251
|
Sintes J, Engel P. SLAM (CD150) is a multitasking immunoreceptor: from cosignalling to bacterial recognition. Immunol Cell Biol 2010; 89:161-3. [DOI: 10.1038/icb.2010.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
252
|
Ma CS, Deenick EK. The role of SAP and SLAM family molecules in the humoral immune response. Ann N Y Acad Sci 2010; 1217:32-44. [PMID: 21091715 DOI: 10.1111/j.1749-6632.2010.05824.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective B cell-mediated immunity, including the formation of germinal centers and the generation of high-affinity memory B cells and long-lived plasma cells, is dependent on CD4(+) T cells. Immunodeficiencies that present with defects in the antibody response have provided insights into the molecular mechanisms of B cell responses and the provision of T cell help. One such immunodeficiency is X-linked lymphoproliferative disease (XLP), which results from mutations in SH2D1A, the gene encoding SLAM-associated protein (SAP). Patients with XLP present with humoral defects characterized by hypogammaglobulinemia. We now know that SAP, through its signaling downstream of multiple members of the signaling lymphocytic activation molecule (SLAM) family of cell surface receptors, plays a crucial role in many aspects of this immune response. Here, we discuss the role of SAP in the generation of humoral immunity, particularly T cell-dependent antibody responses and the generation of germinal centers.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | |
Collapse
|
253
|
Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE. X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol 2010; 152:13-30. [DOI: 10.1111/j.1365-2141.2010.08442.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
254
|
Marsh RA, Bleesing JJ, Filipovich AH. Using flow cytometry to screen patients for X-linked lymphoproliferative disease due to SAP deficiency and XIAP deficiency. J Immunol Methods 2010; 362:1-9. [PMID: 20816973 PMCID: PMC2964414 DOI: 10.1016/j.jim.2010.08.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/29/2010] [Accepted: 08/18/2010] [Indexed: 11/15/2022]
Abstract
X-linked lymphoproliferative disease is a rare congenital immunodeficiency that is most often caused by mutations in SH2D1A, the gene encoding signaling lymphocyte activation molecule (SLAM)-associated protein (SAP). XLP caused by SAP deficiency is most often characterized by fulminant mononucleosis/EBV- associated hemophagocytic lymphohistiocytosis (HLH), lymphoma, and dysgammaglobulinemia. XLP has also been found to be caused by mutations in BIRC4, the gene encoding X-linked inhibitor of apoptosis (XIAP). Patients with XIAP deficiency often present with HLH or recurrent HLH, which may or may not be associated with EBV. XLP is prematurely lethal in the majority of cases. While genetic sequencing can provide a genetic diagnosis of XLP, a more rapid means of diagnosis of XLP is desirable. Rapid diagnosis is especially important in the setting of HLH, as this may hasten the initiation of life-saving medical treatments and expedite preparations for allogeneic hematopoietic cell transplantation (HCT). Flow cytometry offers a means to quickly screen patients for XLP. Flow cytometry can be used to measure lymphocyte SAP or XIAP protein expression, and can also be used to observe lymphocyte phenotypes and functional defects that are unique to XLP. This review will give a brief overview of the clinical manifestations and molecular basis of SAP deficiency and XIAP deficiency, and will focus on the use of flow cytometry for diagnosis of XLP.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
255
|
Hislop AD, Palendira U, Leese AM, Arkwright PD, Rohrlich PS, Tangye SG, Gaspar HB, Lankester AC, Moretta A, Rickinson AB. Impaired Epstein-Barr virus-specific CD8+ T-cell function in X-linked lymphoproliferative disease is restricted to SLAM family-positive B-cell targets. Blood 2010; 116:3249-57. [PMID: 20644117 DOI: 10.1182/blood-2009-09-238832] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a condition associated with mutations in the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP; SH2D1A). SAP functions as an adaptor, binding to and recruiting signaling molecules to SLAM family receptors expressed on T and natural killer cells. XLP is associated with extreme sensitivity to primary Epstein-Barr virus (EBV) infection, often leading to a lethal infectious mononucleosis. To investigate EBV-specific immunity in XLP patients, we studied 5 individuals who had survived EBV infection and found CD8(+) T-cell responses numerically comparable with healthy donors. However, further investigation of in vitro-derived CD8(+) T-cell clones established from 2 of these donors showed they efficiently recognized SLAM ligand-negative target cells expressing EBV antigens, but showed impaired recognition of EBV-transformed, SLAM ligand-positive, lymphoblastoid cell lines (LCLs). Importantly, LCL recognition was restored when interactions between the SLAM receptors CD244 and natural killer-, T-, and B-cell antigen (NTBA) and their ligands on LCLs were blocked. We propose that XLP patients' particular sensitivity to EBV, and not to other viruses, reflects at least in part EBV's strict tropism for B lymphocytes and the often inability of the CD8(+) T-cell response to contain the primary infection of SLAM ligand-expressing target cells.
Collapse
Affiliation(s)
- Andrew D Hislop
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 2010; 117:53-62. [PMID: 20926771 DOI: 10.1182/blood-2010-06-284935] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP1) is a rare immunodeficiency characterized by severe immune dysregulation and caused by mutations in the SH2D1A/SAP gene. Clinical manifestations are varied and include hemophagocytic lymphohistiocytosis (HLH), lymphoma and dysgammaglobulinemia, often triggered by Epstein-Barr virus infection. Historical data published before improved treatment regimens shows very poor outcome. We describe a large cohort of 91 genetically defined XLP1 patients collected from centers worldwide and report characteristics and outcome data for 43 patients receiving hematopoietic stem cell transplant (HSCT) and 48 untransplanted patients. The advent of better treatment strategies for HLH and malignancy has greatly reduced mortality for these patients, but HLH still remains the most severe feature of XLP1. Survival after allogeneic HSCT is 81.4% with good immune reconstitution in the large majority of patients and little evidence of posttransplant lymphoproliferative disease. However, survival falls to 50% in patients with HLH as a feature of disease. Untransplanted patients have an overall survival of 62.5% with the majority on immunoglobulin replacement therapy, but the outcome for those untransplanted after HLH is extremely poor (18.8%). HSCT should be undertaken in all patients with HLH, because outcome without transplant is extremely poor. The outcome of HSCT for other manifestations of XLP1 is very good, and if HSCT is not undertaken immediately, patients must be monitored closely for evidence of disease progression.
Collapse
|
257
|
Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol 2010; 2:a002469. [PMID: 20300214 DOI: 10.1101/cshperspect.a002469] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a "switch-of-function," thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
258
|
Cannons JL, Wu JZ, Gomez-Rodriguez J, Zhang J, Dong B, Liu Y, Shaw S, Siminovitch KA, Schwartzberg PL. Biochemical and genetic evidence for a SAP-PKC-theta interaction contributing to IL-4 regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2819-27. [PMID: 20668219 PMCID: PMC3422635 DOI: 10.4049/jimmunol.0902182] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP), an adaptor molecule that recruits Fyn to the signaling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4(+) T cells from SAP-deficient mice have defective TCR-induced and follicular Th cell IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4(+) T cells exhibit decreased protein kinase C (PKC)-theta recruitment upon TCR stimulation. We demonstrate in this paper using GST pulldowns and coimmunoprecipitation studies that SAP constitutively associates with PKC- in T cells. SAP-PKC-theta interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP's interactions with PKC-theta occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-theta recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-theta, like SAP, was required for SLAM-mediated increases in IL-4 production, and, conversely, membrane-targeted PKC-theta mutants rescued IL-4 expression in SAP(-/-) CD4(+) T cells, providing genetic evidence that PKC-theta is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
How do SAP family deficiencies compromise immunity? Trends Immunol 2010; 31:295-302. [DOI: 10.1016/j.it.2010.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/12/2010] [Accepted: 05/26/2010] [Indexed: 12/11/2022]
|
260
|
Watzl C, Long EO. Signal transduction during activation and inhibition of natural killer cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 11:Unit 11.9B. [PMID: 20814939 PMCID: PMC3857016 DOI: 10.1002/0471142735.im1109bs90] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cells are important for early immune responses to viral infections and cancer. Upon activation, NK cells secrete cytokines and chemokines, and kill sensitive target cells by releasing the content of cytolytic granules. This unit is focused on the signal transduction pathways that regulate NK cell activities in response to contact with other cells. We will highlight signals regulating NK cell adhesion to target cells and describe the induction of cellular cytotoxicity by the engagement of different NK cell activation receptors. Negative signaling induced by inhibitory receptors opposes NK cell activation and provides an important safeguard from NK cell reactivity toward normal, healthy cells. We will discuss the complex integration of the different signals that occur during interaction of NK cells with target cells.
Collapse
Affiliation(s)
- Carsten Watzl
- Institute for Immunology, University Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
261
|
Abstract
X-linked lymphoproliferative disease (XLP1), described in the mid-1970s and molecularly defined in 1998, and XLP2, reported in 2006, are prematurely lethal genetic immunodeficiencies that share susceptibility to overwhelming inflammatory responses to certain infectious triggers. Signaling lymphocytic activation molecule-associated protein (SAP; encoded by SH2D1A) is mutated in XLP1, and X-linked inhibitor of apoptosis (XIAP; encoded by BIRC4) is mutated in XLP2. XLP1 is a disease with multiple and variable clinical consequences, including fatal hemophagocytic lymphohistiocytosis (HLH) triggered predominantly by Epstein-Barr virus, lymphomas, antibody deficiency, and rarer consequences of immune dysregulation. To date, XLP2 has been found to cause HLH with and without exposure to Epstein-Barr virus, and HLH is commonly recurrent in these patients. For both forms of XLP, the only curative therapy at present is allogeneic hematopoietic cell transplantation. Beyond their common X-linked locus and their requirement for normal immune responses to certain viral infections, SAP and XIAP demonstrate no obvious structural or functional similarity, are not coordinately regulated with respect to their expression, and do not appear to directly interact. In this review, we describe the genetic, clinical, and immunopathologic features of these 2 disorders and discuss current diagnostic and therapeutic strategies.
Collapse
|
262
|
Snow AL, Pandiyan P, Zheng L, Krummey SM, Lenardo MJ. The power and the promise of restimulation-induced cell death in human immune diseases. Immunol Rev 2010; 236:68-82. [PMID: 20636809 PMCID: PMC2907538 DOI: 10.1111/j.1600-065x.2010.00917.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlled expansion and contraction of lymphocytes both during and after an adaptive immune response are imperative to sustain a healthy immune system. Both extrinsic and intrinsic pathways of lymphocyte apoptosis are programmed to eliminate cells at the proper time to ensure immune homeostasis. Genetic disorders of apoptosis described in mice and humans have established Fas and Bim as critical pro-apoptotic molecules responsible for T-cell death in response to T-cell receptor restimulation and cytokine withdrawal, respectively. Emerging evidence prompts revision of this classic paradigm, especially for our understanding of restimulation-induced cell death (RICD) and its physiological purpose. Recent work indicates that RICD employs both Fas and Bim for T-cell deletion, dispelling the notion that these molecules are assigned to mutually exclusive apoptotic pathways. Furthermore, new mouse model data combined with our discovery of defective RICD in X-linked lymphoproliferative disease (XLP) patient T cells suggest that RICD is essential for precluding excess T-cell accumulation and associated immunopathology during the course of certain infections. Here, we review how these advances offer a refreshing new perspective on the phenomenon of T-cell apoptosis induced through antigen restimulation, including its relevance to immune homeostasis and potential for therapeutic interventions.
Collapse
Affiliation(s)
- Andrew L Snow
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
263
|
Veillette A, Dong Z, Pérez-Quintero LA, Zhong MC, Cruz-Munoz ME. Importance and mechanism of 'switch' function of SAP family adapters. Immunol Rev 2010; 232:229-39. [PMID: 19909367 DOI: 10.1111/j.1600-065x.2009.00824.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) family of adapters includes SAP, Ewing's sarcoma-associated transcript-2 (EAT-2), and EAT-2-related transducer (ERT). These Src homology-2 (SH2) domain-only molecules play critical roles in immune regulation. The prototype of the SAP family, SAP, is mutated in X-linked lymphoproliferative disease in humans. Moreover, genetically engineered mice lacking one or more SAP family members have defects in multiple immune cell types including T cells, natural killer (NK) cells, NKT cells, and B cells. Accumulating data show that SAP family adapters regulate immunity by influencing the functions of SLAM family receptors, through two distinct but cooperative mechanisms. First, SAP family adapters couple SLAM family receptors to active biochemical signals, which promote immune cell functions. Second, SAP family adapters interfere with the intrinsic ability of SLAM family receptors to trigger inhibitory signals, which could be mediated via molecules such as SH2 domain-containing 5'-inositol phosphatase-1. The latter effect of SAP family adapters does not seem to be because of direct blocking of inhibitory effector binding to SLAM family receptors. Rather, it appears to implicate alternative mechanisms such as functional competition, trans-regulation, or steric hindrance. In the absence of SAP family adapters, the inhibitory signals mediated by SLAM family receptors suppress critical activating receptors, explaining in part the pronounced phenotypes seen in SAP family adapter-deficient humans and mice. Thus, SAP family adapters are molecular switches that regulate immunity as a result of their capacity to control the type of signals and functions emanating from SLAM family receptors.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
264
|
Klein G, Klein E, Kashuba E. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 2010; 396:67-73. [PMID: 20494113 DOI: 10.1016/j.bbrc.2010.02.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Collapse
Affiliation(s)
- George Klein
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S17177 Stockholm, Sweden.
| | | | | |
Collapse
|
265
|
Rolf J, Fairfax K, Turner M. Signaling pathways in T follicular helper cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6563-8. [PMID: 20525897 DOI: 10.4049/jimmunol.1000202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Th cell functional subsets have unique transcriptional programs that form the molecular basis for T cell differentiation and functions. T follicular helper (TFH) cells have emerged as the main providers of T cell help to B cells during the germinal center (GC) reaction, where B cells undergo selection events through competition for Ag and for access to GC T cell-mediated prosurvival and differentiation signals. Because T cell help is one limiting factor for GC B cells, the molecular mechanisms controlling TFH cell abundance and functionality are central to the GC reaction and generation of long-term humoral immunity. Two signaling pathways are absolutely critical for TFH cells: phosphoinositide-3 kinase pathway and the signaling lymphocyte activation molecule-associated protein. In this review, the molecular mechanisms constituting the signaling network in TFH cells will be explored.
Collapse
Affiliation(s)
- Julia Rolf
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
266
|
Ameratunga R, Woon ST, Neas K, Love DR. The clinical utility of molecular diagnostic testing for primary immune deficiency disorders: a case based review. Allergy Asthma Clin Immunol 2010; 6:12. [PMID: 20529312 PMCID: PMC2903612 DOI: 10.1186/1710-1492-6-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/08/2010] [Indexed: 12/18/2022] Open
Abstract
Primary immune deficiency disorders (PIDs) are a group of diseases associated with a genetic predisposition to recurrent infections, malignancy, autoimmunity and allergy. The molecular basis of many of these disorders has been identified in the last two decades. Most are inherited as single gene defects. Identifying the underlying genetic defect plays a critical role in patient management including diagnosis, family studies, prognostic information, prenatal diagnosis and is useful in defining new diseases. In this review we outline the clinical utility of molecular testing for these disorders using clinical cases referred to Auckland Hospital. It is written from the perspective of a laboratory offering a wide range of tests for a small developed country.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology Auckland City Hospital, Park Rd, Grafton, Auckland New Zealand.
| | | | | | | |
Collapse
|
267
|
Waggoner SN, Taniguchi RT, Mathew PA, Kumar V, Welsh RM. Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J Clin Invest 2010; 120:1925-38. [PMID: 20440077 PMCID: PMC2877945 DOI: 10.1172/jci41264] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/24/2010] [Indexed: 12/19/2022] Open
Abstract
Persistent viral infections are often associated with inefficient T cell responses and sustained high-level expression of inhibitory receptors, such as the NK cell receptor 2B4 (also known as CD244), on virus-specific T cells. However, the role of 2B4 in T cell dysfunction is undefined, and it is unknown whether NK cells contribute to regulation of these processes. We show here that persistent lymphocytic choriomeningitis virus (LCMV) infection of mice lacking 2B4 resulted in diminished LCMV-specific CD8+ T cell responses, prolonged viral persistence, and spleen and thymic pathologies that differed from those observed in infected wild-type mice. Surprisingly, these altered phenotypes were not caused by 2B4 deficiency in T cells. Rather, the entire and long-lasting pathology and viral persistence were regulated by 2B4-deficient NK cells acting early in infection. In the absence of 2B4, NK cells lysed activated (defined as CD44hi) but not naive (defined as CD44lo) CD8+ T cells in a perforin-dependent manner in vitro and in vivo. These results illustrate the importance of NK cell self-tolerance to activated CD8+ T cells and demonstrate how an apparent T cell-associated persistent infection can actually be regulated by NK cells.
Collapse
Affiliation(s)
- Stephen N. Waggoner
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ruth T. Taniguchi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Porunelloor A. Mathew
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Vinay Kumar
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
268
|
Detre C, Keszei M, Romero X, Tsokos GC, Terhorst C. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol 2010; 32:157-71. [PMID: 20146065 PMCID: PMC2868096 DOI: 10.1007/s00281-009-0193-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/30/2009] [Indexed: 01/05/2023]
Abstract
One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in T cell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Cynthia Detre
- BIDMC Division of Immunology, Harvard Center for Life Sciences, Rm. CLS 938, 3 Blackfan Circle, Boston MA 02115 USA
| | - Marton Keszei
- BIDMC Division of Immunology, Harvard Center for Life Sciences, Rm. CLS 938, 3 Blackfan Circle, Boston MA 02115 USA
| | - Xavier Romero
- BIDMC Division of Immunology, Harvard Center for Life Sciences, Rm. CLS 938, 3 Blackfan Circle, Boston MA 02115 USA
| | - George C. Tsokos
- BIDMC Division of Rheumatology, Harvard Center for Life Sciences, Rm. CLS 937 3 Blackfan Circle, Boston, MA 02115, USA
| | - Cox Terhorst
- BIDMC Division of Immunology, Harvard Center for Life Sciences, Rm. CLS 938, 3 Blackfan Circle, Boston MA 02115 USA, Harvard Medical School, Boston MA USA
| |
Collapse
|
269
|
Affiliation(s)
- Katherine Luzuriaga
- Department of Pediatrics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
270
|
XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood 2010; 116:1079-82. [PMID: 20489057 DOI: 10.1182/blood-2010-01-256099] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency, caused by BIRC4 mutations, is described to cause X-linked lymphoproliferative disease (XLP) phenotypes. However, compared with XLP caused by SLAM-Associated Protein deficiency (SH2D1A mutation), XIAP deficiency was originally observed to be associated with a high incidence of hemophagocytic lymphohistiocytosis (HLH) and a lack of lymphoma, suggesting that classification of XIAP deficiency as a cause of XLP may not be entirely accurate. To further characterize XIAP deficiency, we reviewed our experience with 10 patients from 8 unrelated families with BIRC4 mutations. Nine of 10 patients developed HLH by 8 years of age. Most patients presented in infancy, and recurrent HLH was common. There were no cases of lymphoma. Lymphocyte defects thought to contribute to HLH development in SLAM-Associated Protein deficiency were not observed in XIAP deficiency. We conclude that XIAP deficiency is a unique primary immunodeficiency that is more appropriately classified as X-linked familial hemophagocytic lymphohistiocytosis.
Collapse
|
271
|
Nagy N, Klein E. Deficiency of the proapoptotic SAP function in X-linked lymphoproliferative disease aggravates Epstein-Barr virus (EBV) induced mononucleosis and promotes lymphoma development. Immunol Lett 2010; 130:13-8. [DOI: 10.1016/j.imlet.2010.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
272
|
Zhao M, Kanegane H, Ouchi K, Imamura T, Latour S, Miyawaki T. A novel XIAP mutation in a Japanese boy with recurrent pancytopenia and splenomegaly. Haematologica 2010; 95:688-9. [PMID: 20015872 PMCID: PMC2857205 DOI: 10.3324/haematol.2009.018010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Meina Zhao
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama
| | - Hirokazu Kanegane
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama
| | - Kazutaka Ouchi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto
| | - Sylvain Latour
- Unité 768 INSERM, Hôpital Necker-Enfants Malades, Paris, France
| | - Toshio Miyawaki
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama
| |
Collapse
|
273
|
|
274
|
Kim JR, Mathew SO, Patel RK, Pertusi RM, Mathew PA. Altered expression of signalling lymphocyte activation molecule (SLAM) family receptors CS1 (CD319) and 2B4 (CD244) in patients with systemic lupus erythematosus. Clin Exp Immunol 2010; 160:348-58. [PMID: 20345977 DOI: 10.1111/j.1365-2249.2010.04116.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CS1 (CRACC, CD319) and 2B4 (CD244), members of the signalling lymphocyte activation molecule (SLAM) family receptors, regulate various immune functions. Genes encoding SLAM family receptors are located at 1q23, implicated in systemic lupus erythematosus (SLE). In this study, we have investigated the expression and alternative splicing of CS1 and 2B4 in immune cells from SLE patients. The surface expression of CS1 and 2B4 on total peripheral blood mononuclear cells (PBMCs), T, B, natural killer (NK) cells and monocytes in 45 patients with SLE and 30 healthy individuals was analysed by flow cytometry. CS1-positive B cell population was increased significantly in SLE patients. Because CS1 is a self-ligand and homophilic interaction of CS1 induces B cell proliferation and autocrine cytokine secretion, this could account for autoreactive B cell proliferation in SLE. The proportion of NK cells and monocytes expressing 2B4 on their surface was significantly lower in patients with SLE compared to healthy controls. Our study demonstrated altered expression of splice variants of CS1 and 2B4 that mediate differential signalling in PBMC from patients with SLE.
Collapse
Affiliation(s)
- J R Kim
- Department of Molecular Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | | | | | |
Collapse
|
275
|
Furukawa H, Tohma S, Kitazawa H, Komori H, Nose M, Ono M. Role of SLAM-associated protein in the pathogenesis of autoimmune diseases and immunological disorders. Arch Immunol Ther Exp (Warsz) 2010; 58:37-44. [PMID: 20049647 DOI: 10.1007/s00005-009-0060-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/02/2009] [Indexed: 12/11/2022]
Abstract
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is an adaptor molecule containing a Src homology 2 (SH2) domain. SAP is expressed in T cells and natural killer (NK) cells and binds to the cytoplasmic domains of SLAM family receptors, resulting in the subsequent recruitment of Fyn. The SAP (SH2D1A) gene is located on the X chromosome and is responsible for X-linked lymphoproliferative disease, characterized by higher susceptibility to Epstein-Barr virus infection. The SAP-mediated signal is not only essential for the development of NKT cells, i.e. unconventional CD1d-restricted T cells with invariant Valpha14 T cell receptors, but also for the regulation of the function of NK cells and conventional T cells. The role of SAP-mediated signaling in the induction of autoimmune diseases has been analyzed using animal models such as lupus, hepatitis, and graft-versus-host disease and is considered important in their pathogenesis in humans. In this review we highlight the current findings on SAP-mediated signaling in hematopoietic cells and discuss its importance in autoimmune diseases and immunological disorders.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Department of Pathology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
276
|
Primary immunodeficiencies. J Allergy Clin Immunol 2009; 125:S182-94. [PMID: 20042228 DOI: 10.1016/j.jaci.2009.07.053] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 12/14/2022]
Abstract
In the last years, advances in molecular genetics and immunology have resulted in the identification of a growing number of genes causing primary immunodeficiencies (PIDs) in human subjects and a better understanding of the pathophysiology of these disorders. Characterization of the molecular mechanisms of PIDs has also facilitated the development of novel diagnostic assays based on analysis of the expression of the protein encoded by the PID-specific gene. Pilot newborn screening programs for the identification of infants with severe combined immunodeficiency have been initiated. Finally, significant advances have been made in the treatment of PIDs based on the use of subcutaneous immunoglobulins, hematopoietic cell transplantation from unrelated donors and cord blood, and gene therapy. In this review we will discuss the pathogenesis, diagnosis, and treatment of PIDs, with special attention to recent advances in the field.
Collapse
|
277
|
Enose-Akahata Y, Matsuura E, Oh U, Jacobson S. High expression of CD244 and SAP regulated CD8 T cell responses of patients with HTLV-I associated neurologic disease. PLoS Pathog 2009; 5:e1000682. [PMID: 19997502 PMCID: PMC2779586 DOI: 10.1371/journal.ppat.1000682] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 11/05/2009] [Indexed: 12/22/2022] Open
Abstract
HTLV-I-specific CD8+ T cells have been characterized with high frequencies in peripheral blood and cerebrospinal fluid and production of proinflammatory cytokines, which contribute to central nervous system inflammation in HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, little is known about the differences in CD8+ T cell activation status between asymptomatic carrier (ACs) and patients with HAM/TSP. The expression of CD244, a signaling lymphocyte activation molecule (SLAM) family receptor, was significantly higher on CD8+ T cells in HTLV-I-infected patients, both ACs and patients with HAM/TSP, than those on healthy normal donors (NDs). Blockade of CD244 inhibited degranulation and IFN-γ production in CD8+ T cells of patients with HAM/TSP, suggesting that CD244 is associated with effector functions of CD8+ T cells in patients with HAM/TSP. Moreover, SLAM-associated protein (SAP) was overexpressed in patients with HAM/TSP compared to ACs and NDs. SAP expression in Tax-specific CTLs was correlated in the HTLV-I proviral DNA loads and the frequency of the cells in HTLV-I-infected patients. SAP knockdown by siRNA also inhibited IFN-γ production in CD8+ T cells of patients with HAM/TSP. Thus, the CD244/SAP pathway was involved in the active regulation of CD8+ T cells of patients with HAM/TSP, and may play roles in promoting inflammatory neurological disease. Human T-lymphotropic virus type I (HTLV-I) is a retrovirus that persistently infects 20 million people worldwide. The majority of infected individuals are asymptomatic carriers of the virus, but 5–10% of infected people develop either adult T cell leukemia/lymphoma (ATL) or a chronic, progressive neurological disease termed HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is characterized by central nervous system (CNS) inflammation including HTLV-I-specific CD8+ T cells where disease progression and pathogenesis is associated with a dysregulation of antigen-specific CD8+ T cells, although the mechanism of this dysregulation remains to be defined. Here we demonstrate that a signaling lymphocyte activation molecule (SLAM) family of receptors, CD244, was overexpressed on CD8+ T cells of HTLV-I-infected patients than those of healthy normal donors, and that the upregulation of the adaptor protein, SAP, in CD8+ T cells distinguished HTLV-I infected individuals with and without neurologic disease. Both CD244 and SAP were associated with effector functions (high expression of IFN-γ) of CD8+ T cells in patients with HAM/TSP. This finding has important implication for T cell-mediated pathogenesis in human chronic viral infection associated with imbalance of immune function.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eiji Matsuura
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Unsong Oh
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
278
|
Nagy N, Klein G, Klein E. To the genesis of Burkitt lymphoma: Regulation of apoptosis by EBNA-1 and SAP may determine the fate of Ig-myc translocation carrying B lymphocytes. Semin Cancer Biol 2009; 19:407-10. [DOI: 10.1016/j.semcancer.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 01/23/2023]
|
279
|
El Firar A, Voisin T, Rouyer-Fessard C, Ostuni MA, Couvineau A, Laburthe M. Discovery of a functional immunoreceptor tyrosine-based switch motif in a 7-transmembrane-spanning receptor: role in the orexin receptor OX1R-driven apoptosis. FASEB J 2009; 23:4069-4080. [PMID: 19661287 DOI: 10.1096/fj.09-131367] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The orexin neuropeptides promote robust apoptosis in cancer cells. We have recently shown that the 7-transmembrane-spanning orexin receptor OX1R mediates apoptosis through an original mechanism. OX1R is equipped with a tyrosine-based inhibitory motif ITIM, which is tyrosine-phosphorylated on receptor activation, allowing the recruitment and activation of the tyrosine phosphatase SHP-2, leading to apoptosis. We show here that another motif, immunoreceptor tyrosine-based switch motif (ITSM), is present in OX1R and is mandatory for OX1R-mediated apoptosis. This conclusion is based on the following observations: 1) a canonical ITSM sequence is present in the first intracellular loop of OX1R; 2) mutation of Y(83) to F within ITSM abolished OX1R-mediated apoptosis but did not alter orexin-induced inositol phosphate formation or calcium transient via coupling of OX1R to G(q) protein; 3) mutation of Y(83) to F further abolished orexin-induced tyrosine phosphorylation in ITSM and subsequent recruitment of SHP-2 by the receptor. Finally, we developed a structural model of OX1R showing that the spatial localization of phosphotyrosines in ITSM and ITIM in OX1R is compatible with their interaction with the two SH2 domains of SHP-2. These data represent the first evidence for a functional role of an ITSM in a 7-transmembrane-spanning receptor.
Collapse
Affiliation(s)
- Aadil El Firar
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, F-75018, Paris
| | | | | | | | | | | |
Collapse
|
280
|
My LT, Lien LB, Hsieh WC, Imamura T, Anh TNK, Anh PNL, Hung NT, Tseng FC, Chi CY, Dao NTH, Le DTM, Thinh LQ, Tung TT, Imashuku S, Thuong TC, Su IJ. Comprehensive analyses and characterization of haemophagocytic lymphohistiocytosis in Vietnamese children. Br J Haematol 2009; 148:301-10. [PMID: 19863536 DOI: 10.1111/j.1365-2141.2009.07957.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) is a fatal haematological disorder with diverse aetiology. This prospective study was undertaken to characterize HLH cases in Vietnamese children. Clinical and laboratory data, genetic analyses and outcome of the HLH patients were analysed. A total of 33 patients were enrolled from March 2007 to December 2008, with a median age of 3 years. Mutations of the SH2D1A (SAP) and PRF1 genes were detected in one patient, respectively. The virus association was high, up to 63.6% (21/33), including Epstein-Barr virus (19/33), cytomegalovirus (2/33) and dengue virus (2/33). Five patients had malignant lymphoma and two had autoimmune diseases. Twenty-eight patients were treated according to the HLH-2004 protocol. The first response rate was 64.3% (18/28), with an early death rate of 35.7% (10/28). High levels of interferon-gamma, interleukin-10, MIG and interferon-inducible protein-10 (IP-10) were associated with early mortality (P < 0.05). Reactivation among the responders was high (9/18) and the uneventful resolution was low (3/18) after a median follow-up of 35 weeks. In conclusion, the majority of HLH cases are associated with virus infections in Vietnamese children. Familial HLH is rare. The frequent reactivation and high mortality demands a more appropriate therapeutic regimen in tropical areas like Vietnam.
Collapse
Affiliation(s)
- Lam T My
- Department of Clinical Haematology, Children Hospital, Ho-Chi-Minh City, Vietnam
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Okuyama H, Yoshida T, Son A, Oka SI, Wang D, Nakayama R, Masutani H, Nakamura H, Nabeshima YI, Yodoi J. Thioredoxin binding protein 2 modulates natural killer T cell-dependent innate immunity in the liver: possible link to lipid metabolism. Antioxid Redox Signal 2009; 11:2585-93. [PMID: 19619006 DOI: 10.1089/ars.2009.2691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thioredoxin binding protein 2 (TBP2) plays a regulatory role in lipid metabolism and immune regulation. We previously reported the effect of TBP2 loss-of-function on lipid metabolism using TBP2 knockout (TBP2KO) mice. In this study, we employed TBP2 transgenic (TBP2TG) mice to analyze the in vivo effect of TBP2 gain-of-function. We revealed a decrease in the percentage of hepatic natural killer T (NKT) cells in TBP2KO mice and an increase in the percentage of hepatic NKT cells in TBP2TG mice. The TBP2KO mice were resistant to concanavalin A (ConA)-induced hepatitis, but they were highly susceptible to other types of hepatitis. TBP2 modulates lipid metabolism as well as NKT cell activity. Moreover, TBP2 expression was increased significantly in klotho-deficient mice, which exhibit a syndrome resembling aging human phenotypes. TBP2 may play multiple roles in lipid metabolism, innate immunity, and aging.
Collapse
Affiliation(s)
- Hiroaki Okuyama
- Thioredoxin Project, Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, van Hoff J, Dhar D, Nichols KE, Filipovich AH, Su HC, Bleesing JJ, Lenardo MJ. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 2009; 119:2976-89. [PMID: 19759517 DOI: 10.1172/jci39518] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 07/22/2009] [Indexed: 12/12/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a rare congenital immunodeficiency that leads to an extreme, usually fatal increase in the number of lymphocytes upon infection with EBV. It is most commonly defined molecularly by loss of expression of SLAM-associated protein (SAP). Despite this, there is little understanding of how SAP deficiency causes lymphocytosis following EBV infection. Here we show that T cells from individuals with XLP are specifically resistant to apoptosis mediated by TCR restimulation, a process that normally constrains T cell expansion during immune responses. Expression of SAP and the SLAM family receptor NK, T, and B cell antigen (NTB-A) were required for TCR-induced upregulation of key pro-apoptotic molecules and subsequent apoptosis. Further, SAP/NTB-A signaling augmented the strength of the proximal TCR signal to achieve the threshold required for restimulation-induced cell death (RICD). Strikingly, TCR ligation in activated T cells triggered increased recruitment of SAP to NTB-A, dissociation of the phosphatase SHP-1, and colocalization of NTB-A with CD3 aggregates. In contrast, NTB-A and SHP-1 contributed to RICD resistance in XLP T cells. Our results reveal what we believe to be novel roles for NTB-A and SAP in regulating T cell homeostasis through apoptosis and provide mechanistic insight into the pathogenesis of lymphoproliferative disease in XLP.
Collapse
Affiliation(s)
- Andrew L Snow
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases/NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Li T, Li W, Lu J, Liu H, Li Y, Zhao Y. SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway. BMB Rep 2009; 42:516-22. [DOI: 10.5483/bmbrep.2009.42.8.516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
284
|
Stein A, Pache RA, Bernadó P, Pons M, Aloy P. Dynamic interactions of proteins in complex networks: a more structured view. FEBS J 2009; 276:5390-405. [PMID: 19712106 DOI: 10.1111/j.1742-4658.2009.07251.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
285
|
Sallusto F, Lanzavecchia A. Heterogeneity of CD4+
memory T cells: Functional modules for tailored immunity. Eur J Immunol 2009; 39:2076-82. [DOI: 10.1002/eji.200939722] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
286
|
Sarkar J, Balamurugan V, Sen A, Saravanan P, Sahay B, Rajak KK, Rasool TJ, Bhanuprakash V, Singh RK. Sequence analysis of morbillivirus CD150 receptor-Signaling Lymphocyte Activation Molecule (SLAM) of different animal species. Virus Genes 2009; 39:335-41. [PMID: 19669672 DOI: 10.1007/s11262-009-0391-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Signaling Lymphocyte Activation Molecule-SLAM (CD150) molecule has been reported as a putative receptor for most morbilliviruses for their respective host species. In this study, we determined the complete nucleotide sequence of the gene coding for the morbillivirus receptor-SLAM from the four species, namely, goat (Capra hircus), sheep (Ovis aries), Indian cattle (Bos indicus), and buffalo (Bubalus bubalis). The nucleotide (nt) open reading frame sequence of SLAM gene in all the four species studied was 1017 nucleotides in length encoding a polypeptide of 339 amino acids (aa), similar to Bos taurus, but different from canine, human, marmoset, and mouse SLAM, which were 1029, 1008, 1011, and 1032 nts, respectively, in length, and coding for 343, 336, 337, and 344 aa, respectively. Sequence analysis revealed 96.3-98.5% and 92.9-96.8% identities among the four species at the nt and aa level, respectively. Sequence diversity at aa level between various species revealed that the critical functional region of SLAM protein among different species is relatively conserved, thereby facilitating this molecule to act as a receptor for morbillivirus. Phylogenetic relationship based on the aa sequences of SLAM protein revealed that caprine, ovine, cattle, and buffalo fall under a defined cluster but caprine SLAM is more closely related to ovine, followed by bovine.
Collapse
Affiliation(s)
- J Sarkar
- National Morbillivirus Referral Laboratory, Division of Virology, Indian Veterinary Research Institute, Uttarakhand, India
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Deane S, Selmi C, Naguwa SM, Teuber SS, Gershwin ME. Common variable immunodeficiency: etiological and treatment issues. Int Arch Allergy Immunol 2009; 150:311-24. [PMID: 19571563 PMCID: PMC2814150 DOI: 10.1159/000226232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the great advances in clinical medicine was the recognition of the pleomorphism of the immune response and the multiple afferent and efferent limbs of antigen processing and responsiveness. A significant contribution to this understanding was derived from studies of human immunodeficiency states, including both inherited and acquired syndromes. Amongst these syndromes, one of the most common, and least understood, is common variable immune deficiency (CVID). CVID is a syndrome that leads to a reduction in serum immunoglobulins and complications including recurrent infections. Management includes immunoglobulin replacement therapy; however, patients with CVID are at risk for complications of exogenous immunoglobulin administration as well as CVID-associated diseases such as autoimmune processes and malignancies. To assess the current state of knowledge in the field, we performed a literature review of a total of 753 publications covering the period of 1968 until 2008. From this list, 189 publications were selected for discussion. In this review, we demonstrate that while the molecular basis of CVID in many cases remains incompletely understood, significant strides have been made and it is now clear that there is involvement of several pathways of immune activation, with contributions from both T and B cells. Furthermore, despite the current gaps in our knowledge of the molecular pathogenesis of the syndrome, there have been dramatic advances in management that have led to improved survival and significantly reduced morbidity in affected patients.
Collapse
Affiliation(s)
| | | | | | | | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California
at Davis School of Medicine, Davis, Calif., USA
| |
Collapse
|
288
|
The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease. Proc Natl Acad Sci U S A 2009; 106:11966-71. [PMID: 19570996 DOI: 10.1073/pnas.0905691106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deletion or mutation of the SAP gene is associated with the X-linked lymphoproliferative disease (XLP) that is characterized by extreme sensitivity to Epstein-Barr virus (EBV). Primary infection of the affected individuals leads to serious, sometimes fatal infectious mononucleosis (IM) and proneness to lymphoma. Our present results revealed a proapoptotic function of SAP by which it contributes to the maintenance of T-cell homeostasis and to the elimination of potentially dangerous DNA-damaged cells. Therefore, the loss of this function could be responsible for the uncontrolled T-cell proliferation in fatal IM and for the generation of lymphomas. We show now the role of SAP in apoptosis in T and B lymphocyte-derived lines. Among the clones of T-ALL line, the ones with higher SAP levels succumbed more promptly to activation induced cell death (AICD). Importantly, introduction of SAP expression into lymphoblastoid cell lines (LCL) established from XLP patients led to elevated apoptotic response to DNA damage. Similar results were obtained in the osteosarcoma line, Saos-2. We have shown that the anti-apoptotic protein VCP (valosin-containing protein) binds to SAP, suggesting that it could be instrumental in the enhanced apoptotic response modulated by SAP.
Collapse
|
289
|
Rumble JM, Oetjen KA, Stein PL, Schwartzberg PL, Moore BB, Duckett CS. Phenotypic differences between mice deficient in XIAP and SAP, two factors targeted in X-linked lymphoproliferative syndrome (XLP). Cell Immunol 2009; 259:82-9. [PMID: 19595300 PMCID: PMC2744477 DOI: 10.1016/j.cellimm.2009.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/22/2009] [Indexed: 12/14/2022]
Abstract
Mutations in the X-linked inhibitor of apoptosis (XIAP) have recently been identified in patients with the rare genetic disease, X-linked lymphoproliferative syndrome (XLP), which was previously thought to be solely attributable to mutations in a distinct gene, SAP. To further understand the roles of these two factors in the pathogenesis of XLP, we have compared mice deficient in Xiap with known phenotypes of Sap-null mice. We show here that in contrast to Sap-deficient mice, animals lacking Xiap have apparently normal NKT cell development and no apparent defect in humoral responses to T cell-dependent antigens. However, Xiap-deficient cells were more susceptible to death upon infection with the murine herpesvirus MHV-68 and gave rise to more infectious virus. These differences could be rescued by restoration of XIAP. These data provide insight into the differing roles of XIAP and SAP in the pathogenesis of XLP.
Collapse
Affiliation(s)
- Julie M. Rumble
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| | - Karolyn A. Oetjen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| | - Paul L. Stein
- Departments of Microbiology/Immunology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Pamela L. Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, 20892
| | - Bethany B. Moore
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| | - Colin S. Duckett
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| |
Collapse
|
290
|
|
291
|
Huck K, Feyen O, Niehues T, Rüschendorf F, Hübner N, Laws HJ, Telieps T, Knapp S, Wacker HH, Meindl A, Jumaa H, Borkhardt A. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 2009; 119:1350-8. [PMID: 19425169 PMCID: PMC2673872 DOI: 10.1172/jci37901] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/11/2009] [Indexed: 12/21/2022] Open
Abstract
The fatal immune dysregulation that sometimes follows EBV infection in boys has been linked to mutations in two X chromosome-encoded genes, SLAM-associated protein (SAP) and X-linked inhibitor of apoptosis (XIAP). In this study we describe 2 girls from a consanguineous Turkish family who died after developing severe immune dysregulation and therapy-resistant EBV-positive B cell proliferation following EBV infection. SNP array-based genome-wide linkage analysis revealed IL-2-inducible T cell kinase (ITK) as a candidate gene for this immunodeficiency syndrome. Both girls harbored a homozygous missense mutation that led to substitution of a highly conserved residue (R335W) in the SH2 domain of ITK. Characteristics of ITK deficiency in mouse models, such as absence of NKT cells and high levels of eomesodermin in CD8+ cells, were seen in either one or both of the girls. Two lines of evidence suggested that R335W caused instability of the ITK protein. First, in silico modeling of the mutant protein predicted destabilization of the SH2 domain. Additionally, Western blot analysis revealed that, unlike wild-type ITK, the R335W mutant was nearly undetectable when expressed in 293 T cells. Our results suggest that ITK deficiency causes what we believe to be a novel immunodeficiency syndrome that leads to a fatal inadequate immune response to EBV. Because ITK deficiency resembles EBV-associated lymphoproliferative disorders in boys, we suggest that this molecular cause should be considered during diagnosis and treatment.
Collapse
Affiliation(s)
- Kirsten Huck
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Oliver Feyen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Tim Niehues
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Franz Rüschendorf
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Norbert Hübner
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Hans-Jürgen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Tanja Telieps
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Stefan Knapp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Hans-Heinrich Wacker
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Alfons Meindl
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Hassan Jumaa
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany.
Centre for Child and Adolescent Health, HELIOS Klinikum Krefeld, Krefeld, Germany.
Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
Structural Genomics Consortium, Nuffield Department of Medicine, and Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, United Kingdom.
Joint Practice for Hematopathology, Kiel, Germany.
Klinikum rechts der Isar, Technische Universität, Munich, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology, Freiburg, Germany
| |
Collapse
|
292
|
Abstract
Abstract
Currently, FLT3 tyrosine kinase inhibitors (TKIs) are emerging as the most promising drug therapy to overcome the dismal prognosis of acute myelogenous leukemia (AML) patients harboring internal tandem duplications (ITDs) of FLT3. However, up-front drug resistance occurs in approximately 30% of patients, and molecular mechanisms of resistance are poorly understood. Here, we have uncovered a novel mechanism of primary resistance to FLT3 TKIs in AML: an FLT3 receptor harboring a nonjuxtamembrane ITD atypically integrating into the β-2 sheet of the first kinase domain (FLT3_ITD627E) induces dramatic up-regulation of the anti-apoptotic myeloid cell leukemia 1 protein (MCL-1). Using RNA interference technology, deregulated MCL-1 protein expression was shown to play a major role in conferring the resistance phenotype of 32D_ITD627E cells. Enhanced and sustained binding of the adaptor protein GRB-2 to the FLT3_ITD627E receptor is involved in MCL-1 up-regulation and is independent from TKI (PKC412)–induced inhibition of the receptor kinase. Thus, we describe a new mechanism of primary resistance to TKIs, which operates by reprogramming local and distant signal transduction events of the FLT3 tyrosine kinase. The data presented suggest that particular ITDs of FLT3 may be associated with rewired signaling and differential responsiveness to TKIs.
Collapse
|
293
|
X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses. Immunol Res 2009; 42:145-59. [PMID: 18815745 DOI: 10.1007/s12026-008-8048-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A major focus of our research is to understand the molecular and cellular basis of X-linked lymphoproliferative disease (XLP), a rare and often fatal immunodeficiency caused by mutations in the SH2D1A gene, which encodes the adaptor molecule SAP. Recently, we observed that SAP is essential for the development of natural killer T (NKT) cells, a lymphocyte population that participates in protection against certain tumors, infections, and autoimmune states. In this review, we describe the approaches that we are taking to understand the role of SAP in immune cells, including NKT cells. By using SAP as the focal point of our studies, we hope to identify novel signaling pathways that could be targeted to improve the treatment for patients with XLP as well as more common disorders, such as autoimmunity and cancer.
Collapse
|
294
|
Abstract
This article reviews the primary immunodeficiencies that result in hypogammaglobulinemia or predominantly antibody deficiency disorders. This group makes up the largest proportion of patients with primary immunodeficiency. Significant advances have been made in understanding the molecular basis and clinical characteristics of patients with the more severe forms of antibody deficiency in the last 6 years. Recognition of these disorders remains poor with significant diagnostic delay. The milder forms of antibody deficiency disorders, especially those with normal total serum immunoglobulin G levels, remain poorly characterized and understood. Further work remains to be done in understanding and recognizing these syndromes to benefit patient care and foster further knowledge of the immune system.
Collapse
Affiliation(s)
- Patrick F K Yong
- Department of Clinical Immunology, Kings College Hospital, London SE5 9RS, UK
| | | | | |
Collapse
|
295
|
Cruz-Munoz ME, Dong Z, Shi X, Zhang S, Veillette A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol 2009; 10:297-305. [DOI: 10.1038/ni.1693] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/24/2008] [Indexed: 12/21/2022]
|
296
|
SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol 2009; 9:39-46. [PMID: 19079134 DOI: 10.1038/nri2456] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations that affect the adaptor molecule SLAM-associated protein (SAP) underlie the primary immunodeficiency disease X-linked lymphoproliferative syndrome. SAP is required for mediating signals from members of the signalling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors. Recent data have highlighted a role for SAP in the development of innate-like T-cell lineages, including natural killer T cells, and in the regulation of the interactions between B cells and T cells that are required for germinal-centre formation and long-term humoral immunity. These data have revealed that SLAM family members and SAP have crucial roles in regulating lymphocyte interactions and adhesion, which are required for the normal development, homeostasis and function of the immune system.
Collapse
|
297
|
Ostrakhovitch EA, Wang Y, Li SSC. SAP binds to CD22 and regulates B cell inhibitory signaling and calcium flux. Cell Signal 2008; 21:540-50. [PMID: 19150402 DOI: 10.1016/j.cellsig.2008.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 01/25/2023]
Abstract
The signaling lymphocyte activation molecule (SLAM)-associated protein (SAP or SH2D1A) is an important regulator of immune function which, when mutated or deleted, causes the X-linked lymphoproliferative syndrome (XLP). Because B cell lymphoma is a major phenotype of XLP, it is important to understand the function of SAP in B cells. Here we report that SAP is expressed endogenously in mouse splenic B cells, is inducibly expressed in the human BJAB cells, and co-localizes and interacts with CD22. We also show that SAP binding to the inhibitory immunoreceptor CD22 regulates calcium mobilization in B cells. Moreover, forced expression of SAP leads to constitutive CD22 tyrosine phosphorylation and decreased Ca(2+) response in B cells. Biochemical analysis reveals that, in response to IgM cross-linking, the phosphorylation of Syk, Blnk, or PLCgamma2 and their interactions with one another were either diminished or completely abolished in SAP-expressing cells compared to cells that lack SAP. Collectively our work identifies a novel role for SAP in B cells and extends its function to inhibitory immunoreceptor signaling and calcium mobilization.
Collapse
Affiliation(s)
- Elena A Ostrakhovitch
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | |
Collapse
|
298
|
Ozawa T, Okazaki K. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study. J Comput Chem 2008; 29:2656-66. [PMID: 18484636 DOI: 10.1002/jcc.20998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The CH/pi hydrogen bond is a weak molecular force occurring between CH groups (soft acids) and pi-systems (soft bases), and has been recognized to be important in the interaction of proteins with their specific ligands. For instance, it is well known that Src homology-2 protein (SH2) recognizes its specific pTyr peptide in two key regions, pTyr-binding region and specificity-determining region, by the use of attractive molecular forces, including the CH/pi hydrogen bond. We hypothesized that the CH/pi hydrogen bond plays a key role in determining the selectivity of SH2 proteins, and studied this issue by the ab initio fragment molecular orbital (FMO) method. The FMO calculations were carried out, at the HF/6-31G* and MP2/6-31G* level, for SH2 domains of Src, Grb2, P85alpha(N), Syk, and SAP, in complex with corresponding pTyr peptides. CH/pi hydrogen bonds have in fact been found to be important in stabilizing the structure of the complexes. We conclude that the CH/pi hydrogen bond plays an indispensable role in the recognition of SH2 domains with their specific pTyr peptides, thus playing a vital role in the signal transduction system.
Collapse
Affiliation(s)
- Tomonaga Ozawa
- Central Research Laboratory, Kissei Pharmaceutical Company Ltd, 4365-1 Kashiwabara, Hotaka, Azumino-City, Nagano-Pref. 399-8304, Japan.
| | | |
Collapse
|
299
|
MHC class II-dependent T-T interactions create a diverse, functional and immunoregulatory reaction circle. Immunol Cell Biol 2008; 87:65-71. [PMID: 19030015 DOI: 10.1038/icb.2008.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Unlike conventional T cells, innate-like T cells such as natural killer (NK) T cells are selected by homotypic T-cell interactions. Recently, a few reports have shown that T-T CD4(+) T cells can be generated in a similar manner to that for NKT cells. These two types of cells share common functional properties such as rapid response to antigenic encounters and the potential for a panoply of cytokine secretion. However, T-T CD4(+) T cells differ from NKT cells in that they are restricted by highly polymorphic major histocompatibility complex (MHC) II molecules and have a diverse T-cell receptor repertoire. Additional example of T-T interactions was recently reported in which peripheral T cells re-circulate to the thymus and participate in the thymocyte selection process. In this review, we dissect the cellular mechanisms underlying the production of T-T CD4(+) and NKT cells, with particular emphasis on the differences between these two T-cell prototypes. Finally, we propose that T-T CD4(+) T cells serve two major functions: one as an acute-phase reactant against viral infection and the other is the generation of anti-ergotypic CD4(+) T cells for regulatory purposes. All of these features make it possible to create a diverse set of functional cells through MHC class II-restricted T-T interactions.
Collapse
|
300
|
Ohishi K, Ando A, Suzuki R, Takishita K, Kawato M, Katsumata E, Ohtsu D, Okutsu K, Tokutake K, Miyahara H, Nakamura H, Murayama T, Maruyama T. Host-virus specificity of morbilliviruses predicted by structural modeling of the marine mammal SLAM, a receptor. Comp Immunol Microbiol Infect Dis 2008; 33:227-41. [PMID: 19027953 DOI: 10.1016/j.cimid.2008.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
Abstract
Signaling lymphocyte activation molecule (SLAM) is thought to be a major cellular receptor for high-host specificity morbilliviruses, which cause devastating and highly infectious diseases in mammals. We determined the sequences of SLAM cDNA from five species of marine mammal, including two cetaceans, two pinnipeds and one sirenian, and generated three-dimensional models to understand the receptor-virus interaction. Twenty-one amino acid residues in the immunoglobulin-like V domains of the SLAMs were shown to bind the viral protein. Notably, the sequences from pinnipeds and dogs were highly homologous, which is consistent with the fact that canine distemper virus was previously shown to cause a mass die-off of seals. Among these twenty-one residues, eight (63, 66, 68, 72, 84, 119, 121 and 130) were shared by animal groups susceptible to a particular morbillivirus species. This set of residues appears to determine host-virus specificity and may be useful for risk estimation for morbilliviruses.
Collapse
Affiliation(s)
- Kazue Ohishi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|