expressed differentially prior to salivary gland death. Mutant expression analysis indicated that several of these genes were regulated by E93, a gene required for salivary gland cell death. Our analyses strongly support both the emerging notion that there is overlap with respect to the molecules involved in autophagic cell death and apoptosis, and that there are important differences.
Collapse
Affiliation(s)
- Sharon M Gorski
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4E6, Canada. sgorski@
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 2003; 13:350-7. [PMID: 12593803 DOI: 10.1016/s0960-9822(03)00085-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apoptosis and autophagy are two forms of programmed cell death that play important roles in the removal of unneeded and abnormal cells during animal development. While these two forms of programmed cell death are morphologically distinct, recent studies indicate that apoptotic and autophagic cell death utilize some common regulatory mechanisms. To identify genes that are associated with apoptotic and autophagic cell death, we monitored changes in gene transcription by using microarrays representing nearly the entire Drosophila genome. Analyses of steroid-triggered autophagic cell death identified 932 gene transcripts that changed 5-fold or greater in RNA level. In contrast, radiation-activated apoptosis resulted in 34 gene transcripts that exhibited a similar magnitude of change. Analyses of these data enabled us to identify genes that are common and unique to steroid- and radiation-induced cell death. Mutants that prevent autophagic cell death exhibit altered levels of gene transcription, including genes encoding caspases, non-caspase proteases, and proteins that are similar to yeast autophagy proteins. This study also identifies numerous novel genes as candidate cell death regulators and suggests new links between apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Center for Biosystems Research, University of Maryland Biotechnology Institute and Department of Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
222
|
Di Fruscio M, Styhler S, Wikholm E, Boulanger MC, Lasko P, Richard S. Kep1 interacts genetically with dredd/caspase-8, and kep1 mutants alter the balance of dredd isoforms. Proc Natl Acad Sci U S A 2003; 100:1814-9. [PMID: 12563030 PMCID: PMC149916 DOI: 10.1073/pnas.0236048100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Drosophila kep1 gene encodes an RNA binding protein related to the murine QUAKING apoptotic inducer. We have previously shown that kep1 can induce apoptosis when transfected into different cell lines. To better define the role of Kep1 in apoptosis, we generated kep1 null flies. These flies were viable, but females displayed reduced fertility, with approximately half of the eggs laid from kep1- homozygotes failing to hatch. In addition, loss of kep1 suppressed GMR-rpr-mediated apoptosis in the Drosophila eye, and kep1 mutant flies had increased susceptibility to Escherichia coli infection. We found that Kep1 bound dredd RNA in vitro, and that extracts prepared from kep1 mutant ovaries had markedly reduced proteolytic cleavage activity toward the caspase-8 target substrate IETD-7-amino-4-trifluoromethyl coumarin. We observed increased levels of the beta isoform of dredd mRNA in kep1 mutants as compared with wild-type. Taken together, our results suggest that Kep1 regulates apoptosis by influencing the processing of dredd RNA.
Collapse
Affiliation(s)
- Marco Di Fruscio
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Department of Oncology, McGill University, Montreal, QC, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
223
|
Page-McCaw A, Serano J, Santé JM, Rubin GM. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell 2003; 4:95-106. [PMID: 12530966 DOI: 10.1016/s1534-5807(02)00400-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The matrix metalloproteinase (MMP) family is heavily implicated in many diseases, including cancer. The developmental functions of these genes are not clear, however, because the >20 mammalian MMPs can be functionally redundant. Drosophila melanogaster has only two MMPs, which are expressed in embryos in distinct patterns. We created mutations in both genes: Mmp1 mutants have defects in larval tracheal growth and pupal head eversion, and Mmp2 mutants have defects in larval tissue histolysis and epithelial fusion during metamorphosis; neither is required for embryonic development. Double mutants also complete embryogenesis, and these represent the first time, to our knowledge, that all MMPs have been disrupted in any organism. Thus, MMPs are not required for Drosophila embryonic development, but, rather, for tissue remodeling.
Collapse
Affiliation(s)
- Andrea Page-McCaw
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
224
|
Thummel CS, Chory J. Steroid signaling in plants and insects--common themes, different pathways. Genes Dev 2002; 16:3113-29. [PMID: 12502734 DOI: 10.1101/gad.1042102] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Carl S Thummel
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, Salt Lake City 84112 USA
| | | |
Collapse
|
225
|
Lee CY, Simon CR, Woodard CT, Baehrecke EH. Genetic mechanism for the stage- and tissue-specific regulation of steroid triggered programmed cell death in Drosophila. Dev Biol 2002; 252:138-48. [PMID: 12453466 DOI: 10.1006/dbio.2002.0838] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroid hormones trigger a wide variety of cell-specific responses during animal development, but the mechanisms by which these systemic signals specify either cell division, differentiation, morphogenesis or death remain uncertain. Here, we analyze the function of the steroid-regulated genes betaFTZ-F1, BR-C, E74A, and E93 during salivary gland programmed cell death. While mutations in the betaFTZ-F1, BR-C, E74A, and E93 genes prevent destruction of salivary glands, only betaFTZ-F1 is required for DNA fragmentation. Analyses of BR-C, E74A, and E93 loss-of-function mutants indicate that these genes regulate stage-specific transcription of the rpr, hid, ark, dronc, and crq cell death genes. Ectopic expression of betaFTZ-F1 is sufficient to trigger premature cell death of larval salivary glands and ectopic transcription of the rpr, dronc, and crq cell death genes that normally precedes salivary gland cell death. The E93 gene is necessary for ectopic salivary gland cell destruction, and ectopic rpr, dronc, and crq transcription, that is induced by expression of betaFTZ-F1. Together, these observations indicate that betaFTZ-F1 regulates the timing of hormone-induced cell responses, while E93 functions to specify programmed cell death.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, 20742, USA
| | | | | | | |
Collapse
|
226
|
Verras M, Gourzi P, Zacharopoulou A, Mintzas AC. Developmental profiles and ecdysone regulation of the mRNAs for two ecdysone receptor isoforms in the Mediterranean fruit fly Ceratitis capitata. INSECT MOLECULAR BIOLOGY 2002; 11:553-565. [PMID: 12421413 DOI: 10.1046/j.1365-2583.2002.00365.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using 5' RACE with specific primers for the ecdysone receptor B1 isoform of the Mediterranean fruit fly (medfly), Ceratitis capitata, we isolated a cDNA clone encoding the specific region of the medfly ecdysone receptor A isoform (CcEcR-A). The CcEcR-A-specific region was very similar to the EcR-A-specific region of Drosophila melanogaster and less similar to the EcR-A-specific regions of Lepidoptera. The developmental expression of both CcEcR-A and CcEcR-B1 mRNAs was studied in whole animals, salivary glands and ovaries by RT-PCR, using isoform-specific primers. Both CcEcR mRNAs are present in very early embryos, decrease to very low levels during the first hours of embryogenesis and are highly expressed in all consequent embryonic stages. During metamorphosis both isoforms are present showing two peaks; the first at the larval-prepupal transition and the second during the second half of prepupal development. These peaks are correlated with the two puffing cycles and the two major 20-hydroxyecdysone (20E) increases that occur during medfly metamorphosis. CcEcR-B1 mRNA was directly induced in larval salivary glands in vitro by 20E, even at very low concentrations of the hormone, while CcEcR-A mRNA was slightly induced only by high 20E concentrations and in the absence of a protein synthesis inhibitor. During oogenesis, the CcEcR mRNAs were expressed synchronously, peaking at the beginning of both previtellogenic and vitellogenic phases.
Collapse
Affiliation(s)
- M Verras
- Department of Biology, University of Patras, Greece
| | | | | | | |
Collapse
|
227
|
Lee CY, Cooksey BAK, Baehrecke EH. Steroid regulation of midgut cell death during Drosophila development. Dev Biol 2002; 250:101-11. [PMID: 12297099 DOI: 10.1006/dbio.2002.0784] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroid hormones trigger dynamic tissue changes during animal development by activating cell proliferation, cell differentiation, and cell death. Here we characterize steroid regulation of changes in midgut structure during the onset of Drosophila metamorphosis. Following an increase in the steroid 20-hydroxyecdysone (ecdysone) at the end of larval development, future adult midgut epithelium is formed, and the larval midgut is rapidly destroyed. Mutations in the steroid-regulated genes BR-C and E93 differentially impact larval midgut cell death but do not affect the formation of adult midgut epithelia. In contrast, mutations in the ecdysone-regulated E74A and E74B genes do not appear to perturb midgut development during metamorphosis. Larval midgut cells possess vacuoles that contain cellular organelles, indicating that these cells die by autophagy. While mutations in the BR-C, E74, and E93 genes do not impact DNA degradation during this cell death, mutations in BR-C inhibit destruction of larval midgut structures, including the proventriculus and gastric caeca, and E93 mutants exhibit decreased formation of autophagic vacuoles. Dying midguts express the rpr, hid, ark, dronc, and crq cell death genes, suggesting that the core cell death machinery is involved in larval midgut cell death. The transcription of rpr, hid, and crq are altered in BR-C mutants, and E93 mutants possess altered transcription of the caspase dronc, providing a mechanism for the disruption of midgut cell death in these mutant animals. These studies indicate that ecdysone triggers a two-step hierarchy composed of steroid-induced regulatory genes and apoptosis genes that, in turn, regulate the autophagic death of midgut cells during development.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Center for Biosystems Research, University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
228
|
Hegedus D, O'Grady M, Chamankhah M, Baldwin D, Gleddie S, Braun L, Erlandson M. Changes in cysteine protease activity and localization during midgut metamorphosis in the crucifer root maggot (Delia radicum). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1585-1596. [PMID: 12530226 DOI: 10.1016/s0965-1748(02)00099-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We show that differential localization and/or activation of two cysteine protease activities occur at the onset of dipteran midgut metamorphosis. A 26 kDa cysteine protease activity was associated specifically with midgut tissues of late third instar larvae. Starvation of mid third instar larvae simulated the onset of prepupation and resulted in loss of the 26 kDa protease activity. A cDNA clone encoding a cysteine protease, termed DrCP1, was isolated and shown to be highly similar to those from Sarcophaga peregrina and Drosophila melanogaster (DmCP1). DrCP1 mRNA was present in all developmental stages including eggs, larvae, pupae and adults, but was highly induced at the onset of the larval-pupal transition and thereafter. The DrCP1 protein is localized to the exterior of the midgut tissues during the onset of the prepupal transition period, possibly in response to ecdysone. Analysis of transcription factor binding sites associated with the DmCP1 promoter indicated that elements exist that allow for both ecdysone-mediated as well as tissue-specific regulation. Based upon these and other studies we propose: (1) that the expression, activity and localization of the DrCP1-like cysteine proteases are highly regulated throughout development; and, (2) that cysteine protease activities are involved in aspects of tissue reconstruction at the onset of and during metamorphosis.
Collapse
Affiliation(s)
- D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon SK, Canada S7N 0X2
| | | | | | | | | | | | | |
Collapse
|
229
|
Kuchárová-Mahmood S, Raska I, Mechler BM, Farkas R. Temporal regulation of Drosophila salivary gland degeneration by the Broad-Complex transcription factors. J Struct Biol 2002; 140:67-78. [PMID: 12490155 DOI: 10.1016/s1047-8477(02)00572-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The destruction of obsolete larval tissues at the onset of insect metamorphosis is a complex process triggered by the steroid hormone ecdysone. Among the genes required for the implementation of salivary gland (SG) degeneration the reduced bristles on palpus (rbp) gene of the Broad-Complex (BR-C) locus plays a critical role. This gene encodes the BR-C Z1 transcription factor and its expression is directly regulated by ecdysone through the ecdysone receptor (EcR/Usp). The BR-C locus encodes four major protein isoforms, including BR-C Z1, Z2, Z3, and Z4. With the exceptions of mutations in BR-C Z1 all mutations affecting the other BR-C isoforms produce pupal lethality. To gain insight into the function of the different BR-C isoforms on the process of SG degeneration, we used transgenes expressing each of the four major BR-C isoform proteins. This study revealed that, depending upon the period of expression relative to the major peak of ecdysone production, BR-C Z1, Z2, and Z4 first inhibited and then stimulated the process of SG degeneration. In contrast, BR-C Z3 exerted all time points an inhibition on SG degeneration.
Collapse
Affiliation(s)
- Silvia Kuchárová-Mahmood
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, 83306 Bratislava, Slovakia
| | | | | | | |
Collapse
|
230
|
Abstract
The formation of an adult animal from a fertilized embryo involves the production and death of cells. Surprisingly, many cells are produced during development with an ultimate fate of death, and defects in programmed cell death can result in developmental abnormalities. Recent studies indicate that cells can die by many different mechanisms, and these differences have implications for proper animal development and disorders such as cancer and autoimmunity.
Collapse
Affiliation(s)
- Eric H Baehrecke
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| |
Collapse
|
231
|
Zoog SJ, Schiller JJ, Wetter JA, Chejanovsky N, Friesen PD. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J 2002; 21:5130-40. [PMID: 12356729 PMCID: PMC129042 DOI: 10.1038/sj.emboj.7594736] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Caspases play a critical role in the execution of metazoan apoptosis and are thus attractive therapeutic targets for apoptosis-associated diseases. Here we report that baculovirus P49, a homolog of pancaspase inhibitor P35, prevents apoptosis in invertebrates by inhibiting an initiator caspase that is P35 insensitive. Consequently P49 blocked proteolytic activation of effector caspases at a unique step upstream from that affected by P35 but downstream from inhibitor of apoptosis Op-IAP. Like P35, P49 was cleaved by and stably associated with its caspase target. Ectopically expressed P49 blocked apoptosis in cultured cells from a phylogenetically distinct organism, Drosophila melanogaster. Furthermore, P49 inhibited human caspase-9, demonstrating its capacity to affect a vertebrate initiator caspase. Thus, P49 is a substrate inhibitor with a novel in vivo specificity for a P35-insensitive initiator caspase that functions at an evolutionarily conserved step in the caspase cascade. These data indicate that activated initiator caspases provide another effective target for apoptotic intervention by substrate inhibitors.
Collapse
Affiliation(s)
- Stephen J. Zoog
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | - Jennifer J. Schiller
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | | | - Nor Chejanovsky
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | - Paul D. Friesen
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| |
Collapse
|
232
|
Richardson H, Kumar S. Death to flies: Drosophila as a model system to study programmed cell death. J Immunol Methods 2002; 265:21-38. [PMID: 12072176 DOI: 10.1016/s0022-1759(02)00068-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Programmed cell death (PCD) is essential for the removal of unwanted cells and is critical for both restricting cell numbers and for tissue patterning during development. Components of the cell death machinery are remarkably conserved through evolution, from worms to mammals. Central to the PCD process is the family of cysteine proteases, known as caspases, which are activated by death-inducing signals. Comparisons between C. elegans and mammalian PCD have shown that there is additional complexity in the regulation of PCD in mammals. The fruitfly, Drosophila melanogaster, is proving an ideal genetically tractable model organism, of intermediary complexity between C. elegans and mammals, in which to study the intricacies of PCD. Here, we review the literature on PCD during Drosophila development, highlighting the methods used in these studies.
Collapse
Affiliation(s)
- Helena Richardson
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett St., Melbourne, Victoria, 8006, Australia.
| | | |
Collapse
|
233
|
Cakouros D, Daish T, Martin D, Baehrecke EH, Kumar S. Ecdysone-induced expression of the caspase DRONC during hormone-dependent programmed cell death in Drosophila is regulated by Broad-Complex. J Cell Biol 2002; 157:985-95. [PMID: 12045184 PMCID: PMC2174053 DOI: 10.1083/jcb.200201034] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The steroid hormone ecdysone regulates both cell differentiation and cell death during insect metamorphosis, by hierarchical transcriptional regulation of a number of genes, including the Broad-Complex (BR-C), the zinc finger family of transcription factors. These genes in turn regulate the transcription of a number of downstream genes. DRONC, a key apical caspase in Drosophila, is the only known caspase that is transcriptionally regulated by ecdysone during development. We demonstrate that dronc gene expression is ablated or reduced in BR-C mutant flies. Using RNA interference in an ecdysone-responsive Drosophila cell line, we show that DRONC is essential for ecdysone-mediated cell death, and that dronc upregulation in these cells is controlled by BR-C. Finally, we show that the dronc promoter has BR-C interaction sites, and that it can be transactivated by a specific isoform of BR-C. These results indicate that BR-C plays a key role in ecdysone-mediated caspase regulation.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | | | | | | | | |
Collapse
|
234
|
Gorski S, Marra M. Programmed cell death takes flight: genetic and genomic approaches to gene discovery in Drosophila. Physiol Genomics 2002; 9:59-69. [PMID: 12006672 DOI: 10.1152/physiolgenomics.00114.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Programmed cell death (PCD) is an essential and wide-spread physiological process that results in the elimination of cells. Genes required to carry out this process have been identified, and many of these remain the subjects of intense investigation. Here, we describe PCD, its functions, and some of the consequences when it goes awry. We review PCD in the model system, the fruit fly, Drosophila melanogaster, with a particular emphasis on cell death gene discovery resulting from both genetics and genomics-based approaches.
Collapse
Affiliation(s)
- S Gorski
- Genome Sequence Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6.
| | | |
Collapse
|
235
|
Lehmann M, Jiang C, Ip YT, Thummel CS. AP-1, but not NF-kappa B, is required for efficient steroid-triggered cell death in Drosophila. Cell Death Differ 2002; 9:581-90. [PMID: 11973616 DOI: 10.1038/sj.cdd.4401003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2001] [Revised: 10/10/2001] [Accepted: 11/13/2001] [Indexed: 11/09/2022] Open
Abstract
Extensive studies in vertebrate cells have assigned a central role to Rel/NF-kappa B and AP-1 family members in the control of apoptosis. We ask here whether parallel pathways might function in Drosophila by determining if Rel/NF-kappa B or AP-1 family members contribute to the steroid-triggered death of larval salivary glands during Drosophila metamorphosis. We show that two of the three Drosophila Rel/NF-kappa B genes are expressed in doomed salivary glands and that one family member, Dif, is induced in a stage-specific manner immediately before the onset of programmed cell death. Similarly, Djun is expressed for many hours before salivary gland cell death while Dfos is induced in a stage-specific manner, immediately before this tissue is destroyed. We show that null mutations in the three Drosophila Rel/NF-kappa B family members, either alone or in combination, have no apparent effect on this death response. In contrast, Dfos is required for the proper timing of larval salivary gland cell death as well as the proper induction of key death genes. This study demonstrates a role for AP-1 in the stage-specific steroid-triggered programmed cell death of larval tissues during Drosophila metamorphosis.
Collapse
Affiliation(s)
- M Lehmann
- Howard Hughes Medical Institute, Department of Human Genetics, 15 North 2030 East Room 5100, University of Utah, Utah, UT 84112-5331, USA
| | | | | | | |
Collapse
|
236
|
Usui-Aoki K, Nakano Y, Yamamoto D. Pathology of the adult central nervous system induced by genetic inhibition of programmed cell death in Drosophila pupae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2002; 49:94-101. [PMID: 11816024 DOI: 10.1002/arch.10011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the spinster (spin) mutant of Drosophila melanogaster, the extent of programmed cell death (PCD) in the abdominal ganglion 6 h after puparium formation (APF) is significantly reduced. The shortening of the abdominal ganglion, which is normally completed 48 h APF, does not occur. After eclosion, neurodegeneration accompanied by accumulation of autofluorescent materials is manifested in the central nervous system (CNS) of the spin mutant. The materials accumulated in the spin-mutant CNS contain a substance that is immunopositive to an antibody against GM2 ganglioside. Halving the dosage of three cell death genes, rpr, grim, and hid, blocks shortening of the abdominal ganglion and induces neurodegeneration accompanied by accumulation of autofluorescent materials in the adult CNS. These observations suggest that the primary action of the spin mutation is to reduce the extent of PCD 6 h APF, which concomitantly leads to a failure in shortening of the abdominal ganglion and to neurodegeneration of the adult CNS. Arch.
Collapse
Affiliation(s)
- Kazue Usui-Aoki
- ERATO Yamamoto Behavior Genes Project, JST, University of Hawaii at Marõa, Honolulu, Hawaii, USA
| | | | | |
Collapse
|
237
|
Reed JC, Kitada S, Kim Y, Byrd J. Modulating apoptosis pathways in low-grade B-cell malignancies using biological response modifiers. Semin Oncol 2002; 29:10-24. [DOI: 10.1053/sonc.2002.30155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
238
|
Li H, Cooper RL. Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila larvae during normal and prolonged development. Neuroscience 2002; 106:193-200. [PMID: 11564429 DOI: 10.1016/s0306-4522(01)00263-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hormonal regulation in development and maintenance of synaptic transmission involves examination of both the presynaptic and postsynaptic components and a system in which the hormones can be controlled. We used the ecdysoneless heat-sensitive mutation (l(3)ecd(1)/l(3)ecd(1)) of Drosophila to provide the ability to regulate endogenous ecdysone production at various larval stages. In conjunction, we used the neuromuscular junctions of Drosophila since they offer the advantage of assessable preparations for both morphological and physiological measures. The growth in the Ib and Is motor nerve terminals and the corresponding muscle 6 in segment 4 of the larval Drosophila throughout the third instar stage in the presence of normal and a much reduced endogenous ecdysone level was investigated. Muscle 6 and the motor nerve terminals parallel in growth throughout the third instar. The nerve terminals increase in length and varicosity number, thus providing an increase in the number of synaptic release sites. The ecdysoneless larvae also show an increase in muscle size, however the Is and Ib motor nerve terminals do not mature to the extent of the wild-type ecdysone producing flies. The motor nerve terminal length is shorter with fewer numbers of varicosities per terminal. In spite of a shorter nerve terminal and fewer varicosities, with an increasing muscle fiber, the compound excitatory junctional potentials of Ib and Is in the ecdysoneless flies are larger, which is suggestive of synaptic structural modification. This study demonstrates ecdysone's role in modifying nerve terminal development and neuromuscular junction function.
Collapse
Affiliation(s)
- H Li
- 101 T.H. Morgan School of Biological Sciences, University of Kentucky, Lexington, KY 40506-0225, USA
| | | |
Collapse
|
239
|
Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, Kopczynski C, Duyk G, Reichhart JM, Hoffmann JA. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 2001; 1:503-14. [PMID: 11703941 DOI: 10.1016/s1534-5807(01)00059-4] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the molecular characterization of the immune deficiency (imd) gene, which controls antibacterial defense in Drosophila. imd encodes a protein with a death domain similar to that of mammalian RIP (receptor interacting protein), a protein that plays a role in both NF-kappaB activation and apoptosis. We show that imd functions upstream of the DmIKK signalosome and the caspase DREDD in the control of antibacterial peptide genes. Strikingly, overexpression of imd leads to constitutive transcription of these genes and to apoptosis, and both effects are blocked by coexpression of the caspase inhibitor P35. We also show that imd is involved in the apoptotic response to UV irradiation. These data raise the possibility that antibacterial response and apoptosis share common control elements in Drosophila.
Collapse
Affiliation(s)
- P Georgel
- Institut de Biologie Moleculaire et Cellulaire, UPR 9022 du CNRS, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
Programmed cell death is a critical part of normal development, removing obsolete tissues or cells and sculpting body parts to assume their appropriate form and function. Most programmed cell death occurs by apoptosis of individual cells or autophagy of groups of cells. Although these pathways have distinct morphological characteristics, they also have a number of features in common, suggesting some overlap in their regulation. A recent paper by Lee and Baehrecke provides further support for this proposal.(1) These authors present, for the first time, a genetic analysis of autophagy, using the steroid-triggered metamorphosis of Drosophila as a model system. They demonstrate a remarkable degree of overlap between the control of apoptosis and autophagy as well as a key role for the steroid-inducible gene E93 in directing the autophagic death response. This paper also shows that E93 can direct cell death independently from the known death-inducer genes, defining a novel death pathway in Drosophila.
Collapse
Affiliation(s)
- C S Thummel
- Howard Hughes Medical Institute, Department of Human Genetics, 15 North 2030 East Room 5100, University of Utah, UT 84112-5331, USA.
| |
Collapse
|
241
|
Harvey NL, Daish T, Mills K, Dorstyn L, Quinn LM, Read SH, Richardson H, Kumar S. Characterization of the Drosophila caspase, DAMM. J Biol Chem 2001; 276:25342-50. [PMID: 11337486 DOI: 10.1074/jbc.m009444200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases are main effectors of apoptosis in metazoans. Genome analysis indicates that there are seven caspases in Drosophila, six of which have been previously characterized. Here we describe the cloning and characterization of the last Drosophila caspase, DAMM. Similar to mammalian effector caspases, DAMM lacks a long prodomain. We show that the DAMM precursor, along with the caspases DRONC and DECAY, is partially processed in cells undergoing apoptosis. Recombinant DAMM produced in Escherichia coli shows significant catalytic activity on a pentapeptide caspase substrate. Low levels of damm mRNA are ubiquitously expressed in Drosophila embryos during early stages of development. Relatively high levels of damm mRNA are detected in larval salivary glands and midgut, and in adult egg chambers. Ectopic expression of DAMM in cultured cells induces apoptosis, and similarly, transgenic overexpression of DAMM, but not of a catalytically inactive DAMM mutant, in Drosophila results in a rough eye phenotype. We demonstrate that expression of the catalytically inactive DAMM mutant protein significantly suppresses the rough eye phenotype due to the overexpression of HID, suggesting that DAMM may be required in a hid-mediated cell death pathway.
Collapse
Affiliation(s)
- N L Harvey
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Zee MC, Weeks JC. Developmental change in the steroid hormone signal for cell-autonomous, segment-specific programmed cell death of a motoneuron. Dev Biol 2001; 235:45-61. [PMID: 11412026 DOI: 10.1006/dbio.2001.0273] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During metamorphosis of the hawkmoth, Manduca sexta, accessory planta retractor (APR) motoneurons undergo a segment-specific pattern of programmed cell death (PCD): e.g., APRs from abdominal segment six [APR(6)s] die at pupation in direct response to the prepupal rise in 20-hydroxyecdysone (20E), whereas APR(4)s survive through the pupal stage and die at eclosion (adult emergence). The hypothesis that the death of APR(4)s is triggered by the decline in 20E at eclosion was supported by findings that injection of 20E into developing pupae to delay the fall in 20E delayed APR(4) death. Furthermore, abdomen isolation to advance the fall in 20E caused precocious APR(4) death. In other experiments, APR(4)s were placed in primary cell culture 4 days before eclosion in medium containing 1 microg/ml 20E. A switch to hormone-free medium induced PCD in a significant proportion of APR(4)s, compared to APR(4)s that remained in 20E. Process fragmentation was a reliable early indicator of PCD. These results show that a decline in 20E triggers cell-autonomous PCD of APR(4)s, in contrast to the rise in 20E that triggers cell-autonomous PCD of APR(6)s. Thus, the PCD of homologous motoneurons in different body segments at different developmental times is triggered by different steroid hormone signals.
Collapse
Affiliation(s)
- M C Zee
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254, USA
| | | |
Collapse
|
243
|
Abstract
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.
Collapse
Affiliation(s)
- C Y Lee
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | | |
Collapse
|
244
|
Beckstead R, Ortiz JA, Sanchez C, Prokopenko SN, Chambon P, Losson R, Bellen HJ. Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit betaFTZ-F1-dependent transcription. Mol Cell 2001; 7:753-65. [PMID: 11336699 PMCID: PMC3800173 DOI: 10.1016/s1097-2765(01)00220-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Drosophila bonus (bon) gene encodes a homolog of the vertebrate TIF1 transcriptional cofactors. bon is required for male viability, molting, and numerous events in metamorphosis including leg elongation, bristle development, and pigmentation. Most of these processes are associated with genes that have been implicated in the ecdysone pathway, a nuclear hormone receptor pathway required throughout Drosophila development. Bon is associated with sites on the polytene chromosomes and can interact with numerous Drosophila nuclear receptor proteins. Bon binds via an LxxLL motif to the AF-2 activation domain present in the ligand binding domain of betaFTZ-F1 and behaves as a transcriptional inhibitor in vivo.
Collapse
Affiliation(s)
- R Beckstead
- Department of Molecular and Cellular Biology, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
245
|
Damjanovski S, Amano T, Li Q, Ueda S, Shi YB, Ishizuya-Oka A. Role of ECM remodeling in thyroid hormone-dependent apoptosis during anuran metamorphosis. Ann N Y Acad Sci 2001; 926:180-91. [PMID: 11193034 DOI: 10.1111/j.1749-6632.2000.tb05611.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Programmed cell death or apoptosis is an important aspect in organogenesis and tissue remodeling. It is precisely controlled both temporally and spatially during development. Amphibian metamorphosis is an excellent model to study developmental control of apoptosis in vertebrates. This process involves the transformation of essentially every organ/tissue as tadpoles change to frogs, yet is controlled by a single hormone, thyroid hormone (TH). Although different organs and tissues undergo vastly different developmental changes, including de novo development and total resorption, most require apoptotic elimination of at least some cell types. Such properties and the dependence on TH make frog metamorphosis a unique model to isolate and functionally characterize genes participating in the regulation of tissue specific cell death during organ development in vertebrates. Indeed, molecular studies of the TH-dependent gene regulation cascade have led to the discovery of a group of genes encoding matrix metalloproteinases (MMPs) participating in metamorphosis. In vivo and in vitro studies have provided strong evidence to support a role of MMP-mediated remodeling of the extracellular matrix in regulating apoptotic tissue remodeling during metamorphosis.
Collapse
Affiliation(s)
- S Damjanovski
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
246
|
Affiliation(s)
- P Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390-9039, USA
| | | |
Collapse
|
247
|
Hoffman KL, Weeks JC. Role of caspases and mitochondria in the steroid-induced programmed cell death of a motoneuron during metamorphosis. Dev Biol 2001; 229:517-36. [PMID: 11203705 DOI: 10.1006/dbio.2000.9987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Accessory planta retractor (APR) motoneurons of the hawk moth, Manduca sexta, undergo a segment-specific pattern of programmed cell death (PCD) 24 to 48 h after pupal ecdysis (PE). Cell culture experiments show that the PCD of APRs in abdominal segment 6 [APR(6)s] is a cell-autonomous response to the steroid hormone 20-hydroxyecdysone (20E) and involves mitochondrial demise and cell shrinkage. Twenty-four hours before PE, at stage W3-noon, APR(6)s require further 20E exposure and protein synthesis (as tested with cycloheximide) to undergo PCD, and death can be blocked by a broad-spectrum caspase inhibitor. By PE, death is 20E- and protein synthesis-independent and the caspase inhibitor blocks cell shrinkage but not loss of mitochondrial function. Thus, the commitment to mitochondrial demise precedes the commitment to execution events. The phenotype of necrotic cell death induced by a mitochondrial electron transfer inhibitor differs unambiguously from 20E-induced PCD. By inducing PCD pharmacologically, the readiness of APR(6)s to execute PCD was found to increase during the final larval instar. These data suggest that the 20E-induced PCD of APR(6)s includes a premitochondrial phase which includes 20E-induced synthetic events and apical caspase activity, a mitochondrial phase which culminates in loss of mitochondrial function, and a postmitochondrial phase during which effector caspases are activated and APR(6) is destroyed.
Collapse
Affiliation(s)
- K L Hoffman
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, 97403-1254, USA
| | | |
Collapse
|
248
|
Brennan CA, Li TR, Bender M, Hsiung F, Moses K. Broad-complex, but not ecdysone receptor, is required for progression of the morphogenetic furrow in the Drosophila eye. Development 2001; 128:1-11. [PMID: 11092806 DOI: 10.1242/dev.128.1.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The progression of the morphogenetic furrow in the developing Drosophila eye is an early metamorphic, ecdysteroid-dependent event. Although Ecdysone receptor-encoded nuclear receptor isoforms are the only known ecdysteroid receptors, we show that the Ecdysone receptor gene is not required for furrow function. DHR78, which encodes another candidate ecdysteroid receptor, is also not required. In contrast, zinc finger-containing isoforms encoded by the early ecdysone response gene Broad-complex regulate furrow progression and photoreceptor specification. br-encoded Broad-complex subfunctions are required for furrow progression and proper R8 specification, and are antagonized by other subfunctions of Broad-complex. There is a switch from Broad complex Z2 to Z1 zinc-finger isoform expression at the furrow which requires Z2 expression and responds to Hedgehog signals. These results suggest that a novel hormone transduction hierarchy involving an uncharacterized receptor operates in the eye disc.
Collapse
Affiliation(s)
- C A Brennan
- Sloan-Kettering Institute, Box 193, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
249
|
Hsu T, Schulz RA. Sequence and functional properties of Ets genes in the model organism Drosophila. Oncogene 2000; 19:6409-16. [PMID: 11175357 DOI: 10.1038/sj.onc.1204033] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Detailed molecular and genetic studies, coupled with the recent sequencing of the fly genome, have identified eight Ets-related genes in the model organism Drosophila. All show homology to genes in vertebrate species. Functional analyses of some of the Drosophila ets genes have revealed their essential roles in developmental processes such as metamorphosis, oogenesis, neurogenesis, myogenesis, and eye development. Such studies have yielded important insights into our understanding of the genetic control of hormonally-regulated gene expression, programmed cell death, and signal transduction during cell fate determination and differentiation. The developmental roles of E74 (ELF1), pointed (Ets 1), yan (TEL), and D-elg (GABPalpha) will be reviewed in this article. The context of their participation in signal transduction and gene regulation will also be discussed. The information should be of significant value to the study of related processes in higher organisms due to the growing evidence for the cross species conservation of developmental mechanisms.
Collapse
Affiliation(s)
- T Hsu
- Center for Molecular and Structural Biology, Hollings Cancer Center, and Department of Cell Biology and Anatomy, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, South Carolina, SC 29425, USA
| | | |
Collapse
|
250
|
Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 2000; 113 Pt 24:4399-411. [PMID: 11082033 DOI: 10.1242/jcs.113.24.4399] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the animal life cycle, the earliest manifestations of programmed cell death (PCD) can already be seen during embryogenesis. The aim of this work was to determine if PCD is also involved in the elimination of certain cells during plant embryogenesis. We used a model system of Norway spruce somatic embryogenesis, which represents a multistep developmental pathway with two broad phases. The first phase is represented by proliferating proembryogenic masses (PEMs). The second phase encompasses development of somatic embryos, which arise from PEMs and proceed through the same sequence of stages as described for their zygotic counterparts. Here we demonstrate two successive waves of PCD, which are implicated in the transition from PEMs to somatic embryos and in correct embryonic pattern formation, respectively. The first wave of PCD is responsible for the degradation of PEMs when they give rise to somatic embryos. We show that PCD in PEM cells and embryo formation are closely interlinked processes, both stimulated upon withdrawal or partial depletion of auxins and cytokinins. The second wave of PCD eliminates terminally differentiated embryo-suspensor cells during early embryogeny. During the dismantling phase of PCD, PEM and embryo-suspensor cells exhibit progressive autolysis, resulting in the formation of a large central vacuole. Autolytic degradation of the cytoplasm is accompanied by lobing and budding-like segmentation of the nucleus. Nuclear DNA undergoes fragmentation into both large fragments of about 50 kb and multiples of approximately 180 bp. The tonoplast rupture is delayed until lysis of the cytoplasm and organelles, including the nucleus, is almost complete. The protoplasm then disappears, leaving a cellular corpse represented by only the cell wall. This pathway of cell dismantling suggests overlapping of apoptotic and autophagic types of PCD during somatic embryogenesis in Norway spruce.
Collapse
Affiliation(s)
- L H Filonova
- Department of Forest Genetics, Uppsala Genetic Centre, Swedish University of Agricultural Sciences, Box 7027, S-75007 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|