251
|
Oh CS, Pedley KF, Martin GB. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK {alpha}. THE PLANT CELL 2010; 22:260-72. [PMID: 20061552 PMCID: PMC2828692 DOI: 10.1105/tpc.109.070664] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/11/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is triggered when Pto, a Ser-Thr protein kinase, recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv tomato. This PCD requires mitogen-activated protein kinase kinase kinase (MAPKKK alpha ) as a positive regulator in tomato (Solanum lycopersicum) and Nicotiana benthamiana. To examine how PCD-eliciting activity of the tomato MAPKKK alpha protein is regulated, we screened for MAPKKK alpha -interacting proteins in tomato and identified a 14-3-3 protein, TFT7. Virus-induced gene silencing using the TFT7 gene in N. benthamiana compromised both Pto- and MAPKKK alpha -mediated PCD, and coexpression of TFT7 with tomato MAPKKK alpha enhanced MAPKKK alpha -mediated PCD. TFT7 was also required for PCD associated with several other disease resistance proteins and contributed to resistance against P. syringae pv tomato. Coexpression of TFT7 with MAPKKK alpha in vivo caused increased accumulation of the kinase and enhanced phosphorylation of two MAP kinases. TFT7 protein contains a phosphopeptide binding motif that is present in human 14-3-3 epsilon, and substitutions in this motif abolished interaction with MAPKKK alpha in vivo and also the PCD-enhancing activity of TFT7. A 14-3-3 binding motif, including a putative phosphorylated Ser-535, is present in the C-terminal region of MAPKKK alpha. An S535A substitution in MAPKKK alpha reduced interaction with TFT7 and both PCD-eliciting ability and stability of MAPKKK alpha. Our results provide new insights into a role for 14-3-3 proteins in regulating immunity-associated PCD pathways in plants.
Collapse
Affiliation(s)
- Chang-Sik Oh
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Kerry F. Pedley
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
252
|
Faurie B, Cluzet S, Mérillon JM. Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1863-1877. [PMID: 19631405 DOI: 10.1016/j.jplph.2009.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 05/28/2023]
Abstract
Perception of elicitors triggers plant defense responses via various early signal transduction pathways. Methyl jasmonate (MeJA) stimulates defense responses in grapevine (Vitis vinifera). We investigated the involvement of various partners (calcium, ROS, reversible phosphorylation) in MeJA-induced responses by using a pharmacological approach. We used specific calcium channel effectors and inhibitors of serine/threonine phosphatases, superoxide dismutase and NAD(P)H oxidase and investigated production of stilbenes (resveratrol and its glucoside, piceid, the major form), which are the grapevine phytoalexins. RNA accumulation of two genes encoding enzymes involved in stilbene synthesis (PAL and STS), three genes encoding pathogenesis-related proteins (CHIT4C, PIN and GLU) and one gene encoding an enzyme producing jasmonates (LOX) were also assessed. Calcium and its origin seemed to play a major role in MeJA-induced grapevine defense responses. Phytoalexin production was strongly affected if calcium from the influx plasma membrane was inhibited, whereas calcium from the intracellular compartments did not seem to be involved. ROS production seemed to interfere with MeJA-stimulated defense responses, and protein phosphorylation/dephosphorylation events also played a direct role.
Collapse
Affiliation(s)
- Bertrand Faurie
- Groupe d'Etude des Substances Végétales à Activité Biologique, EA 3675, UFR Sciences Pharmaceutiques, Université de Bordeaux, ISVV Bordeaux-Aquitaine-CS 50008-210, Chemin de Leysotte, 33882 Villenave d'Ornon Cedex, France
| | | | | |
Collapse
|
253
|
Ding HD, Zhang XH, Xu SC, Sun LL, Jiang MY, Zhang AY, Jin YG. Induction of protection against paraquat-induced oxidative damage by abscisic acid in maize leaves is mediated through mitogen-activated protein kinase. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:961-972. [PMID: 19778406 DOI: 10.1111/j.1744-7909.2009.00868.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade has been shown to be important components in stress signal transduction pathway. In the present study, protection of maize seedlings (Zea mays L.) against paraquat-generated oxidative toxicity by abscisic acid (ABA), its association with MAPK and ZmMPK5, a candidate for MAPK were investigated. Treatment of maize leaves with exogenous ABA led to significant decreases in the content of malondialdehyde, the percentage of ion leakage and the level of protein oxidation (in terms of carbonyl groups) under paraquat (PQ) stress. However, such decreases were blocked by the pretreatment with two MAPK kinase inhibitors PD98059 and U0126. The damage caused by PQ was further aggravated by inhibitors. Two inhibitors also suppressed the total activities of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2). Besides, treatment with PQ stimulated the activation of a 46 kDa MAPK, which was identified as ZmMPK5 by in-gel kinase assay with immunoprecipitation. These results reveal that ABA-induced protection against PQ-generated oxidative damage is mediated through MAPK cascade in maize leaves, in which ZmMPK5, a candidate for MAPK, is demonstrated to be involved.
Collapse
Affiliation(s)
- Hai-Dong Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
254
|
Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK, Chakraborty N, Datta A, Chakraborty S. Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics 2009; 10:415. [PMID: 19732460 PMCID: PMC2755012 DOI: 10.1186/1471-2164-10-415] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 09/05/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The ultimate phenome of any organism is modulated by regulated transcription of many genes. Characterization of genetic makeup is thus crucial for understanding the molecular basis of phenotypic diversity, evolution and response to intra- and extra-cellular stimuli. Chickpea is the world's third most important food legume grown in over 40 countries representing all the continents. Despite its importance in plant evolution, role in human nutrition and stress adaptation, very little ESTs and differential transcriptome data is available, let alone genotype-specific gene signatures. Present study focuses on Fusarium wilt responsive gene expression in chickpea. RESULTS We report 6272 gene sequences of immune-response pathway that would provide genotype-dependent spatial information on the presence and relative abundance of each gene. The sequence assembly led to the identification of a CaUnigene set of 2013 transcripts comprising of 973 contigs and 1040 singletons, two-third of which represent new chickpea genes hitherto undiscovered. We identified 209 gene families and 262 genotype-specific SNPs. Further, several novel transcription regulators were identified indicating their possible role in immune response. The transcriptomic analysis revealed 649 non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome. CONCLUSION Our study establishes a comprehensive catalogue of the immune-responsive root transcriptome with insight into their identity and function. The development, detailed analysis of CaEST datasets and global gene expression by microarray provide new insight into the commonality and diversity of organ-specific immune-responsive transcript signatures and their regulated expression shaping the species specificity at genotype level. This is the first report on differential transcriptome of an unsequenced genome during vascular wilt.
Collapse
Affiliation(s)
- Nasheeman Ashraf
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Deepali Ghai
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pranjan Barman
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Swaraj Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Nagaraju Gangisetty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mihir K Mandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
255
|
Wu J, Baldwin IT. Herbivory-induced signalling in plants: perception and action. PLANT, CELL & ENVIRONMENT 2009; 32:1161-74. [PMID: 19183291 DOI: 10.1111/j.1365-3040.2009.01943.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses.
Collapse
Affiliation(s)
- Jianqiang Wu
- Max-Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, Jena 07745, Germany
| | | |
Collapse
|
256
|
Pandelova I, Betts MF, Manning VA, Wilhelm LJ, Mockler TC, Ciuffetti LM. Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. MOLECULAR PLANT 2009; 2:1067-83. [PMID: 19825681 DOI: 10.1093/mp/ssp045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface. Our data indicate that massive transcriptional reprogramming occurs due to ToxA treatment, including cellular responses typically associated with defense. In addition, this study supports previous results indicating that ToxA-induced cell death is triggered by impairment of the photosynthetic machinery and accumulation of reactive oxygen species. Based on results of this study, we propose that ToxA acts as both an elicitor and a virulence factor.
Collapse
Affiliation(s)
- Iovanna Pandelova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
257
|
Ding H, Zhang A, Wang J, Lu R, Zhang H, Zhang J, Jiang M. Identity of an ABA-activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: partial purification, identification and characterization. PLANTA 2009; 230:239-251. [PMID: 19424717 DOI: 10.1007/s00425-009-0938-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/20/2009] [Indexed: 05/27/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have been shown to be important components in abscisic acid (ABA) signal transduction pathway. In this study, a 46 kDa MAPK (p46MAPK) induced by ABA was partially purified from maize (Zea mays) by Q-Sepharose FF, Phenyl-Sepharose FF, Resource Q, Mono QTM 5/50 GL, poly-L-lysine-agarose, and Superdex 75 prep-grade columns, and was identified as ZmMAPK5 (gi|4239889) by the matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. Furthermore, the kinase showed optimal activity at pH 8.0, 30 degrees C, and 10 mM MgCl(2); the K(m) for myelin basic protein (MBP) substrate and ATP were 0.13 microg microl(-1) and 62 microM, respectively. MBP was the preferred substrate, of which the threonine residue was phosphorylated. Finally, the kinase was found to respond to diverse extracellular stimuli. These results enable us to further reveal the function of the ZmMAPK5 in ABA signaling.
Collapse
Affiliation(s)
- Haidong Ding
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
258
|
Gális I, Gaquerel E, Pandey SP, Baldwin IT. Molecular mechanisms underlying plant memory in JA-mediated defence responses. PLANT, CELL & ENVIRONMENT 2009; 32:617-27. [PMID: 18657055 DOI: 10.1111/j.1365-3040.2008.01862.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants must respond to biotic and abiotic challenges to optimize their Darwinian fitness in nature. Many of these challenges occur repeatedly during a plant's lifetime, and their sequence and timing can profoundly influence the fitness outcome of a plant's response. The ability to perceive, store and recall previous stressful events is likely useful for efficient, rapid and cost-effective responses, but we know very little about the mechanisms involved. Using jasmonate-elicited anti-herbivore defence responses as an example, we consider how 'memories' of previous attacks could be created in (1) the biosynthetic processes involved in the generation of the oxylipin bursts elicited by herbivore attacks; (2) the perception of oxylipins and their transduction into cellular events by transcription factors and transcriptional activators; and (3) the role of small RNAs in the formation of long-term stress imprints in plants.
Collapse
Affiliation(s)
- Ivan Gális
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
259
|
Knoth C, Salus MS, Girke T, Eulgem T. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:333-47. [PMID: 19304930 PMCID: PMC2675713 DOI: 10.1104/pp.108.133678] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/17/2009] [Indexed: 05/20/2023]
Abstract
Immune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis.
Collapse
Affiliation(s)
- Colleen Knoth
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California at Riverside, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
260
|
Cho K, Agrawal GK, Jwa NS, Shibato J, Torres NL, Kubo A, Rakwal R. Rice OsSIPK: a central component of ozone-triggered physiological responses. PLANT SIGNALING & BEHAVIOR 2009; 4:448-450. [PMID: 19816108 PMCID: PMC2676763 DOI: 10.4161/psb.4.5.8394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 06/10/2023]
Abstract
The OsSIPK expression is transcriptionally regulated in time and space by diverse environmental stresses and phytohormones. Rice OsSIPK and its orthologs in other plants are highly conserved and appear to have overlapping physiological responses. Given our interest in understanding the signaling and metabolic pathways responsible for environmental factors, we briefly discuss the role of OsSIPK in ozone-triggered physiological responses, particularly in rice. We also provide evidence on tight correlation between ozone-induced OsSIPK expression and ethylene production.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Environmental Biology Division; National Institute for Environmental Studies (NIES); Tsukuba, Ibaraki Japan
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu, Nepal
| | - Nam-Soo Jwa
- Department of Molecular Biology; Sejong University; Gunja-dong, Seoul South Korea
| | - Junko Shibato
- Health Technology Research Center (HTRC); National Institute of Advanced Industrial Science and Technology (AIST) West; Tsukuba, Ibaraki Japan
| | - Nilka Lineth Torres
- University of Panama; University Regional Center of Azuero; Chitre, Republic of Panama
| | - Akihiro Kubo
- Environmental Biology Division; National Institute for Environmental Studies (NIES); Tsukuba, Ibaraki Japan
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu, Nepal
- Health Technology Research Center (HTRC); National Institute of Advanced Industrial Science and Technology (AIST) West; Tsukuba, Ibaraki Japan
| |
Collapse
|
261
|
Zhang Y, Zhang X, Chen Y, Wang Q, Wang M, Huang M. Function and chromosomal localization of differentially expressed genes induced by Marssonina brunnea f. sp. multigermtubi in Populus deltoides. J Genet Genomics 2009; 34:641-8. [PMID: 17643950 DOI: 10.1016/s1673-8527(07)60073-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/31/2007] [Indexed: 11/17/2022]
Abstract
A total of 1,160 differentially expressed genes induced by Marssonina brunnea f. sp. multigermtubi were identified in Populus deltoides cv. 'Lux' (I-69/55) with two-colour cDNA microarray including 2,952 cDNAs from two cDNA libraries constructed with 72 h inoculated poplar leaves. Functional analysis showed that 1,160 genes were classified into 11 functional categories that are involved in metabolism (15.9%), signal transduction (9.5%), transcription and replication (8.7%), and cell rescue and defense (7.8%). Among them, 926 genes were sporadically localized on 19 linkage groups. Chromosome 2 contained 102 (11%) differentially expressed genes, followed by chromosome 1 which contains 93 genes (10%), and chromosome 17 had the least number of differentially expressed genes. Clustering of expressed sequence tags (ESTs) in poplar genome was observed at the terminal regions of several chromosomes. The relationship between cluster of genes and plant defense response would be further studied.
Collapse
Affiliation(s)
- Yanmei Zhang
- Key Laboratory of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | | | | | | | | | |
Collapse
|
262
|
Jang EK, Min KH, Kim SH, Nam SH, Zhang S, Kim YC, Cho BH, Yang KY. Mitogen-activated protein kinase cascade in the signaling for polyamine biosynthesis in tobacco. PLANT & CELL PHYSIOLOGY 2009; 50:658-64. [PMID: 19151070 DOI: 10.1093/pcp/pcp009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Expression of NtNEK2(DD), a constitutively active mutant of NtMEK2, activates endogenous salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), and leads to several stress/defense responses in tobacco. In this study, we used ACP (annealing control primer)-based differential display reverse transcription-PCR to isolate the downstream effectors mediated by the NtMEK2-SIPK/WIPK cascade. The arginine decarboxylase gene (ADC), which is involved in plant putrescine biosynthesis, was one of nine differentially expressed genes. When compared with NtMEK2(KR) plants, NtMEK2(DD) transgenic plants exhibited a significant increase in ADC and ODC (ornithine decarboxylase) transcript levels, as well as in putrescine and its catabolite, gamma-aminobutyric acid, following SIPK/WIPK activation. Taken together, these results suggest that the NtMEK2-SIPK/WIPK cascade is involved in regulating polyamine synthesis, especially putrescine synthesis, through transcriptional regulation of the biosynthetic genes in tobacco.
Collapse
Affiliation(s)
- Eun-Kyoung Jang
- Agricultural Plant Stress Research Center, Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Cerium elicitor-induced phosphatidic acid triggers apoptotic signaling development in Taxus cuspidata cell suspension cultures. Chem Phys Lipids 2009; 159:13-20. [PMID: 19428358 DOI: 10.1016/j.chemphyslip.2009.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 01/25/2009] [Accepted: 02/05/2009] [Indexed: 01/06/2023]
Abstract
Degradation of membrane phospholipids is associated with apoptotic responses, but the signaling development of this degradation is not well understood. Cerium (Ce(4+)), an important rare earth element, induces cellular apoptosis and taxol biosynthesis in Taxus cuspidata suspension cultures. Here, using mass spectrometry and biochemical technique, we demonstrated that the phospholipase D (PLD) was rapidly activated by Ce(4+) and hydrolyzed structural phospholipids to generate lipid signal molecule, phosphatidic acid (PA). 1-Butanol, an antagonist of PLD-dependent PA production, blocked the biphasic burst of superoxide anions (O2(*-)) and thus mitigated cellular apoptosis. The time-course analysis of PA accumulation and ERK-like mitogen-activated protein kinase (MAPK) regulation indicated PA generation preceded MAPK activation, suggesting that the rapid accumulation of PA might be required for the initial MAPK activity. After 2h of Ce(4+) elicitation, however, PA-induced O2(*-) burst, forming a negative regulation to MAPK activity, which in turn led to apoptotic signaling development.
Collapse
|
264
|
Cho K, Agrawal GK, Jwa NS, Kubo A, Rakwal R. Rice OsSIPK and its orthologs: A “central master switch” for stress responses. Biochem Biophys Res Commun 2009; 379:649-53. [DOI: 10.1016/j.bbrc.2008.12.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 12/18/2022]
|
265
|
Sharma SS, Dietz KJ. The relationship between metal toxicity and cellular redox imbalance. TRENDS IN PLANT SCIENCE 2009; 14:43-50. [PMID: 19070530 DOI: 10.1016/j.tplants.2008.10.007] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 05/19/2023]
Abstract
The relationship between cellular redox imbalances leading to oxidative stress and metal toxicity in plants has been studied intensely over the past decades. This interdependency was often considered to reflect a rather indirect metal effect of cellular disregulation and progressive secondary damage development. By contrast, recent experiments revealed a clear relationship between metal stress and redox homeostasis and antioxidant capacity. Analysis of plants expressing targeted modifications of components of the antioxidant system, the comparison of closely related plant species with different degrees of toxic metal sensitivity and effector studies with, for instance, salicylic acid have established a link between the degree of plant tolerance to metals and the level of antioxidants.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla 171 005, India
| | | |
Collapse
|
266
|
Meldau S, Wu J, Baldwin IT. Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata's susceptibility to herbivores in the glasshouse and in nature. THE NEW PHYTOLOGIST 2009; 181:161-173. [PMID: 19076722 DOI: 10.1111/j.1469-8137.2008.02645.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) are activated by Manduca sexta attack and elicitors to mediate defense signaling in Nicotiana attenuata. Here, the ecological consequences of SIPK and WIPK silencing for N. attenuata's resistance to M. sexta and its other native herbivores were analyzed. Stably transformed plants with reduced expression of NaSIPK (irNaSIPK) and NaWIPK(irNaWIPK) were generated and characterized in field and glasshouse experiments. Both irNaSIPK and irNaWIPK plants had reduced direct and indirect defenses but were not particularly susceptible in nature. In the glasshouse, M. sexta larvae consumed less and gained the same mass on irNaSIPK and irNaWIPK as on wild-type (WT) plants. Green leaf volatile (GLV) emission was highly attenuated in irNaSIPK and irNaWIPK plants, and complementation with synthetic GLVs increased M. sexta performance. To test the hypothesis that reduced GLV emissions account for the lack of herbivory phenotype, GLV emissions were attenuated by silencing NaHPL in jasmonate-deficient plants (asNaLOX3), which are highly susceptible to herbivores. Reducing GLV emissions in asNaLOX3 plants 'rescued' these plants from being heavily damaged by M. sexta. GLV emissions in irNaSIPK and irNaWIPK plants may compensate for the impaired defenses of NaSIPK- and NaWIPK-silenced plants in nature by reducing their apparency to herbivores.
Collapse
Affiliation(s)
- Stefan Meldau
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745 Jena, Germany
| | - Jianqiang Wu
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745 Jena, Germany
| | - Ian T Baldwin
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745 Jena, Germany
| |
Collapse
|
267
|
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:177-206. [PMID: 19400653 DOI: 10.1146/annurev.phyto.050908.135202] [Citation(s) in RCA: 1366] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For more than 200 years, the plant hormone salicylic acid (SA) has been studied for its medicinal use in humans. However, its extensive signaling role in plants, particularly in defense against pathogens, has only become evident during the past 20 years. This review surveys how SA in plants regulates both local disease resistance mechanisms, including host cell death and defense gene expression, and systemic acquired resistance (SAR). Genetic studies reveal an increasingly complex network of proteins required for SA-mediated defense signaling, and this process is amplified by several regulatory feedback loops. The interaction between the SA signaling pathway and those regulated by other plant hormones and/or defense signals is also discussed.
Collapse
Affiliation(s)
- A Corina Vlot
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | | | | |
Collapse
|
268
|
Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3221-38. [PMID: 19592501 PMCID: PMC2718220 DOI: 10.1093/jxb/erp157] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In maize (Zea mays), abscisic acid (ABA)-induced H(2)O(2) production activates a 46 kDa mitogen-activated protein kinase (p46MAPK), and the activation of p46MAPK also regulates the production of H(2)O(2). However, the mechanism for the regulation of H(2)O(2) production by MAPK in ABA signalling remains to be elucidated. In this study, four reactive oxygen species (ROS)-producing NADPH oxidase (rboh) genes (ZmrbohA-D) were isolated and characterized in maize leaves. ABA treatment induced a biphasic response (phase I and phase II) in the expression of ZmrbohA-D and the activity of NADPH oxidase. Phase II induced by ABA was blocked by pretreatments with two MAPK kinase (MPKKK) inhibitors and two H(2)O(2) scavengers, but phase I was not affected by these inhibitors or scavengers. Treatment with H(2)O(2) alone also only induced phase II, and the induction was arrested by the MAPKK inhibitors. Furthermore, the ABA-activated p46MAPK was partially purified. Using primers corresponding to the sequences of internal tryptic peptides, the p46MAPK gene was cloned. Analysis of the tryptic peptides and the p46MAPK sequence indicate it is the known ZmMPK5. Treatments with ABA and H(2)O(2) led to a significant increase in the activity of ZmMPK5, although ABA treatment only induced a slight increase in the expression of ZmMPK5. The data indicate that H(2)O(2)-activated ZmMPK5 is involved in the activation of phase II in ABA signalling, but not in phase I. The results suggest that there is a positive feedback loop involving NADPH oxidase, H(2)O(2), and ZmMPK5 in ABA signalling.
Collapse
Affiliation(s)
- Fan Lin
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Haidong Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jinxiang Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hong Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wen Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
269
|
Bosch M, Poulter NS, Vatovec S, Franklin-Tong VE. Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. MOLECULAR PLANT 2008; 1:879-87. [PMID: 19825589 DOI: 10.1093/mp/ssn053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Programmed cell death (PCD) is an important and universal process regulating precise death of unwanted cells in eukaryotes. In plants, the existence of PCD has been firmly established for about a decade, and many components shown to be involved in apoptosis/PCD in mammalian systems are found in plant cells undergoing PCD. Here, we review work from our lab demonstrating the involvement of PCD in the self-incompatibility response in Papaver rhoeas pollen. This utilization of PCD as a consequence of a specific pollen-pistil interaction provides a very neat way to destroy unwanted 'self', but not 'non-self' pollen. We discuss recent data providing evidence for SI-induced activation of several caspase-like activities and suggest that an acidification of the cytosol may be a key turning point in the activation of caspase-like proteases executing PCD. We also review data showing the involvement of the actin and microtubule cytoskeletons as well as that of a MAPK in signalling to caspase-mediated PCD. Potential links between these various components in signalling to PCD are discussed. Together, this begins to build a picture of PCD in a single cell system, triggered by a receptor-ligand interaction.
Collapse
Affiliation(s)
- Maurice Bosch
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham. B15 2TT, UK
| | | | | | | |
Collapse
|
270
|
Ghose K, Dey S, Barton H, Loake GJ, Basu D. Differential profiling of selected defence-related genes induced on challenge with Alternaria brassicicola in resistant white mustard and their comparative expression pattern in susceptible India mustard. MOLECULAR PLANT PATHOLOGY 2008; 9:763-75. [PMID: 19019005 PMCID: PMC6640447 DOI: 10.1111/j.1364-3703.2008.00497.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of availability of sources of resistance against Alternaria brassicicola within the family Brassicaceae has made oilseed mustard plants a target for one of the most damaging and widespread fungal diseases, Alternaria black spot. Of the other non-host-resistant/tolerant plants, Sinapis alba, white mustard, is considered to be the most important apart from Arabidopsis. To understand the defence response of S. alba upon incompatible interaction with this pathogen, a functional genomic approach using cDNA amplified fragment length polymorphism was performed. The highly reproducible bands, found to be either more amplified or uniquely present in infected S. alba plants compared with non-infected plants, were further subjected to comparative reverse Northern analysis in the incompatible white mustard (S. alba) and compatible India mustard (Brassica juncea L.) plants. The suppression of 46% of the genes in the compatible background indicates the possibility of effective and specific recognition of Alternaria in S. alba. Analysis of the 118 genes up-regulated specifically in infected S. alba compared with B. juncea showed that 98 genes have similarity to proteins such as receptor-like protein kinase genes, genes involved with calcium-mediated signalling and salicylic acid-dependent genes as well as other genes of known function in Arabidopsis. The apparent expression profile data were further confirmed for selected genes by quantitative real-time polymerase chain reaction analysis. Classification of these genes on the basis of their induction pattern in Arabidopsis indicates that the expression profile of several of these genes was distinct in S. alba compared with B. juncea.
Collapse
Affiliation(s)
- Kaushik Ghose
- Department of Botany, Bose Institute, 93/1, A.P.C. Road, Kolkata-700009, West Bengal, India
| | | | | | | | | |
Collapse
|
271
|
Guo B, Chen ZY, Lee RD, Scully BT. Drought stress and preharvest aflatoxin contamination in agricultural commodity: genetics, genomics and proteomics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1281-1291. [PMID: 19017115 DOI: 10.1111/j.1744-7909.2008.00739.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Throughout the world, aflatoxin contamination is considered one of the most serious food safety issues concerning health. Chronic problems with preharvest aflatoxin contamination occur in the southern US, and are particularly troublesome in corn, peanut, cottonseed, and tree nuts. Drought stress is a major factor to contribute to preharvest aflatoxin contamination. Recent studies have demonstrated higher concentration of defense or stress-related proteins in corn kernels of resistant genotypes compared with susceptible genotypes, suggesting that preharvest field condition (drought or not drought) influences gene expression differently in different genotypes resulting in different levels of "end products": PR(pathogenesis-related) proteins in the mature kernels. Because of the complexity of Aspergillus-plant interactions, better understanding of the mechanisms of genetic resistance will be needed using genomics and proteomics for crop improvement. Genetic improvement of crop resistance to drought stress is one component and will provide a good perspective on the efficacy of control strategy. Proteomic comparisons of corn kernel proteins between resistant or susceptible genotypes to Aspergillus flavus infection have identified stress-related proteins along with antifungal proteins as associated with kernel resistance. Gene expression studies in developing corn kernels are in agreement with the proteomic studies that defense-related genes could be upregulated or downregulated by abiotic stresses.
Collapse
Affiliation(s)
- Baozhu Guo
- Crop Protection and Management Research Unit, Agricultural Research Service, US Department of Agriculture, Tifton, Georgia 31793, USA.
| | | | | | | |
Collapse
|
272
|
ERK-like MAPK signaling and cytochrome c response to oleic acid in two-liquid-phase suspension cultures of Taxus cuspidata. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
273
|
Abstract
Abscission is a developmental program that results in the active shedding of infected or nonfunctional organs from a plant body. Here, we establish a signaling pathway that controls abscission in Arabidopsis thaliana from ligand, to receptors, to downstream effectors. Loss of function mutations in Inflorescence Deficient in Abscission (IDA), which encodes a predicted secreted small protein, the receptor-like protein kinases HAESA (HAE) and HAESA-like 2 (HSL2), the Mitogen-Activated Protein Kinase Kinase 4 (MKK4) and MKK5, and a dominant-negative form of Mitogen-Activated Protein Kinase 6 (MPK6) in a mpk3 mutant background all have abscission-defective phenotypes. Conversely, expression of constitutively active MKKs rescues the abscission-defective phenotype of hae hsl2 and ida plants. Additionally, in hae hsl2 and ida plants, MAP kinase activity is reduced in the receptacle, the part of the stem that holds the floral organs. Plants overexpressing IDA in a hae hsl2 background have abscission defects, indicating HAE and HSL2 are epistatic to IDA. Taken together, these results suggest that the sequential action of IDA, HAE and HSL2, and a MAP kinase cascade regulates the programmed separation of cells in the abscission zone.
Collapse
|
274
|
Chen HL, Wang YQ, Chu CC, Li P. [Plant non-host resistance: current progress and future prospect]. YI CHUAN = HEREDITAS 2008; 30:977-82. [PMID: 18779145 DOI: 10.3724/sp.j.1005.2008.00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plant non-host resistance is the most common form of disease resistance exhibited by plant against the majority of potentially pathogenic microorganisms. The broad spectrum and durable resistance of non-host resistance suggests that plant non-host resistance has a significantly agricultural application, however, it's molecular mechanism is still poorly understood. Here we summarized the recent progress on the molecular mechanism of the non-host resistance, plant-pathogen interaction systems, PEN1 encoding SNARE protein mediated non-host disease resistance, and its future prospect.
Collapse
Affiliation(s)
- Hong-Lin Chen
- Institute of Rice Research, Sichuan Agricultural University, Wenjiang 611130, China.
| | | | | | | |
Collapse
|
275
|
Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 2008; 283:26996-7006. [PMID: 18693252 DOI: 10.1074/jbc.m801392200] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development, and responses to various environmental stimuli. We demonstrate that MKK9, an MKK, is an upstream activator of the MPKs MPK3 and MPK6 both in vitro and in planta. Expression of active MKK9 protein in transgenic plants induces the synthesis of ethylene and camalexin through the activation of the endogenous MPK3 and MPK6 kinases. As a consequence, transcription of multiple genes responsible for ethylene biosynthesis, ethylene responses, and camalexin biosynthesis is coordinately up-regulated. The activation of MKK9 inhibits hypocotyl elongation in the etiolated seedlings. MKK9-mediated effects on hypocotyl elongation were blocked by the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine, and ethylene receptor antagonist, Ag(+). Expression of active MKK9 protein enhances the sensitivity of transgenic seedlings to salt stress, whereas loss of MKK9 activity reduces salt sensitivity indicating a role for MKK9 in the salt stress response. The results reported here reveal that the MKK9-MPK3/MPK6 cascade participates in the regulation of the biosynthesis of ethylene and camalexin and may be an important axis in the stress responses of Arabidopsis.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Chen PY, Lee KT, Chi WC, Hirt H, Chang CC, Huang HJ. Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants. PLANTA 2008; 228:499-509. [PMID: 18506480 DOI: 10.1007/s00425-008-0753-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/09/2008] [Indexed: 05/26/2023]
Abstract
Cross tolerance is a phenomenon that occurs when a plant, in resisting one form of stress, develops a tolerance to another form. Pretreatment with nonlethal heat shock has been known to protect cells from metal stress. In this study, we found that the treatment of rice roots with more than 25 muM of Cu(2+) caused cell death. However, heat shock pretreatment attenuated Cu(2+)-induced cell death. The mechanisms of the cross tolerance phenomenon between heat shock and Cu(2+) stress were investigated by pretreated rice roots with the protein synthesis inhibitor cycloheximide (CHX). CHX effectively block heat shock protection, suggesting that protection of Cu(2+)-induced cell death by heat shock was dependent on de novo protein synthesis. In addition, heat pretreatment downregulated ROS production and mitogen-activated protein kinase (MAPK) activities, both of which can be greatly elicited by Cu(2+) stress in rice roots. Moreover, the addition of purified recombinant GST-OsHSP70 fusion proteins inhibited Cu(2+)-enhanced MAPK activities in an in vitro kinase assay. Furthermore, loss of heat shock protection was observed in Arabidopsis mkk2 and mpk6 but not in mpk3 mutants under Cu(2+) stress. Taken together, these results suggest that the interaction of OsHSP70 with MAPKs may contribute to the cellular protection in rice roots from excessive Cu(2+) toxicity.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | |
Collapse
|
277
|
Liu H, Wang Y, Xu J, Su T, Liu G, Ren D. Ethylene signaling is required for the acceleration of cell death induced by the activation of AtMEK5 in Arabidopsis. Cell Res 2008; 18:422-32. [PMID: 18268539 DOI: 10.1038/cr.2008.29] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are involved in the regulation of plant growth, development and responses to a wide variety of stimuli. In a conditional gain-of-function transgenic system, the activation of AtMEK5, a MAPK kinase, can in turn activate endogenous AtMAPK3 and AtMAPK6, and can lead to a striking increase in ethylene production and induce hypersensitive response (HR)-like cell death in Arabidopsis. However, the role of the increased ethylene production in regulating this HR-like cell death remains unknown. Using Arabidopsis transgenic plants that express AtMEK5(DD), an active mutant of AtMEK5 that is under the control of a steroid-inducible promoter, we tested the contribution of ethylene to cell death. We found that ethylene biosynthesis occurs before cell death. Cell death was delayed by inhibiting AtMEK5-induced ethylene production using inhibitors of ACC-synthases, ACC-oxidases or ethylene receptors. In the mutants AtMEK5(DD)/etr1-1 and AtMEK5(DD)/ein2-1, both of which showed insensitivity to ethylene, the expression of AtMEK5(DD) protein, activity of AtMAPK3 and AtMAPK6, and ethylene production were the same as those seen in AtMEK5(DD) transgenic plants, but cell death was also delayed. These data suggest that ethylene signaling perception is required to accelerate cell death that is induced by AtMEK5 activation.
Collapse
Affiliation(s)
- Hongxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
278
|
Abuqamar S, Chai MF, Luo H, Song F, Mengiste T. Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. THE PLANT CELL 2008; 20:1964-83. [PMID: 18599583 PMCID: PMC2518242 DOI: 10.1105/tpc.108.059477] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/11/2008] [Accepted: 06/16/2008] [Indexed: 05/18/2023]
Abstract
The tomato protein kinase 1 (TPK1b) gene encodes a receptor-like cytoplasmic kinase localized to the plasma membrane. Pathogen infection, mechanical wounding, and oxidative stress induce expression of TPK1b, and reducing TPK1b gene expression through RNA interference (RNAi) increases tomato susceptibility to the necrotrophic fungus Botrytis cinerea and to feeding by larvae of tobacco hornworm (Manduca sexta) but not to the bacterial pathogen Pseudomonas syringae. TPK1b RNAi seedlings are also impaired in ethylene (ET) responses. Notably, susceptibility to Botrytis and insect feeding is correlated with reduced expression of the proteinase inhibitor II gene in response to Botrytis and 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ET, but wild-type expression in response to mechanical wounding and methyl-jasmonate. TPK1b functions independent of JA biosynthesis and response genes required for resistance to Botrytis. TPK1b is a functional kinase with autophosphorylation and Myelin Basis Protein phosphorylation activities. Three residues in the activation segment play a critical role in the kinase activity and in vivo signaling function of TPK1b. In sum, our findings establish a signaling role for TPK1b in an ET-mediated shared defense mechanism for resistance to necrotrophic fungi and herbivorous insects.
Collapse
Affiliation(s)
- Synan Abuqamar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | |
Collapse
|
279
|
Rayapuram C, Wu J, Haas C, Baldwin IT. PR-13/Thionin but not PR-1 mediates bacterial resistance in Nicotiana attenuata in nature, and neither influences herbivore resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:988-1000. [PMID: 18533839 DOI: 10.1094/mpmi-21-7-0988] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Increases in pathogenesis-related (PR) transcripts are commonly interpreted as evidence of plants' resistance responses to pathogens; however, few studies have examined whether increases in PR proteins protect plants growing under natural conditions. Pseudomonas syringae pv. tomato DC3,000, which is virulent and causes disease in Arabidopsis, is also pathogenic to the native tobacco Nicotiana attenuata. N. attenuata responds to P. syringae pv. tomato DC3,000's challenges with increases in salicylic acid and transcripts of at least two PR genes, PR-1 and PR13/Thionin. To determine if either of these PR proteins functions in bacterial resistance, we independently silenced both genes by RNAi and found that only PR-13/Thionin mediates resistance to P. syringae pv. tomato DC3,000 in glasshouse experiments. When NaPR-1- and NaThionin-silenced plants were transplanted into the plant's native habitat in the Great Basin Desert of Utah, opportunistic Pseudomonas spp. performed better on NaThionin-silenced plants compared with NaPR-1-silenced and wild-type (WT) plants, and accounted for increased plant mortality. The native herbivore community of N. attenuata attacked both NaPR-1- and PR-13/NaThionin-silenced plants to the same degree as it did in WT plants, indicating that neither PR protein provides resistance to herbivores. Although PR-1 is generally considered a marker gene of disease resistance, we found no evidence that it has an antimicrobial function. In contrast, PR-13/NaThionin is clearly an ecologically relevant defense protein involved in resisting pathogens in N. attenuata.
Collapse
Affiliation(s)
- Cbgowda Rayapuram
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
280
|
Hord CLH, Sun YJ, Pillitteri LJ, Torii KU, Wang H, Zhang S, Ma H. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. MOLECULAR PLANT 2008; 1:645-658. [PMID: 19825569 DOI: 10.1093/mp/ssn029] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mitogen-activated protein kinase (MAPK) and leucine-rich repeat receptor-like kinase (LRR-RLK) signaling pathways have been shown to regulate diverse aspects of plant growth and development. In Arabidopsis, proper anther development relies on intercellular communication to coordinate cell proliferation and differentiation. Two closely related genes encoding MAPKs, MPK3 and MPK6, function redundantly in regulating stomatal patterning. Although the mpk6 mutant has reduced fertility, the function of MPK3 and MPK6 in anther development has not been characterized. Similarly, the ERECTA (ER), ERECTA-LIKE1 (ERL1) and ERL2 genes encoding LRR-RLKs function together to direct stomatal cell fate specification and the er-105 erl1-2 erl2-1 triple mutant is sterile. Because the mpk3 mpk6 double null mutant is embryo lethal, anther development was characterized in the viable mpk3/+ mpk6/- and er-105 erl1-2 erl2-1 mutants. We found that both mutant anthers usually fail to form one or more of the four anther lobes, with the er-105 erl1-2 erl2-1 triple mutant exhibiting more severe phenotypes than those of the mpk3/+ mpk6/- mutant. The somatic cell layers of the differentiated mutant lobes appeared larger and more disorganized than that of wild-type. In addition, the er-105 erl1-2 erl2-1 triple mutant has a reduced number of stamens, the majority of which possess completely undifferentiated or under-differentiated anthers. Furthermore, sometimes, the mpk3/+ mpk6/- mutant anthers do not dehisce, and the er-105 erl1-2 erl2-1 anthers were not observed to dehisce. Therefore, our results indicate that both ER/ERL1/ERL2 and MPK3/MPK6 play important roles in normal anther lobe formation and anther cell differentiation. The close functional relationship between these genes in other developmental processes and the similarities in anther developmental phenotypes of the two types of mutants reported here further suggest the possibility that these genes might also function in the same pathway to regulate anther cell division and differentiation.
Collapse
Affiliation(s)
- Carey L H Hord
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
281
|
Zhu Z, Guo H. Genetic basis of ethylene perception and signal transduction in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:808-15. [PMID: 18713391 DOI: 10.1111/j.1744-7909.2008.00710.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ethylene is a simple gaseous hormone in plants. It plays important roles in plant development and stress tolerance. In the presence of ethylene treatment, all ethylene receptors are in an activated form, which can physically interact with CTR1 and consequently recruit CTR1 protein to endoplasmic reticulum membraneto activate it. Activated CTR1 suppresses the downstream signal transduction by an unknown mechanism. Upon binding to its receptors, ethylene will inactivate the receptor/CTR1 module and in turn alleviate their inhibitory effect on two positive regulators acting downstream of CTR1: EIN2 and EIN3. Genetic study reveals that EIN2 is an essential component in the ethylene signaling pathway but its biochemical function remains a mystery. EIN3 is a plant-specific transcription factor and its protein abundance in the nucleus is rapidly induced upon ethylene treatment. In the absence of ethylene signal, EIN3 protein is degraded by an SCF complex containing one of the two F-box proteins EBF1/EBF2 in a 26S proteasome-dependent manner. EIN3 can bind to the promoter sequences of a number of downstream components, such as ERFs, which in turn bind to a GCC box, a cis-element found in many ethylene-regulated defense genes. Ethylene has been shown to also regulate many other hormones' signaling pathways including auxin, abscisic acid and jasmonic acid, implying the existence of complicated signaling networks in the growth, development and defense responses of various plants.
Collapse
Affiliation(s)
- Ziqiang Zhu
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
282
|
Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 2008; 7:2980-98. [PMID: 18517257 DOI: 10.1021/pr800128q] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ozone (O(3)), a serious air pollutant, is known to significantly reduce photosynthesis, growth, and yield and to cause foliar injury and senescence. Here, integrated transcriptomics, proteomics, and metabolomics approaches were applied to investigate the molecular responses of O(3) in the leaves of 2-week-old rice (cv. Nipponbare) seedlings exposed to 0.2 ppm O(3) for a period of 24 h. On the basis of the morphological alteration of O(3)-exposed rice leaves, transcript profiling of rice genes was performed in leaves exposed for 1, 12, and 24 h using rice DNA microarray chip. A total of 1535 nonredundant genes showed altered expression of more than 5-fold over the control, representing 8 main functional categories. Genes involved in information storage and processing (10%) and cellular processing and signaling categories (24%) were highly represented within 1 h of O(3) treatment; transcriptional factor and signal transduction, respectively, were the main subcategories. Genes categorized into information storage and processing (17, 23%), cellular processing and signaling (20, 16%) and metabolism (18, 19%) were mainly regulated at 12 and 24 h; their main subcategories were ribosomal protein, post-translational modification, and signal transduction and secondary metabolites biosynthesis, respectively. Two-dimensional gel electrophoresis-based proteomics analyses in combination with tandem mass spectrometer identified 23 differentially expressed protein spots (21 nonredundant proteins) in leaves exposed to O(3) for 24 h compared to respective control. Identified proteins were found to be involved in cellular processing and signaling (32%), photosynthesis (19%), and defense (14%). Capillary electrophoresis-mass spectrometry-based metabolomic profiling revealed accumulation of amino acids, gamma-aminobutyric acid, and glutathione in O(3) exposed leaves until 24 h over control. This systematic survey showed that O(3) triggers a chain reaction of altered gene, protein and metabolite expressions involved in multiple cellular processes in rice.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Ádám A, Kohut G, Hornok L. Cloning and characterization of a HOG-type MAP kinase encoding gene fromFusarium proliferatum. ACTA ACUST UNITED AC 2008. [DOI: 10.1556/aphyt.43.2008.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
284
|
Gao L, Xiang CB. The genetic locus At1g73660 encodes a putative MAPKKK and negatively regulates salt tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 67:125-34. [PMID: 18299802 DOI: 10.1007/s11103-008-9306-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 02/02/2008] [Indexed: 05/11/2023]
Abstract
An Arabidopsis mutant with improved salt tolerant germination was isolated from a T-DNA insertion library and designated as AT6. This mutant also exhibited improved salt tolerance phenotype in later developmental stages. But no apparent difference was observed in response to ABA, GA or ethylene during germination between the mutant and the wildtype. The T-DNA was inserted in the At1g73660 locus that coded for a putative MAPKKK. Genetic and multiple mutant allele analyses confirmed that the knockout of this gene resulted in improved salt tolerance phenotype and provided strong evidence that the genetic locus At1g73660 negatively regulated salt tolerance in Arabidopsis. The At1g73660 was down regulated in response to salt stress in the mutants, which is consistent with its role as a negative regulator. It is therefore hypothesized that the AT1g73660 may serve as one of the off-switches of stress responses that are required for unstressed conditions.
Collapse
Affiliation(s)
- Lei Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | |
Collapse
|
285
|
Diédhiou CJ, Popova OV, Dietz KJ, Golldack D. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC PLANT BIOLOGY 2008; 8:49. [PMID: 18442365 PMCID: PMC2386468 DOI: 10.1186/1471-2229-8-49] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 04/28/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants respond to extracellularly perceived abiotic stresses such as low temperature, drought, and salinity by activation of complex intracellular signaling cascades that regulate acclimatory biochemical and physiological changes. Protein kinases are major signal transduction factors that have a central role in mediating acclimation to environmental changes in eukaryotic organisms. In this study, we characterized the function of the sucrose nonfermenting 1-related protein kinase2 (SnRK2) SAPK4 in the salt stress response of rice. RESULTS Translational fusion of SAPK4 with the green fluorescent protein (GFP) showed subcellular localization in cytoplasm and nucleus. To examine the role of SAPK4 in salt tolerance we generated transgenic rice plants with over-expression of rice SAPK4 under control of the CaMV-35S promoter. Induced expression of SAPK4 resulted in improved germination, growth and development under salt stress both in seedlings and mature plants. In response to salt stress, the SAPK4-overexpressing rice accumulated less Na+ and Cl- and showed improved photosynthesis. SAPK4-regulated genes with functions in ion homeostasis and oxidative stress response were identified: the vacuolar H+-ATPase, the Na+/H+ antiporter NHX1, the Cl- channel OsCLC1 and a catalase. CONCLUSION Our results show that SAPK4 regulates ion homeostasis and growth and development under salinity and suggest function of SAPK4 as a regulatory factor in plant salt stress acclimation. Identification of signaling elements involved in stress adaptation in plants presents a powerful approach to identify transcriptional activators of adaptive mechanisms to environmental changes that have the potential to improve tolerance in crop plants.
Collapse
Affiliation(s)
- Calliste J Diédhiou
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Olga V Popova
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Gregor Mendel Institute of Molecular Plant Biology, A-1030 Vienna, Austria
| | - Karl-Josef Dietz
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Dortje Golldack
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
286
|
Lee MO, Cho K, Kim SH, Jeong SH, Kim JA, Jung YH, Shim J, Shibato J, Rakwal R, Tamogami S, Kubo A, Agrawal GK, Jwa NS. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. PLANTA 2008; 4:448-50. [PMID: 18066586 DOI: 10.1007/s00425-007-0672-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/15/2007] [Indexed: 05/18/2023]
Abstract
We report isolation and transcriptional profiling of rice (Oryza sativa L.) mitogen-activated protein kinase (MAPK), OsSIPK (salicylic acid-induced protein kinase). OsSIPK gene is located on chromosome 6 most probably existing as a single copy in the rice genome, and encodes 398 amino acid polypeptide having the MAPK family signature and phosphorylation activation motif TEY. Steady state mRNA analyses of OsSIPK showed weak constitutive expression in leaves of 2-week-old rice seedlings. A time course (30-120 min) experiment using a variety of elicitors and stresses revealed that the OsSIPK mRNA is strongly induced by jasmonic acid (JA), salicylic acid (SA), ethephon, abscisic acid, cycloheximide (CHX), JA/SA + CHX, cantharidin, okadaic acid, hydrogen peroxide, chitosan, sodium chloride, and cold stress (12 degrees C), but not with wounding by cut, gaseous pollutants ozone, and sulfur dioxide, high temperature, ultraviolet C irradiation, sucrose, and drought. Its transcription was also found to be tissue-specifically regulated, and followed a rhythmic dark induction in leaves. Finally, we showed that the OsSIPK protein is localized to the nucleus. From these results, OsSIPK can be implicated in diverse stimuli-responsive signaling cascades and transcription of certain genes.
Collapse
Affiliation(s)
- Mi-Ok Lee
- Department of Molecular Biology, College of Natural Science, Sejong University, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Joo S, Liu Y, Lueth A, Zhang S. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:129-40. [PMID: 18182027 DOI: 10.1111/j.1365-313x.2008.03404.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene is an important hormone in plant growth, development and responses to environmental stimuli. The ethylene-signaling pathway is initiated by the induction of ethylene biosynthesis, which is under tight regulation at both transcriptional and post-transcriptional levels by exogenous and endogenous cues. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme that catalyzes the committing step of ethylene biosynthesis. Recently, we found that ACS2 and ACS6, two isoforms of the Arabidopsis ACS family, are substrates of a stress-responsive mitogen-activated protein kinase (MAPK) cascade. Phosphorylation of ACS2/ACS6 by MPK6 leads to the accumulation of ACS proteins and the induction of ethylene. In this report, we demonstrate that unphosphorylated ACS6 protein is rapidly degraded by the 26S proteasome pathway. The degradation machinery targets the C-terminal non-catalytic domain of ACS6, which is sufficient to confer instability to green fluorescent protein and luciferase reporters. Phosphorylation of ACS6 introduces negative charges to the C-terminus of ACS6, which reduces the turnover of ACS6 by the degradation machinery. Consistent with this, other nearby conserved negatively charged amino acid residues are essential for ACS6 stability regulation. Protein degradation and phosphorylation are two important post-translational modifications of proteins. This research reveals an intricate interplay between these two important processes in controlling the levels of cellular ACS activity, and thus ethylene biosynthesis. The post-translational nature of both processes ensures a rapid response of ethylene induction, which is detectable within minutes after plants are exposed to stress.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
288
|
Li S, Franklin-Tong VE. Self-incompatibility in Papaver: A MAP kinase signals to trigger programmed cell death. PLANT SIGNALING & BEHAVIOR 2008; 3:243-245. [PMID: 19704642 PMCID: PMC2634190 DOI: 10.4161/psb.3.4.5152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 10/12/2007] [Indexed: 05/28/2023]
Abstract
Self-incompatibility (SI) in higher plants prevents inbreeding through specific recognition and rejection of incompatible ("self") pollen. In Papaver rhoeas, S proteins encoded by the pistil component of the S-locus interact with incompatible pollen, triggering a Ca(2+)-dependent signaling network resulting in programmed cell death (PCD). We recently showed that a mitogen-activated protein kinase (MAPK) is involved in loss of pollen viability, stimulation of caspase-3-like (DEVDase) activity and later DNA fragmentation in incompatible pollen. As p56 appears to be the only MAPK activated by SI, our data suggest that p56 could be the MAPK responsible for mediating SI-induced PCD.
Collapse
Affiliation(s)
- Shutian Li
- School of Biosciences; University of Birmingham; Birmingham, United Kingdom
| | | |
Collapse
|
289
|
Huang TL, Huang HJ. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. CHEMOSPHERE 2008; 71:1377-85. [PMID: 18164745 DOI: 10.1016/j.chemosphere.2007.11.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/22/2007] [Accepted: 11/04/2007] [Indexed: 05/17/2023]
Abstract
Lead (Pb2+) is a cytotoxic metal ion in plants, the mechanism of which is not yet established. The aim of this study is to investigate the signalling pathways that are activated by elevated concentrations of Pb2+ in rice roots. Root growth was stunted and cell death was accelerated when exposed to different dosages of Pb2+ during extended time periods. Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb2+ induced ROS production and Ca2+ accumulation, respectively. In addition, Pb2+ elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analysis, 40- and 42-kDa MBP kinases that were activated by Pb2+ were identified to be mitogen-activated protein (MAP) kinases. Pre-treatment of rice roots with an antioxidant and a NADPH oxidase inhibitor, glutathione (GSH) and diphenylene iodonium (DPI), effectively reduced Pb2+-induced cell death and MAP kinase activation. Moreover, calcium-dependent protein kinase (CDPK) antagonist, W7, attenuated Pb2+-induced cell death and MAP kinase activation. These results suggested that the ROS and CDPK may function in the Pb2+-triggered cell death and MAP kinase signalling pathway in rice roots.
Collapse
Affiliation(s)
- Tsai-Lien Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road 701, Tainan, Taiwan, ROC
| | | |
Collapse
|
290
|
A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 2008; 105:5638-43. [PMID: 18378893 DOI: 10.1073/pnas.0711301105] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plant recognition of pathogens leads to rapid activation of MPK3 and MPK6, two Arabidopsis mitogen-activated protein kinases (MAPKs), and their orthologs in other species. Here, we report that synthesis of camalexin, the major phytoalexin in Arabidopsis, is regulated by the MPK3/MPK6 cascade. Activation of MPK3/MPK6 by expression of active upstream MAPK kinase (MAPKK) or MAPKK kinase (MAPKKK) was sufficient to induce camalexin synthesis in the absence of pathogen attack. Induction of camalexin by Botrytis cinerea was preceded by MPK3/MPK6 activation, and compromised in mpk3 and mpk6 mutants. Genetic analysis placed the MPK3/MPK6 cascade upstream of PHYTOALEXIN DEFICIENT 2 (PAD2) and PAD3, but independent or downstream of PAD1 and PAD4. Camalexin induction after MPK3/MPK6 activation was preceded by rapid and coordinated up-regulation of multiple genes encoding enzymes in the tryptophan (Trp) biosynthetic pathway, in the conversion of Trp to indole-3-acetaldoxime (IAOx, a branch point between primary and secondary metabolism), and in the camalexin biosynthetic pathway downstream of IAOx. These results indicate that the MPK3/MPK6 cascade regulates camalexin synthesis through transcriptional regulation of the biosynthetic genes after pathogen infection.
Collapse
|
291
|
Wu J, Hettenhausen C, Schuman MC, Baldwin IT. A comparison of two Nicotiana attenuata accessions reveals large differences in signaling induced by oral secretions of the specialist herbivore Manduca sexta. PLANT PHYSIOLOGY 2008; 146:927-39. [PMID: 18218965 PMCID: PMC2259078 DOI: 10.1104/pp.107.114785] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 01/11/2008] [Indexed: 05/19/2023]
Abstract
Genetic variation within and among populations provides the raw material for evolution. Although many studies describe inter- and intraspecific variation of defensive metabolites, little is known about variation among plant populations within early signaling responses elicited by herbivory or by herbivore oral secretions (OS) introduced into wounds during feeding. In this study, we compare the OS-elicited early responses as well as the antiherbivore defensive metabolites in two accessions of the wild tobacco Nicotiana attenuata and show that, compared with an accession collected from Utah, an Arizona accession has lower herbivore-elicited activity of the salicylic acid-induced protein kinase, an important mitogen-activated protein kinase involved in herbivore resistance. These differences in salicylic acid-induced protein kinase activity were associated with substantially different levels of OS-elicited jasmonic acid, jasmonic acid-isoleucine conjugate, and ethylene bursts. Gene expression level polymorphism (ELP) determines phenotypic variation among populations, and we found the two accessions to have significantly different ELPs in the genes involved in early signaling responses to herbivory. In addition, we found differences between the Utah and the Arizona accessions in the concentrations of several secondary metabolites that contribute to N. attenuata's direct and indirect defenses. This study demonstrates significant natural variation in regulatory elements that mediate plant responses to herbivore attack, highlighting the role of ELP in producing a diversity of plant defense phenotypes.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
292
|
Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. THE PLANT CELL 2008; 20:602-13. [PMID: 18364464 PMCID: PMC2329925 DOI: 10.1105/tpc.108.058032] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/28/2008] [Accepted: 03/06/2008] [Indexed: 05/04/2023]
Abstract
The plant life cycle includes diploid sporophytic and haploid gametophytic generations. Female gametophytes (embryo sacs) in higher plants are embedded in specialized sporophytic structures (ovules). Here, we report that two closely related mitogen-activated protein kinases in Arabidopsis thaliana, MPK3 and MPK6, share a novel function in ovule development: in the MPK6 mutant background, MPK3 is haplo-insufficient, giving female sterility when heterozygous. By contrast, in the MPK3 mutant background, MPK6 does not show haplo-insufficiency. Using wounding treatment, we discovered gene dosage-dependent activation of MPK3 and MPK6. In addition, MPK6 activation is enhanced when MPK3 is null, which may help explain why mpk3(-/-) mpk6(+/-) plants are fertile. Genetic analysis revealed that the female sterility of mpk3(+/-) mpk6(-/-) plants is a sporophytic effect. In mpk3(+/-) mpk6(-/-) mutant plants, megasporogenesis and megagametogenesis are normal and the female gametophyte identity is correctly established. Further analysis demonstrates that the mpk3(+/-) mpk6(-/-) ovules have abnormal integument development with arrested cell divisions at later stages. The mutant integuments fail to accommodate the developing embryo sac, resulting in the embryo sacs being physically restricted and female reproductive failure. Our results highlight an essential function of MPK3 and MPK6 in promoting cell division in the integument specifically during ovule development.
Collapse
Affiliation(s)
- Huachun Wang
- Department of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
293
|
Tamaoki M. The role of phytohormone signaling in ozone-induced cell death in plants. PLANT SIGNALING & BEHAVIOR 2008; 3:166-74. [PMID: 19513211 PMCID: PMC2634110 DOI: 10.4161/psb.3.3.5538] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 01/08/2008] [Indexed: 05/20/2023]
Abstract
Ozone is the main photochemical oxidant that causes leaf damage in many plant species, and can thereby significantly decrease the productivity of crops and forests. When ozone is incorporated into plants, it produces reactive oxygen species (ROS), such as superoxide radicals and hydrogen peroxide. These ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid, and jasmonic acid. These phytohormones are required for plant growth, development, and defense responses, and regulate the extent of leaf injury in ozone-fumigated plants. Recently, responses to ozone have been studied using genetically modified plants and mutants with altered hormone levels or signaling pathways. These researches have clarified the roles of phytohormones and the complexity of their signaling pathways. The present paper reviews the biosynthesis of the phytohormones ethylene, salicylic acid, and jasmonic acid, their roles in plant responses to ozone, and multiple interactions between these phytohormones in ozone-exposed plants.
Collapse
Affiliation(s)
- Masanori Tamaoki
- Environmental Biology Division; National Institute for Environmental Studies; Tsukuba; Ibaraki, Japan
| |
Collapse
|
294
|
Suri SS, Dhindsa RS. A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. PLANT, CELL & ENVIRONMENT 2008; 31:218-26. [PMID: 17996015 DOI: 10.1111/j.1365-3040.2007.01754.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A heat-activated MAP kinase (HAMK), immunologically related to the extracellular signal-regulated kinase (ERK) super-family of protein kinases, has been identified in BY2 cells of tobacco. The activation of HAMK at 37 degrees C was transient and detected within 2 min and reached a maximum level within 5 min. Ca(2+) chelators and channel blockers, and the known inhibitors of MEK, a MAP kinase kinase, prevented the heat activation of HAMK. This suggests that HAMK activation is part of a heat-triggered MAP kinase cascade that requires Ca(2+) influx. The heat shock protein HSP70 accumulated at 37 degrees C, but not when HAMK activation was prevented with the inhibitors of MEK or with Ca(2+) chelators or channel blockers. As previously shown for heat activation of HAMK, heat-induced accumulation of HSP70 requires membrane fluidization and reorganization of cytoskeleton. We concluded that heat-triggered HAMK cascade might play an essential role in the launching of heat shock response and hsp gene expression in tobacco cells.
Collapse
Affiliation(s)
- Sarabjeet S Suri
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
295
|
Zhao CJ, Wang AR, Shi YJ, Wang LQ, Liu WD, Wang ZH, Lu GD. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:501-16. [PMID: 18075727 DOI: 10.1007/s00122-007-0686-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 11/23/2007] [Indexed: 05/04/2023]
Abstract
Rice sheath blight, caused by Rhizoctonia solani is one of the major diseases of rice. The pathogen infects rice plants directly through stomata or using lobate appressoria and hyphal masses called infection cushions. The infection structures were normally found at 36 h post-inoculation. During infection, the pathogenesis-related genes, PR1b and PBZ1 were induced in rice plants. To identify rice genes induced early in the defense response, suppression subtractive hybridization (SSH) was used to generate a cDNA library enriched for transcripts differentially expressed during infection by R. solani. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced. Fifty unique cDNA clones were found and assigned to five different functional categories. Most of the genes were not previously identified as being induced in response to pathogens. We examined expression of 100 rice genes induced by infection with Magnaporthe grisea, Xanthomonas oryzae pv. oryze (Xoo) and X. oryzae pv. oryzicola (Xooc). Twenty-five of them were found to be differentially expressed after the sheath blight infection, suggesting overlap of defense responses to different fungal and bacterial pathogens infection.
Collapse
Affiliation(s)
- Chang-Jiang Zhao
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | | | | | | | | |
Collapse
|
296
|
Integration of Signaling in Antioxidant Defenses. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
297
|
Kim CY, Bove J, Assmann SM. Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death. THE NEW PHYTOLOGIST 2008; 180:57-70. [PMID: 18705666 DOI: 10.1111/j.1469-8137.2008.02557.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Leaf senescence is a form of programmed cell death, and involves regulated expression of a specific set of senescence-associated genes (SAGs). In Arabidopsis, three UBA2 genes, UBA2a, UBA2b, and UBA2c, encode heterogeneous nuclear ribonucleoprotein (hnRNP)-type RNA-binding proteins. Previously, it has been demonstrated that expression of UBA2 genes is induced by mechanical wounding in a splice variant-dependent manner. Constitutive overexpression of the UBA2 genes proved lethal. Accordingly, a conditional gain-of-function system was used here to assess phenotypes related to UBA2 overexpression. Overexpression of each of the three UBA2 genes leads to a leaf yellowing/cell death-like phenotype in Arabidopsis plants. Expression levels of a number of SAGs, such as SAG13, SAG14, SAG15, SAG101, WRKY6, WRKY53, WRKY70, ACS2, ACS6, CML38 and SIRK, were elevated upon induction of UBA2 overexpression, as were transcripts of multiple wounding- and defense-related genes, including EDS1, CK1, JR1, WR3 and MPK3. Elevated ethylene biosynthesis and hypersensitive-like patterns of cell death and callose deposition, shown by Trypan blue and aniline blue staining, respectively, were also observed following induced overexpression of UBA2a, UBA2b, and UBA2c. These results indicate that induction of UBA2 gene expression stimulates leaf yellowing and cell death phenotypes through senescence and defense response pathways.
Collapse
Affiliation(s)
- Cha Young Kim
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jérôme Bove
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
298
|
Chen YC, Lin HH, Jeng ST. Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. PLANT, CELL & ENVIRONMENT 2008; 31:62-72. [PMID: 17971062 DOI: 10.1111/j.1365-3040.2007.01742.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ipomoelin gene (IPO) was identified to be a wound-inducible gene from Ipomoea batatas, and its expression was stimulated by methyl jasmonate (MeJA) and hydrogen peroxide. IPO protein was also characterized as a defence-related protein, and it is also a carbohydrate-binding protein. In this study, the expression of IPO was used as a molecular probe to study the effects of Ca2+ on the signal transduction of ethylene. A confocal microscope monitored the Ca2+ within cells, and Northern blotting examined IPO expression. The presence of Ca2+ channel blocker, including diltiazem, neomycin or ruthenium red, abolished the increase of cytosolic Ca2+, and reduced the IPO expression in the cells induced by ethylene. Furthermore, both Ca2+ influxes and IPO expression stimulated by ethylene were prohibited in the presence of 10 mm ethylene glycol-bis(2-aminoethyl ether)-N, N, N', N'-tetraacetic acid (EGTA). These results indicated that Ca2+ influxes into the cytosol induced by ethylene are from both apoplast and organelles, and are required for activating IPO expression. However, in the presence of 1 mm EGTA, ethylene can still stimulate IPO expression, but mechanical wounding failed to do it. Therefore, Ca2+ channels in the plasma membrane induced by ethylene have higher affinity to Ca2+ than that stimulated by wounding. Moreover, the addition of A23187, an ionophore, raised cytosolic Ca2+, but was unable to stimulate IPO expression. These findings showed that IPO induction did not solely depend on Ca2+, and Ca2+ elevation in cytosol is necessary but not sufficient for IPO expression. The application of PD98059, a mitogen-activated protein kinase kinase (MAPKK) inhibitor, did not prevent Ca2+ from increasing in the cytosol induced by ethylene, but inhibited the IPO expression stimulated by staurosporine (STA), a protein kinase inhibitor. Conclusively, elevation of cytosolic Ca2+ by ethylene may stimulate protein phosphatase and MAPKK, which finally activates IPO expression.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | | | | |
Collapse
|
299
|
McCormick AJ, Cramer MD, Watt DA. Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane. ANNALS OF BOTANY 2008; 101:89-102. [PMID: 17942591 PMCID: PMC2701831 DOI: 10.1093/aob/mcm258] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/03/2007] [Accepted: 09/04/2007] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS In crops other than sugarcane there is good evidence that the size and activity of carbon sinks influence source activity via sugar-related regulation of the enzymes of photosynthesis, an effect that is partly mediated through coarse regulation of gene expression. METHODS In the current study, leaf shading treatments were used to perturb the source-sink balance in 12-month-old Saccharum spp. hybrid 'N19' (N19) by restricting source activity to a single mature leaf. Changes in leaf photosynthetic gas exchange variables and leaf and culm sugar concentrations were subsequently measured over a 14 d period. In addition, the changes in leaf gene response to the source-sink perturbation were measured by reverse northern hybridization analysis of an array of 128 expressed sequence tags (ESTs) related to photosynthetic and carbohydrate metabolism. KEY RESULTS Sucrose concentrations in immature culm tissue declined significantly over the duration of the shading treatment, while a 57 and 88% increase in the assimilation rate (A) and electron transport rate (ETR), respectively, was observed in the source leaf. Several genes (27) in the leaf displayed a >2-fold change in expression level, including the upregulation of several genes associated with C(4) photosynthesis, mitochondrial metabolism and sugar transport. Changes in gene expression levels of several genes, including Rubisco (EC 4.1.1.39) and hexokinase (HXK; EC 2.7.1.1), correlated with changes in photosynthesis and tissue sugar concentrations that occurred subsequent to the source-sink perturbation. CONCLUSIONS These results are consistent with the notion that sink demand may limit source activity through a kinase-mediated sugar signalling mechanism that correlates to a decrease in source hexose concentrations, which, in turn, correlate with increased expression of genes involved in photosynthesis and metabolite transport. The signal feedback system reporting sink sufficiency and regulating source activity may be a potentially valuable target for future genetic manipulation to increase sugarcane sucrose yield.
Collapse
Affiliation(s)
- A. J. McCormick
- South African Sugarcane Research Institute (SASRI), Crop Biology Resource Centre, Private Bag X02, Mt Edgecombe, 4300, South Africa
- University of KwaZulu-Natal, School of Biological and Conservation Sciences, Howard College Campus, Durban, 4041, South Africa
| | - M. D. Cramer
- University of Cape Town, Botany Department, Private Bag X1, Rondebosch, 7701, South Africa
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, WA 6009, Australia
| | - D. A. Watt
- South African Sugarcane Research Institute (SASRI), Crop Biology Resource Centre, Private Bag X02, Mt Edgecombe, 4300, South Africa
- University of KwaZulu-Natal, School of Biological and Conservation Sciences, Howard College Campus, Durban, 4041, South Africa
| |
Collapse
|
300
|
Tomczak A, Koropacka K, Smant G, Goverse A, Bakker* E. Resistant Plant Responses. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|