251
|
Lee JS, See RH, Galvin KM, Wang J, Shi Y. Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Res 1995; 23:925-31. [PMID: 7731805 PMCID: PMC306787 DOI: 10.1093/nar/23.6.925] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
YY1 is a C2H2-type zinc finger transcription factor that is a member of the human GLl-Kruppel family of proteins. YY1 represses transcription when bound upstream of transcription initiation sites. The repression can be relieved by adenovirus E1A and activation of target genes occurs. We have mapped the repression domain of YY1 to the C-terminal region, overlapping its DNA binding domain. We have also identified an activation domain within the first 69 amino acids of YY1. The YY1 C-terminal region is involved in physical interactions with E1A and is functionally necessary for YY1 to respond to E1A. This suggests that relief of YY1 repression by E1A involves YY1-E1A physical interactions. Although not involved in interactions with E1A, the N-terminal activation domain is also necessary for YY1 to respond to E1A. Presumably, under repressing conditions, the activation domain is masked by the conformation of YY1, but is released upon binding of E1A and is required to subsequently activate transcription. Consistent with this hypothesis, an ATF-2-YY1 chimeric protein containing the activation domain of ATF-2 and the C-terminal two-thirds of YY1 is still a potent repressor. Unlike the mutant YY1 lacking its own N-terminal activation domain, the chimeric protein is fully responsive to E1A.
Collapse
Affiliation(s)
- J S Lee
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
252
|
Lewis BA, Tullis G, Seto E, Horikoshi N, Weinmann R, Shenk T. Adenovirus E1A proteins interact with the cellular YY1 transcription factor. J Virol 1995; 69:1628-36. [PMID: 7853498 PMCID: PMC188760 DOI: 10.1128/jvi.69.3.1628-1636.1995] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The adenovirus 12S and 13S E1A proteins have been shown to relieve repression mediated by the cellular transcription factor YY1. The 13S E1A protein not only relieves repression but also activates transcription through YY1 binding sites. In this study, using a variety of in vivo and in vitro assays, we demonstrate that both E1A proteins can bind to YY1, although the 13S E1A protein binds more efficiently than the 12S E1A protein. Two domains on the E1A proteins interact with YY1: an amino-terminal sequence (residues 15 to 35) that is present in both E1A proteins and a domain that includes at least a portion of conserved region 3 (residues 140 to 188) that is present in the 13S but not the 12S E1A protein. Two domains on YY1 interact with E1A proteins: one is contained within residues 54 to 260, and the other is contained within the carboxy-terminal domain of YY1 (residues 332 to 414). Cotransfection of a plasmid expressing carboxy-terminal amino acids 332 to 414 of YY1 fused to the GAL4 DNA-binding domain can inhibit expression from a reporter construct with GAL4 DNA binding sites in its promoter, and inclusion of a third plasmid expressing E1A proteins can relieve the repression. Thus, we find a correlation between the ability of E1A to interact with the carboxy-terminal domain of YY1 and its ability to relieve repression caused by the carboxy-terminal domain of YY1. We propose that E1A proteins normally relieve YY1-mediated transcriptional repression by binding directly to the cellular transcription factor.
Collapse
Affiliation(s)
- B A Lewis
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, New Jersey 08544-1014
| | | | | | | | | | | |
Collapse
|
253
|
Sax CM, Cvekl A, Kantorow M, Gopal-Srivastava R, Ilagan JG, Ambulos NP, Piatigorsky J. Lens-specific activity of the mouse alpha A-crystallin promoter in the absence of a TATA box: functional and protein binding analysis of the mouse alpha A-crystallin PE1 region. Nucleic Acids Res 1995; 23:442-51. [PMID: 7885839 PMCID: PMC306695 DOI: 10.1093/nar/23.3.442] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lens-specific expression of the mouse alpha A-crystallin gene is regulated at the level of transcription. Here, we have studied the role of the PE1 region, which contains the TATA box (-31/-26) and the immediately adjacent PE1B sequence (-25/-12), in transcriptional regulation. Deletions within either the TATA box or PE1B sequence eliminated promoter activity in transfected lens cells. Surprisingly, these deletions did not eliminate lens-specific promoter activity of the transgene of transgenic mice. Transcription of the transgene with a TATA-deleted promoter initiated at multiple sites in the lenses of the transgenic mice. Footprint analysis revealed that the entire PE1 region was protected by nuclear extracts prepared from lens cells which express the alpha A-crystallin gene and from fibroblasts which do not express the gene. The -37/+3 region formed three specific EMSA complexes using lens cell nuclear extracts, while a similar but much less intense pattern was observed when a fibroblast nuclear extract was used. Competition experiments indicated that these complexes were not due to the binding of TBP to the TATA box, but rather to the binding of other nuclear proteins to the PE1B -25/-19 region. A series of co-transfection competition studies in vivo also suggested the functional importance of proteins binding in the -25/-19 region. The PE1B protein-DNA interactions appear to be conserved in the chicken, rodent and human alpha A-crystallin gene as well as within the alpha A- and alpha B-crystallin genes in the mouse. Our findings indicate that the PE1B region is important for mouse alpha A-crystallin promoter activity; the proximity of this site to the TATA box raises the possibility for cooperativity or competition between TBP and PE1B-bound proteins.
Collapse
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, NEI, NIH, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
254
|
Gavalas A, Zalkin H. Analysis of the chicken GPAT/AIRC bidirectional promoter for de novo purine nucleotide synthesis. J Biol Chem 1995; 270:2403-10. [PMID: 7836476 DOI: 10.1074/jbc.270.5.2403] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
GPAT and AIRC encode two enzymes that catalyze steps 1 and 6 plus 7, respectively, of the de novo purine biosynthetic pathway. The chicken genes are closely linked and divergently transcribed from an approximately 230-base pair intergenic region. The promoter was scanned by deletion mutagenesis in a bireporter vector that allowed assay of transcriptional activity in both directions in transfected HepG2 and chicken LMH cells. Three classes of deletions were obtained: those affecting bidirectional transcription, those predominantly affecting GPAT transcription, and those predominantly affecting AIRC transcription. Defects in bidirectional transcription resulted from removal of an initiator-like element overlapping the AIRC transcription start site, as well as deletions removing a series of GC and CCAAT boxes from the AIRC proximal half of the promoter and a CCAAT-containing segment from the GPAT side. Several regions in the GPAT proximal half of the promoter, including an octamer-like motif downstream from the transcription start site, were required predominantly for GPAT expression. Evidence for interaction of HeLa nuclear proteins with some of these sites was obtained by gel retardation, DNase I, and methylation interference assays. Overall, the results showed that the intergenic region is an integrated bidirectional promoter and that a novel initiator-like element plays a central role in coordinating expression of the divergently transcribed AIRC and GPAT genes.
Collapse
Affiliation(s)
- A Gavalas
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
255
|
Jundt F, Herr I, Angel P, Zur Hausen H, Bauknecht T. Transcriptional control of human papillomavirus type 18 oncogene expression in different cell lines: role of transcription factor YY1. Virus Genes 1995; 11:53-8. [PMID: 8808335 DOI: 10.1007/bf01701662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Binding of YY1 to the proximal fragment of the human papillomavirus type 18 (HPV-18) upstream regulatory region (URR) activates the oncogene expression of HPV-18 in HeLa cells, whereas in HepG2 cells this expression is repressed by YY1. In the present transient transfection study, we analyze the regulation of the HPV-18 URR by YY1 in an extended number of cell lines. Except for HeLa cells, YY1 represses or does not influence oncogene expression in all cell lines tested. In HeLa cells the activation of viral oncogene expression by YY1 is caused by the functional interplay between YY1 and a factor binding to the newly identified "switch region" of the HPV-18 URR. In this work we show that in HeLa cells, a 22 bp region located between the "switch region" and the promoter proximal fragment contributes to the modulation of the activity of YY1 and, in addition, regulates HPV-18 promoter activity independently of YY1.
Collapse
Affiliation(s)
- F Jundt
- Forschungsschwerpunkt Angewandte Tumorvirologie, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
256
|
Abstract
The lambda 5 promoter initiates transcription at multiple sites and confers expression in all cell types. Two lambda 5 promoter-derived oligonucleotides (Inr lambda 5:1 and Inr lambda 5:2), each with a transcription start site, could promote transcription in transient transfection assays. In contrast, a third oligonucleotide (+90 lambda 5), without a transcription initiation site, was inactive. The Inr lambda 5:1 and Inr lambda 5:2 oligonucleotides formed a major DNA-protein complex B' in gel retardation analyses; no protein-DNA complexes were observed with the inactive +90 lambda 5 oligonucleotide. The B' complexes of Inr lambda 5:1 and Inr lambda 5:2 each contained c-myc and myn (murine homologue of Max) proteins. The c-myc and myn proteins were also found to bind the TdT initiator (InrTdT). Using mutated oligonucleotides, we found that the c-myc/myn proteins bound to the transcription initiation site of both Inr lambda 5:1 and InrTdT, however, these mutated oligonucleotides were inactive in transfection assays. This suggested that, in this system, transcription depended both on a transcription initiation site and appropriate flanking sequences. The significance of c-myc binding to the respective initiator was analysed by overexpressing c-myc in co-transfection assays. Under these conditions the transcriptional activity of both the lambda 5 and the TdT initiator was repressed.
Collapse
Affiliation(s)
- S Mai
- Basel Institute for Immunology, Switzerland
| | | |
Collapse
|
257
|
Bauknecht T, Jundt F, Herr I, Oehler T, Delius H, Shi Y, Angel P, Zur Hausen H. A switch region determines the cell type-specific positive or negative action of YY1 on the activity of the human papillomavirus type 18 promoter. J Virol 1995; 69:1-12. [PMID: 7983700 PMCID: PMC188542 DOI: 10.1128/jvi.69.1.1-12.1995] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
YY1 is a zinc finger transcription factor which acts as either a repressor or an activator dependent on the promoter context. YY1 is a potent activator of the genuine human papillomavirus type 18 (HPV-18) upstream regulatory region (URR) in HeLa cells, which are known for high-level expression of the HPV-18 early genes. The activating activity of YY1 is dependent on the presence of a newly identified switch region located upstream of the YY1 binding site. Deletion of this region causes YY1 to act as a repressor of HPV-18 promoter activity. In vivo footprinting of the HPV-18 URR and an in vitro electrophoretic mobility shift assay identified proteins binding to the switch region. Site-directed mutagenesis of the switch region and YY1 binding sites suggests that these two regions work in concert to yield high-level HPV-18 URR activity in HeLa cells but not in HepG2 cells, where HPV-18 is almost inactive. These data identified a novel mode of cell type-specific regulation of HPV-18 promoter activity by positive or negative action of YY1, determined by the switch region binding factor(s).
Collapse
Affiliation(s)
- T Bauknecht
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Shrivastava A, Calame K. Association with c-Myc: an alternated mechanism for c-Myc function. Curr Top Microbiol Immunol 1995; 194:273-82. [PMID: 7895499 DOI: 10.1007/978-3-642-79275-5_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A Shrivastava
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
259
|
[11] Investigations on virus-host interactions: An abortive system. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1067-2389(06)80043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
260
|
Ye J, Young HA, Ortaldo JR, Ghosh P. Identification of a DNA binding site for the nuclear factor YY1 in the human GM-CSF core promoter. Nucleic Acids Res 1994; 22:5672-8. [PMID: 7838721 PMCID: PMC310132 DOI: 10.1093/nar/22.25.5672] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It has been well documented that the repeated CATT(A/T) sequence, localized between -64 and -35 in the human GM-CSF promoter, is required for the promoter activity, and this region likely serves as a core recognition sequence for a cellular transcription factor. However, the transcription factor that interacts with this site was not identified. Here, we report that this element contains a binding site for the nuclear factor YY1, which has not been reported to play a role in the regulation of cytokine gene transcription. Results from transient transfection assays of the Jurkat T cell line revealed that this repeated CATT(A/T) element exhibited enhancer activity when linked to both the human IFN-gamma promoter and the TK promoter. Mutation of the YY1 binding site eliminated about 60% of the enhancer activity of the element. We have found that the YY1 binding site could form two specific DNA-protein complexes, A and B, with Jurkat nuclear proteins in the electrophoretic mobility shift assay and that the binding of these complexes correlates with the enhancer activity. UV cross-linking analysis revealed that the A complex is a multi-protein complex and in addition to YY1, other proteins are required for formation of the protein complex. Cotransfection assays with a YY1 expression vector revealed that overexpression of YY1 resulted in an inhibitory effect on the repeated CATT(A/T) element, indicating that in addition to YY1, cofactors also are required for the activator function of the A complex.
Collapse
Affiliation(s)
- J Ye
- Laboratory of Experimental Immunology, DCT, NCI-FCRDC, MD 21702-1201
| | | | | | | |
Collapse
|
261
|
Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol 1994. [PMID: 7969139 DOI: 10.1128/mcb.14.12.7996] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tyrosinase gene is expressed specifically in melanocytes and the cells of the retinal pigment epithelium, which together are responsible for skin, hair, and eye color. By using a combination of DNase I footprinting and band shift assays coupled with mutagenesis of specific DNA elements, we examined the requirements for melanocyte-specific expression of the human tyrosinase promoter. We found that as little as 115 bp of the upstream sequence was sufficient to direct tissue-specific expression. This 115-bp stretch contains three positive elements: the M box, a conserved element found in other melanocyte-specific promoters; an Sp1 site; and a highly evolutionarily conserved element located between -14 and +1 comprising an E-box motif and an overlapping octamer element. In addition, two further elements, one positive and one negative, are located between positions -185 and -150 and positions -150 and -115, respectively. We also found that the basic helix-loop-helix factor encoded by the microphthalmia gene, which is essential for melanocyte differentiation, can transactivate the tyrosinase promoter via the M box and the conserved E box located close to the initiator. Since in vitro assays failed to identify any melanocyte-specific DNA-binding activity, the possibility that the specific arrangement of elements within the basal tyrosinase promoter determines melanocyte-specific expression is discussed.
Collapse
|
262
|
Ligand-dependent occupancy of the retinoic acid receptor beta 2 promoter in vivo. Mol Cell Biol 1994. [PMID: 7969156 DOI: 10.1128/mcb.14.12.8191] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid (RA) activates transcription of the RA receptor beta 2 (RAR beta 2) gene in embryonal carcinoma (EC) cells. This activation involves binding of the RAR/retinoid X receptor (RAR/RXR) heterodimer to the RA-responsive element (beta RARE). Dimethyl sulfate-based genomic footprinting was performed to examine occupancy of this promoter in P19 EC cells. No footprint was detected at the beta RARE prior to RA treatment, but a footprint was detected within the first hour of RA treatment. Concomitantly, other elements in the promoter, the cyclic AMP-responsive element and tetradecanoyl phorbol acetate-like-responsive element became footprinted. Footprints at these elements were induced by RA without requiring new protein synthesis and remained for the entire duration of RA treatment but rapidly reversed upon withdrawal of RA. A delayed protection observed at the initiator site was also reversed upon RA withdrawal. The RA-inducible footprint was not due to induction of factors that bind to these element, since in vitro assays showed that these factors are present in P19 cell extracts before RA treatment. Significantly, no RA-induced footprint was observed at any of these elements in P19 cells expressing a dominant negative RXR beta, in which RXR heterodimers are unable to bind to the beta RARE. Results indicate that binding of a liganded heterodimer receptor to the beta RARE is the initial event that allows other elements to gain access to the factors. In accordance, reporter analyses showed that a mutation in the beta RARE, but not those in other elements, abrogates RA activation of the promoter. It is likely that the RAR beta 2 promoter opens in a hierarchically ordered manner, signalled by the occupancy of liganded heterodimers.
Collapse
|
263
|
Becker KG, Jedlicka P, Templeton NS, Liotta L, Ozato K. Characterization of hUCRBP (YY1, NF-E1, delta): a transcription factor that binds the regulatory regions of many viral and cellular genes. Gene 1994; 150:259-66. [PMID: 7821790 DOI: 10.1016/0378-1119(94)90435-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The UCRBP (YY1, delta, NF-E1) protein has been isolated for its ability to bind to the UCR (upstream conserved region) site present in the conserved murine leukemia virus long terminal repeat. UCRBP carries a highly charged N-terminal domain and four C2-H2-type zinc fingers at its C-terminal end. The present study reveals the following results: (i) The UCR site is present in the upstream and/or regulatory regions of numerous mammalian cellular and viral genes to which both recombinant and cellular UCRBP bind. UCR sites are also found in the regulatory regions of repetitive sequences including human LINE-1 elements and mouse intracisternal-A particle sequences. (ii) By immunological and UV cross-linking experiments, we found that two proteins, of approx. 68 kDa and an antigenically related protein of approx. 40 kDa, account for much of the UCR-binding activity in T-lymphocytes. (iii) There is evidence that UCRBP acts as a phosphoprotein. Eight consensus phosphorylation sites are found in the deduced amino-acid sequence of human UCRBP. The cellular UCR-binding activity was abolished by phosphatase treatment, and there is an incremental increase in apparent molecular mass between the cytoplasmic and nuclear forms of the protein, suggesting phosphorylation. (iv) Although UCRBP has been previously shown to act as a transcriptional repressor, we show here that UCRBP can also act as a positive transactivator of a reporter driven by UCR elements when used in co-transfection assays. This transactivation occurred in a dose-restricted manner and was absent at high concentrations of a UCRBP expression plasmid, indicating a complex mode of function.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K G Becker
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
264
|
Kuhnert P, Kemper O, Wallach D. Cloning, sequencing and partial functional characterization of the 5' region of the human p75 tumor necrosis factor receptor-encoding gene (TNF-R). Gene 1994; 150:381-6. [PMID: 7821811 DOI: 10.1016/0378-1119(94)90457-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 1887-bp region at the 5' flank of the human p75 tumor necrosis factor receptor (p75 TNF-R)-encoding gene was found to be active in driving expression of the luc (luciferase-encoding) reporter gene, suggesting that it contains the promoter for the receptor. Rather unexpectedly, a 1827-bp region at the 3' end of the first intron of the p75 TNF-R gene also displayed promoter activity. This activity may be artefactual, reflecting only the presence of an enhancer in this region; yet it also raises the possibility that p75 TNF-R is controlled by more than one promoter and that it encodes various forms of the receptor, or even other proteins. We present here the nucleotide sequences of the 5' flanking and intron regions. Possible implications for the transcriptional regulation of the p75 TNF-R gene are discussed.
Collapse
Affiliation(s)
- P Kuhnert
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
265
|
Shrivastava A, Calame K. An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic Acids Res 1994; 22:5151-5. [PMID: 7816599 PMCID: PMC332053 DOI: 10.1093/nar/22.24.5151] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- A Shrivastava
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
266
|
Gu B, DeLuca N. Requirements for activation of the herpes simplex virus glycoprotein C promoter in vitro by the viral regulatory protein ICP4. J Virol 1994; 68:7953-65. [PMID: 7966586 PMCID: PMC237258 DOI: 10.1128/jvi.68.12.7953-7965.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During infection with herpes simplex virus, infected-cell polypeptide 4 (ICP4) activates transcription of most herpes simplex virus genes. In the present study, the mechanism of activation of transcription by ICP4 was investigated by using a reconstituted in vitro system with fractionated and purified general transcription factors, coupled with DNA-binding assays. The templates used in the reactions included regions of the gC and thymidine kinase (tk) promoters in plasmids, and on isolated fragments, allowing for the evaluation of the potential function of naturally occurring and inserted ICP4-binding sites and elements of the core promoter. ICP4 efficiently activated transcription of the gC promoter by facilitating the formation of transcription initiation complexes. ICP4 could not substitute for any of the basal transcription factors. Moreover, TATA-binding protein (TBP) could not substitute for TFIID in activation, suggesting a requirement for TBP-associated factors. Interactions between ICP4 and DNA 3' to the start site was necessary for activation of the gC promoter. The requirement for DNA-protein contacts could be met either by the presence of an ICP4-binding site in the gC leader, by the presence of a site more than 150 nucleotides further downstream, by an inserted site that normally acts to repress transcription, or by the addition of sufficient non-site-containing DNA. The gC TATA box and start site, or initiator element (inr), were individually sufficient for activation by ICP4 and together contributed to optimal activation. In contrast to gC, the tk promoter was poorly activated in the reconstituted system. However, the tk TATA box was efficiently activated when the tk start site region was replaced with the gC inr, suggesting that activation was mediated through the inr and inr-binding proteins. In addition, mutation of the inr core resulted in a gC promoter that was very poorly activated by ICP4. The results of this and previous studies demonstrate that ICP4 activates transcription in a complex manner involving contacts with DNA 3' to the start site, TBP, TFIIB, TBP-associated factors, and possibly proteins functioning at the start site of transcription.
Collapse
Affiliation(s)
- B Gu
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | |
Collapse
|
267
|
Dey A, Minucci S, Ozato K. Ligand-dependent occupancy of the retinoic acid receptor beta 2 promoter in vivo. Mol Cell Biol 1994; 14:8191-201. [PMID: 7969156 PMCID: PMC359358 DOI: 10.1128/mcb.14.12.8191-8201.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Retinoic acid (RA) activates transcription of the RA receptor beta 2 (RAR beta 2) gene in embryonal carcinoma (EC) cells. This activation involves binding of the RAR/retinoid X receptor (RAR/RXR) heterodimer to the RA-responsive element (beta RARE). Dimethyl sulfate-based genomic footprinting was performed to examine occupancy of this promoter in P19 EC cells. No footprint was detected at the beta RARE prior to RA treatment, but a footprint was detected within the first hour of RA treatment. Concomitantly, other elements in the promoter, the cyclic AMP-responsive element and tetradecanoyl phorbol acetate-like-responsive element became footprinted. Footprints at these elements were induced by RA without requiring new protein synthesis and remained for the entire duration of RA treatment but rapidly reversed upon withdrawal of RA. A delayed protection observed at the initiator site was also reversed upon RA withdrawal. The RA-inducible footprint was not due to induction of factors that bind to these element, since in vitro assays showed that these factors are present in P19 cell extracts before RA treatment. Significantly, no RA-induced footprint was observed at any of these elements in P19 cells expressing a dominant negative RXR beta, in which RXR heterodimers are unable to bind to the beta RARE. Results indicate that binding of a liganded heterodimer receptor to the beta RARE is the initial event that allows other elements to gain access to the factors. In accordance, reporter analyses showed that a mutation in the beta RARE, but not those in other elements, abrogates RA activation of the promoter. It is likely that the RAR beta 2 promoter opens in a hierarchically ordered manner, signalled by the occupancy of liganded heterodimers.
Collapse
Affiliation(s)
- A Dey
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
268
|
Bentley NJ, Eisen T, Goding CR. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol 1994; 14:7996-8006. [PMID: 7969139 PMCID: PMC359338 DOI: 10.1128/mcb.14.12.7996-8006.1994] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tyrosinase gene is expressed specifically in melanocytes and the cells of the retinal pigment epithelium, which together are responsible for skin, hair, and eye color. By using a combination of DNase I footprinting and band shift assays coupled with mutagenesis of specific DNA elements, we examined the requirements for melanocyte-specific expression of the human tyrosinase promoter. We found that as little as 115 bp of the upstream sequence was sufficient to direct tissue-specific expression. This 115-bp stretch contains three positive elements: the M box, a conserved element found in other melanocyte-specific promoters; an Sp1 site; and a highly evolutionarily conserved element located between -14 and +1 comprising an E-box motif and an overlapping octamer element. In addition, two further elements, one positive and one negative, are located between positions -185 and -150 and positions -150 and -115, respectively. We also found that the basic helix-loop-helix factor encoded by the microphthalmia gene, which is essential for melanocyte differentiation, can transactivate the tyrosinase promoter via the M box and the conserved E box located close to the initiator. Since in vitro assays failed to identify any melanocyte-specific DNA-binding activity, the possibility that the specific arrangement of elements within the basal tyrosinase promoter determines melanocyte-specific expression is discussed.
Collapse
Affiliation(s)
- N J Bentley
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, Oxted, Surrey, United Kingdom
| | | | | |
Collapse
|
269
|
Johnson JL, McLachlan A. Novel clustering of Sp1 transcription factor binding sites at the transcription initiation site of the human muscle phosphofructokinase P1 promoter. Nucleic Acids Res 1994; 22:5085-92. [PMID: 7800504 PMCID: PMC523782 DOI: 10.1093/nar/22.23.5085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulatory sequence elements of the human muscle phosphofructokinase (HPFKM) p1 promoter from -655 to +78 were cloned and characterized. In the human cervical carcinoma cell line, HeLa S3, the HPFKM type C RNA initiated from a single predominant transcription initiation site and the HPFKM p1 promoter displayed transcriptional activity in transient transfection assays. The HPFKM p1 promoter region was shown to possess eight binding sites for the Sp1 transcription factor by DNase I footprinting and gel retardation analysis. The functional importance of these interactions was examined by transient transfection analysis in Drosophila SL2 and HeLa S3 cells. This analysis demonstrated that the HPFKM p1 promoter sequence between +12 and +78 retained Sp1-dependent transcriptional activity in Drosophila SL2 cells and retained promoter activity in HeLa S3 cells. These results suggest that the Sp1 binding site (site 8 between +12 and +21) immediately adjacent to the transcription initiation site represents an important regulatory element of this promoter at least in the context of the minimal HPFKM p1 promoter. However mutagenesis of the Sp1 site 8 demonstrated that, in the context of a larger HPFKM p1 promoter region containing Sp1 sites 1 to 7, it now contributed very little to the total promoter activity. Therefore it appears the Sp1 sites in the HPFKM p1 promoter display functional redundancy.
Collapse
Affiliation(s)
- J L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
270
|
Momoeda M, Kawase M, Jane SM, Miyamura K, Young NS, Kajigaya S. The transcriptional regulator YY1 binds to the 5'-terminal region of B19 parvovirus and regulates P6 promoter activity. J Virol 1994; 68:7159-68. [PMID: 7933098 PMCID: PMC237155 DOI: 10.1128/jvi.68.11.7159-7168.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We performed a systematic study to identify cellular factors that bound to the terminal repeat region of B19 parvovirus. Using electrophoretic mobility shift assays, we detected one cellular factor which prominently bound to the repeat region. The factor was purified from K562 nuclear extract by specific DNA affinity column chromatography and identified as YY1, a multifunctional transcription factor. Of multiple possible YY1 binding sites in the upstream region of the P6 promoter, three showed specific strong binding. Transcription enhancement by YY1 was demonstrated in vitro by transient transfection assays. In studies using truncated and mutated versions of this region, YY1 activity was diminished by the alteration of any two of these three sites and abolished by the alteration of all three sites. Our results suggest that YY1 is a positive regulator of B19 parvovirus transcription.
Collapse
Affiliation(s)
- M Momoeda
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
271
|
Role of core promoter structure in assembly of the RNA polymerase II preinitiation complex. A common pathway for formation of preinitiation intermediates at many TATA and TATA-less promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47233-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
272
|
Lee YM, Lee SC. Transcriptional activation of the alpha-1 acid glycoprotein gene by YY1 is mediated by its functional interaction with a negative transcription factor. DNA Cell Biol 1994; 13:1029-36. [PMID: 7945935 DOI: 10.1089/dna.1994.13.1029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Regulation of alpha-1 acid glycoprotein (AGP) gene expression involves both positive and negative transcription factors. We have previously identified two dominant factors: positive and negative transcription factors, AGP/EBP and factor B, respectively, involved in the transcription of AGP and other acute-phase response genes. In this report, we present evidence showing that the transcription of the AGP gene is positively regulated by a transcription factor, YY1. The activation of AGP gene by YY1 is mediated by a negative element B in the AGP promoter region. YY1 can also activate the B motif linked to a heterologous promoter. However, YY1 does not bind directly to the B motif per se. Rather, our data suggest that the activation of AGP gene by YY1 may be mediated by its functional interaction with factor B, which recognizes the B motif.
Collapse
Affiliation(s)
- Y M Lee
- Institute of Biological Chemistry, Academia Sinca, Taipei, Taiwan
| | | |
Collapse
|
273
|
Affiliation(s)
- M Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, UMR 9942, CNRS, BP5051, France
| | | |
Collapse
|
274
|
Galéra P, Musso M, Ducy P, Karsenty G. c-Krox, a transcriptional regulator of type I collagen gene expression, is preferentially expressed in skin. Proc Natl Acad Sci U S A 1994; 91:9372-6. [PMID: 7937772 PMCID: PMC44814 DOI: 10.1073/pnas.91.20.9372] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have cloned a mouse cDNA that is a member of the Krox gene family and encodes a protein we have named c-Krox. The c-Krox protein contains three zinc fingers of the Cys2His2 type. c-Krox binds specifically to a guanine-rich cis-acting element present twice in the promoter element of the mouse alpha 1(I) collagen gene. Study of c-Krox gene expression shows that c-Krox is markedly enriched in skin, one of the two major sites of type I collagen synthesis, but is absent in bone, the other main type I collagen-producing tissue, indicating that type I collagen gene expression is differentially regulated in skin and bone. DNA transfection experiments in mouse NIH 3T3 fibroblasts, cells that express the c-Krox gene, or in Drosophila S2 cells, which do not express c-Krox, reveal that c-Krox can activate transcription of a reporter gene linked to several copies of its binding site in the alpha 1(I) collagen promoter. Thus, c-Krox is only the second member of the Krox family for which a target gene has been identified. The selective spatial pattern of expression of its mRNA and its transcription activation ability suggest that c-Krox may be an important regulator of type I collagen skin specific expression in physiologic conditions and in fibrotic diseases such as scleroderma.
Collapse
Affiliation(s)
- P Galéra
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
275
|
c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein. Mol Cell Biol 1994. [PMID: 8065335 DOI: 10.1128/mcb.14.9.6021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation in eukaryotes involves protein-protein interactions between regulatory transcription factors and components of the basal transcription machinery. Here we show that c-Fos, but not a related protein, Fra-1, can bind the TATA-box-binding protein (TBP) both in vitro and in vivo and that c-Fos can also interact with the transcription factor IID complex. High-affinity binding to TBP requires c-Fos activation modules which cooperate to activate transcription. One of these activation modules contains a TBP-binding motif (TBM) which was identified through its homology to TBP-binding viral activators. This motif is required for transcriptional activation, as well as TBP binding. Domain swap experiments indicate that a domain containing the TBM can confer TBP binding on Fra-1 both in vitro and in vivo. In vivo activation experiments indicate that a GAL4-Fos fusion can activate a promoter bearing a GAL4 site linked to a TATA box but that this activity does not occur at high concentrations of GAL4-Fos. This inhibition (squelching) of c-Fos activity is relieved by the presence of excess TBP, indicating that TBP is a direct functional target of c-Fos. Removing the TBM from c-Fos severely abrogates activation of a promoter containing a TATA box but does not affect activation of a promoter driven only by an initiator element. Collectively, these results suggest that c-Fos is able to activate via two distinct mechanisms, only one of which requires contact with TBP. Since TBP binding is not exhibited by Fra-1, TBP-mediated activation may be one characteristic that discriminates the function of Fos-related proteins.
Collapse
|
276
|
Metz R, Bannister AJ, Sutherland JA, Hagemeier C, O'Rourke EC, Cook A, Bravo R, Kouzarides T. c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein. Mol Cell Biol 1994; 14:6021-9. [PMID: 8065335 PMCID: PMC359128 DOI: 10.1128/mcb.14.9.6021-6029.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcriptional activation in eukaryotes involves protein-protein interactions between regulatory transcription factors and components of the basal transcription machinery. Here we show that c-Fos, but not a related protein, Fra-1, can bind the TATA-box-binding protein (TBP) both in vitro and in vivo and that c-Fos can also interact with the transcription factor IID complex. High-affinity binding to TBP requires c-Fos activation modules which cooperate to activate transcription. One of these activation modules contains a TBP-binding motif (TBM) which was identified through its homology to TBP-binding viral activators. This motif is required for transcriptional activation, as well as TBP binding. Domain swap experiments indicate that a domain containing the TBM can confer TBP binding on Fra-1 both in vitro and in vivo. In vivo activation experiments indicate that a GAL4-Fos fusion can activate a promoter bearing a GAL4 site linked to a TATA box but that this activity does not occur at high concentrations of GAL4-Fos. This inhibition (squelching) of c-Fos activity is relieved by the presence of excess TBP, indicating that TBP is a direct functional target of c-Fos. Removing the TBM from c-Fos severely abrogates activation of a promoter containing a TATA box but does not affect activation of a promoter driven only by an initiator element. Collectively, these results suggest that c-Fos is able to activate via two distinct mechanisms, only one of which requires contact with TBP. Since TBP binding is not exhibited by Fra-1, TBP-mediated activation may be one characteristic that discriminates the function of Fos-related proteins.
Collapse
Affiliation(s)
- R Metz
- Department of Molecular Biology, Bristol-Myers-Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08534-4000
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Schiedner G, Schmitz B, Doerfler W. Late transcripts of adenovirus type 12 DNA are not translated in hamster cells expressing the E1 region of adenovirus type 5. J Virol 1994; 68:5476-82. [PMID: 8057430 PMCID: PMC236948 DOI: 10.1128/jvi.68.9.5476-5482.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hamster cells are completely nonpermissive for the replication of human adenovirus type 12 (Ad12), whereas types 2 and 5 can replicate in hamster cells. The Ad5-transformed hamster cell line BHK297-C131, which carries the left terminal 18.7% of the Ad5 genome and expresses at least the viral E1A region, can somehow complement Ad12 DNA replication and the transcription of the late Ad12 genes. Since the interaction of Ad12 with hamster cells must constitute a significant factor in the induction of Ad12 tumors in neonatal hamsters, we have continued to examine details of this abortive virus infection. The late Ad12 mRNAs in BHK297-C131 cells are polyadenylated but are synthesized in reduced amounts compared with the Ad12 products in Ad12-infected human cells, which are permissive for viral replication. The late mRNA derived from the Ad12 fiber gene has been assessed for its structural properties. By cloning cDNA transcripts from this region and determining their nucleotide sequences, the authenticity of the complete Ad12 fiber sequence and the completeness of the Ad12-typical tripartite leader have been confirmed. Moreover, in Ad12-infected BHK297-C131 cells the Ad12 virus-associated RNA, a virus-encoded translational activator with the correct nucleotide sequence, is synthesized. Nevertheless, the synthesis of detectable amounts of Ad12 virion-specific proteins, and in particular that of the main viral antigens, hexons and fibers, cannot be documented. Cellular factors needed to promote late mRNA translation might be missing, or inhibitory factors might exist in Ad12-infected BHK297-C131 cells.
Collapse
Affiliation(s)
- G Schiedner
- Institut für Genetik, Universität zu Köln, Germany
| | | | | |
Collapse
|
278
|
McCarty DM, Pereira DJ, Zolotukhin I, Zhou X, Ryan JH, Muzyczka N. Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein. J Virol 1994; 68:4988-97. [PMID: 8035498 PMCID: PMC236440 DOI: 10.1128/jvi.68.8.4988-4997.1994] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have used baculovirus-expressed Rep68 that has been purified to homogeneity to reexamine the binding properties of the Rep protein. We find that Rep68 is capable of binding to a linear DNA sequence that is contained within a 25-bp sequence of the A stem of the adeno-associated virus (AAV) terminal repeat proximal to the B and C palindromes. This has been shown conclusively by demonstrating that Rep68 could specifically bind to a synthetic oligonucleotide containing the 25-bp region in the absence of the other sequences within the terminal repeat. Rep78 was also capable of binding the A stem recognition element, as demonstrated by the fact that a DNA affinity column containing the 25-bp sequence can be used to purify Rep78. The ability to recognize the linear DNA sequence within the A stem provides a mechanism by which the Rep protein can be oriented on the terminal repeat so that only the correct strand is cut at the terminal resolution site (trs site) during terminal resolution. In addition, computer analysis suggests that sequences similar to the A stem element are present within the three AAV promoter regions. Electrophoretic mobility shift experiments clearly demonstrate that the p5 promoter contains a Rep binding sequence. DNase protection experiments indicate that the Rep binding sequence within the p5 promoter is located between the YY1 initiator sequence and the TATA binding site. This position immediately suggests a mechanism by which the Rep protein could act as a repressor or a transactivator of p5 transcription by interacting with either YY1 or TBP. In addition, gel shift experiments suggest that the p19 promoter also contains a Rep binding site. The presence of Rep binding sites upstream of both promoters suggests that these sites may be involved in coordinate regulation of AAV transcription. In addition, we have identified a heterologous Rep binding sequence within pBR322 DNA. A comparison of the sequences within the A stem, p5, and pBR322 binding sites suggests that a repeating GAGC motif is at least part of the Rep recognition sequence. In the accompanying report (D. M. McCarty, J. H. Ryan, S. Zolutukhin, X. Zhou, and N. Muzyczka, J. Virol. 68:4998-5006, 1994), we examine the relative affinity of Rep to the A stem site and the complete terminal repeat. Finally, we also have reexamined the ability of Rep68 and Rep78 to cut at the trs site in substrates that do not contain the B and C palindromes or any apparent secondary structure.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D M McCarty
- Department of Microbiology, School of Medicine, University at Stony Brook, New York 11794
| | | | | | | | | | | |
Collapse
|
279
|
Liu R, Baillie J, Sissons JG, Sinclair JH. The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acids Res 1994; 22:2453-9. [PMID: 8041605 PMCID: PMC308195 DOI: 10.1093/nar/22.13.2453] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have previously shown that repression of human cytomegalovirus (HCMV) major immediate early (IE) gene expression in non-permissive human teratocarcinoma (T2) cells is associated with a number of nuclear factors which bind to the imperfect dyad symmetry located in the modulator region upstream of the major IE enhancer as well as to the 21 bp repeat elements within the enhancer. Differentiation of T2 cells with retinoic acid (RA) results in a decrease in binding of some of these nuclear factors to these sites and deletion of these specific binding sites from major IE promoter/reporter constructs results in increased IE promoter activity in normally non-permissive cells. In this study, we demonstrate that the transcription factor YY1, which can negatively regulate the adeno-associated virus P5 promoter, directly binds to both the imperfect dyad symmetry and the 21 bp repeat elements in the HCMV major IE promoter/regulatory region and mediates repression of HCMV IE gene expression. This strongly suggests that YY1 plays an important role in regulating HCMV expression in non-permissive cells.
Collapse
Affiliation(s)
- R Liu
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, UK
| | | | | | | |
Collapse
|
280
|
Mizuguchi G, Kanei-Ishii C, Sawazaki T, Horikoshi M, Roeder RG, Yamamoto T, Ishii S. Independent control of transcription initiations from two sites by an initiator-like element and TATA box in the human c-erbB-2 promoter. FEBS Lett 1994; 348:80-8. [PMID: 7913049 DOI: 10.1016/0014-5793(94)00578-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcription of the human c-erbB-2-proto-oncogene starts mainly at two sites, nucleotide positions +1 and -69. The present studies have identified an initiator-like element that specifies the position of transcription initiation at position -69. This initiator-like element contains six GGA repeats and is located just downstream from the transcription start site between positions -68 and -45. In addition, both in vitro and in vivo studies indicated that transcription initiation at position +1 is specified by a TATA box 25 bp upstream from the transcription startpoint. Thus, initiation at two sites in the c-erbB-2 promoter is controlled independently by the initiator-like element and the TATA box.
Collapse
Affiliation(s)
- G Mizuguchi
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
281
|
Gu J, Ren K, Dubner R, Iadarola MJ. Cloning of a DNA binding protein that is a tyrosine kinase substrate and recognizes an upstream initiator-like sequence in the promoter of the preprodynorphin gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 24:77-88. [PMID: 7968380 DOI: 10.1016/0169-328x(94)90120-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 90 bp fragment prepared from the promoter region of the rat preprodynorphin gene formed a complex with rat brain nuclear extracts as assessed by gel mobility shift assays. An 8 base pair sequence, CACTCTCC, termed upstream regulatory element (URE), was identified within this fragment as a binding site by DNase 1 footprint analysis and gel mobility shift assays with synthetic oligonucleotides. The URE is a consensus sequence for a transcription initiator (Inr) element although in the preprodynorphin promoter it is located upstream at -208 and overlaps a region conserved between rat and human promoters. A unique 310 amino acid protein (UreB1) that specifically bound the URE was cloned from a rat brain cDNA library using the URE-containing oligonucleotide. Recombinantly expressed, affinity purified UreB1 protein retains specific binding to the URE oligonucleotide. UreB1 contains a tyrosine kinase phosphorylation consensus and binding is enhanced following phosphorylation with the p43v-abl tyrosine kinase. The UreB1 tyrosine phosphoprotein increases transcription in vitro, consistent with a positive transcriptional regulatory function. UreB1 transcripts are well expressed in subsets of neurons in multiple brain areas suggesting that, in addition to regulation of the preprodynorphin gene, it may have a more generalized role in gene transcription.
Collapse
Affiliation(s)
- J Gu
- Neurobiology and Anesthesiology Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
282
|
Gaston K, Fried M. YY1 is involved in the regulation of the bi-directional promoter of the Surf-1 and Surf-2 genes. FEBS Lett 1994; 347:289-94. [PMID: 8034020 DOI: 10.1016/0014-5793(94)00567-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Surfeit locus is an unusual cluster of at least 6 housekeeping genes whose organisation is conserved between birds and mammals. We have previously shown that the divergently transcribed Surf-1 and Surf-2 genes are separated by a bi-directional, TATA-less promoter. In mouse, the Surf-1/Surf-2 promoter contains three important factor binding sites: Su1, Su2, and Su3. These sites are conserved between the mouse and human Surf-1/Surf-2 promoters, bind nuclear factors in vitro, and are required for accurate and efficient expression of Surf-1 and Surf-2 in vivo. Using gel retardation assays, methylation interference experiments, and specific antibodies we demonstrate that the Su1 binding factor is the initiator protein YY1. Over-expression of YY1 results in a major stimulation of transcription in the Surf-1 direction and a minor stimulation of transcription in the Surf-2 direction.
Collapse
Affiliation(s)
- K Gaston
- Department of Biochemistry, University of Bristol, School of Medical Sciences, UK
| | | |
Collapse
|
283
|
Abstract
Constitutive expression of human MYC represses mRNA levels of cyclin D1 in proliferating BALB/c-3T3 fibroblasts. We expressed a series of mutant alleles of MYC and found that downregulation of cyclin D1 is distinct from previously described properties of MYC. In particular, we found that association with Max is not required for repression of cyclin D1 by MYC in vivo. Conversely, the integrity of a small amino-terminal region (amino acids 92 to 106) of MYC is critical for repression of cyclin D1 but dispensable for transformation of established RAT1A cells. Runoff transcription assays showed that repression occurs at the level of transcription initiation. We cloned the promoter of the gene for human cyclin D1 and found that it lacks a canonical TATA element. Transcription starts at an initiator element similar to that of the adenovirus major late promoter; this element can be directly bound by USF in vitro. Expression of MYC represses the cyclin D1 promoter via core promoter elements and antagonizes USF-mediated transactivation. Taken together, our data define a new pathway for gene regulation by MYC and show that the cyclin D1 gene is a target gene for repression by MYC.
Collapse
|
284
|
Shinya E, Shimada T. Identification of two initiator elements in the bidirectional promoter of the human dihydrofolate reductase and mismatch repair protein 1 genes. Nucleic Acids Res 1994; 22:2143-9. [PMID: 8029024 PMCID: PMC308133 DOI: 10.1093/nar/22.11.2143] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human dihydrofolate reductase (DHFR) gene and mismatch repair protein 1 (MRP1) genes are organized in a head-to-head configuration separated by an 90 base pair sequence. We have previously shown that as small as a 114 bp promoter sequences is sufficient for accurate and efficient initiation of divergent transcription. In this study, the mechanism of accurate transcription initiation in vivo from this short bidirectional promoter was analyzed by a newly developed highly sensitive primer extension assay. The GC boxes in the middle of this sequence were essential for bidirectional promoter activity, but not sufficient for accurate initiation. The sequences overlapping the transcription initiation sites of the DHFR and MRP1 genes were shown to function as the initiator, which directs transcription from an internal site. These initiators were strictly position dependent and were active only when located from 40 to 50 base pairs downstream from the GC box. Although there is no apparent sequence homology between two initiators, a common nuclear factor bound to these elements. Existence of two initiators located on both sides of the middle GC box seems to be the molecular basis of bidirectional activity of this short DNA sequence.
Collapse
Affiliation(s)
- E Shinya
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
285
|
Lugert T, Werr W. A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). PLANT MOLECULAR BIOLOGY 1994; 25:493-506. [PMID: 7914101 DOI: 10.1007/bf00043877] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
South-western screening of lambda gt11 expression library with a fragment of the Shrunken promoter containing the initiator element resulted in cloning of a novel maize gene. The encoded initiator-binding protein (IBP1) interacts at the transcription start site of the Shrunken promoter. Analysis of the 680 amino acid (aa) long polypeptide revealed a novel bipartite DNA-binding domain at the carboxyl terminus. In its amino-terminal part, it is weakly related to Myb R-repeats but the following basic region is also essential for DNA binding. A region of similarity to the conserved 2.1 and 2.2 motifs in bacterial sigma-factors is located close to the IBP1 amino terminus. Two putative nuclear localization signals are compatible with the presence of antigenically related polypeptides in nuclear protein extracts. The IBP1 gene was mapped to the long arm of chromosome 9 (9L095); a second highly related gene IBP2 is located on the short arm of chromosome 1 (1S014). Both genes encode proteins sharing 93% similarity and are transcribed with similar activity in different plant organs. A small 82 nucleotide intron in the IBP2 transcript is found unspliced to a variable degree in different tissues. Translation of this incompletely processed transcript would result in a truncated amino-terminal polypeptide lacking the DNA-binding domain.
Collapse
Affiliation(s)
- T Lugert
- Institut für Genetik der Universität zu Köln, Germany
| | | |
Collapse
|
286
|
|
287
|
Eichbaum QG, Iyer R, Raveh DP, Mathieu C, Ezekowitz RA. Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. J Exp Med 1994; 179:1985-96. [PMID: 8195721 PMCID: PMC2191524 DOI: 10.1084/jem.179.6.1985] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The restricted expression of the human Fc gamma R1b gene to myeloid cells is likely to be regulated by a combination of transcription factors that may not be solely expressed in myeloid cells, but act together to restrict the expression of the gene to myeloid cells. Low basal expression of the human Fc gamma R1b gene is specifically upregulated by interferon gamma (IFN-gamma). A 181-bp region of 5' flanking sequence contains several key regulatory motifs that include the extended gamma response region (XGRR) and the PIE region. The XGRR contains the 39-bp gamma response region originally defined in the highly homologous Fc gamma R1a gene. The XGRR is in close proximity to the 21-bp PIE motif that is conserved in the promoters of some other myeloid genes. The PIE motif contains a consensus site for the macrophage and B cell transcription factor, PU.1, and is adjacent to the cluster of transcription start sites. An active transcription initiator, Inr, consensus spans the start sites and appears to direct transcription initiation of this TATA-less gene. In this study, we demonstrate that the PIE region contains a functional PU.1 site that binds a human PU.1-like protein and that associated factors present in myeloid extracts also bind in this PIE region. Mutational analysis reveals an absolute requirement for an intact PU.1 box for both basal and IFN-gamma inducible expression of this gene. In addition, mutations in the Inr greatly reduce basal and inducible transcription. Insertion of a strong TATA box downstream from the Inr or at -30 bp from the transcription start sites restores basal and inducible activity in the presence of a mutated PU.1 site. We also demonstrate that indeed, when the XGRR is positioned in the context of a heterologous TATA containing promoter, it is able to respond equivalently to either IFN-alpha or IFN-gamma. However, IFN-alpha responsiveness does not occur in the context of the physiological Fc gamma R1b TATA-less basal promoter. Our results suggest that a human PU.1-like factor acts as a "bridging factor" between the upstream IFN-gamma enhancer and the Inr dependent preinitiation complex. These findings indicate that the structure of the basal promoter in combination with restricted activators like PU.1 are important in regulating the expression of this gene.
Collapse
Affiliation(s)
- Q G Eichbaum
- Division of Infectious Diseases and Hematology/Oncology, Children's Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
288
|
Philipp A, Schneider A, Väsrik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M. Repression of cyclin D1: a novel function of MYC. Mol Cell Biol 1994; 14:4032-43. [PMID: 8196642 PMCID: PMC358769 DOI: 10.1128/mcb.14.6.4032-4043.1994] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Constitutive expression of human MYC represses mRNA levels of cyclin D1 in proliferating BALB/c-3T3 fibroblasts. We expressed a series of mutant alleles of MYC and found that downregulation of cyclin D1 is distinct from previously described properties of MYC. In particular, we found that association with Max is not required for repression of cyclin D1 by MYC in vivo. Conversely, the integrity of a small amino-terminal region (amino acids 92 to 106) of MYC is critical for repression of cyclin D1 but dispensable for transformation of established RAT1A cells. Runoff transcription assays showed that repression occurs at the level of transcription initiation. We cloned the promoter of the gene for human cyclin D1 and found that it lacks a canonical TATA element. Transcription starts at an initiator element similar to that of the adenovirus major late promoter; this element can be directly bound by USF in vitro. Expression of MYC represses the cyclin D1 promoter via core promoter elements and antagonizes USF-mediated transactivation. Taken together, our data define a new pathway for gene regulation by MYC and show that the cyclin D1 gene is a target gene for repression by MYC.
Collapse
Affiliation(s)
- A Philipp
- Zentrum für Molekularbiologie Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Melanocyte-specific gene expression: role of repression and identification of a melanocyte-specific factor, MSF. Mol Cell Biol 1994. [PMID: 8164694 DOI: 10.1128/mcb.14.5.3494] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For a gene to be transcribed in a tissue-specific fashion, expression must be achieved in the appropriate cell type and also be prevented in other tissues. As an approach to understanding the regulation of tissue-specific gene expression, we have analyzed the requirements for melanocyte-specific expression of the tyrosinase-related protein 1 (TRP-1) promoter. Positive regulation of TRP-1 expression is mediated by both an octamer-binding motif and an 11-bp element, termed the M box, which is conserved between the TRP-1 and other melanocyte-specific promoters. We show here that, consistent with its ability to activate transcription in a non-tissue-specific fashion, the M box binds the basic-helix-loop-helix factor USF in vitro. With the use of a combination of site-directed mutagenesis and chimeric promoter constructs, additional elements involved in regulating TRP-1 expression were identified. These include the TATA region, which appears to contribute to the melanocyte specificity of the TRP-1 promoter. Mutational analysis also identified two repressor elements, one at the start site, the other located at -240, which function both in melanoma and nonmelanoma cells. In addition, a melanocyte-specific factor, MSF, binds to sites which overlap both repressor elements, with substitution mutations demonstrating that binding by MSF is not required for repression. Although a functional role for MSF has not been unequivocally determined, the location of its binding sites leads us to speculate that it may act as a melanocyte-specific antirepressor during transcription of the endogenous TRP-1 gene.
Collapse
|
290
|
Yavuzer U, Goding CR. Melanocyte-specific gene expression: role of repression and identification of a melanocyte-specific factor, MSF. Mol Cell Biol 1994; 14:3494-503. [PMID: 8164694 PMCID: PMC358713 DOI: 10.1128/mcb.14.5.3494-3503.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
For a gene to be transcribed in a tissue-specific fashion, expression must be achieved in the appropriate cell type and also be prevented in other tissues. As an approach to understanding the regulation of tissue-specific gene expression, we have analyzed the requirements for melanocyte-specific expression of the tyrosinase-related protein 1 (TRP-1) promoter. Positive regulation of TRP-1 expression is mediated by both an octamer-binding motif and an 11-bp element, termed the M box, which is conserved between the TRP-1 and other melanocyte-specific promoters. We show here that, consistent with its ability to activate transcription in a non-tissue-specific fashion, the M box binds the basic-helix-loop-helix factor USF in vitro. With the use of a combination of site-directed mutagenesis and chimeric promoter constructs, additional elements involved in regulating TRP-1 expression were identified. These include the TATA region, which appears to contribute to the melanocyte specificity of the TRP-1 promoter. Mutational analysis also identified two repressor elements, one at the start site, the other located at -240, which function both in melanoma and nonmelanoma cells. In addition, a melanocyte-specific factor, MSF, binds to sites which overlap both repressor elements, with substitution mutations demonstrating that binding by MSF is not required for repression. Although a functional role for MSF has not been unequivocally determined, the location of its binding sites leads us to speculate that it may act as a melanocyte-specific antirepressor during transcription of the endogenous TRP-1 gene.
Collapse
Affiliation(s)
- U Yavuzer
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, Oxted, Surrey, United Kingdom
| | | |
Collapse
|
291
|
Testis-specific transcription start site in the aspartate aminotransferase housekeeping gene promoter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36835-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
292
|
Kaufmann J, Smale ST. Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev 1994; 8:821-9. [PMID: 7926770 DOI: 10.1101/gad.8.7.821] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A core promoter element called an initiator (Inr) overlaps the transcription start site of numerous mammalian protein-coding genes. In promoters that lack a TATA box, the Inr is functionally analogous to TATA, in that it is capable of directing basal transcription by RNA polymerase II and of determining the precise site of transcription initiation. In promoters that contain a TATA box, the Inr can greatly enhance promoter strength. Mammalian Inr consensus sequences have been defined through functional studies and sequence comparisons of the start site regions of protein-coding genes. Here, we show that, in a DNase I footprinting assay with synthetic promoters, the purified TATA-binding protein complex TFIID specifically contacted the Inr. The TFIID-Inr interaction relies on the precise nucleotides needed for Inr function. Detection of the interaction was dependent either on a TATA box or on Sp1 bound to upstream sites. Furthermore, recombinant TFIIB appeared to influence the TFIID-Inr interaction, whereas TFIIA stabilized the TFIID-TATA interaction. These results demonstrate that distinct components of TFIID interact with the TATA boxes and Inr elements of core promoters for RNA polymerase II.
Collapse
Affiliation(s)
- J Kaufmann
- Howard Hughes Medical Institute, University of California, Los Angeles School of Medicine 90024-1662
| | | |
Collapse
|
293
|
Purnell BA, Emanuel PA, Gilmour DS. TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class II genes. Genes Dev 1994; 8:830-42. [PMID: 7926771 DOI: 10.1101/gad.8.7.830] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunopurified TFIID produces a large DNase I footprint over the hsp70, hsp26, and histone H3 promoters of Drosophila. These footprints span from the TATA element to a position approximately 35 nucleotides downstream from the transcription start site. Using a "missing nucleoside" analysis, four regions within the three promoters have been found to be important for TFIID binding: the TATA element, the initiator, and two regions located approximately 18 and 28 nucleotides downstream of the transcription start site. On the basis of the missing nucleoside data, the initiator appears to contribute as much to the affinity as the TATA element. However, there is weak conservation of the sequence in this region. To determine whether a preferred binding sequence exists in the vicinity of the initiator, the nucleotide composition of this region within the hsp70 promoter was randomized and then subjected to selection by TFIID. After five rounds of selection, the preferred sequence motif--G/A/T C/TAT/GTG--emerged. This motif is a close match to consensus sequences that have been derived by comparing the initiator region of numerous insect promoters. Selection of this sequence demonstrates that sequence-specific interactions downstream of the TATA element contribute to the interaction of TFIID on a wide spectrum of promoters.
Collapse
Affiliation(s)
- B A Purnell
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
294
|
Sepulveda A, Carter B, Habib G, Lebovitz R, Lieberman M. The mouse gamma-glutamyl transpeptidase gene is transcribed from at least five separate promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34115-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
295
|
Stewart M, Cox G, Reifel-Miller A, Kim S, Westbrook C, Leibowitz D. A novel transcriptional suppressor located within a downstream intron of the BCR gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34133-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
296
|
Sprenger H, Lloyd A, Lautens L, Bonner T, Kelvin D. Structure, genomic organization, and expression of the human interleukin-8 receptor B gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78092-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
297
|
Abstract
Recent results suggest that there may be several ways to assemble active transcription complexes containing RNA polymerase II, and highlight the potential importance of core promoter elements in gene regulation.
Collapse
Affiliation(s)
- G Gill
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720
| |
Collapse
|
298
|
Schweizer P, Mösinger E. Initiator-dependent transcription in vitro by a wheat germ chromatin extract. PLANT MOLECULAR BIOLOGY 1994; 25:115-130. [PMID: 8003692 DOI: 10.1007/bf00024203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of plant in vitro transcription systems transcribing faithfully and efficiently from a broad range of plant nuclear promoters has remained a challenge. We examined the nucleotide sequence requirements for faithful and efficient transcription in a wheat germ chromatin extract (Yamazaki et al., Plant Mol Biol Rep 8: 114-123). The wheat germ chromatin extract was tested with a series of chimeric promoter constructs containing plant promoter sequences upstream from the TATA box, TATA boxes, and cap-site sequences (from -10 to +14, relative to the major in vivo initiation site) in different combinations. The plant extract transcribed faithfully from several chimeric promoters containing the capsite sequence of the parsley chalcone synthase promoter. The transcription was sensitive to the RNA polymerase II-specific inhibitor alpha-amanitin and was only dependent on the chalcone synthase cap-site sequence which therefore fulfils the operational criteria for a plant initiator element. Mutations of the putative chalcone synthase initiator element defined a core sequence '5'TAACAAC' around the initiation site that was necessary for efficient transcription in vitro. In contrast to the extract, purified wheat germ RNA polymerase II showed no preference for transcription from the major chalcone synthase in vivo initiation site.
Collapse
Affiliation(s)
- P Schweizer
- Sandoz Agro Ltd., Agrobiological Research Station, Witterswil, Switzerland
| | | |
Collapse
|
299
|
Groner B, Altiok S, Meier V. Hormonal regulation of transcription factor activity in mammary epithelial cells. Mol Cell Endocrinol 1994; 100:109-14. [PMID: 8056143 DOI: 10.1016/0303-7207(94)90288-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The multihormonal control of milk protein gene transcription in mammary epithelial cells has been investigated. Although the hormones regulating milk protein gene expression are known, the interaction of the signal transduction pathways of steroid (glucocorticoids) and peptide (insulin and prolactin) hormones remains undefined in molecular terms. These signals converge on the level of nuclear factors binding to regulatory elements in the beta-casein gene promoter. The promoter has a modular architecture and is composed of positive and negative response elements. Nuclear transcription factors which bind to these elements have been identified. The mammary gland factor, MGF, is an essential mediator of lactogenic hormone action and is itself positively regulated in its DNA binding activity. It binds to the promoter region between positions -80 to -100. MGF counteracts a repressor element, constituted by two components, which is located adjacent to the MGF binding site at positions -100 to -150. The transcription factor YY1 binds to the proximal half of the repressor element which overlaps with the MGF binding site. Specific single-stranded DNA binding proteins contribute to the negative regulation of the promoter by interacting with sequence elements between -160 and -190. DNA binding of these proteins is negatively regulated by the lactogenic hormones.
Collapse
Affiliation(s)
- B Groner
- Institute for Experimental Cancer Research, Tumor Biology Center, Freiburg, Germany
| | | | | |
Collapse
|
300
|
Zhu W, Lossie AC, Camper SA, Gumucio DL. Chromosomal localization of the transcription factor YY1 in the mouse and human. Mamm Genome 1994; 5:234-6. [PMID: 7912122 DOI: 10.1007/bf00360552] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- W Zhu
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| | | | | | | |
Collapse
|