251
|
Prasad AS, Bao B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants (Basel) 2019; 8:antiox8060164. [PMID: 31174269 PMCID: PMC6617024 DOI: 10.3390/antiox8060164] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
The essentiality of zinc as a trace mineral in human health has been recognized for over five decades. Zinc deficiency, caused by diet, genetic defects, or diseases, can cause growth retardation, delayed sexual maturation, depressed immune response, and abnormal cognitive functions in humans. Zinc supplementation in zinc-deficient individuals can overcome or attenuate these abnormalities, suggesting zinc is an essential micro-nutrient in the body. A large number of in vitro and in vivo experimental studies indicate that zinc deficiency also causes apoptosis, cellular dysfunction, deoxyribonucleic acid (DNA) damage, and depressed immune response. Oxidative stress, due to the imbalance of reactive oxygen species (ROS) production and detoxification in the anti-oxidant defense system of the body, along with subsequent chronic inflammation, is believed to be associated with many chronic degenerative diseases such as diabetes, heart diseases, cancers, alcohol-related disease, macular degenerative disease, and neuro-pathogenesis. A large number of experimental studies including cell culture, animal, and human clinical studies have provided supportive evidence showing that zinc acts as an anti-oxidative stress agent by inhibition of oxidation of macro-molecules such as (DNA)/ribonucleic acid (RNA) and proteins as well as inhibition of inflammatory response, eventually resulting in the down-regulation of (ROS) production and the improvement of human health. In this article, we will discuss the molecular mechanisms of zinc as an anti-oxidative stress agent or mediator in the body. We will also discuss the applications of zinc supplementation as an anti-oxidative stress agent or mediator in human health and disease.
Collapse
Affiliation(s)
- Ananda S Prasad
- Department of Oncology, School of Medicine, Wayne State University and Karmanos Cancer Center, Detroit, MI 48201, USA.
| | - Bin Bao
- Department of Oncology, School of Medicine, Wayne State University and Karmanos Cancer Center, Detroit, MI 48201, USA.
| |
Collapse
|
252
|
Rosa F, Moridi M, Osorio JS, Lohakare J, Trevisi E, Filley S, Estill C, Bionaz M. 2,4-Thiazolidinedione in Well-Fed Lactating Dairy Goats: II. Response to Intra-Mammary Infection. Vet Sci 2019; 6:vetsci6020052. [PMID: 31195666 PMCID: PMC6632143 DOI: 10.3390/vetsci6020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/17/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
In a prior experiment, treatment of goats with the putative PPARγ agonist 2,4-thiazolidinedione (2,4-TZD) ameliorated the response to intramammary infection without evidence of PPARγ activation. The lack of PPARγ activation was possibly due to deficiency of vitamin A and/or a poor body condition of the animals. Therefore, the present study hypothesized that activation of PPARγ by 2,4-TZD in goats supplemented with adequate amounts of vitamin A can improve the response to sub-clinical mastitis. Lactating goats receiving a diet that met National Research Council requirements, including vitamin A, were injected with 8 mg/kg BW of 2,4-TZD (n = 6) or saline (n = 6; control (CTR)) daily. Two weeks into treatment, all goats received Streptococcus uberis (IMI) in the right mammary gland. Blood biomarkers of metabolism, inflammation, and oxidative status plus leukocytes phagocytosis were measured. Mammary epithelial cells (MEC) and macrophages were isolated from milk and liver tissue collected for gene expression analysis. Milk fat was maintained by treatment with 2,4-TZD, but decreased in CTR, after IMI. Haptoglobin was increased after IMI only in 2,4-TZD without any effect on negative acute phase proteins, indicating an improved liver function. 2,4-TZD vs. CTR had a greater amount of globulin. The expression of inflammation-related genes was increased by IMI in both macrophages and MEC. Except for decreasing expression of SCD1 in MEC, 2,4-TZD did not affect the expression of measured genes. Results confirmed the successful induction of sub-clinical mastitis but did not confirm the positive effect of 2,4-TZD on the response to IMI in well-fed goats.
Collapse
Affiliation(s)
- Fernanda Rosa
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Misagh Moridi
- Department of Animal Science, University of Guilan, Kilometer 5 of Rasht-Qazvin Highway, Rasht 4199613776, Iran.
| | - Johan S Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Jayant Lohakare
- Department of Animal Biotechnology, Kangwon National University, KNU Ave 1, Chuncheon 200-701, Korea.
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza PC, Italy.
| | - Shelby Filley
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Charles Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
253
|
Network pharmacology-based identification of the protective mechanisms of taraxasterol in experimental colitis. Int Immunopharmacol 2019; 71:259-266. [DOI: 10.1016/j.intimp.2019.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
|
254
|
Peroxisome Proliferator-Activated Receptor Gamma (PPAR) Suppresses Inflammation and Bacterial Clearance during Influenza-Bacterial Super-Infection. Viruses 2019; 11:v11060505. [PMID: 31159430 PMCID: PMC6630660 DOI: 10.3390/v11060505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023] Open
Abstract
Influenza virus is among the most common causes of respiratory illness worldwide and can be complicated by secondary bacterial pneumonia, a frequent cause of mortality. When influenza virus infects the lung, the innate immune response is activated, and interferons and inflammatory mediators are released. This "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor super-family. PPARγ has numerous functions including enhancing lipid and glucose metabolism and cellular differentiation and suppressing inflammation. Synthetic PPARγagonists (thiazolidinediones or glitazones) have been used clinically in the treatment of type II diabetes. Using data from the National Health and Nutrition Examination Survey (NHANES), diabetic participants taking rosiglitazone had an increased risk of mortality from influenza/pneumonia compared to those not taking the drug. We examined the effect of rosiglitazone treatment during influenza and secondary bacterial (Methicillin resistant Staphylococcus aureus) pneumonia in mice. We found decreased influenza viral burden, decreased numbers of neutrophils and macrophages in bronchoalveolar lavage, and decreased production of cytokines and chemokines in influenza infected, rosiglitazone-treated mice when compared to controls. However, rosiglitazone treatment compromised bacterial clearance during influenza-bacterial super-infection. Both human and mouse data suggest that rosiglitazone treatment worsens the outcome of influenza-associated pneumonia.
Collapse
|
255
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
256
|
Robinson KN, Rowitz B, Oliphant UJ, Donovan SM, Teran-Garcia M. Larger omental adipocytes correlate with greater Fetuin-A reduction following sleeve gastrectomy. BMC OBESITY 2019; 6:15. [PMID: 31080625 PMCID: PMC6501315 DOI: 10.1186/s40608-019-0238-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
Background Shortly after bariatric surgery, insulin sensitivity improves and circulating Fetuin-A (FetA) declines. Elevated FetA may decrease insulin sensitivity by inhibiting insulin receptor autophosphorylation. FetA also mediates inflammation through toll-like receptor 4 and influences monocyte migration and macrophage polarization in the adipocyte. The role of dietary changes on FetA is unclear. It is also unknown whether changes in FetA are associated with adipocyte size, an indicator of insulin sensitivity. Methods Sleeve gastrectomy patients (n = 39) were evaluated prior to the preoperative diet, on the day of surgery (DOS) and six-weeks postoperatively. At each visit, diet records, anthropometrics and fasting blood were collected. Adipocyte diameter was measured in omental adipose collected during surgery. Results Although significant weight loss did not occur during the preoperative diet, HOMA-IR improved (p < 0.0001) and FetA decreased by 12% (p = 0.01). Six-weeks postoperatively, patients lost 9% of body weight (p = 0.02) and FetA decreased an additional 26% (p < 0.0001). HOMA-IR was unchanged during this time. Omental adipocyte size on DOS was not associated with preoperative changes in dietary intake, body composition or HOMA-IR. However, adipocyte size was strongly associated with both pre- (r = 0.41, p = 0.03) and postoperative (r = − 0.44, p = 0.02) change in FetA. Conclusion FetA began to decrease during the preoperative diet. Greater FetA reduction during this time was associated with smaller adipocytes on DOS. Therefore, immediate, post-bariatric improvements in glucose homeostasis may be partly explained by dietary changes. The preoperative diet protocol significantly reduced insulin resistance, a modifiable risk factor for other non-bariatric procedures. Therefore, this dietary protocol may also be used preoperatively for procedures beyond bariatric surgery.
Collapse
Affiliation(s)
- Katie N Robinson
- 1Department of Internal Medicine, University of Iowa, Iowa City, IA USA
| | - Blair Rowitz
- 2Carle Illinois College of Medicine, Urbana, IL USA.,3Department of Surgery, Carle Foundation Hospital, Urbana, IL USA.,4Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Uretz J Oliphant
- 2Carle Illinois College of Medicine, Urbana, IL USA.,3Department of Surgery, Carle Foundation Hospital, Urbana, IL USA
| | - Sharon M Donovan
- 4Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA.,5Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Margarita Teran-Garcia
- 2Carle Illinois College of Medicine, Urbana, IL USA.,4Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA.,6Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
257
|
Uddin MS, Kabir MT, Jakaria M, Mamun AA, Niaz K, Amran MS, Barreto GE, Ashraf GM. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK. Neurotox Res 2019; 36:583-601. [PMID: 31055770 DOI: 10.1007/s12640-019-00047-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging plays a significant role in the progression of vascular diseases and vascular dysfunction. Activation of the ADP-ribosylation factor 6 and small GTPases by inflammatory signals may cause vascular permeability and endothelial leakage. Pro-inflammatory molecules have a significant effect on smooth muscle cells (SMC). The migration and proliferation of SMC can be promoted by tumor necrosis factor alpha (TNF-α). TNF-α can also increase oxidative stress in SMCs, which has been identified to persuade DNA damage resulting in apoptosis and cellular senescence. Peroxisome proliferator-activated receptor (PPAR) acts as a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. They play key roles in a wide range of biological processes, including cell differentiation and proliferation, bone formation, cell metabolism, tissue remodeling, insulin sensitivity, and eicosanoid signaling. The PPARγ activation regulates inflammatory responses, which can exert protective effects in the vasculature. In addition, loss of function of PPARγ enhances cardiovascular events and atherosclerosis in the vascular endothelium. This appraisal, therefore, discusses the critical linkage of PPARγ in the inflammatory process and highlights a crucial defensive role for endothelial PPARγ in vascular dysfunction and disease, as well as therapy for vascular aging.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| | | | - Md Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Md Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
258
|
Murakami-Nishida S, Matsumura T, Senokuchi T, Ishii N, Kinoshita H, Yamada S, Morita Y, Nishida S, Motoshima H, Kondo T, Komohara Y, Araki E. Pioglitazone suppresses macrophage proliferation in apolipoprotein-E deficient mice by activating PPARγ. Atherosclerosis 2019; 286:30-39. [PMID: 31096071 DOI: 10.1016/j.atherosclerosis.2019.04.229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Local macrophage proliferation is linked to enhanced atherosclerosis progression. Our previous study found that troglitazone, a thiazolidinedione (TZD), suppressed oxidized low-density lipoprotein (Ox-LDL)-induced macrophage proliferation. However, its effects and mechanisms are unclear. Therefore, we investigated the effects of pioglitazone, another TZD, on macrophage proliferation. METHODS Normal chow (NC)- or high-fat diet (HFD)-fed apolipoprotein E-deficient (Apoe-/-) mice were treated orally with pioglitazone (10 mg/kg/day) or vehicle (water) as a control. Mouse peritoneal macrophages were used in in vitro assays. RESULTS Atherosclerosis progression was suppressed in aortic sinuses of pioglitazone-treated Apoe-/- mice, which showed fewer proliferating macrophages in plaques. Pioglitazone suppressed Ox-LDL-induced macrophage proliferation in a dose-dependent manner. However, treatment with peroxisome proliferator-activated receptor-γ (PPARγ) siRNA ameliorated pioglitazone-induced suppression of macrophage proliferation. Low concentrations (less than 100 μmol/L) of pioglitazone, which can suppress macrophage proliferation, activated PPARγ in macrophages, but did not induce macrophage apoptosis. Pioglitazone treatment did not induce TUNEL-positive cells in atherosclerotic plaques of aortic sinuses in Apoe-/- mice. CONCLUSIONS Pioglitazone suppressed macrophage proliferation through PPARγ without inducing macrophage apoptosis. These findings imply that pioglitazone could prevent macrovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saiko Murakami-Nishida
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Norio Ishii
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Kinoshita
- Department of Diabetes and Endocrinology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Sarie Yamada
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaro Morita
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuhei Nishida
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
259
|
Drareni K, Gautier JF, Venteclef N, Alzaid F. Transcriptional control of macrophage polarisation in type 2 diabetes. Semin Immunopathol 2019; 41:515-529. [PMID: 31049647 DOI: 10.1007/s00281-019-00748-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
Type-2 diabetes (T2D) is considered today as an inflammatory disease. Inflammatory processes in T2D are orchestrated by macrophage activation in different organs. Macrophages undergo classical M1 pro-inflammatory or alternative M2 anti-inflammatory activation in response to tissue microenvironmental signals. These subsets of macrophages are characterised by their expression of cell surface markers, secreted cytokines and chemokines. Transcriptional regulation is central to the polarisation of macrophages, and several major pathways have been described as essential to promote the expression of specific genes, which dictate the functional polarisation of macrophages. In this review, we summarise the current knowledge of transcriptional control of macrophage polarisation and the role this plays in development of insulin resistance.
Collapse
Affiliation(s)
- Karima Drareni
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France
| | - Jean-François Gautier
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.,Lariboisière Hospital, AP-HP, Diabetology Department, University of Paris Diderot, Paris, France
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.
| |
Collapse
|
260
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|
261
|
Oridonin inhibits LPS-induced inflammation in human gingival fibroblasts by activating PPARγ. Int Immunopharmacol 2019; 72:301-307. [PMID: 31005040 DOI: 10.1016/j.intimp.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Oridonin, the major terpene isolated from Rabdosia rubescens, has been used as dietary supplement. Recently, it has been known to exhibit anti-inflammatory effect. This study we employed an in vitro model of LPS-stimulated human gingival fibroblasts to investigate the anti-inflammatory effects and mechanism of oridonin. Oridonin (10-30 μg/mL) was administrated 1 h before LPS treatment. The results showed that oridonin significantly inhibited inflammatory mediators PGE2, NO, IL-6, and IL-8 production. Immunoblotting experiments revealed that oridonin reduced the expression of phosphorylation levels of NF-κB p65 and IκBα. Furthermore, the expression of PPARγ was up-regulated by the treatment of oridonin. Further studies showed that PPARγ inhibitor GW9662 could reverse the inhibition of oridonin on PGE2, NO, IL-6, and IL-8 production. In conclusion, oridonin inhibited LPS-induced microglia activation through activating PPARγ.
Collapse
|
262
|
Shen B, Zhao C, Wang Y, Peng Y, Cheng J, Li Z, Wu L, Jin M, Feng H. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways. J Cell Mol Med 2019; 23:4063-4075. [PMID: 30950217 PMCID: PMC6533504 DOI: 10.1111/jcmm.14293] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Aucubin (AU) is the main active ingredient of Aucuba japonica which has showed many positive effects such as anti‐inflammation and liver protection. Non‐alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. In this research, we explored the effects of AU on the tyloxapol‐induced NAFLD in mice and apolipoprotein C‐III (apoC‐III) induced‐3T3L1 cells. Tyloxapol (300 mg/kg) was injected to C57BL/6 mice with aucubin. The differentiated 3T3‐L1 cells were treated with or without aucubin after stimulation of apoC‐III (100 μg/mL). In results, aucubin inhibited hyperlipidaemia, oxidative stress and inflammation by influencing the content of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), very low density lipoprotein (VLDL), myeloperoxidase (MPO), superoxide dismutase (SOD), tumour necrosis factor receptor‐α (TNF‐α), interleukin‐1β (IL‐1β), and IL‐6 in blood. AU activated NF‐E2‐related factor 2 (Nrf2), peroxisome proliferator‐activated receptor α (PPARα), PPARγ and hemeoxygenase‐1 (HO‐1) and promoted the phosphorylation of adenosine 5′‐monophosphate‐activated protein kinase (AMPKα), AMPKβ, acetyl‐CoA carboxylase (ACC) and protein kinase B (AKT). In conclusion, AU performed the function of hypolipidaemic by its obvious anti‐inflammation and antioxidant activity, which may become a kind of new drug targeting at NAFLD.
Collapse
Affiliation(s)
- Bingyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| | - Chenxu Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yi Peng
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Jiaqi Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| | - Zheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| | - Lin Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| | - Meiyu Jin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
263
|
Evans RJ, Pline K, Loynes CA, Needs S, Aldrovandi M, Tiefenbach J, Bielska E, Rubino RE, Nicol CJ, May RC, Krause HM, O’Donnell VB, Renshaw SA, Johnston SA. 15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathog 2019; 15:e1007597. [PMID: 30921435 PMCID: PMC6438442 DOI: 10.1371/journal.ppat.1007597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis. Cryptococcus neoformans is an opportunistic fungal pathogen that is responsible for significant numbers of deaths in the immunocompromised population worldwide. Here we address whether eicosanoids produced by C. neoformans manipulate host innate immune cells during infection. Cryptococcus neoformans produces several eicosanoids that are notable for their similarity to vertebrate eicosanoids, it is therefore possible that fungal-derived eicosanoids may provoke physiological effects in the host. Using a combination of in vitro and in vivo infection models we identify a specific eicosanoid species—prostaglandin E2 –that is required by C. neoformans for growth during infection. We subsequently show that prostaglandin E2 must be converted to 15-keto-prostaglandin E2 within the host before it has these effects. Furthermore, we find that prostaglandin E2/15-keto-prostaglandin E2 mediated virulence is via activation of host PPAR-γ –an intracellular eicosanoid receptor known to interact with 15-keto-PGE2.
Collapse
Affiliation(s)
- Robert J. Evans
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Katherine Pline
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Catherine A. Loynes
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Sarah Needs
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Jens Tiefenbach
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Ewa Bielska
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Rachel E. Rubino
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christopher J. Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Henry M. Krause
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Stephen A. Renshaw
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Simon A. Johnston
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| |
Collapse
|
264
|
Herman FJ, Simkovic S, Pasinetti GM. Neuroimmune nexus of depression and dementia: Shared mechanisms and therapeutic targets. Br J Pharmacol 2019; 176:3558-3584. [PMID: 30632147 DOI: 10.1111/bph.14569] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Dysfunctional immune activity is a physiological component of both Alzheimer's disease (AD) and major depressive disorder (MDD). The extent to which altered immune activity influences the development of their respective cognitive symptoms and neuropathologies remains under investigation. It is evident, however, that immune activity affects neuronal function and circuit integrity. In both disorders, alterations are present in similar immune networks and neuroendocrine signalling pathways, immune responses persist in overlapping neuroanatomical locations, and morphological and structural irregularities are noted in similar domains. Epidemiological studies have also linked the two disorders, and their genetic and environmental risk factors intersect along immune-activating pathways and can be synonymous with one another. While each of these disorders individually contains a large degree of heterogeneity, their shared immunological components may link distinct phenotypes within each disorder. This review will therefore highlight the shared immune pathways of AD and MDD, their overlapping neuroanatomical features, and previously applied, as well as novel, approaches to pharmacologically manipulate immune pathways, in each neurological condition. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Francis J Herman
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Sherry Simkovic
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Giulio M Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA.,Geriatrics Research. Education, and Clinical Center, JJ Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
265
|
Rao DM, Phan DT, Choo MJ, Weaver MR, Oberley-Deegan RE, Bowler RP, Gally F. Impact of fatty acid binding protein 5-deficiency on COPD exacerbations and cigarette smoke-induced inflammatory response to bacterial infection. Clin Transl Med 2019; 8:7. [PMID: 30877402 PMCID: PMC6420539 DOI: 10.1186/s40169-019-0227-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although cigarette smoking (CS) is by far the most important risk factor of chronic obstructive pulmonary disease (COPD), repeated and sustained infections are clearly linked to disease pathogenesis and are responsible for acute inflammatory flares (i.e. COPD exacerbations). We have previously identified Fatty Acid Binding Protein 5 (FABP5) as an important anti-inflammatory protein in primary airway epithelial cells. RESULTS In this study we found decreased FABP5 mRNA and protein levels in peripheral blood mononuclear cells (PBMCs) of COPD patients, especially among those who reported episodes of COPD exacerbations. Using wildtype (WT) and FABP5-/- mice, we examined the effects of FABP5 on CS and infection-induced inflammatory responses. Similarly to what we saw in airway epithelial cells, infection increased FABP5 expression while CS decreased FABP5 expression in mouse lung tissues. CS-exposed and P. aeruginosa-infected FABP5-/- mice had significantly increased inflammation as shown by increased lung histopathological score, cell infiltration and inflammatory cytokine levels. Restoration of FABP5 in alveolar macrophages using a lentiviral approach attenuated the CS- and bacteria-induced pulmonary inflammation. And finally, while P. aeruginosa infection increased PPARγ activity, CS or FABP5 knockdown greatly reduced PPARγ activity. CONCLUSIONS These findings support a model in which CS-induced FABP5 inhibition contributes to increased inflammation in COPD exacerbations. It is interesting to speculate that the increased inflammation is a result of decreased PPARγ activity.
Collapse
Affiliation(s)
- Deviyani M. Rao
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| | - Della T. Phan
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| | - Michelle J. Choo
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| | - Michael R. Weaver
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC 6.12.392, 985870 Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| |
Collapse
|
266
|
van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM, Adelia, Schuurman KG, Helder B, Tas SW, Schultze JL, Hamann J, Huitinga I. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun 2019; 10:1139. [PMID: 30867424 PMCID: PMC6416318 DOI: 10.1038/s41467-019-08976-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Here we report the transcriptional profile of human microglia, isolated from normal-appearing grey matter (GM) and white matter (WM) of multiple sclerosis (MS) and non-neurological control donors, to find possible early changes related to MS pathology. Microglia show a clear region-specific profile, indicated by higher expression of type-I interferon genes in GM and higher expression of NF-κB pathway genes in WM. Transcriptional changes in MS microglia also differ between GM and WM. MS WM microglia show increased lipid metabolism gene expression, which relates to MS pathology since active MS lesion-derived microglial nuclei show similar altered gene expression. Microglia from MS GM show increased expression of genes associated with glycolysis and iron homeostasis, possibly reflecting microglia reacting to iron depositions. Except for ADGRG1/GPR56, expression of homeostatic genes, such as P2RY12 and TMEM119, is unaltered in normal-appearing MS tissue, demonstrating overall preservation of microglia homeostatic functions in the initiation phase of MS.
Collapse
Affiliation(s)
- Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Suzanne S M Miedema
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Adelia
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Karianne G Schuurman
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Boy Helder
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Sigmund-Freud-Street 27, 53127, Bonn, Germany
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
| |
Collapse
|
267
|
Goulart MR, Hlavaty SI, Chang YM, Polton G, Stell A, Perry J, Wu Y, Sharma E, Broxholme J, Lee AC, Szladovits B, Turmaine M, Gribben J, Xia D, Garden OA. Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells. Sci Rep 2019; 9:3574. [PMID: 30837603 PMCID: PMC6400936 DOI: 10.1038/s41598-019-40285-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key players in immune evasion, tumor progression and metastasis. MDSCs accumulate under various pathological states and fall into two functionally and phenotypically distinct subsets that have been identified in humans and mice: polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. As dogs are an excellent model for human tumor development and progression, we set out to identify PMN-MDSCs and M-MDSCs in clinical canine oncology patients. Canine hypodense MHC class II-CD5-CD21-CD11b+ cells can be subdivided into polymorphonuclear (CADO48A+CD14-) and monocytic (CADO48A-CD14+) MDSC subsets. The transcriptomic signatures of PMN-MDSCs and M-MDSCs are distinct, and moreover reveal a statistically significant similarity between canine and previously published human PMN-MDSC gene expression patterns. As in humans, peripheral blood frequencies of canine PMN-MDSCs and M-MDSCs are significantly higher in dogs with cancer compared to healthy control dogs (PMN-MDSCs: p < 0.001; M-MDSCs: p < 0.01). By leveraging the power of evolution, we also identified additional conserved genes in PMN-MDSCs of multiple species that may play a role in MDSC function. Our findings therefore validate the dog as a model for studying MDSCs in the context of cancer.
Collapse
Affiliation(s)
- Michelle R Goulart
- Royal Veterinary College, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sabina I Hlavaty
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - James Perry
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Wu
- Royal Veterinary College, London, UK
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Avery C Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mark Turmaine
- Division of Bioscience, University College London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dong Xia
- Royal Veterinary College, London, UK
| | - Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
268
|
Gilroy DW, Bishop-Bailey D. Lipid mediators in immune regulation and resolution. Br J Pharmacol 2019; 176:1009-1023. [PMID: 30674066 DOI: 10.1111/bph.14587] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/31/2022] Open
Abstract
We are all too familiar with the events that follow a bee sting-heat, redness, swelling, and pain. These are Celsus' four cardinal signs of inflammation that are driven by very well-defined signals and hormones. In fact, targeting the factors that drive this onset phase is the basis upon which most current anti-inflammatory therapies were developed. We are also very well aware that within a few hours, these cardinal signs normally disappear. In other words, inflammation resolves. When it does not, inflammation persists, resulting in damaging chronic conditions. While inflammatory onset is actively driven, so also is its resolution-years of research have identified novel internal counter-regulatory signals that work together to switch off inflammation. Among these signals, lipids are potent signalling molecules that regulate an array of immune responses including vascular hyper reactivity and pain, as well as leukocyte trafficking and clearance, so-called resolution. Here, we collate bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and their role in inflammation, as well as resolution. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
- Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - David Bishop-Bailey
- Comparative Biological Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
269
|
DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE. Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res 2019; 16:133-143. [PMID: 30706731 DOI: 10.1177/1479164118825376] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes individuals are at high risk for macrovascular complications: myocardial infarction, stroke and cardiovascular mortality. Recent cardiovascular outcome trials have demonstrated that agents in two antidiabetic classes (SGLT2 inhibitors and GLP-1 receptor agonists) reduce major adverse cardiovascular events. However, there is strong evidence that an older and now generically available medication, the thiazolidinedione, pioglitazone, can retard the atherosclerotic process (PERISCOPE and Chicago) and reduce cardiovascular events in large randomized prospective cardiovascular outcome trials (IRIS and PROactive). Pioglitazone is a potent insulin sensitizer, preserves beta-cell function, causes durable reduction in HbA1c, corrects multiple components of metabolic syndrome and improves nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Adverse effects (weight gain, fluid retention, fractures) must be considered, but are diminished with lower doses and are arguably outweighed by these multiple benefits. With healthcare expenses attributable to diabetes increasing rapidly, this cost-effective drug requires reconsideration in the therapeutic armamentarium for the disease.
Collapse
Affiliation(s)
- Ralph A DeFronzo
- 1 Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Silvio Inzucchi
- 2 Endocrine Division, Yale School of Medicine, New Haven, CT, USA
| | - Muhammad Abdul-Ghani
- 1 Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | | |
Collapse
|
270
|
Sima C, Viniegra A, Glogauer M. Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis. J Leukoc Biol 2019; 105:473-487. [PMID: 30452781 PMCID: PMC6386606 DOI: 10.1002/jlb.1ru0818-310r] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis (PD) is a chronic osteolytic disease that shares pathogenic inflammatory features with other conditions associated with nonresolving inflammation. A hallmark of PD is inflammation-mediated alveolar bone loss. Myeloid cells, in particular polymorphonuclear neutrophils (PMN) and macrophages (Mac), are essential players in PD by control of gingival biofilm pathogenicity, activation of adaptive immunity, as well as nonresolving inflammation and collateral tissue damage. Despite mounting evidence of significant innate immune implications to PD progression and healing after therapy, myeloid cell markers and targets for immune modulation have not been validated for clinical use. The remarkable plasticity of monocytes/Mac in response to local activation factors enables these cells to play central roles in inflammation and restoration of tissue homeostasis and provides opportunities for biomarker and therapeutic target discovery for management of chronic inflammatory conditions, including osteolytic diseases such as PD and arthritis. Along a wide spectrum of activation states ranging from proinflammatory to pro-resolving, Macs respond to environmental changes in a site-specific manner in virtually all tissues. This review summarizes the existing evidence on Mac immunomodulation therapies for osteolytic diseases in the broader context of conditions associated with nonresolving inflammation, and discusses osteoimmune implications of Macs in PD.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Viniegra
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
271
|
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog 2019; 15:e1007585. [PMID: 30897154 PMCID: PMC6428245 DOI: 10.1371/journal.ppat.1007585] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.
Collapse
Affiliation(s)
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
272
|
Aftab A, Kemp DE, Ganocy SJ, Schinagle M, Conroy C, Brownrigg B, D'Arcangelo N, Goto T, Woods N, Serrano MB, Han H, Calabrese JR, Gao K. Double-blind, placebo-controlled trial of pioglitazone for bipolar depression. J Affect Disord 2019; 245:957-964. [PMID: 30699881 DOI: 10.1016/j.jad.2018.11.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Objective of the present study was to conduct an 8-week double-blind, randomized, placebo-controlled trial to test the efficacy of pioglitazone in the treatment of bipolar depression. METHODS 38 outpatients with bipolar disorder and current major depressive episode were randomized to pioglitazone (15-45 mg/day) or placebo. The use of concomitant mood stabilizers, antipsychotics, and antidepressants was permitted. The primary outcome measure was the 30-item Inventory of Depressive Symptomatology, Clinician Rated (IDS-C30) total score change from baseline to endpoint. Laboratory evaluations, including serum level of inflammatory and metabolic biomarkers, were conducted. RESULTS 37 subjects were analyzed for efficacy (1 subject had no follow-up data). Mean reduction from baseline to week 8 in IDS-C30 score was-6.59 for pioglitazone and -11.63 for placebo. Mixed effects modeling indicated borderline statistically significant difference between the two groups (p = 0.056) in favor of placebo. On analysis of inflammatory and metabolic markers, a statistically significant negative correlation was noted between change in leptin levels and change in depression scores in the pioglitazone group (r = -0.61, p = 0.047) but not in the placebo group, the significance of which is unclear as the study failed to demonstrate antidepressant efficacy of pioglitazone over placebo. No serious adverse effects were reported, and pioglitazone was well-tolerated. LIMITATIONS small sample size with inadequate power, concomitant use of other psychotropic medications, and lack of statistical adjustment for multiple testing. CONCLUSION Current study does not support the antidepressant efficacy of pioglitazone in the treatment of bipolar depression. (240 words).
Collapse
Affiliation(s)
- Awais Aftab
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC0664, La Jolla, CA, 92093, United States.
| | - David E Kemp
- Advocate Health Care, 4440W 95th Street, Oak Lawn, IL 60453, United States.
| | - Stephen J Ganocy
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Martha Schinagle
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Carla Conroy
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Brittany Brownrigg
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Nicole D'Arcangelo
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States. Nicole.D'
| | - Toyomi Goto
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Nicole Woods
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Mary Beth Serrano
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Huiqin Han
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Joseph R Calabrese
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Keming Gao
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| |
Collapse
|
273
|
Bioactive Lipids in Inflammation After Central Nervous System Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:181-194. [PMID: 31140179 DOI: 10.1007/978-3-030-11488-6_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the progress made over the last decades to understand the mechanisms underlying tissue damage and neurological deficits after neurotrauma, there are currently no effective treatments in the clinic. It is well accepted that the inflammatory response in the CNS after injury exacerbates tissue loss and functional impairments. Unfortunately, the use of potent anti-inflammatory drugs, such as methylprednisolone, fails to promote therapeutic recovery and also gives rise to several undesirable side effects related to immunosuppression. The injury-induced inflammatory response is complex, and understanding the mechanisms that regulate this inflammation is therefore crucial in the quest to develop effective treatments. Bioactive lipids have emerged as potent molecules in controlling the initiation, coordination, and resolution of inflammation and in promoting tissue repair and recovery of homeostasis. These bioactive lipids are produced by cells involved in the inflammatory response, and their defective synthesis leads to persistent chronic inflammation, tissue damage, and fibrosis. The present chapter discusses recent evidence for the role of some of these bioactive lipids, in particular, eicosanoid and pro-resolving lipid mediators, in the regulation of inflammation after neurotrauma and highlights the therapeutic potential of some of these lipids in enhancing neurological outcomes after CNS injuries.
Collapse
|
274
|
Khan MA, Alam Q, Haque A, Ashafaq M, Khan MJ, Ashraf GM, Ahmad M. Current Progress on Peroxisome Proliferator-activated Receptor Gamma Agonist as an Emerging Therapeutic Approach for the Treatment of Alzheimer's Disease: An Update. Curr Neuropharmacol 2019; 17:232-246. [PMID: 30152284 PMCID: PMC6425074 DOI: 10.2174/1570159x16666180828100002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/14/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder, characterized by the deposition of amyloid-β within the brain parenchyma resulting in a significant decline in cognitive functions. The pathophysiological conditions of the disease are recognized by the perturbation of synaptic function, energy and lipid metabolism. In Addition deposition of amyloid plaques also triggers inflammation upon the induction of microglia. Peroxisome proliferatoractivated receptors (PPARs) are ligand-activated transcription factors known to play important role in the regulation of glucose absorption, homeostasis of lipid metabolism and are further known to involved in repressing the expression of genes related to inflammation. Therefore, agonists of this receptor represent an attractive therapeutic target for AD. Recently, both clinical and preclinical studies showed that use of Peroxisome proliferator-activated receptor gamma (PPARγ) agonist improves both learning and memory along with other AD related pathology. Thus, PPARγ signifies a significant new therapeutic target in treating AD. In this review, we have shed some light on the recent progress of how, PPARγ agonist selectively modulated different cellular targets in AD and its amazing potential in the treatment of AD.
Collapse
Affiliation(s)
- Mahmood Ahmad Khan
- Address correspondence to these authors at the Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India; E-mail: , and King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | | | | | | | | | - Ghulam Md Ashraf
- Address correspondence to these authors at the Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India; E-mail: , and King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | | |
Collapse
|
275
|
Novel Treatment Opportunities Against Cognitive Impairment in Parkinson's Disease with an Emphasis on Diabetes-Related Pathways. CNS Drugs 2019; 33:143-160. [PMID: 30687888 PMCID: PMC6373401 DOI: 10.1007/s40263-018-0601-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cognitive impairment is highly prevalent in patients with Parkinson's disease (PD) and causes adverse health outcomes. Novel procognitive therapies are needed to address this unmet need. It is now established that there is an increased risk of dementia in patients with type 2 diabetes mellitus (T2DM) and, moreover, T2DM and PD may have common underlying biological mechanisms. As such, T2DM medications are emerging as potential therapies in the context of PD dementia (PDD). In this review, we provide an update on pathophysiological mechanisms underlying cognitive impairments and PDD, focusing on diabetes-related pathways. Finally, we have conducted a review of ongoing clinical trials in PD patients with dementia, highlighting the multiple pharmacological mechanisms that are targeted to achieve cognitive enhancement.
Collapse
|
276
|
Martinez B, Peplow PV. Amelioration of Alzheimer's disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer's disease. Neural Regen Res 2019; 14:1158-1176. [PMID: 30804241 PMCID: PMC6425849 DOI: 10.4103/1673-5374.251192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The most common age-related neurodegenerative disease is Alzheimer’s disease (AD) characterized by aggregated amyloid-β (Aβ) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intraneuronal neurofibrillary tangles, together with loss of cholinergic neurons, synaptic alterations, and chronic inflammation within the brain. These lead to progressive impairment of cognitive function. There is evidence of innate immune activation in AD with microgliosis. Classically-activated microglia (M1 state) secrete inflammatory and neurotoxic mediators, and peripheral immune cells are recruited to inflammation sites in the brain. The few drugs approved by the US FDA for the treatment of AD improve symptoms but do not change the course of disease progression and may cause some undesirable effects. Translation of active and passive immunotherapy targeting Aβ in AD animal model trials had limited success in clinical trials. Treatment with immunomodulatory/anti-inflammatory agents early in the disease process, while not preventive, is able to inhibit the inflammatory consequences of both Aβ and tau aggregation. The studies described in this review have identified several agents with immunomodulatory properties that alleviated AD pathology and cognitive impairment in animal models of AD. The majority of the animal studies reviewed had used transgenic models of early-onset AD. More effort needs to be given to creat models of late-onset AD. The effects of a combinational therapy involving two or more of the tested pharmaceutical agents, or one of these agents given in conjunction with one of the cell-based therapies, in an aged animal model of AD would warrant investigation.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, Merced, CA, USA; Department of Medicine, St. Georges University School of Medicine, Grenada; Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
277
|
Lee YK, Park JE, Lee M, Hardwick JP. Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2. LIVER RESEARCH 2018; 2:209-215. [PMID: 31245168 PMCID: PMC6594548 DOI: 10.1016/j.livres.2018.12.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ or PPARG) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It plays a master role in the differentiation and proliferation of adipose tissues. It has two major isoforms, PPARγ1 and PPARγ2, encoded from a single gene using two separate promoters and alternative splicing. Among them, PPARγ2 is most abundantly expressed in adipocytes and plays major adipogenic and lipogenic roles in the tissue. Furthermore, it has been shown that PPARγ2 is also expressed in the liver, specifically in hepatocytes, and its expression level positively correlates with fat accumulation induced by pathological conditions such as obesity and diabetes. Knockout of the hepatic Pparg gene ameliorates hepatic steatosis induced by diet or genetic manipulations. Transcriptional activation of Pparg in the liver induces the adipogenic program to store fatty acids in lipid droplets as observed in adipocytes. Understanding how the hepatic Pparg gene expression is regulated will help develop preventative and therapeutic treatments for non-alcoholic fatty liver disease (NAFLD). Due to the potential adverse effect of hepatic Pparg gene deletion on peripheral tissue functions, therapeutic interventions that target PPARγ for fatty liver diseases require fine-tuning of this gene's expression and transcriptional activity.
Collapse
Affiliation(s)
- Yoon Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA,Corresponding author. Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA., (Y.K. Lee)
| | - Jung Eun Park
- Department of Food Science and Human Nutrition, Chonbuk National University, Deokjin-gu, Jeonju, Republic of Korea
| | - Mikang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - James P. Hardwick
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
278
|
Rycek L, Ticli V, Pyszkowski J, Latkolik S, Liu X, Atanasov AG, Steinacher T, Bauer R, Schuster D, Dirsch VM, Schnürch M, Ernst M, Mihovilovic MD. Stereoselective Synthesis of the Isomers of Notoincisol A: Assigment of the Absolute Configuration of this Natural Product and Biological Evaluation. JOURNAL OF NATURAL PRODUCTS 2018; 81:2419-2428. [PMID: 30362739 PMCID: PMC6256351 DOI: 10.1021/acs.jnatprod.8b00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The total syntheses of all stereoisomers of notoincisol A, a recently isolated natural product with potential anti-inflammatory activity, are reported. The asymmetric synthesis was conducted employing a lipase-mediated kinetic resolution, which enables easy access to all required chiral building blocks with the aim of establishing the absolute configuration of the naturally occurring isomer. This was achieved by comparison of optical properties of the isolated compound with the synthetic derivatives obtained. Moreover, an assessment of the biological activity on PPARγ (peroxisome proliferator-activated receptor gamma) as a prominent receptor related to inflammation is reported. Only the natural isomer was found to activate the PPARγ receptor, and this phenomenon could be explained based on molecular docking studies. In addition, the pharmacological profiles of the isomers were determined using the GABAA (gamma-aminobutyric acid A) ion channel receptor as a representative target for allosteric modulation related to diverse CNS activities. These compounds were found to be weak allosteric modulators of the α1β3 and α1β2γ2 receptor subtypes.
Collapse
Affiliation(s)
- Lukas Rycek
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Vincenzo Ticli
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Jakob Pyszkowski
- Department
of Molecular Neurosciences, Medical University
of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Simone Latkolik
- Department
of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Xin Liu
- Institute
of Pharmaceutical Sciences, University of
Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Atanas G. Atanasov
- Department
of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Institute
of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Theresa Steinacher
- Institute
of Pharmacy/Pharmaceutical Chemistry, University
of Innsbruck, Innrain
80-82, 6020 Innsbruck, Austria
| | - Rudolf Bauer
- Institute
of Pharmaceutical Sciences, University of
Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Daniela Schuster
- Institute
of Pharmacy/Pharmaceutical Chemistry, University
of Innsbruck, Innrain
80-82, 6020 Innsbruck, Austria
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Verena M. Dirsch
- Department
of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Michael Schnürch
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Margot Ernst
- Department
of Molecular Neurosciences, Medical University
of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Marko D. Mihovilovic
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| |
Collapse
|
279
|
Abstract
Background Pioglitazone is a promising compound for treatment of core autism spectrum disorder (ASD) symptoms as it targets multiple relevant pathways, including immune system alterations. Objective This pilot study aimed to elucidate the maximum tolerated dose, safety, preliminary evidence of efficacy, and appropriate outcome measures in autistic children ages 5–12 years old. Methods We conducted a 16-week prospective cohort, single blind, single arm, 2-week placebo run-in, dose-finding study of pioglitazone. Twenty-five participants completed treatment. A modified dose finding method was used to determine safety and dose response among three dose levels: 0.25 mg/kg, 0.5 mg/kg, and 0.75 mg/kg once daily. Results Maximum tolerated dose: there were no serious adverse events (SAEs) and as such the maximum tolerated dose within the range tested was 0.75 mg/Kg once daily. Safety: overall, pioglitazone was well tolerated. Two participants discontinued intervention due to perceived non-efficacy and one due to the inability to tolerate interim blood work. Three participants experienced mild neutropenia. Early evidence of efficacy: statistically significant improvement was observed in social withdrawal, repetitive behaviors, and externalizing behaviors as measured by the Aberrant Behavior Checklist (ABC), Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Repetitive Behavior Scale–Revised (RBS-R). Forty-six percent of those enrolled were deemed to be global responders. Conclusions and relevance Pioglitazone is well-tolerated and shows a potential signal in measures of social withdrawal, repetitive, and externalizing behaviors. Randomized controlled trials using the confirmed dose are warranted. Trial registration ClinicalTrials.gov, NCT01205282. Registration date: September 20, 2010. Electronic supplementary material The online version of this article (10.1186/s13229-018-0241-5) contains supplementary material, which is available to authorized users.
Collapse
|
280
|
Medina S, Gil-Izquierdo Á, Durand T, Ferreres F, Domínguez-Perles R. Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants (Basel) 2018; 7:E165. [PMID: 30453565 PMCID: PMC6262570 DOI: 10.3390/antiox7110165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Structure-activity relationship (SAR) constitutes a crucial topic to discover new bioactive molecules. This approach initiates with the comparison of a target candidate with a molecule or a collection of molecules and their attributed biological functions to shed some light in the details of one or more SARs and subsequently using that information to outline valuable application of the newly identified compounds. Thus, while the empiric knowledge of medicinal chemistry is critical to these tasks, the results retrieved upon dedicated experimental demonstration retrieved resorting to modern high throughput analytical approaches and techniques allow to overwhelm the constraints adduced so far to the successful accomplishment of such tasks. Therefore, the present work reviews critically the evidences reported to date on the occurrence of phytoprostanes and phytofurans in plant foods, and the information available on their bioavailability and biological activity, shedding some light on the expectation waken up due to their structural similarities with prostanoids and isoprostanes.
Collapse
Affiliation(s)
- Sonia Medina
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, Faculty of Pharmacy, University of Montpellier-ENSCM, 34093 Montpellier, France.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
281
|
Illés P, Grycová A, Krasulová K, Dvořák Z. Effects of Flavored Nonalcoholic Beverages on Transcriptional Activities of Nuclear and Steroid Hormone Receptors: Proof of Concept for Novel Reporter Cell Line PAZ-PPARg. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12066-12078. [PMID: 30394742 DOI: 10.1021/acs.jafc.8b05158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed and characterized a novel human luciferase reporter cell line for the assessment of peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity, PAZ-PPARg. The luciferase activity induced by PPARγ endogenous agonist 15d-PGJ2 and prostaglandin PGD2 reached mean values of (87.9 ± 14.0)-fold and (89.6 ± 19.7)-fold after 24 h of exposure to 40 μM 15d-PGJ2 and 70 μM PGD2, respectively. A concentration-dependent inhibition of 15d-PGJ2- and PGD2-induced luciferase activity was observed after the application of T0070907, a selective antagonist of PPARγ, which confirms the specificity of response to both agonists. The PAZ-PPARg cell line, along with the reporter cell lines for the assessment of transcriptional activities of thyroid receptor (TR), vitamin D3 receptor (VDR), androgen receptor (AR), and glucocorticoid receptor (GR), were used for the screening of 27 commonly marketed flavored nonalcoholic beverages for their possible disrupting effects. Our findings indicate that some of the examined beverages have the potential to modulate the transcriptional activities of PPARγ, VDR, and AR.
Collapse
Affiliation(s)
- Peter Illés
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Aneta Grycová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Kristýna Krasulová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Zdeněk Dvořák
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
282
|
Yaribeygi H, Atkin SL, Pirro M, Sahebkar A. A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. J Cell Physiol 2018; 234:8286-8294. [PMID: 30417367 DOI: 10.1002/jcp.27699] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
The global prevalence of Type 2 diabetes mellitus and its associated complications are growing rapidly. Although the role of hyperglycemia is well recognized in the pathophysiology of diabetic complications, its exact underlying mechanisms are not fully understood. In this regard, accumulating evidence suggests that the role of inflammation appears pivotal, with studies showing that most diabetic complications are associated with an inflammatory response. Several classes of antidiabetic agents have been introduced for controlling glycemia, with evidence that these pharmacological agents may have modulatory effects on inflammation beyond their glucose-lowering activity. Here we review the latest evidence on the anti-inflammatory effects of commonly used antidiabetic medications and discuss the relevance of these effects on preventing diabetic complications.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Matteo Pirro
- Department of Medicine, Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
283
|
Wei W, Chen X, Lin X, Shan F, Lin S, Shen Q, Zhang L. Serum PPARγ level and PPARγ gene polymorphism as well as severity and prognosis of brain injury in patients with arteriosclotic cerebral infarction. Exp Ther Med 2018; 16:4058-4062. [PMID: 30344683 PMCID: PMC6176134 DOI: 10.3892/etm.2018.6660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
The aim of the study was to study the serum peroxisome proliferator-activated receptor gamma (PPARγ) level and PPARγ gene polymorphism as well as the severity and prognosis of brain injury in patients with arteriosclotic cerebral infarction (ACI). A total of 246 ACI patients presenting at the Department of Neurology of Zengcheng District People's Hospital of Guangzhou between April 2009 and July 2015 were selected as the case group, and 382 control subjects were enrolled as the control group. The hepatic and renal functions and homocysteine (Hcy) expression levels were measured. Enzyme-linked immunosorbent assay (ELISA) kit was used to detect the serum PPARγ levels of the ACI patients. Polymerase chain reaction-restriction fragment length polymorphism method was applied to measure the PPARγ gene polymorphism. The proportions of hypertension patients, diabetes patients and smoking people in the case group were significantly higher than those in the control group. The levels of cholesterol and fasting blood glucose in the case group were elevated obviously compared with those in the control group. The levels of indexes related to the hepatic function and renal function in the case group were remarkably higher than those in the control group. The serum PPARγ levels were increased progressively at acute stage. The distribution frequencies of PPARγ genotypes CC, CT and TT in the case group were higher than those in the control group; compared with that in the control group, the proportion of C allele in the case group was raised obviously, while that of T allele was significantly decreased. The serum PPARγ level has a close correlation with the PPARγ gene polymorphism in ACI patients, and PPARγ is also remarkably related to the severity of brain injury; therefore, PPARγ has great significance in the diagnosis and treatment of cerebral infarction.
Collapse
Affiliation(s)
- Weiming Wei
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Xuwen Chen
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Xueying Lin
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Fulan Shan
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Shaopeng Lin
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Qingyu Shen
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Li Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
- Correspondence to: Li Zhang, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxi Road, Guangzhou, Guangdong 510000, P.R. China, E-mail:
| |
Collapse
|
284
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
285
|
Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver. Sci Rep 2018; 8:15331. [PMID: 30333571 PMCID: PMC6193017 DOI: 10.1038/s41598-018-32853-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Macrophages have been recognized as key players in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether pharmacological attenuation of macrophages can be achieved by imatinib, an anti-leukemia drug with known anti-inflammatory and anti-diabetic properties, and how this impacts on NAFLD. We analyzed the pro- and anti-inflammatory gene expression of murine macrophages and human monocytes in vitro in the presence or absence of imatinib. In a time-resolved study, we characterized metabolic disease manifestations such as hepatic steatosis, systemic and adipose tissue inflammation as well as lipid and glucose metabolism in obese mice at one and three months of imatinib treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine macrophages and human monocytes in vitro. In obese mice, imatinib reduced TNFα-gene expression in peritoneal and liver macrophages and systemic lipid levels at one month. This was followed by decreased hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity after three months. As the transcription factor sterol regulatory element-binding protein (SREBP) links lipid metabolism to the innate immune response, we assessed the gene expression of SREBPs and their target genes, which was indeed downregulated in the liver and partially in peritoneal macrophages. In conclusion, targeting both inflammatory and lipogenic pathways in macrophages and liver as shown by imatinib could represent an attractive novel therapeutic strategy for patients with NAFLD.
Collapse
|
286
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 532] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
287
|
Kunicka Z, Kurzynska A, Szydlowska A, Mierzejewski K, Bogacka I. Peroxisome proliferator-activated receptor gamma ligands affect NF-kB and cytokine synthesis in the porcine endometrium-An in vitro study. Am J Reprod Immunol 2018; 81:e13053. [PMID: 30265413 DOI: 10.1111/aji.13053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
PROBLEM Cytokines, mediators of the immune response, are involved in the regulation of female reproductive processes during the estrous cycle and pregnancy. The present study aimed to investigate the effect of selected peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the expression of nuclear factor kappa B (NF-κB) and selected cytokines, such as interleukin (IL)-1β, -4, -6, -8, -10, and the leukemia inhibitory factor, in the porcine endometrium on days 10-12 and 14-16 of the estrous cycle (mid- and late luteal phase, respectively) or pregnancy (maternal recognition of pregnancy and beginning of implantation, respectively). METHOD OF STUDY Endometrial slices were incubated in vitro in the presence of PPARγ agonists, 15-deoxy-Δ12, 14-prostaglandin J2 or rosiglitazone, and PPARγ antagonist T0070907. mRNA and protein levels in tissues were determined by real-time PCR and Western blot. RESULTS On days 10-12 of the estrous cycle and days 14-16 of pregnancy, PPARγ ligands enhanced the expression of NF-κB, mRNA cytokines, and/or proteins. During the late luteal phase of the estrous cycle (days 14-16) and maternal recognition of pregnancy (days 10-12), PPARγ ligands inhibited the expression of NF-κB, and they differentially affected the expression of mRNA and proteins of cytokines. CONCLUSION Our results indicate that PPARγ is engaged in the endometrial synthesis of NF-κB and selected cytokines in pigs. The influence of PPARγ ligands on the tested components of the immune system varied subject to the physiological status of females, and it could be associated with differences in endometrial receptivity.
Collapse
Affiliation(s)
- Zuzanna Kunicka
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Kurzynska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Szydlowska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
288
|
Giacalone G, Tsapis N, Mousnier L, Chacun H, Fattal E. PLA-PEG Nanoparticles Improve the Anti-Inflammatory Effect of Rosiglitazone on Macrophages by Enhancing Drug Uptake Compared to Free Rosiglitazone. MATERIALS 2018; 11:ma11101845. [PMID: 30262751 PMCID: PMC6213468 DOI: 10.3390/ma11101845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
Abstract
Among cardiovascular diseases, atherosclerosis remains the first cause of death in the United States of America and Europe, as it leads to myocardial infarction or stroke. The high prevalence of heart diseases is due to the difficulty in diagnosing atherosclerosis, since it can develop for decades before symptoms occur, and to the complexity of the treatment since targets are also important components of the host defenses. The antidiabetics thiazolidinediones, among which is rosiglitazone (RSG), have demonstrated anti-atherosclerotic effect in animal models, and are therefore promising candidates for the improvement of atherosclerosis management. Nevertheless, their administration is hindered by the insurgence of severe side effects. To overcome this limitation, rosiglitazone has been encapsulated into polymeric nanoparticles, which permit efficient delivery to its nuclear target, and selective delivery to the site of action, allowing the reduction of unwanted effects. In the present work, we describe nanoparticle formulation using polylactic acid (PLA) coupled to polyethylene glycol (PEG), their characterization, and their behavior on RAW264.7 macrophages, an important target in atherosclerosis treatment. RSG nanocarriers showed no toxicity on cells at all concentrations tested, an anti-inflammatory effect in a dose-dependent manner, up to 5 times more efficient than the free molecule, and an increased RSG uptake which is consistent with the effect shown. These biodegradable nanoparticles represent a valid tool to be further investigated for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Giovanna Giacalone
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Ludivine Mousnier
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Hélène Chacun
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
289
|
Abdellatif KRA, Fadaly WAA, Kamel GM, Elshaier YAMM, El-Magd MA. Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg Chem 2018; 82:86-99. [PMID: 30278282 DOI: 10.1016/j.bioorg.2018.09.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
Nowadays, diabetes and its associated inflammatory complications are important public health problems worldwide. Market limitations of drugs with dual actions as anti-inflammatory (AI) and anti-diabetic have been led to a temptation for focusing on the discovery and development of new compounds with potential AI and anti-diabetic activities. Herein, we synthesized two new series containing pyrazole ring with vicinal diaryl rings as selective COX-2 moiety and thiazolidindione (series 12a-f) or thiazolidinone (series 13a-f) as anti-diabetic moiety and the two moieties were linked together with methylene or methylenehydrazone functionality. The two series were evaluated for their COX inhibition, AI activity and ulcerogenic liability and for the anti-diabetic activity; 12a-f and 13a-f were assessed in vitro against α-glucosidase, β- glucosidase, in vivo hypoglycemic activity (one day and 15 days studies) in addition to PPARγ activation study. Four compounds (12c, 12f, 13b and 13f) had higher COX-2 S.I. (8.69-9.26) than the COX-2 selective drug celecoxib (COX-2 S.I. = 8.60) and showed the highest AI activities and the lowest ulcerogenicity than other derivatives. Also, two thiazolidindione derivatives 12e and 12f and two thiazolidinone derivatives 13b and 13c showed higher inhibitory activities against α- and β-glucosidase (% inhibitory activity = 62.15, 55.30, 65.37, 59.08 for α-glucosidase and 57.42, 60.07, 58.19, 66.90 for β-glucosidase respectively) than reference compounds (acarbose with % inhibitory activity = 49.50 for α-glucosidase and d-saccharic acid 1,4-lactone monohydrate with % inhibitory activity = 53.42 for β-glucosidase) and also showed good PPAR-γ activation and good hypoglycemic effect in comparison to pioglitazone and rosiglitazone. Moreover, Shape comparison and docking studies were carried out to understand their interaction and similarity with standard drugs.
Collapse
Affiliation(s)
- Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia.
| | - Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Gehan M Kamel
- Pharmacology Department, Faculty of Veterinary, Cairo University, Cairo, Egypt
| | - Yaseen A M M Elshaier
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Mohammed A El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelshiekh, 33516, Egypt
| |
Collapse
|
290
|
Kim SH, Lim JW, Kim H. Astaxanthin Inhibits Mitochondrial Dysfunction and Interleukin-8 Expression in Helicobacter pylori-Infected Gastric Epithelial Cells. Nutrients 2018; 10:E1320. [PMID: 30231525 PMCID: PMC6164770 DOI: 10.3390/nu10091320] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection leads to gastric inflammation, peptic ulcer and gastric carcinoma. H. pylori activates NADPH oxidase and increases reactive oxygen species (ROS), which induce NF-κB activation and IL-8 expression in gastric epithelial cells. Dysfunctional mitochondria trigger inflammatory cytokine production. Peroxisome proliferator-activated receptors-γ (PPAR-γ) regulate inflammatory response. Astaxanthin is a powerful antioxidant that protects cells against oxidative stress. The present study was aimed at determining whether astaxanthin inhibits H. pylori-induced mitochondrial dysfunction, NF-κB activation, and IL-8 expression via PPAR-γ activation in gastric epithelial cells. Gastric epithelial AGS cells were treated with astaxanthin, NADPH oxidase inhibitor apocynin and PPAR-γ antagonist GW9662, and infected with H. pylori. As a result, H. pylori caused an increase in intracellular and mitochondrial ROS, NF-κB activation and IL-8 expression, but decreased mitochondrial membrane potential and ATP level. Astaxanthin inhibited H. pylori-induced alterations (increased ROS, mitochondrial dysfunction, NF-κB activation, and IL-8 expression). Astaxanthin activated PPAR-γ and its target gene catalase in H. pylori-infected cells. Apocynin reduced ROS and inhibited IL-8 expression while astaxanthin did not affect NADPH oxidase activity. Inhibitory effects of astaxanthin on ROS levels and IL-8 expression were suppressed by addition of GW9662. In conclusion, astaxanthin inhibits H. pylori-induced mitochondrial dysfunction and ROS-mediated IL-8 expression by activating PPAR-γ and catalase in gastric epithelial cells. Astaxanthin may be beneficial for preventing oxidative stress-mediated gastric inflammation-associated H. pylori infection.
Collapse
Affiliation(s)
- Suhn Hyung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
291
|
Fan P, Abderrahman B, Chai TS, Yerrum S, Jordan VC. Targeting Peroxisome Proliferator-Activated Receptor γ to Increase Estrogen-Induced Apoptosis in Estrogen-Deprived Breast Cancer Cells. Mol Cancer Ther 2018; 17:2732-2745. [PMID: 30224430 DOI: 10.1158/1535-7163.mct-18-0088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is an important transcription factor that modulates lipid metabolism and inflammation. However, it remains unclear whether PPARγ is involved in modulation of estrogen (E2)-induced inflammation, thus affecting apoptosis of E2-deprived breast cancer cells, MCF-7:5C and MCF-7:2A. Here, we demonstrated that E2 treatment suppressed the function of PPARγ in both cell lines, although the suppressive effect in MCF-7:2A cells was delayed owing to high PPARγ expression. Activation of PPARγ by a specific agonist, pioglitazone, selectively blocked the induction of TNFα expression by E2, but did not affect other adipose inflammatory genes, such as fatty acid desaturase 1 and IL6. This suppression of TNFα expression by pioglitazone was mainly mediated by transrepression of nuclear factor-κB (NF-κB) DNA-binding activity. A novel finding was that NF-κB functions as an oxidative stress inducer in MCF-7:5C cells but an antioxidant in MCF-7:2A cells. Therefore, the NF-κB inhibitor JSH-23 displayed effects equivalent to those of pioglitazone, with complete inhibition of apoptosis in MCF-7:5C cells, but it increased E2-induced apoptosis in MCF-7:2A cells. Depletion of PPARγ by siRNA or the PPARγ antagonist T0070907 accelerated E2-induced apoptosis, with activation of NF-κB-dependent TNFα and oxidative stress. For the first time, we demonstrated that PPARγ is a growth signal and has potential to modulate NF-κB activity and oxidative stress in E2-deprived breast cancer cell lines. All of these findings suggest that anti-PPARγ therapy is a novel strategy to improve the therapeutic effects of E2-induced apoptosis in E2-deprived breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Balkees Abderrahman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tina S Chai
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,University of Virginia, Charlottesville, Virginia
| | - Smitha Yerrum
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
292
|
Nie S, Cui X, Guo J, Ma X, Zhi H, Li S, Li Y. Inhibiting role of rosiglitazone in the regulation of inflammatory response and protective effects for severe acute pancreatitis in mice. J Cell Biochem 2018; 120:799-808. [PMID: 30206968 DOI: 10.1002/jcb.27440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Our study aimed to probe the effects of rosiglitazone treatment on a severe acute pancreatitis (SAP) model induced by caerulein and investigate the underlying mechanism. METHODS Differentially expressed messenger RNAs (mRNAs) in the mice of a SAP group were screened out by microarray analysis. The inflammatory response pathway was obtained from the online website DAVID Bioinformatics Resources 6.8. The interactions of caerulein and its target proteins were shown by search tool for interactions of chemicals (STITCH). Functional interactions of the genes associated with pancreatitis and the target proteins of caerulein were obtained with search tool for interactions of chemicals (STRING). SAP mice were established by hourly intraperitoneal injection of caerulein. Rosiglitazone was used as treatment drug, and pancreatic inflammation was assessed. The expression of Socs3 was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis. The expression of interleukin (IL)-6, IL-1b, and Egr1 were studied by RT-PCR and Western blot analysis. RESULTS The GSE77983 data were analyzed, and the results showed that Socs3 was overexpressed in SAP tissues. The inflammation response pathway in pancreas was selected by DAVID, STITCH, and STRING. After injection of rosiglitazone in mice, the serum levels of amylase and lipase were decreased. Furthermore, the mRNA and protein levels of Socs3 and inflammatory cytokines in pancreatic tissues were downregulated. CONCLUSIONS Rosiglitazone could protect mice with SAP from injury by downregulating Socs3 and inhibiting the inflammatory response pathway.
Collapse
Affiliation(s)
- Shen Nie
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoya Cui
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jinping Guo
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaohua Ma
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Haijun Zhi
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Shilei Li
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yong Li
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
293
|
Neuregulin-1β modulates myogenesis in septic mouse serum-treated C2C12 myotubes in vitro through PPARγ/NF-κB signaling. Mol Biol Rep 2018; 45:1611-1619. [PMID: 30178217 DOI: 10.1007/s11033-018-4293-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
Sepsis-induced skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass. Cytokine-induced apoptosis and impaired myogenesis play key roles in the development of this condition. However, the complete underlying mechanism remains largely unknown. Neuregulins are glial growth factors essential for myogenesis that regulate muscle metabolism. We investigated the role of neuregulin-1β (NRG-1β) in sepsis-induced apoptosis and myogenesis in skeletal muscle using a serum-based in vitro sepsis model. C2C12 myoblasts were differentiated by treatment with proliferative medium for 7 days. Then, cells were treated with 2% sham mouse serum, 1 nM NRG-1β in 2% sham mouse serum, 2% septic mouse serum (SMS), or 1 nM NRG-1β in 2% SMS. Exposure to SMS induced apoptosis, impaired myogenesis, and downregulated PPARγ. NRG-1β co-incubation remedied all these effects and inhibited NF-κB transcriptional activity. A specific PPARγ antagonist (GW9662) was also administered as a 2-h pretreatment to block PPARγ-mediated signaling and appeared to attenuate the effects of NRG-1β. Taken together, our results demonstrate that NRG-1β functions via a PPARγ/NF-κB-dependent pathway to modulate myogenesis and protect against apoptosis in SMS-treated C2C12 myotubes.
Collapse
|
294
|
Liu S, Wang Y, Su M, Song SJ, Hong J, Kim S, Im DS, Jung JH. A bile acid derivative with PPARγ-mediated anti-inflammatory activity. Steroids 2018; 137:40-46. [PMID: 30086355 DOI: 10.1016/j.steroids.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023]
Abstract
During our search for bioactive secondary metabolites in the jellyfish-derived fungus Penicillium chrysogenum J08NF-4, several bile acid derivatives (2-6) were isolated along with a new steroidal artifact (1). An in vitro anti-inflammatory assay showed that pretreatment with 1 suppressed NO production and the gene expressions of the pro-inflammatory mediators iNOS and TNF-α in LPS-induced RAW 264.7 macrophages. Docking analysis of 1 revealed that it might bind to the ligand binding domain (LBD) of PPARγ in a manner similar to that of the synthetic steroid mifepristone (7), which is used clinically to treat hypercortisolism and was recently reported to be a PPARγ agonist. Compound 1 activated PPARγ in murine Ac2F liver cells and suppressed the LPS-induced phosphorylation of the NF-κB p65 subunit leading to downregulation of pro-inflammatory mediators. Our findings suggest that 1 acts as a steroidal PPARγ activator that downregulates the expressions of pro-inflammatory mediators by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sen Liu
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ying Wang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mingzhi Su
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Shao-Jiang Song
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 10016, People's Republic of China
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suhkmann Kim
- Center for Proteome Biophysics, Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Soon Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
295
|
Yang D, Huynh H, Wan Y. Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 2018; 81:141-148. [PMID: 29051053 PMCID: PMC5916746 DOI: 10.1016/j.semcdb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Milk lipids provide a large proportion of energy, nutrients, essential fatty acids, and signaling molecules for the newborns, the synthesis of which is a tightly controlled process. Dysregulated milk lipid production and composition may be detrimental to the growth, development, health and survival of the newborns. Many genetically modified animal models have contributed to our understanding of milk lipid regulation in the lactating mammary gland. In this review, we discuss recent advances in our knowledge of the mechanisms that control milk lipid biosynthesis and secretion during lactation, and how maternal genetic and dietary defects impact milk lipid composition and consequently offspring traits.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
296
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
297
|
Vergani L, Vecchione G, Baldini F, Grasselli E, Voci A, Portincasa P, Ferrari PF, Aliakbarian B, Casazza AA, Perego P. Polyphenolic extract attenuates fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Eur J Nutr 2018; 57:1793-1805. [PMID: 28526925 DOI: 10.1007/s00394-017-1464-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Phenolic compounds (PC) of virgin olive oil exert several biochemical and pharmacological beneficial effects. Some dietary PC seem to prevent/improve obesity and metabolic-related disorders such as non-alcoholic fatty liver disease (NAFLD). We investigated the possible effects of PC extracted from olive pomace (PEOP) and of the main single molecules present in the extract (tyrosol, apigenin, oleuropein, p-coumaric and caffeic acid) in protecting hepatocytes and endothelial cells against triglyceride accumulation and oxidative stress. METHODS Rat hepatoma and human endothelial cells were exposed to a mixture of oleate/palmitate to mimic the condition of NAFLD and atherosclerosis, respectively. Then, cells were incubated for 24 h in the absence or in the presence of PC or PEOP. Different parameters were evaluated, such as lipid accumulation and oxidative stress-related markers. RESULTS In hepatic cells, expression of peroxisome proliferator-activated receptors (PPARs) and of stearoyl-CoA desaturase 1 (SCD-1) were assessed as index of lipid metabolism. In endothelial cells, expression of intercellular adhesion molecule-1 (ICAM-1), activation of nuclear factor kappa-B (NF-kB), release of nitric oxide (NO), and wound-healing rate were assessed as index of inflammation. CONCLUSION PEOP extract ameliorated hepatic lipid accumulation and lipid-dependent oxidative imbalance thus showing potential applications as therapeutic agent tuning down hepatosteatosis and atherosclerosis.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, 16132, Genova, Italy.
| | - Giulia Vecchione
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Francesca Baldini
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Bahar Aliakbarian
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Alessandro A Casazza
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| |
Collapse
|
298
|
The impact of metabolic reprogramming on dendritic cell function. Int Immunopharmacol 2018; 63:84-93. [PMID: 30075432 DOI: 10.1016/j.intimp.2018.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells with the ability to activate naïve T cells and direct the adaptive cellular immune response toward a specific profile. This is important, as different pathogens demand specific "profiles" of immune responses for their elimination. Such a goal is achieved depending on the maturation/activation status of DCs by the time of antigen presentation to T cells. Notwithstanding this, recent studies have shown that DCs alter their metabolic program to accommodate the functional changes in gene expression and protein synthesis that follow antigen recognition. In this review, we aim to summarize the data in the literature regarding the metabolic pathways involved with DC phenotypes and their functions.
Collapse
|
299
|
An in vitro test system for compounds that modulate human inflammatory macrophage polarization. Eur J Pharmacol 2018; 833:328-338. [DOI: 10.1016/j.ejphar.2018.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022]
|
300
|
Stenkula KG, Erlanson-Albertsson C. Adipose cell size: importance in health and disease. Am J Physiol Regul Integr Comp Physiol 2018; 315:R284-R295. [DOI: 10.1152/ajpregu.00257.2017] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose tissue is necessary to harbor energy. To handle excess energy, adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). Here, we have summarized the different experimental techniques used to study adipocyte cell size and describe adipocyte size in relation to insulin resistance, type 2 diabetes, and diet interventions. Hypertrophic adipocytes have an impaired cellular function, and inherent mechanisms restrict their expansion to protect against cell breakage and subsequent inflammation. Reduction of large fat cells by diet restriction, physical activity, or bariatric surgery therefore is necessary to improve cellular function and health. Small fat cells may also be dysfunctional and unable to expand. The distribution and function of the entire cell size range of fat cells, from small to very large fat cells, are an important but understudied aspect of adipose tissue biology. To prevent dysmetabolism, therapeutic strategies to expand small fat cells, recruit new fat cells, and reduce large fat cells are needed.
Collapse
Affiliation(s)
- Karin G. Stenkula
- Glucose Transport and Protein Trafficking, Biomedical Center, Lund University, Lund, Sweden
| | | |
Collapse
|