251
|
Abstract
The ubiquitin proteolytic system plays an important role in a broad array of basic cellular processes. Among these are regulation of cell cycle, modulation of the immune and inflammatory responses, control of signal transduction pathways, development and differentiation. These complex processes are controlled via specific degradation of a single or a subset of proteins. Degradation of a protein by the ubiquitin system involves two successive steps, conjugation of multiple moieties of ubiquitin and degradation of the tagged protein by the 26S proteasome. An important question concerns the identity of the mechanisms that underlie the high degree of specificity of the system. Substrate recognition is governed by a large family ubiquitin ligases that recognize the substrates, bind them and catalyze/facilitate their interaction with ubiquitin.
Collapse
Affiliation(s)
- A Ciechanover
- Department of Biochemistry, The Bruce Rappaport Faculty of Medicine and the Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Israel.
| | | | | |
Collapse
|
252
|
Spiegelman VS, Slaga TJ, Pagano M, Minamoto T, Ronai Z, Fuchs SY. Wnt/beta-catenin signaling induces the expression and activity of betaTrCP ubiquitin ligase receptor. Mol Cell 2000; 5:877-82. [PMID: 10882123 DOI: 10.1016/s1097-2765(00)80327-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beta-transducing repeat-containing protein (betaTrCP) targets the ubiquitination and subsequent degradation of both beta-catenin and IkappaB, thereby playing an important role in beta-catenin/Tcf and NF-kappaB-dependent signaling. Here evidence is presented that beta-catenin/Tcf signaling elevates the expression of betaTrCP mRNA and protein in a Tcf-dependent manner, which does not require betaTrCP transcription. Induction of betaTrCP expression by the beta-catenin/Tcf pathway results in an accelerated degradation of the wild-type beta-catenin, suggesting that the negative feedback loop regulation may control the beta-catenin/Tcf pathway. This signaling also upregulated NF-kappaB transactivation without affecting the activity of IkappaB kinase, thereby establishing that the maintenance of the betaTrCP level is important for coordination between beta-catenin/Tcf and NF-kappaB signaling.
Collapse
|
253
|
Yamamoto Y, Yin MJ, Gaynor RB. IkappaB kinase alpha (IKKalpha) regulation of IKKbeta kinase activity. Mol Cell Biol 2000; 20:3655-66. [PMID: 10779355 PMCID: PMC85658 DOI: 10.1128/mcb.20.10.3655-3666.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.
Collapse
Affiliation(s)
- Y Yamamoto
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235-8594, USA
| | | | | |
Collapse
|
254
|
Morimoto M, Nishida T, Honda R, Yasuda H. Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). Biochem Biophys Res Commun 2000; 270:1093-6. [PMID: 10772955 DOI: 10.1006/bbrc.2000.2576] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The periodic expression of cell cycle proteins is important for the regulation of cell cycle progression. The amount of CDK inhibitor, p27(kip1), one such protein, seems to be regulated by the ubiquitin-proteasome system. The ubiquitin ligase (E3) toward p27(kip1) is thought to be SCF(skp2). The activity of SCF(skp2) was increased by the addition of Roc1 protein to the complex. Furthermore, the ubiquitination of p27(kip1) seemed to be dependent on the phosphorylation of T187 of p27(kip1) because the mutant T187A was not ubiquitinated at all in an in vitro ubiquitination system. Cullin-1, a component of SCF, is modified by ubiquitin-like protein Nedd8. The modification site of cullin-1 was shown to be K696 because the K696R mutant was not modified. When the effect of the Nedd8 modification on the SCF(skp2) activity toward p27(kip1) was investigated, the activity was markedly decreased by using the Nedd8-unmodified mutant cullin-1 (K696R), indicating that the modification may play an important role on the SCF(skp2) activity toward p27(kip1).
Collapse
Affiliation(s)
- M Morimoto
- School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | | | | | | |
Collapse
|
255
|
Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben-Ze'ev A. Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system. Oncogene 2000; 19:1992-2001. [PMID: 10803460 DOI: 10.1038/sj.onc.1203519] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beta-catenin and plakoglobin are closely related armadillo family proteins with shared and distinct properties; Both are associated with cadherins in actin-containing adherens junctions. Plakoglobin is also found in desmosomes where it anchors intermediate filaments to the desmosomal plaques. Beta-catenin, on the other hand, is a component of the Wnt signaling pathway, which is involved in embryonic morphogenesis and tumorigenesis. A key step in the regulation of this pathway involves modulation of beta-catenin stability. A multiprotein complex, regulated by Wnt, directs the phosphorylation of beta-catenin and its degradation by the ubiquitin-proteasome system. Plakoglobin can also associate with members of this complex, but inhibition of proteasomal degradation has little effect on its levels while dramatically increasing the levels of beta-catenin. Beta-TrCP, an F-box protein of the SCF E3 ubiquitin ligase complex, was recently shown to play a role in the turnover of beta-catenin. To elucidate the basis for the apparent differences in the turnover of beta-catenin and plakoglobin we compared the handling of these two proteins by the ubiquitin-proteasome system. We show here that a deletion mutant of beta-TrCP, lacking the F-box, can stabilize the endogenous beta-catenin leading to its nuclear translocation and induction of beta-catenin/LEF-1-directed transcription, without affecting the levels of plakoglobin. However, when plakoglobin was overexpressed, it readily associated with beta-TrCP, efficiently competed with beta-catenin for binding to beta-TrCP and became polyubiquitinated. Fractionation studies revealed that about 85% of plakoglobin in 293 cells, is Triton X-100-insoluble compared to 50% of beta-catenin. These results suggest that while both plakoglobin and beta-catenin can comparably interact with beta-TrCP and the ubiquitination system, the sequestration of plakoglobin by the membrane-cytoskeleton system renders it inaccessible to the proteolytic machinery and stabilizes it.
Collapse
Affiliation(s)
- E Sadot
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
256
|
Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V, Palombella VJ. Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol Cell Biol 2000; 20:2326-33. [PMID: 10713156 PMCID: PMC85397 DOI: 10.1128/mcb.20.7.2326-2333.2000] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1999] [Accepted: 12/22/1999] [Indexed: 11/20/2022] Open
Abstract
Regulation of NF-kappaB occurs through phosphorylation-dependent ubiquitination of IkappaBalpha, which is degraded by the 26S proteasome. Recent studies have shown that ubiquitination of IkappaBalpha is carried out by a ubiquitin-ligase enzyme complex called SCF(beta(TrCP)). Here we show that Nedd8 modification of the Cul-1 component of SCF(beta(TrCP)) is important for function of SCF(beta(TrCP)) in ubiquitination of IkappaBalpha. In cells, Nedd8-conjugated Cul-1 was complexed with two substrates of SCF(beta(TrCP)), phosphorylated IkappaBalpha and beta-catenin, indicating that Nedd8-Cul-1 conjugates are part of SCF(beta(TrCP)) in vivo. Although only a minute fraction of total cellular Cul-1 is modified by Nedd8, the Cul-1 associated with ectopically expressed betaTrCP was highly enriched for the Nedd8-conjugated form. Moreover, optimal ubiquitination of IkappaBalpha required Nedd8 and the Nedd8-conjugating enzyme, Ubc12. The site of Nedd8 ligation to Cul-1 is essential, as SCF(beta(TrCP)) containing a K720R mutant of Cul-1 only weakly supported IkappaBalpha ubiquitination compared to SCF(beta(TrCP)) containing WT Cul-1, suggesting that the Nedd8 ligation of Cul-1 affects the ubiquitination activity of SCF(beta(TrCP)). These observations provide a functional link between the highly related ubiquitin and Nedd8 pathways of protein modification and show how they operate together to selectively target the signal-dependent degradation of IkappaBalpha.
Collapse
Affiliation(s)
- M A Read
- LeukoSite, Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275:8945-51. [PMID: 10722742 DOI: 10.1074/jbc.275.12.8945] [Citation(s) in RCA: 830] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.
Collapse
Affiliation(s)
- S Fang
- Laboratory of Immune Cell Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-1152, USA
| | | | | | | | | |
Collapse
|
258
|
Abstract
Radiation resistance is a hallmark of human melanoma, and yet mechanisms underlying this resistance are not well understood. We recently established the role of ATF2 in this process, suggesting that stress kinases, which contribute to regulation of ATF2 stability and activity, play an important role in the acquisition of such resistance. Here we demonstrate that changes in the expression and respective activities of TRAF2/GCK occur during melanoma development and regulate its sensitivity to UV-induced apoptosis. Comparing early- and late-stage melanoma cells revealed low expression of TRAF2 and GCK in early-stage melanoma, which coincided with poor resistance to UV-induced, TNF-mediated apoptosis; forced expression of GCK alone or in combination with TRAF2 efficiently increased JNK and NF-kappaB activities, which coincided with increased protection against apoptosis. Conversely, forced expression of the dominant negative form of TRAF2 or GCK in late-stage melanoma cells reduced NF-kappaB activity and decreased Fas expression, resulting in a lower degree of UV-induced, Fas-mediated cell death. Our results illustrate a mechanism in which protection from, or promotion of, UV-induced melanoma cell death depends on the nature of the apoptotic cascade (TNF or Fas) and on the availability of TRAF2/GCK, whose expression increases during melanoma progression. Oncogene (2000) 19, 933 - 942.
Collapse
Affiliation(s)
- V N Ivanov
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York NY, 10029, USA
| | | | | |
Collapse
|
259
|
Abstract
In the innate immune reaction, microbial pathogens activate phylogenetically conserved cellular signal transduction pathways that regulate the ubiquitous nuclear factor-kappaB (NFkappaB). NF-kappaB has pleiotropic functions in immunity; however, it is also critical for development and cellular survival. Many aspects of how the different pathways utilize a common kinase complex that ultimately activates NF-kappaB have been clarified by gene inactivation and biochemical analysis.
Collapse
Affiliation(s)
- E N Hatada
- Max-Delbrück-Center for Molecular Medicine, Berlin, 13122, Germany
| | | | | |
Collapse
|
260
|
Abstract
The ubiquitin system drives the cell division cycle by the timely destruction of numerous regulatory proteins. Remarkably, the two main activities that catalyze substrate ubiquitination in the cell cycle, the Skp1-Cdc53/cullin-F-box protein (SCF) complexes and the anaphase-promoting complex/cyclosome (APC/C), define a new superfamily of E3 ubiquitin ligases, all based on related cullin and RING-H2 finger protein subunits. The circuits that interconnect the SCF, APC/C and cyclin-dependent kinase activities form a master oscillator that coordinates the replication and segregation of the genome.
Collapse
Affiliation(s)
- M Tyers
- Programme in Molecular Biology and Cancer, Graduate Department of Molecular and Medical Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, M5G 1X5, M5S 1A8, Canada.
| | | |
Collapse
|
261
|
Wu K, Fuchs SY, Chen A, Tan P, Gomez C, Ronai Z, Pan ZQ. The SCF(HOS/beta-TRCP)-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation. Mol Cell Biol 2000; 20:1382-93. [PMID: 10648623 PMCID: PMC85290 DOI: 10.1128/mcb.20.4.1382-1393.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a purified ubiquitination system capable of rapidly catalyzing the covalent linkage of polyubiquitin chains onto a model substrate, phosphorylated IkappaBalpha. The initial ubiquitin transfer and subsequent polymerization steps of this reaction require the coordinated action of Cdc34 and the SCF(HOS/beta-TRCP)-ROC1 E3 ligase complex, comprised of four subunits (Skp1, cullin 1 [CUL1], HOS/beta-TRCP, and ROC1). Deletion analysis reveals that the N terminus of CUL1 is both necessary and sufficient for binding Skp1 but is devoid of ROC1-binding activity and, hence, is inactive in catalyzing ubiquitin ligation. Consistent with this, introduction of the N-terminal CUL1 polypeptide into cells blocks the tumor necrosis factor alpha-induced and SCF-mediated degradation of IkappaB by forming catalytically inactive complexes lacking ROC1. In contrast, the C terminus of CUL1 alone interacts with ROC1 through a region containing the cullin consensus domain, to form a complex fully active in supporting ubiquitin polymerization. These results suggest the mode of action of SCF-ROC1, where CUL1 serves as a dual-function molecule that recruits an F-box protein for substrate targeting through Skp1 at its N terminus, while the C terminus of CUL1 binds ROC1 to assemble a core ubiquitin ligase.
Collapse
Affiliation(s)
- K Wu
- Derald H. Ruttenberg Cancer Center, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | |
Collapse
|
262
|
Abstract
The ubiquitin-proteasome pathway is responsible for the major portion of specific cellular protein degradation. Ubiquitin-mediated degradation is involved in physiological regulation of many cellular processes, including cell cycle progression, differentiation, and signal transduction. Here, we review the basic mechanisms of the ubiquitin system and the various ways in which ubiquitin-mediated degradation can be modulated by physiological signals.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
263
|
Abstract
Protein degradation is deployed to modulate the steady-state abundance of proteins and to switch cellular regulatory circuits from one state to another by abrupt elimination of control proteins. In eukaryotes, the bulk of the protein degradation that occurs in the cytoplasm and nucleus is carried out by the 26S proteasome. In turn, most proteins are thought to be targeted to the 26S proteasome by covalent attachment of a multiubiquitin chain. Ubiquitination of proteins requires a multienzyme system. A key component of ubiquitination pathways, the ubiquitin ligase, controls both the specificity and timing of substrate ubiquitination. This review is focused on a conserved ubiquitin ligase complex known as SCF that plays a key role in marking a variety of regulatory proteins for destruction by the 26S proteasome.
Collapse
Affiliation(s)
- R J Deshaies
- Department of Biology, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
264
|
Craig KL, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:299-328. [PMID: 10581972 DOI: 10.1016/s0079-6107(99)00010-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.
Collapse
Affiliation(s)
- K L Craig
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
265
|
Feng H, Zhong W, Punkosdy G, Gu S, Zhou L, Seabolt EK, Kipreos ET. CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nat Cell Biol 1999; 1:486-92. [PMID: 10587644 DOI: 10.1038/70272] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human cullin protein CUL-2 functions in a ubiquitin-ligase complex with the von Hippel-Lindau (VHL) tumour suppressor protein. Here we show that, in Caenorhabditis elegans, cul-2 is expressed in proliferating cells and is required at two distinct points in the cell cycle, the G1-to-S-phase transition and mitosis. cul-2 mutant germ cells undergo a G1-phase arrest that correlates with accumulation of CKI-1, a member of the CIP/KIP family of cyclin-dependent-kinase inhibitors. In cul-2 mutant embryos, mitotic chromosomes are unable to condense, leading to unequal DNA segregation, chromosome bridging and the formation of multiple nuclei.
Collapse
Affiliation(s)
- H Feng
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Abstract
The recent identification of an essential RING-H2 finger protein in the SCF E3 ubiquitin ligase complex of budding yeast has uncovered a family of related E3 enzymes, including the other main cell cycle E3 complex, the anaphase promoting complex (APC). Recent insights into APC-dependent proteolysis include a novel protease activity that dissolves cohesion between sister chromatids at anaphase, and a crucial phosphatase, Cdc14, whose release from the nucleolus eliminates cyclin-dependent kinase activity and thereby drives exit from mitosis.
Collapse
Affiliation(s)
- P Jorgensen
- Programme in Molecular Biology and Cancer, Graduate Department of Molecular and Medical Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, M5G 1X5, M5S 1A8, Canada
| | | |
Collapse
|
267
|
Ohta T, Michel JJ, Xiong Y. Association with cullin partners protects ROC proteins from proteasome-dependent degradation. Oncogene 1999; 18:6758-66. [PMID: 10597284 DOI: 10.1038/sj.onc.1203115] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cullin 1/CDC53 represents a multigene family and has been linked to the ubiquitin-mediated proteolysis of several different proteins. We recently identified two closely related RING finger proteins, ROC1 and ROC2, that share considerable sequence similarity to an APC subunit, APC11, and demonstrated ROC1 as an essential subunit of CUL1 and CDC53 ubiquitin ligases. We report here that the expression of ROC1, ROC2 and APC11 genes are induced by mitogens and remain constant during the cell cycle. Unlike other subunits of SCF and APC E3 ligases, ectopically expressed ROC family proteins are degraded by a proteasome-inhibitor sensitive pathway and are stabilized by associating with cullins. Mutations at the conserved Phe79 and His80 residues in the RING finger of ROC1 diminish its binding with cullins, resulting in a loss of cullin protection and ubiquitin ligase activity. These results suggest a potential mechanism for regulating the activity of ROC-cullin ligases through complex assembly and ROC/APC11 subunit ubiquitination.
Collapse
Affiliation(s)
- T Ohta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295, USA
| | | | | |
Collapse
|
268
|
Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev 1999; 13:2928-33. [PMID: 10579999 PMCID: PMC317157 DOI: 10.1101/gad.13.22.2928] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RING-H2 finger protein Rbx1 is a subunit of the related SCF (Skp1-Cdc53/Cul1-F-box protein) and von Hippel-Lindau (VHL) tumor suppressor (elongin BC-Cul2-VHL) E3 ubiquitin ligase complexes, where it functions as a component of Cdc53/Rbx1 and Cul2/Rbx1 modules that activate ubiquitination of target proteins by the E2 ubiquitin-conjugating enzymes Cdc34 and Ubc5. Here we demonstrate that the Cdc53/Rbx1 and Cul2/Rbx1 modules also activate conjugation of the ubiquitin-like protein Rub1 to Cdc53 and Cul2 by the dedicated E2 Rub1 conjugating enzyme Ubc12. Our findings identify Rbx1 as a common component of enzyme systems responsible for ubiquitin and Rub1 modification of target proteins.
Collapse
Affiliation(s)
- T Kamura
- Howard Hughes Medical Institute (HHMI), Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
269
|
Abstract
A myriad of unrelated exogenous or endogenous agents that represent a threat to the organism are capable of inducing NF-kappaB activity, including viral infection, bacterial lipids, DNA damage, oxidative stress and chemotherapuetic agents. Likewise, NF-kappaB regulates the expression of an equally diverse array of cellular genes. These findings are indicative of the widespread significance of NF-kappaB as a mediator of cellular stress. Remarkably, the NF-kappaB pathway displays the capacity to activate, in a cell- and stimulus-specific manner, only a subset of the total repertoire of NF-kappaB-responsive genes. The seemingly promiscuous nature of NF-kappaB activation poses a regulatory quagmire as to how specificity is achieved at the level of gene expression. The review will summarize recent findings and explore how they further our understanding of the mechanism by which stimulus-specific activation of NF-kappaB is achieved in response to cellular stress.
Collapse
Affiliation(s)
- F Mercurio
- Signal Pharmaceuticals, Inc., 5555 Oberlin Drive, San Diego, California, CA 92121, USA
| | | |
Collapse
|
270
|
Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 1999; 96:12436-41. [PMID: 10535940 PMCID: PMC22941 DOI: 10.1073/pnas.96.22.12436] [Citation(s) in RCA: 393] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations of von Hippel-Lindau disease (VHL) tumor-suppressor gene product (pVHL) are found in patients with dominant inherited VHL syndrome and in the vast majority of sporadic clear cell renal carcinomas. The function of the pVHL protein has not been clarified. pVHL has been shown to form a complex with elongin B and elongin C (VBC) and with cullin (CUL)-2. In light of the structural analogy of VBC-CUL-2 to SKP1-CUL-1-F-box ubiquitin ligases, the ubiquitin ligase activity of VBC-CUL-2 was examined in this study. We show that VBC-CUL-2 exhibits ubiquitin ligase activity, and we identified UbcH5a, b, and c, but not CDC34, as the ubiquitin-conjugating enzymes of the VBC-CUL-2 ubiquitin ligase. The protein Rbx1/ROC1 enhances ligase activity of VBC-CUL-2 as it does in the SKP1-CUL-1-F-box protein ligase complex. We also found that pVHL associates with two proteins, p100 and p220, which migrate at a similar molecular weight as two major bands in the ubiquitination assay. Furthermore, naturally occurring pVHL missense mutations, including mutants capable of forming a complex with elongin B-elongin C-CUL-2, fail to associate with p100 and p220 and cannot exhibit the E3 ligase activity. These results suggest that pVHL might be the substrate recognition subunit of the VBC-CUL-2 E3 ligase. This is also, to our knowledge, the first example of a human tumor-suppressor protein being directly involved in the ubiquitin conjugation system which leads to the targeted degradation of substrate proteins.
Collapse
Affiliation(s)
- K Iwai
- Department of Molecular Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Hattori K, Hatakeyama S, Shirane M, Matsumoto M, Nakayama K. Molecular dissection of the interactions among IkappaBalpha, FWD1, and Skp1 required for ubiquitin-mediated proteolysis of IkappaBalpha. J Biol Chem 1999; 274:29641-7. [PMID: 10514433 DOI: 10.1074/jbc.274.42.29641] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SCF complex containing Skp1, Cul1, and the F-box protein FWD1 (the mouse homologue of Drosophila Slimb and Xenopus beta-TrCP) functions as the ubiquitin ligase for IkappaBalpha. FWD1 associates with Skp1 through the F-box domain and also recognizes the conserved DSGXXS motif of IkappaBalpha. The structural requirements for the interactions of FWD1 with IkappaBalpha and with Skp1 have now been investigated further. The D31A mutation (but not the G33A mutation) in the DSGXXS motif of IkappaBalpha abolished the binding of IkappaBalpha to FWD1 and its subsequent ubiquitination without affecting the phosphorylation of IkappaBalpha. The IkappaBalpha mutant D31E still exhibited binding to FWD1 and underwent ubiquitination. These results suggest that, in addition to site-specific phosphorylation at Ser(32) and Ser(36), an acidic amino acid at position 31 is required for FWD1-mediated ubiquitination of IkappaBalpha. Deletion analysis of Skp1 revealed that residues 61-143 of this protein are required for binding to FWD1. On the other hand, the highly conserved residues Pro(149), Ile(160), and Leu(164) in the F-box domain of FWD1 were dispensable for binding to Skp1. Together, these data delineate the structural requirements for the interactions among IkappaBalpha, FWD1, and Skp1 that underlie substrate recognition by the SCF ubiquitin ligase complex.
Collapse
Affiliation(s)
- K Hattori
- Department of Molecular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
272
|
Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999; 286:309-12. [PMID: 10514377 DOI: 10.1126/science.286.5438.309] [Citation(s) in RCA: 822] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ubiquitination of receptor protein-tyrosine kinases (RPTKs) terminates signaling by marking active receptors for degradation. c-Cbl, an adapter protein for RPTKs, positively regulates RPTK ubiquitination in a manner dependent on its variant SRC homology 2 (SH2) and RING finger domains. Ubiquitin-protein ligases (or E3s) are the components of ubiquitination pathways that recognize target substrates and promote their ligation to ubiquitin. The c-Cbl protein acted as an E3 that can recognize tyrosine-phosphorylated substrates, such as the activated platelet-derived growth factor receptor, through its SH2 domain and that recruits and allosterically activates an E2 ubiquitin-conjugating enzyme through its RING domain. These results reveal an SH2-containing protein that functions as a ubiquitin-protein ligase and thus provide a distinct mechanism for substrate targeting in the ubiquitin system.
Collapse
Affiliation(s)
- C A Joazeiro
- The Salk Institute, Molecular Biology and Virology Laboratory, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
273
|
Sun Y. Alterations of SAG mRNA in human cancer cell lines: requirement for the RING finger domain for apoptosis protection. Carcinogenesis 1999; 20:1899-903. [PMID: 10506102 DOI: 10.1093/carcin/20.10.1899] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have recently cloned and characterized a novel zinc RING finger gene, SAG (sensitive to apoptosis gene). SAG has antioxidant activity and protects cells from apoptosis induced by metal ions and redox compounds. During the course of SAG cloning, we identified two forms of deletions of SAG mRNA in colon and testicular carcinoma cell lines. The first form (SAG-MU1) consists of a 7 bp deletion that results in a frameshift and abolishes the RING finger domain. The second (SAG-MU2) consists of an in-frame 48 bp deletion that truncates 16 amino acids in the protein but retains the RING finger domain. Functional studies using stable transfectant lines reveal that, like wild-type SAG, SAG-MU2 retains anti-apoptosis activity, whereas SAG-MU1 shows no such protection. The results indicate that the C-terminal zinc RING finger domain is required for anti-apoptosis activity of SAG.
Collapse
Affiliation(s)
- Y Sun
- Department of Molecular Biology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Co., Ann Arbor, MI 48105, USA.
| |
Collapse
|
274
|
Willems AR, Goh T, Taylor L, Chernushevich I, Shevchenko A, Tyers M. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. Philos Trans R Soc Lond B Biol Sci 1999; 354:1533-50. [PMID: 10582239 PMCID: PMC1692661 DOI: 10.1098/rstb.1999.0497] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.
Collapse
Affiliation(s)
- A R Willems
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
275
|
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 1999; 96:11364-9. [PMID: 10500182 PMCID: PMC18039 DOI: 10.1073/pnas.96.20.11364] [Citation(s) in RCA: 899] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A RING finger-containing protein (AO7) that binds ubiquitin-conjugating enzymes (E2s) and is a substrate for E2-dependent ubiquitination was identified. Mutations of cation-coordinating residues within AO7's RING finger abolished ubiquitination, as did chelation of zinc. Several otherwise-unrelated RING finger proteins, including BRCA1, Siah-1, TRC8, NF-X1, kf-1, and Praja1, were assessed for their ability to facilitate E2-dependent ubiquitination. In all cases, ubiquitination was observed. The RING fingers were implicated directly in this activity through mutations of metal-coordinating residues or chelation of zinc. These findings suggest that a large number of RING finger-containing proteins, with otherwise diverse structures and functions, may play previously unappreciated roles in modulating protein levels via ubiquitination.
Collapse
Affiliation(s)
- K L Lorick
- Laboratory of Immune Cell Biology, Division of Basic Sciences, National Cancer Institute, Building 10, Room 1B34, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-1152, USA
| | | | | | | | | | | |
Collapse
|
276
|
Suzuki H, Kobayashi M, Takeuchi M, Furuichi K, Chiba T, Tanaka K. Identification of a novel 300-kDa factor termed IkappaB alphaE3-F1 that is required for ubiquitinylation of IkappaB alpha. FEBS Lett 1999; 458:343-8. [PMID: 10570937 DOI: 10.1016/s0014-5793(99)01173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Destruction of IkappaB by ubiquitinylation is required for signal-dependent activation of NF-kappaB. The IkappaB alpha ubiquitin-ligase activity associated with phosphorylated IkappaB alpha (pIkappaB alpha) in HeLa cells was almost completely lost by washing under stringent conditions including 1 M NaCl; nevertheless, an SCF(betaTrCP) complex containing Skp1, Cullin-1, and F-box/WD40 protein betaTrCP was still bound to pIkappaB alpha, suggesting the existence of a putative factor that is loosely associated with pIkappaB alpha and may collaborate with SCF(betaTrCP). The factor was named IkappaB alphaE3-F1 and was partially purified from HeLa cells. Gel filtration analysis revealed that IkappaB alphaE3-F1 has an apparent molecular mass of approximately 300 kDa.
Collapse
Affiliation(s)
- H Suzuki
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
277
|
Vuillard L, Nicholson J, Hay RT. A complex containing betaTrCP recruits Cdc34 to catalyse ubiquitination of IkappaBalpha. FEBS Lett 1999; 455:311-4. [PMID: 10437795 DOI: 10.1016/s0014-5793(99)00895-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of transcription factor NF-kappaB is accomplished by degradation of its inhibitor IkappaBalpha. Signal induced phosphorylation of IkappaBalpha on serine 32 and 36 targets the protein for ubiquitination on lysine 21 and 22. Here we use a phosphorylated peptide substrate representing residues 20-43 of IkappaBalpha to investigate requirements for ubiquitination of IkappaBalpha. Phosphorylation dependent polyubiquitination is carried out by a multiprotein complex containing betaTrCP, Skp1 and Cdc53 (Cull). In the presence of ubiquitin activating enzyme and the protein complex containing betaTrCP, polyubiquitination of IkappaBalpha peptide was dependent on the presence of Cdc34, while Ubc5 only stimulated mono- and di-ubiquitination.
Collapse
Affiliation(s)
- L Vuillard
- School of Biomedical Science, University of St. Andrews, Fife, UK
| | | | | |
Collapse
|
278
|
Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 1999; 13:1822-33. [PMID: 10421634 PMCID: PMC316884 DOI: 10.1101/gad.13.14.1822] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
pVHL, the product of the VHL tumor suppressor gene, plays an important role in the regulation of cell growth and differentiation of human kidney cells, and inactivation of the VHL gene is the most frequent genetic event in human kidney cancer. The biochemical function of pVHL is unknown. Here we report that pVHL exists in vivo in a complex that displays ubiquitination-promoting activity in conjunction with the universally required components E1, E2, and ubiquitin. pVHL-associated ubiquitination activity requires, at a minimum, pVHL to bind elongin C and Cul-2, relatives of core components of SCF (Skp1-Cdc53/Cul-1-F-box protein) E3 ligase complexes. Notably, certain tumor-derived mutants of pVHL demonstrate loss of associated ubiquitination promoting activity. These results identify pVHL as a component of a potential SCF-like E3 ubiquitin-protein ligase complex and suggest a direct link between pVHL tumor suppressor and the process of ubiquitination.
Collapse
Affiliation(s)
- J Lisztwan
- Friedrich Miescher Institut, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
279
|
Swaroop M, Bian J, Aviram M, Duan H, Bisgaier CL, Loo JA, Sun Y. Expression, purification, and biochemical characterization of SAG, a ring finger redox-sensitive protein. Free Radic Biol Med 1999; 27:193-202. [PMID: 10443936 DOI: 10.1016/s0891-5849(99)00078-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We recently reported the cloning and characterization of SAG (sensitive to apoptosis gene), a novel zinc RING finger protein, that is redox responsive and protects mammalian cells from apoptosis. Here we report the expression, purification, and biochemical characterization of SAG. Bacterially expressed SAG is brown in color and dithiothreitol (DTT)-sensitive. SAG forms large oligomers without DTT that can be reduced into a monomer in the presence of DTT. These features help us to purify SAG using the chromatography with or without DTT. Likewise, purified SAG is redox sensitive. Upon H2O2 exposure, SAG forms oligomers as well as monomer doublets due to the formation of the inter- or intramolecular disulfide bonds, respectively. This process can be reversed by DTT or prevented by pretreatment with the alkylating reagent, N-ethylmaleimide (NEM). Although SAG contains two putative heme-binding sites and a RING finger domain, the protein appears not to bind with heme and to lack transcription factor activity as determined in a Gal4-fusion/transactivation assay. Wildtype, but not RING finger domain-disrupted SAG mutants, prevents copper-induced lipid peroxidation. These results, along with our previous observations, suggest that SAG is an intracellular antioxidant molecule that may act as a redox sensor to buffer oxidative-stress induced damage.
Collapse
Affiliation(s)
- M Swaroop
- Department of Molecular Biology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | |
Collapse
|
280
|
Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Deshaies RJ, Shevchenko A, Deshaies RJ. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 1999; 13:1614-26. [PMID: 10385629 PMCID: PMC316801 DOI: 10.1101/gad.13.12.1614] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SCFCdc4 (Skp1, Cdc53/cullin, F-box protein) defines a family of modular ubiquitin ligases (E3s) that regulate diverse processes including cell cycle, immune response, and development. Mass spectrometric analysis of proteins copurifying with Cdc53 identified the RING-H2 finger protein Hrt1 as a subunit of SCF. Hrt1 shows striking similarity to the Apc11 subunit of anaphase-promoting complex. Conditional inactivation of hrt1(ts) results in stabilization of the SCFCdc4 substrates Sic1 and Cln2 and cell cycle arrest at G1/S. Hrt1 assembles into recombinant SCF complexes and individually binds Cdc4, Cdc53 and Cdc34, but not Skp1. Hrt1 stimulates the E3 activity of recombinant SCF potently and enables the reconstitution of Cln2 ubiquitination by recombinant SCFGrr1. Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by a mechanism that does not appear to require a reactive thiol. The highly conserved human HRT1 complements the lethality of hrt1Delta, and human HRT2 binds CUL-1. We conclude that Cdc53/Hrt1 comprise a highly conserved module that serves as the functional core of a broad variety of heteromeric ubiquitin ligases.
Collapse
Affiliation(s)
- J H Seol
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Affiliation(s)
- D M Koepp
- Howard Hughes Medical Institute, and Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
282
|
Ohta T, Michel JJ, Schottelius AJ, Xiong Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 1999; 3:535-41. [PMID: 10230407 DOI: 10.1016/s1097-2765(00)80482-7] [Citation(s) in RCA: 375] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have identified two highly conserved RING finger proteins, ROC1 and ROC2, that are homologous to APC11, a subunit of the anaphase-promoting complex. ROC1 and ROC2 commonly interact with all cullins while APC11 specifically interacts with APC2, a cullin-related APC subunit. YeastROC1 encodes an essential gene whose reduced expression resulted in multiple, elongated buds and accumulation of Sic1p and Cln2p. ROC1 and APC11 immunocomplexes can catalyze isopeptide ligations to form polyubiquitin chains in an E1- and E2-dependent manner. ROC1 mutations completely abolished their ligase activity without noticeable changes in associated proteins. Ubiquitination of phosphorylated I kappa B alpha can be catalyzed by the ROC1 immunocomplex in vitro. Hence, combinations of ROC/APC11 and cullin proteins proteins potentially constitute a wide variety of ubiquitin ligases.
Collapse
Affiliation(s)
- T Ohta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | |
Collapse
|