251
|
Darii MV, Rakhimova AR, Tashlitsky VN, Kostyuk SV, Veiko NN, Ivanov AA, Zhuze AL, Gromova ES. Dimeric bisbenzimidazoles: Cytotoxicity and effects on DNA methylation in normal and cancer human cells. Mol Biol 2013. [DOI: 10.1134/s0026893313020040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
252
|
Ali MW, Cacan E, Liu Y, Pierce JY, Creasman WT, Murph MM, Govindarajan R, Eblen ST, Greer SF, Hooks SB. Transcriptional suppression, DNA methylation, and histone deacetylation of the regulator of G-protein signaling 10 (RGS10) gene in ovarian cancer cells. PLoS One 2013; 8:e60185. [PMID: 23533674 PMCID: PMC3606337 DOI: 10.1371/journal.pone.0060185] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/22/2013] [Indexed: 01/10/2023] Open
Abstract
RGS10 regulates ovarian cancer cell growth and survival, and RGS10 expression is suppressed in cell models of ovarian cancer chemoresistance. However, the mechanisms governing RGS10 expression in ovarian cancer are poorly understood. Here we report RGS10 suppression in primary ovarian cancer and CAOV-3 ovarian cancer cells compared to immortalized ovarian surface epithelial (IOSE) cells, and in A2780-AD chemoresistant cells compared to parental A2780 cells. RGS10-1 and RGS10-2 transcripts are expressed in ovarian cancer cells, but only RGS10-1 is suppressed in A2780-AD and CAOV-3 cells, and the RGS10-1 promoter is uniquely enriched in CpG dinucleotides. Pharmacological inhibition of DNA methyl-transferases (DNMTs) increased RGS10 expression, suggesting potential regulation by DNA methylation. Bisulfite sequencing analysis identified a region of the RGS10-1 promoter with significantly enhanced DNA methylation in chemoresistant A2780-AD cells relative to parental A2780 cells. DNA methylation in CAOV-3 and IOSE cells was similar to A2780 cells. More marked differences were observed in histone acetylation of the RGS10-1 promoter. Acetylated histone H3 associated with the RGS10-1 promoter was significantly lower in A2780-AD cells compared to parental cells, with a corresponding increase in histone deacetylase (HDAC) enzyme association. Similarly, acetylated histone levels at the RGS10-1 promoter were markedly lower in CAOV-3 cells compared to IOSE cells, and HDAC1 binding was doubled in CAOV-3 cells. Finally, we show that pharmacological inhibition of DNMT or HDAC enzymes in chemoresistant A2780-AD cells increases RGS10 expression and enhances cisplatin toxicity. These data suggest that histone de-acetylation and DNA methylation correlate with RGS10 suppression and chemoresistance in ovarian cancer. Markers for loss of RGS10 expression may identify cancer cells with unique response to therapeutics.
Collapse
Affiliation(s)
- Mourad W. Ali
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Ercan Cacan
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Yuying Liu
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Young Pierce
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - William T. Creasman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mandi M. Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Rajgopal Govindarajan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Scott T. Eblen
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Susanna F. Greer
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Shelley B. Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
253
|
Gevaert O, De Moor B. Prediction of cancer outcome using DNA microarray technology: past, present and future. ACTA ACUST UNITED AC 2013; 3:157-65. [PMID: 23485162 DOI: 10.1517/17530050802680172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The use of DNA microarray technology to predict cancer outcome already has a history of almost a decade. Although many breakthroughs have been made, the promise of individualized therapy is still not fulfilled. In addition, new technologies are emerging that also show promise in outcome prediction of cancer patients. OBJECTIVE The impact of DNA microarray and other 'omics' technologies on the outcome prediction of cancer patients was investigated. Whether integration of omics data results in better predictions was also examined. METHODS DNA microarray technology was focused on as a starting point because this technology is considered to be the most mature technology from all omics technologies. Next, emerging technologies that may accomplish the same goals but have been less extensively studied are described. CONCLUSION Besides DNA microarray technology, other omics technologies have shown promise in predicting the cancer outcome or have potential to replace microarray technology in the near future. Moreover, it is shown that integration of multiple omics data can result in better predictions of cancer outcome; but, owing to the lack of comprehensive studies, validation studies are required to verify which omics has the most information and whether a combination of multiple omics data improves predictive performance.
Collapse
Affiliation(s)
- Olivier Gevaert
- Katholieke Universiteit Leuven, Department of Electrical Engineering ESAT-SCD-Sista, Kasteelpark Arenberg 10, 3001 Leuven, Belgium +32 16 328646 ; +32 16 32 ;
| | | |
Collapse
|
254
|
Rodriguez RM, Suarez-Alvarez B, Salvanés R, Muro M, Martínez-Camblor P, Colado E, Sánchez MA, Díaz MG, Fernandez AF, Fraga MF, Lopez-Larrea C. DNA methylation dynamics in blood after hematopoietic cell transplant. PLoS One 2013; 8:e56931. [PMID: 23451113 PMCID: PMC3579934 DOI: 10.1371/journal.pone.0056931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/16/2013] [Indexed: 12/20/2022] Open
Abstract
Epigenetic deregulation is considered a common hallmark of cancer. Nevertheless, recent publications have demonstrated its association with a large array of human diseases. Here, we explore the DNA methylation dynamics in blood samples during hematopoietic cell transplant and how they are affected by pathophysiological events during transplant evolution. We analyzed global DNA methylation in a cohort of 47 patients with allogenic transplant up to 12 months post-transplant. Recipients stably maintained the donor’s global methylation levels after transplant. Nonetheless, global methylation is affected by chimerism status. Methylation analysis of promoters revealed that methylation in more than 200 genes is altered 1 month post-transplant when compared with non-pathological methylation levels in the donor. This number decreased by 6 months post-transplant. Finally, we analyzed methylation in IFN-γ, FASL, IL-10, and PRF1 and found association with the severity of the acute graft-versus-host disease. Our results provide strong evidence that methylation changes in blood are linked to underlying physiological events and demonstrate that DNA methylation analysis is a viable strategy for the study of transplantation and for development of biomarkers.
Collapse
Affiliation(s)
- Ramon M. Rodriguez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | | | - Rubén Salvanés
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Manuel Muro
- Department of Immunology, Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Enrique Colado
- Department of Hematology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Miguel Alcoceba Sánchez
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Marcos González Díaz
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnologıa/CNB-CSIC, Cantoblanco, Madrid, Spain
- * E-mail: (MFF); (CLL)
| | - Carlos Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Fundación Renal “Iñigo Álvarez de Toledo”, Madrid, Spain
- * E-mail: (MFF); (CLL)
| |
Collapse
|
255
|
Gertych A, Oh JH, Wawrowsky KA, Weisenberger DJ, Tajbakhsh J. 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models. BMC Pharmacol Toxicol 2013; 14:11. [PMID: 23394161 PMCID: PMC3598242 DOI: 10.1186/2050-6511-14-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology.
Collapse
Affiliation(s)
- Arkadiusz Gertych
- Translational Cytomics Group, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
256
|
Fiorentino FP, Marchesi I, Giordano A. On the role of retinoblastoma family proteins in the establishment and maintenance of the epigenetic landscape. J Cell Physiol 2013; 228:276-84. [PMID: 22718354 DOI: 10.1002/jcp.24141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RB family members are negative regulators of the cell cycle, involved in numerous biological processes such as cellular senescence, development and differentiation. Disruption of RB family pathways are linked to loss of cell cycle control, cellular immortalization and cancer. RB family, and in particular the most studied member RB/p105, has been considered a tumor suppressor gene by more than three decades, and numerous efforts have been done to understand his molecular activity. However, the epigenetic mechanisms behind Rb-mediated tumor suppression have been uncovered only in recent years. In this review, the role of RB family members in cancer epigenetics will be discussed. We start with an introduction to epigenomes, chromatin modifications and cancer epigenetics. In order to provide a clear picture of the involvement of RB family in the epigenetic field, we describe the RB family role in the epigenetic landscape dynamics based on the heterochromatin variety involved, facultative or constitutive. We want to stress that, despite dissimilar modulations, RB family is involved in both mammalian varieties of heterochromatin establishment and maintenance and that disruption of RB family pathways drives to alterations of both heterochromatin structures, thus to the global epigenetic landscape.
Collapse
Affiliation(s)
- Francesco Paolo Fiorentino
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | |
Collapse
|
257
|
Darehdori AS, Dastjerdi MN, Dahim H, Slahshoor M, Babazadeh Z, Taghavi MM, Taghipour Z, Gaafarineveh H. Lack of significance of the BRCA2 promoter methylation status in different genotypes of the MTHFR a1298c polymorphism in ovarian cancer cases in Iran. Asian Pac J Cancer Prev 2013; 13:1833-6. [PMID: 22901131 DOI: 10.7314/apjcp.2012.13.5.1833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Promoter methylation, which can be regulated by MTHFR activity, is associated with silencing of genes. In this study we evaluated the methylation status (type) of the BRCA2 promoter in ovarian cancer patients carrying different genotypes of the MTHFR gene (A or C polymorphisms at position 1298). METHODS The methylation type of the BRCA2 promoter was evaluated using bisulfate-modified DNA in methylation- specific PCR and the MTHFRa1278c polymorphism was assessed by PCR-RFLP. RESULTS Analysis of the BRCA2 promoter methylation type of cases showed that 7 out of 60 cases (11.7%) were methylated while the remaining 53 (88.3%) were unmethylated. In methylated cases, one out of the 7 cases had a CC genotype and the remaining 6 methylated cases had an AC genotype. The AA genotype was absent. In unmethylated cases, 34, 18, and one out of these had AC, AA and CC genotype, respectively. CONCLUSION There was no significant relationship between the methylation types of the BRCA2 promoter in different genotypes of MTHFRa1298c polymorphism in ovarian cancer; p=0.255. There was no significant relation between the methylation types of the BRCA2 promoter in different genotypes of the MTHFRa1298c polymorphism in ovarian cancer.
Collapse
|
258
|
Sproul D, Meehan RR. Genomic insights into cancer-associated aberrant CpG island hypermethylation. Brief Funct Genomics 2013; 12:174-90. [PMID: 23341493 PMCID: PMC3662888 DOI: 10.1093/bfgp/els063] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carcinogenesis is thought to occur through a combination of mutational and epimutational events that disrupt key pathways regulating cellular growth and division. The DNA methylomes of cancer cells can exhibit two striking differences from normal cells; a global reduction of DNA methylation levels and the aberrant hypermethylation of some sequences, particularly CpG islands (CGIs). This aberrant hypermethylation is often invoked as a mechanism causing the transcriptional inactivation of tumour suppressor genes that directly drives the carcinogenic process. Here, we review our current understanding of this phenomenon, focusing on how global analysis of cancer methylomes indicates that most affected CGI genes are already silenced prior to aberrant hypermethylation during cancer development. We also discuss how genome-scale analyses of both normal and cancer cells have refined our understanding of the elusive mechanism(s) that may underpin aberrant CGI hypermethylation.
Collapse
|
259
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
260
|
Zhou D, Yang L, Zheng L, Ge W, Li D, Zhang Y, Hu X, Gao Z, Xu J, Huang Y, Hu H, Zhang H, Zhang H, Liu M, Yang H, Zheng L, Zheng S. Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis. PLoS One 2013; 8:e53310. [PMID: 23301059 PMCID: PMC3534699 DOI: 10.1371/journal.pone.0053310] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/27/2012] [Indexed: 12/30/2022] Open
Abstract
Most of colorectal adenocarcinomas are believed to arise from adenomas, which are premalignant lesions. Sequencing the whole exome of the adenoma will help identifying molecular biomarkers that can predict the occurrence of adenocarcinoma more precisely and help understanding the molecular pathways underlying the initial stage of colorectal tumorigenesis. We performed the exome capture sequencing of the normal mucosa, adenoma and adenocarcinoma tissues from the same patient and sequenced the identified mutations in additional 73 adenomas and 288 adenocarcinomas. Somatic single nucleotide variations (SNVs) were identified in both the adenoma and adenocarcinoma by comparing with the normal control from the same patient. We identified 12 nonsynonymous somatic SNVs in the adenoma and 42 nonsynonymous somatic SNVs in the adenocarcinoma. Most of these mutations including OR6X1, SLC15A3, KRTHB4, RBFOX1, LAMA3, CDH20, BIRC6, NMBR, GLCCI1, EFR3A, and FTHL17 were newly reported in colorectal adenomas. Functional annotation of these mutated genes showed that multiple cellular pathways including Wnt, cell adhesion and ubiquitin mediated proteolysis pathways were altered genetically in the adenoma and that the genetic alterations in the same pathways persist in the adenocarcinoma. CDH20 and LAMA3 were mutated in the adenoma while NRXN3 and COL4A6 were mutated in the adenocarcinoma from the same patient, suggesting for the first time that genetic alterations in the cell adhesion pathway occur as early as in the adenoma. Thus, the comparison of genomic mutations between adenoma and adenocarcinoma provides us a new insight into the molecular events governing the early step of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Donger Zhou
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, the Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Aberrant genes promoter methylation in neural crest-derived tumors. Int J Biol Markers 2012; 27:e389-94. [PMID: 23125005 DOI: 10.5301/jbm.2012.9766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 11/20/2022]
Abstract
Disturbances in the epigenetic landscape by aberrant methylation of CpG islands can lead to inactivation of cancer-related genes in solid tumors. We analyzed the promoter methylation status of 6 genes previously reported as cancer-specific methylated (MCAM, SSBP2, NISCH, B4GALT1, KIF1A and RASSF1A) in 38 neural crest-derived tumors by quantitative methylation-specific real-time PCR (QMSP). The results demonstrated that the determination of the methylation status of RASSF1A is able to distinguish between normal and tumor samples in cutaneous melanomas, lung carcinoids and small bowel carcinoids. MCAM methylation levels were significantly higher in lung carcinoids tumors (p=0.001), suggesting that this alteration may represent a molecular biomarker in this tumor type.
Collapse
|
262
|
|
263
|
Worsham MJ, Ali H, Dragovic J, Schweitzer VP. Molecular characterization of head and neck cancer: how close to personalized targeted therapy? Mol Diagn Ther 2012; 16:209-22. [PMID: 22873739 DOI: 10.2165/11635330-000000000-00000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular targeted therapy in head and neck squamous cell carcinoma (HNSCC) continues to make strides, and holds much promise. Cetuximab remains the sole US FDA-approved molecular targeted therapy available for HNSCC, though several new biologic agents targeting the epidermal growth factor receptor (EGFR) and other pathways are currently in the regulatory approval pipeline. While targeted therapies have the potential to be personalized, their current use in HNSCC is not personalized. This is illustrated for EGFR-targeted drugs, where EGFR as a molecular target has yet to be individualized for HNSCC. Future research needs to identify factors that correlate with response (or lack of one) and the underlying genotype-phenotype relationship that dictates this response. Comprehensive exploration of genetic and epigenetic landscapes in HNSCC is opening new frontiers to further enlighten and mechanistically inform newer as well as existing molecular targets, and to set a course for eventually translating these discoveries into therapies for patients. This opinion offers a snapshot of the evolution of molecular subtyping in HNSCC and its current clinical applicability, as well as new emergent paradigms with implications for controlling this disease in the future.
Collapse
Affiliation(s)
- Maria J Worsham
- Department of OtolaryngologyHead and Neck Surgery, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
264
|
Deng D, Lu Z. Differentiation and adaptation epigenetic networks: Translational research in gastric carcinogenesis. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
265
|
Eberle C, Ament C. Diabetic and metabolic programming: mechanisms altering the intrauterine milieu. ISRN PEDIATRICS 2012; 2012:975685. [PMID: 23213562 PMCID: PMC3508573 DOI: 10.5402/2012/975685] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 12/25/2022]
Abstract
A wealth of epidemiological, clinical, and experimental studies have been linked to poor intrauterine conditions as well as metabolic and associated cardiovascular changes postnatal. These are novel perspectives connecting the altered intrauterine milieu to a rising number of metabolic diseases, such as diabetes, obesity, and hypercholesterolemia as well as the Metabolic Syndrome (Met S). Moreover, metabolic associated atherosclerotic diseases are connected to perigestational maternal health. The "Thrifty Phenotype Hypothesis" introduced cross-generational links between poor conditions during gestation and metabolic as well as cardiovascular alterations postnatal. Still, mechanisms altering the intrauterine milieu causing metabolic and associated atherosclerotic diseases are currently poorly understood. This paper will give novel insights in fundamental concepts connected to specific molecular mechanisms "programming" diabetes and associated metabolic as well as cardiovascular diseases.
Collapse
Affiliation(s)
- Claudia Eberle
- Medical Clinic and Policlinic IV, Ludwig Maximilian University of Munich, 80336 Munich, Germany ; Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | | |
Collapse
|
266
|
Heller G, Babinsky VN, Ziegler B, Weinzierl M, Noll C, Altenberger C, Müllauer L, Dekan G, Grin Y, Lang G, End-Pfützenreuter A, Steiner I, Zehetmayer S, Döme B, Arns BM, Fong KM, Wright CM, Yang IA, Klepetko W, Posch M, Zielinski CC, Zöchbauer-Müller S. Genome-wide CpG island methylation analyses in non-small cell lung cancer patients. Carcinogenesis 2012; 34:513-21. [DOI: 10.1093/carcin/bgs363] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
267
|
Altamura G, Strazzullo M, Corteggio A, Francioso R, Roperto F, D'Esposito M, Borzacchiello G. O(6)-methylguanine-DNA methyltransferase in equine sarcoids: molecular and epigenetic analysis. BMC Vet Res 2012; 8:218. [PMID: 23140380 PMCID: PMC3512464 DOI: 10.1186/1746-6148-8-218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/06/2012] [Indexed: 05/07/2023] Open
Abstract
Background Bovine papillomaviruses (BPVs) types 1 and 2 are the only known papillomaviruses able to jump the species. In fact, BPVs 1/2 induce neoplasia in their natural bovine host but infection is also associated to neoplastic skin lesions in equids termed sarcoids. The equine sarcoid is considered to be the most common equine cutaneous tumour worldwide for which no effective therapy is available. Very little is known about the molecular mechanisms underlying tumourigenesis, although genes contributing to sarcoid development have been identified. Several studies associate the development of cancer to the loss of function of a number of oncosuppressor genes. In this study the putative role of O6-methylguanine-DNA methyltrasferase (MGMT) was investigated for sarcoids. The expression of the oncosuppressor protein was assessed in normal and sarcoid cells and tissues. In addition, the DNA methylation profile was analysed to assess the role of epigenetic mechanism in regulation of MGMT expression. Results A group of 15 equine sarcoids and two primary sarcoid cell lines (fibroblasts) were analyzed for the expression of MGMT protein by immunohistochemistry, immunofluorescence and Western blotting techniques. The sarcoid cell line EqSO4b and the tumour samples showed a reduction or absence of MGMT expression. To investigate the causes of deregulated MGMT expression, ten samples were analyzed for the DNA methylation profile of the CpG island associated to the MGMT promoter. The analysis of 73 CpGs encompassing the region of interest showed in 1 out of 10 (10%) sarcoids a pronouncedly altered methylation profile when compared to the control epidermal sample. Similarily the EqSO4b cell line showed an altered MGMT methylation pattern in comparison to normal fibroblasts. Conclusion As previously demonstrated for the oncosuppressor gene FHIT, analysis of MGMT expression in sarcoid tissues and a sarcoid-derived fibroblast cell line further suggests that oncosuppressor silencing may be also involved in BPV-induced equine tumours. Abnormal DNA methylation seems to be one of the possible molecular mechanisms involved in the alteration of MGMT expression. Further studies are required to address other basic molecular mechanisms involved in reduced MGMT expression. This study underlines the possible role of DNA methylation in oncosuppressor inactivation in equine sarcoids.
Collapse
Affiliation(s)
- Gennaro Altamura
- Department of Pathology and Animal health, University of Naples Federico II, Via Veterinaria, 1-80137, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
268
|
Brzeziańska E, Dutkowska A, Antczak A. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep 2012; 40:309-25. [PMID: 23086271 PMCID: PMC3518808 DOI: 10.1007/s11033-012-2063-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Lung cancer is recognized as a leading cause of cancer-related death worldwide and its frequency is still increasing. The prognosis in lung cancer is poor and limited by the difficulties of diagnosis at early stage of disease, when it is amenable to surgery treatment. Therefore, the advance in identification of lung cancer genetic and epigenetic markers with diagnostic and/or prognostic values becomes an important tool for future molecular oncology and personalized therapy. As in case of other tumors, aberrant epigenetic landscape has been documented also in lung cancer, both at early and late stage of carcinogenesis. Hypermethylation of specific genes, mainly tumor suppressor genes, as well as hypomethylation of oncogenes and retrotransposons, associated with histopathological subtypes of lung cancer, has been found. Epigenetic aberrations of histone proteins and, especially, the lower global levels of histone modifications have been associated with poorer clinical outcome in lung cancer. The recently discovered role of epigenetic modifications of microRNA expression in tumors has been also proven in lung carcinogenesis. The identified epigenetic events in lung cancer contribute to its specific epigenotype and correlated phenotypic features. So far, some of them have been suggested to be cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. As epigenetic aberrations are reversible, their correction has emerged as a promising therapeutic target.
Collapse
Affiliation(s)
- Ewa Brzeziańska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska St. 251, 92-213 Lodz, Poland.
| | | | | |
Collapse
|
269
|
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012; 13:R87. [PMID: 23034086 PMCID: PMC3491415 DOI: 10.1186/gb-2012-13-10-r87] [Citation(s) in RCA: 1383] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/03/2012] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a chemical modification of cytosine bases that is pivotal for gene regulation,
cellular specification and cancer development. Here, we describe an R package, methylKit, that
rapidly analyzes genome-wide cytosine epigenetic profiles from high-throughput methylation and
hydroxymethylation sequencing experiments. methylKit includes functions for clustering, sample
quality visualization, differential methylation analysis and annotation features, thus automating
and simplifying many of the steps for discerning statistically significant bases or regions of DNA
methylation. Finally, we demonstrate methylKit on breast cancer data, in which we find statistically
significant regions of differential methylation and stratify tumor subtypes. methylKit is available
at http://code.google.com/p/methylkit.
Collapse
|
270
|
Liu S. Epigenetics advancing personalized nanomedicine in cancer therapy. Adv Drug Deliv Rev 2012; 64:1532-43. [PMID: 22921595 DOI: 10.1016/j.addr.2012.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/27/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
Personalized medicine aims to deliver the right drug to a right patient at the right time. It offers unique opportunities to integrate new technologies and concepts to disease prognosis, diagnosis and therapeutics. While selective personalized therapies are conceptually impressive, the majority of cancer therapies have dismal outcome. Such therapeutic failure could result from no response, drug resistance, disease relapse or severe side effect from improper drug delivery. Nanomedicine, the application of nanotechnology in medicine, has a potential to advance the identification of diagnostic and prognostic biomarkers and the delivery of right drug to disease sites. Epigenetic aberrations dynamically contribute to cancer pathogenesis. Given the individualized traits of epigenetic biomarkers, epigenetic considerations would significantly refine personalized nanomedicine. This review aims to dissect the interface of personalized medicine with nanomedicine and epigenetics. I will outline the progress and highlight challenges and areas that can be further explored perfecting the personalized health care.
Collapse
|
271
|
Liu JB, Wu XM, Cai J, Zhang JY, Zhang JL, Zhou SH, Shi MX, Qiang FL. CpG island methylator phenotype and Helicobacter pylori infection associated with gastric cancer. World J Gastroenterol 2012; 18:5129-34. [PMID: 23049225 PMCID: PMC3460343 DOI: 10.3748/wjg.v18.i36.5129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/16/2012] [Accepted: 08/15/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the association between the CpG island methylator phenotype (CIMP) and serum Helicobacter pylori (H. pylori) levels for clinical prediction of gastric cancer (GC) progression.
METHODS: We analyzed the serum CIMP status of 75 patients with GC using a methylation marker panel and a methylation-specific polymerase chain reaction. Serum samples from 40 healthy persons were examined at the same time. The genes examined were APC, WIF-1, RUNX-3, DLC-1, SFRP-1, DKK and E-cad. H. pylori infection in serum was assayed with an anti-H. pylori immunoglobulin G antibody test and a rapid urease test.
RESULTS: The frequencies of high-level methylation in GC tissues for the seven genes were: 48% for APC, 57.33% for WIF-1, 56% for RUNX-3, 50.67% for DLC-1, 52% for SFRP-1, 54.67% for DKK, and 48% for E-cad. The frequencies in GC serum were 30.67% for APC, 34.67% for WIF-1, 37.33% for RUNX-3, 29.33% for DLC-1, 33.33% for SFRP-1, 32% for DKK, and 26.67% for E-cad. CIMP+ (defined as ≥ 3 methylated genes) was associated with 47 (62.67%) GC tissue samples and 44 (58.67%) GC serum samples. CIMP+ was not associated with non-neoplastic mucosal tissues or the serum of healthy persons. Of the 75 GC cases, 51 (68%) were H. pylori+, and 24 (32%) were H. pylori-. Of the 51 H. pylori+ cases, 36 were CIMP+ and 15 were CIMP-. In contrast, for the 24 H. pylori- cases, 11 were CIMP+, and 13 were CIMP-. The difference was significant between the H. pylori+ and H. pylori- groups (χ2 = 4.27, P < 0.05). Of the 51 H. pylori+ GC patients, 34 were CIMP+ and 17 were CIMP-, while among the 24 H. pylori- GC cases, 10 were CIMP+ and 14 were CIMP-. The difference was significant between the H. pylori+ and H. pylori- groups (χ2 = 4.21, P < 0.05). A 2-year follow-up showed significant difference in the rates of metastasis and recurrence between H. pylori+/CIMP+ cases and the H. pylori+/CIMP- cases or CIMP- cases associated with H. pylori assayed in serum (P < 0.05). However, there were no significant differences in survival rates between the two groups.
CONCLUSION: H. pylori+/CIMP+ cases are associated with higher rates of metastasis and recurrence than H. pylori+/CIMP- cases. Serum may be useful for examining CIMP status.
Collapse
|
272
|
Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med 2012; 4:1092-1096. [PMID: 23226780 PMCID: PMC3494110 DOI: 10.3892/etm.2012.715] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022] Open
Abstract
Aberrant methylation of gene promoter regions is one of the mechanisms for inactivation of tumor suppressor genes in human malignancies. In this study, the methylation pattern of 24 tumor suppressor genes was analyzed in 75 samples of ovarian cancer using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay. Of the 24 tumor suppressor genes examined, aberrant methylation was observed in 17. The three most frequently methylated genes were CDKN2B, CDH13 and RASSF1, followed by ESR1 and MLH1. Methylation frequencies ranged from 1.3% for CDKN2A, RARβ, CASP8, VHL and TP73 to 24% for CDKN2B. The corresponding normal DNA from each patient was also investigated. Methylation was detected in tumors, although not in normal tissues, with the exception of two samples, indicating aberrant methylation in tumors. Clear cell carcinoma samples exhibited a higher frequency of CDKN2B promoter hypermethylation compared to those of other histological types (P=0.05). Our data indicate that methylation of the CDKN2B gene is a frequent event in ovarian carcinogenesis and that analysis of only three genes is sufficient to detect the presence of methylation in 35% of ovarian cancer cases. However, more studies using a much larger sample size are needed to define the potential role of DNA methylation as a marker for ovarian cancer.
Collapse
Affiliation(s)
- Filiz Ozdemir
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty
| | | | | | | | | |
Collapse
|
273
|
Hiraoka D, Yoshida W, Abe K, Wakeda H, Hata K, Ikebukuro K. Development of a method to measure DNA methylation levels by using methyl CpG-binding protein and luciferase-fused zinc finger protein. Anal Chem 2012; 84:8259-64. [PMID: 22924825 DOI: 10.1021/ac3015774] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA methylation, which is an important epigenetic event for transcriptional regulation, is regarded as a biomarker for cancer. A rapid and sensitive method for measuring DNA methylation levels in target genomic regions may enable early diagnosis of cancer. To detect DNA methylation levels conveniently, we developed a detection system for DNA methylation, designated as methylated DNA precipitation combined luciferase-fused zinc finger assay (MELZA), which uses methyl CpG-binding domain (MBD) and luciferase-fused zinc finger protein. This system comprises the following 3 steps: (1) MBD-based methylated DNA precipitation, (2) PCR amplification of the target genomic region, and (3) detection of the PCR product quantity by using luciferase-fused zinc finger protein. Using this system, we have accurately measured methylation levels of the androgen receptor gene promoter region in LNCaP, PC3, Du145, and whole blood cells. This system does not require bisulfite treatment, and all the steps can be automated. Therefore, it might be useful for measuring DNA methylation levels in clinical cancer diagnoses.
Collapse
Affiliation(s)
- Daisuke Hiraoka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
274
|
Liu MM, Chan CC, Tuo J. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics. Hum Genomics 2012; 6:13. [PMID: 23244519 PMCID: PMC3500238 DOI: 10.1186/1479-7364-6-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs), and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3) and glutathione S transferase genes (GSTM1 and GSTT1) have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.
Collapse
Affiliation(s)
- Melissa M Liu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | | | | |
Collapse
|
275
|
Ho CM, Huang CJ, Huang CY, Wu YY, Chang SF, Cheng WF. Promoter methylation status of HIN-1 associated with outcomes of ovarian clear cell adenocarcinoma. Mol Cancer 2012; 11:53. [PMID: 22871047 PMCID: PMC3520826 DOI: 10.1186/1476-4598-11-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background This study is to analyze promoter methylation of various tumor suppressor genes in different types of ovarian carcinoma and to identify potential therapeutic targets of ovarian clear cell adenocarcinoma (OCCA). Materials and methods The promoter methylation statuses of 40 genes in primary ovarian carcinomas including 47 clear- and 63 non-clear-cell type tissues, 6 OCCA cell lines, 29 benign ovarian endometriotic cysts, and 31 normal controls were analyzed by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The MS-MLPA results were correlated with clinicopathological features and outcomes of 47 OCCA patients. Functions of the target genes were further explored by Western Blot Analysis, apoptosis assay, and caspase-3/7 activity analysis. Results Frequencies of methylated RASSF1A, CDH13, CACNA1A, HIN-1, and sFRP5 genes in OCCA tissues were significantly higher than those in non-OCCA cancerous tissues and benign endometriotic cysts. The expected OS for patients with methylated promoters of HIN-1 was significantly worse than those for patients without methylated HIN-1 (30% vs. 62%, p = 0.002). The HIN-1 gene was over-expressed in ES2 cells, a significant reduction in cell growth and induction of apoptosis, and increasing paclitaxel sensitivity by reducing phosphorylation of Akt were observed. Conclusions Methylation of HIN-1 promoter is a novel epigenetic biomarker associated with poor outcomes in OCCA patients. Ectopic expression of the HIN-1 gene increased paclitaxel sensitivity which is partly through Akt pathway.
Collapse
Affiliation(s)
- Chih-Ming Ho
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
276
|
Park SJ, Jang HR, Kim M, Kim JH, Kwon OH, Park JL, Noh SM, Song KS, Kim SY, Kim YH, Kim YS. Epigenetic alteration of CCDC67 and its tumor suppressor function in gastric cancer. Carcinogenesis 2012; 33:1494-1501. [PMID: 22610074 DOI: 10.1093/carcin/bgs178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, the promoter of the gene coiled-coil domain-containing 67 (CCDC67) was found to be frequently methylated in gastric cancer cell lines and in primary gastric tumors, as examined by restriction landmark genomic scanning. In addition, CCDC67 expression was down-regulated in 72.7% of gastric cancer cell lines tested. In most cases, gene down-regulation was associated with CpG hypermethylation in the CCDC67 promoter. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin A restored CCDC67 expression in down-regulated cell lines. Pyrosequencing analysis of 150 paired primary gastric cancer samples revealed that promoter CpG methylation was increased in 74% of tested tumors compared with paired adjacent normal tissues, and this hypermethylation correlated significantly with down-regulation of CCDC67. CCDC67 protein was localized to the cell membrane by immunocytochemistry. Stable transfection of a CCDC67 gene in one gastric cancer cell line inhibited adhesion-dependent and -independent colony formation, and CCDC67 expression suppressed tumorigenesis in nude mice. We suggest that CCDC67 is a putative tumor suppressor gene that is silenced in gastric cancers by promoter CpG methylation and that it may play an important role in cell signaling and migration related to tumorigenesis.
Collapse
Affiliation(s)
- Sung-Joon Park
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie 2012; 94:2314-37. [PMID: 22847185 DOI: 10.1016/j.biochi.2012.07.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023]
Abstract
A biomarker is a molecular target analyzed in a qualitative or quantitative manner to detect and diagnose the presence of a disease, to predict the outcome and the response to a specific treatment allowing personalized tailoring of patient management. Biomarkers can belong to different types of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more specific and sensitive than commonly used protein biomarkers, which could clearly justify their use in clinics. However, very few of them are at the moment used in clinics and even less commercial tests are currently available. The objective of this review is to discuss the advantages of DNA methylation as a biomarker, the practical considerations for their development, and their use in disease detection, prediction of outcome or treatment response, through multiple examples mainly focusing on cancer, but also to evoke their potential for complex diseases and prenatal diagnostics.
Collapse
Affiliation(s)
- Alexandre How Kit
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 27 rue Juliette Dodu, 75010 Paris, France
| | | | | |
Collapse
|
278
|
Draht MXG, Riedl RR, Niessen H, Carvalho B, Meijer GA, Herman JG, van Engeland M, Melotte V, Smits KM. Promoter CpG island methylation markers in colorectal cancer: the road ahead. Epigenomics 2012; 4:179-94. [PMID: 22449189 DOI: 10.2217/epi.12.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite increasing knowledge on the biology, detection and treatment of colorectal cancer (CRC), the disease is still a major health problem. Hypermethylation of promoter regions of genes has been studied extensively as a contributor in CRC carcinogenesis. In addition, it is the topic of many studies focusing on biomarkers for the early detection, prediction of prognosis and treatment outcome. Methylation markers may be preferred over current screening and test methods as they are stable and easy to detect. However, almost no methylation marker is currently being used in clinical practice, often due to a lack of sensitivity, specificity, or validation of the results. This review summarizes the current knowledge of hypermethylation biomarkers for CRC detection, progression and treatment outcome.
Collapse
Affiliation(s)
- Muriel X G Draht
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
DNA promoter methylation as a diagnostic and therapeutic biomarker in gallbladder cancer. Clin Epigenetics 2012; 4:11. [PMID: 22794276 PMCID: PMC3465181 DOI: 10.1186/1868-7083-4-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
Gallbladder cancer is an infrequent neoplasia with noticeable geographical variations in its incidence around the world. In Chile, it is the main cause of death owing to cancer in women over 40 years old, with mortality rates up to 16.5 per 100,000 cases. The prognosis is poor with few therapeutic options; in advanced cases there is only a 10% survival at 5 years. Several studies mention the possible role of DNA methylation in gallbladder carcinogenesis. This epigenetic modification affects tumor suppressor genes involved in regulation pathways, cell cycle control, cell adhesion and extracellular matrix degradation, in a sequential and cumulative way. Determining DNA methylation patterns would allow them to be used as biomarkers for the early detection, diagnosis, prognosis and/or therapeutic selection in gallbladder cancer.
Collapse
|
280
|
Applications in Cancer Diagnosis and Therapy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.3724/sp.j.1096.2011.01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
281
|
Cao A, Zhang CY. Sensitive and label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification. Anal Chem 2012; 84:6199-205. [PMID: 22715985 DOI: 10.1021/ac301186j] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive and specific detection of DNA methylation in CpG sites of genomic DNA is imperative for rapid epigenetic evaluation and early cancer diagnosis. Here, we employ for the first time the thermostable ligation for methylated DNA discrimination and hyperbranched rolling circle amplification (HRCA) for signal enhancement, without the need for restriction enzymes, PCR amplification, or fluorescence-labeled probes. After bisulfite treatment of methylated DNA, the methylation-specific linear padlock probe can be circularized only in the presence of methylated DNA and serves subsequently as a template for HRCA, whose products are easily detected using SYBR Green I and a standard fluorometer. While in the presence of unmethylated DNA, the linear padlock probe cannot be circularized because of the defectively matched substrate, and no HRCA occurs. This ligation-mediated HRCA-based method exhibits excellent specificity and high sensitivity with a detection limit of 0.8 fM and a detection range of 4 orders of magnitude, and it can even distinguish as low as 0.01% methylation level from the mixture, which is superior to most currently used methods for DNA methylation assay. This method can be further applied to analyze genomic DNA in human lung cancer cells.
Collapse
Affiliation(s)
- Anping Cao
- Single-molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong, China
| | | |
Collapse
|
282
|
Thapar M, Covault J, Hesselbrock V, Bonkovsky HL. DNA methylation patterns in alcoholics and family controls. World J Gastrointest Oncol 2012; 4:138-44. [PMID: 22737275 PMCID: PMC3382660 DOI: 10.4251/wjgo.v4.i6.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To assess whether DNA methylation patterns in chronic alcoholics are different from non-alcoholic sibling controls.
METHODS: We examined the methylation patterns in DNA samples from 25 chronic alcoholics and 22 matched siblings as controls (one per family). DNA was extracted from peripheral blood and analyzed for differences in the methylation patterns after bisulfite-conversion. We used the Illumina GoldenGate Methylation Cancer Panel I (Illumina, San Diego, CA), which probes the methylation profile at 1505 CpG sites from 807 cancer related genes. We excluded the 84 X-chromosome CpG sites and 134 autosomal CpG sites that failed to show a within sample reliability score of at least 95% for all samples, leaving 1287 autosomal CpG sites (associated with 743 autosomal genes) with reliable signals for all samples. A methylation score was calculated as the average methylation for the 1287 CpG sites examined. Differences were assessed by a two-sample t-test. We also examined the average sib pair differences in methylation scores at each of the 1287 sites. All analyses were performed using SPSS, version 9.0, P < 0.05 was considered significant.
RESULTS: Methylation levels at the 1287 CpG sites averaged 28.2% for both alcoholics and controls. The mean difference in methylation scores between alcoholic and non-alcoholic sibs by CpG site was < 1% with small inter-individual variances; and only 5 CpG sites had an average sib difference > 5%. Subgroup analysis showed that methylation scores were significantly lower for the alcoholic-dependent subjects who smoked compared to their non-smoking unaffected siblings. Specifically, among smokers who are alcoholic, global methylation indices were significantly lower than in non-alcoholic sib controls, whereas among non-smoking alcoholics, the global indices were significantly higher (P = 0.008).
CONCLUSION: Although we observed no effect of alcoholism alone on DNA methylation, there is a decrease in alcoholics who smoke, suggesting a mechanism for alcohol-tobacco synergy for carcinogenesis.
Collapse
Affiliation(s)
- Manish Thapar
- Manish Thapar, Herbert L Bonkovsky, Department of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, United States
| | | | | | | |
Collapse
|
283
|
Zhang L, Zhang L, Zhou K, Ye X, Zhang J, Xie A, Chen L, Kang JX, Cai C. Simultaneous Determination of Global DNA Methylation and Hydroxymethylation Levels by Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry. ACTA ACUST UNITED AC 2012; 17:877-84. [DOI: 10.1177/1087057112447946] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methylation of DNA at the 5-position of cytosine (Cyt) is a well-studied epigenetic pathway implicated in gene silencing and embryogenesis. Recently, in addition to 5-methylcytosine (5mC), substantial amounts of 5-hydroxymethylcytosine (5hmC) have been detected in certain mammalian tissues. Here, we developed and validated a hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) method for the simultaneous determination of Cyt, 5mC, and 5hmC levels in biological samples. DNA was extracted with phenol-chloroform, hydrolyzed using 88% formic acid at 140 °C, separated using a bridged ethylene hybrid HILIC column, and analyzed by tandem MS. The linearity was established over the concentration range of 1 to 500 ng/mL for Cyt, 0.2 to 100 ng/mL for 5mC, and 0.1 to 50 ng/mL for 5hmC, and the correlation coefficients were all >0.99. Limits of detection were 1 pg/mL for Cyt, 45 pg/mL for 5mC, and 57 pg/mL for 5hmC, and the limit of quantification values for Cyt, 5mC, and 5hmC were 2 pg/mL, 90 pg/mL, and 100 pg/mL, respectively. The relative standard deviation (RSD) of the intraday precision ranged from 1.87% to 4.84% and the interday precision from 2.69% to 4.98%. The recovery of the method varied from 88.25% to 104.39%. The method was then applied to the analysis of DNA from biological samples, establishing its potential for helping researchers understand the roles of modified nucleobases in DNA.
Collapse
Affiliation(s)
- Liangtao Zhang
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Lijian Zhang
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Keyuan Zhou
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Xiaoxia Ye
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Junjie Zhang
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Aimei Xie
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Liyu Chen
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Jing X. Kang
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Chun Cai
- Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
284
|
Abstract
INTRODUCTION The recent DNA methylation studies on cancers have revealed the necessity of profiling an entire human genome and not to restrict the profiling to specific regions of the human genome. It has been suggested that genome-wide DNA methylation analysis enables us to identify the genes that are regulated by DNA methylation in carcinogenesis. METHODS So, we performed whole-genome DNA methylation analysis for human lung squamous cell carcinoma (SCC), which is strongly related with smoking. We also performed microarrays using 21 pairs of normal lung tissues and tumors from patients with SCC. By combining these data, 30 hypermethylated and down-regulated genes, and 22 hypomethylated and up-regulated genes were selected. The gene expression level and DNA methylation pattern were confirmed by semiquantitative reverse-transcriptase polymerase chain reaction and pyrosequencing, respectively. RESULTS By these validations, we selected five hypermethylated and down-regulated genes and one hypomethylated and up-regulated gene. Moreover, these six genes were proven to be actually regulated by DNA methylation by confirming the recovery of their DNA methylation pattern and gene expression level using a demethylating agent. The DNA methylation pattern of the CYTL1 promoter region was significantly different between early and advanced stages of SCC. CONCLUSION In conclusion, by combining the whole-genome DNA methylation pattern and the gene expression profile, we identified the six genes (CCDC37, CYTL1, CDO1, SLIT2, LMO3, and SERPINB5) that are regulated by DNA methylation, and we suggest their value as target molecules for further study of SCC.
Collapse
|
285
|
Rogers HA, Kilday JP, Mayne C, Ward J, Adamowicz-Brice M, Schwalbe EC, Clifford SC, Coyle B, Grundy RG. Supratentorial and spinal pediatric ependymomas display a hypermethylated phenotype which includes the loss of tumor suppressor genes involved in the control of cell growth and death. Acta Neuropathol 2012; 123:711-25. [PMID: 22109108 PMCID: PMC3316934 DOI: 10.1007/s00401-011-0904-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/19/2023]
Abstract
Epigenetic alterations, including methylation, have been shown to be an important mechanism of gene silencing in cancer. Ependymoma has been well characterized at the DNA copy number and mRNA expression levels. However little is known about DNA methylation changes. To gain a more global view of the methylation profile of ependymoma we conducted an array-based analysis. Our data demonstrated tumors to segregate according to their location in the CNS, which was associated with a difference in the global level of methylation. Supratentorial and spinal tumors displayed significantly more hypermethylated genes than posterior fossa tumors, similar to the ‘CpG island methylator phenotype’ (CIMP) identified in glioma and colon carcinoma. This hypermethylated profile was associated with an increase in expression of genes encoding for proteins involved in methylating DNA, suggesting an underlying mechanism. An integrated analysis of methylation and mRNA expression array data allowed us to identify methylation-induced expression changes. Most notably genes involved in the control of cell growth and death and the immune system were identified, including members of the JNK pathway and PPARG. In conclusion, we have generated a global view of the methylation profile of ependymoma. The data suggests epigenetic silencing of tumor suppressor genes is an important mechanism in the pathogenesis of supratentorial and spinal, but not posterior fossa ependymomas. Hypermethylation correlated with a decrease in expression of a number of tumor suppressor genes and pathways that could be playing an important role in tumor pathogenesis.
Collapse
Affiliation(s)
- Hazel A. Rogers
- Children’s Brain Tumour Research Centre, D Floor Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - John-Paul Kilday
- Children’s Brain Tumour Research Centre, D Floor Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Cerys Mayne
- Children’s Brain Tumour Research Centre, D Floor Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Jennifer Ward
- Children’s Brain Tumour Research Centre, D Floor Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Martyna Adamowicz-Brice
- Children’s Brain Tumour Research Centre, D Floor Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Ed C. Schwalbe
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Steven C. Clifford
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Beth Coyle
- Children’s Brain Tumour Research Centre, D Floor Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Richard G. Grundy
- Children’s Brain Tumour Research Centre, D Floor Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| |
Collapse
|
286
|
Linking the epigenome to the genome: correlation of different features to DNA methylation of CpG islands. PLoS One 2012; 7:e35327. [PMID: 22558141 PMCID: PMC3340366 DOI: 10.1371/journal.pone.0035327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022] Open
Abstract
DNA methylation of CpG islands plays a crucial role in the regulation of gene expression. More than half of all human promoters contain CpG islands with a tissue-specific methylation pattern in differentiated cells. Still today, the whole process of how DNA methyltransferases determine which region should be methylated is not completely revealed. There are many hypotheses of which genomic features are correlated to the epigenome that have not yet been evaluated. Furthermore, many explorative approaches of measuring DNA methylation are limited to a subset of the genome and thus, cannot be employed, e.g., for genome-wide biomarker prediction methods. In this study, we evaluated the correlation of genetic, epigenetic and hypothesis-driven features to DNA methylation of CpG islands. To this end, various binary classifiers were trained and evaluated by cross-validation on a dataset comprising DNA methylation data for 190 CpG islands in HEPG2, HEK293, fibroblasts and leukocytes. We achieved an accuracy of up to 91% with an MCC of 0.8 using ten-fold cross-validation and ten repetitions. With these models, we extended the existing dataset to the whole genome and thus, predicted the methylation landscape for the given cell types. The method used for these predictions is also validated on another external whole-genome dataset. Our results reveal features correlated to DNA methylation and confirm or disprove various hypotheses of DNA methylation related features. This study confirms correlations between DNA methylation and histone modifications, DNA structure, DNA sequence, genomic attributes and CpG island properties. Furthermore, the method has been validated on a genome-wide dataset from the ENCODE consortium. The developed software, as well as the predicted datasets and a web-service to compare methylation states of CpG islands are available at http://www.cogsys.cs.uni-tuebingen.de/software/dna-methylation/.
Collapse
|
287
|
Abstract
This article focuses on the epigenetic alterations of aberrant promoter hypermethylation of genes, and histone modifications or RNA interference in cancer cells. Current knowledge of the hypermethylation of allele(s) in classical tumor suppressor genes in inherited and sporadic cancer, candidate tumor suppressor and other cancer genes is summarized gene by gene. Global and array-based studies of tumor cell hypermethylation are discussed. The importance of standardization of scoring of the methylation status of a gene is highlighted. The histone marks associated with hypermethylated genes, and the miRNAs with dysregulated expression, in kidney or bladder tumor cells are also discussed. Kidney cancer has the highest mortality rate of the genito-urinary cancers. There are management issues associated with the high recurrence rate of superficial bladder cancer, while muscle-invasive bladder cancer has a poor prognosis. These clinical problems are the basis for the translational application of gene hypermethylation in the diagnosis and prognosis of kidney and bladder cancer.
Collapse
Affiliation(s)
- Amanda M Hoffman
- Departments of Surgical Oncology & Pathology, W350, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
288
|
Hiura H, Okae H, Kobayash H, Miyauchi N, Sato F, Sato A, Suzuki F, Nagase S, Sugawara J, Nakai K, Yaegashi N, Arima T. High-throughput detection of aberrant imprint methylation in the ovarian cancer by the bisulphite PCR-Luminex method. BMC Med Genomics 2012; 5:8. [PMID: 22443985 PMCID: PMC3342152 DOI: 10.1186/1755-8794-5-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation leads to loss of heterozygosity (LOH) or loss of imprinting (LOI) as the first hit during human carcinogenesis. Recently we developed a new high-throughput, high-resolution DNA methylation analysis method, bisulphite PCR-Luminex (BPL), using sperm DNA and demonstrated the effectiveness of this novel approach in rapidly identifying methylation errors. RESULTS In the current study, we applied the BPL method to the analysis of DNA methylation for identification of prognostic panels of DNA methylation cancer biomarkers of imprinted genes. We found that the BPL method precisely quantified the methylation status of specific DNA regions in somatic cells. We found a higher frequency of LOI than LOH. LOI at IGF2, PEG1 and H19 were frequent alterations, with a tendency to show a more hypermethylated state. We detected changes in DNA methylation as an early event in ovarian cancer. The degree of LOI (LOH) was associated with altered DNA methylation at IGF2/H19 and PEG1. CONCLUSIONS The relative ease of BPL method provides a practical method for use within a clinical setting. We suggest that DNA methylation of H19 and PEG1 differentially methylated regions (DMRs) may provide novel biomarkers useful for screening, diagnosis and, potentially, for improving the clinical management of women with human ovarian cancer.
Collapse
Affiliation(s)
- Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Shin SH, Lee K, Kim BH, Cho NY, Jang JY, Kim YT, Kim D, Jang JJ, Kang GH. Bile-based detection of extrahepatic cholangiocarcinoma with quantitative DNA methylation markers and its high sensitivity. J Mol Diagn 2012; 14:256-63. [PMID: 22446083 DOI: 10.1016/j.jmoldx.2012.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 11/15/2011] [Accepted: 01/04/2012] [Indexed: 12/15/2022] Open
Abstract
Extrahepatic cholangiocarcinoma (EHC) is usually difficult to diagnose by bile cytology because of cellular disintegration. However, DNA samples from bile fluid can provide sufficient materials to screen for the presence of EHC. We developed DNA methylation marker panels that can be used for MethyLight assay-based detection of EHC in bile fluid specimens. The methylation status of 59 DNA methylation markers was investigated in 20 EHC and 20 non-neoplastic gallbladder tissue samples with MethyLight assay to determine cancer-specific DNA methylation markers. Through assaying cancer-specific DNA methylation markers in a training set (n = 40) and validation set (n = 45) of bile fluid specimens from patients with EHC or those without cancer, we selected suitable marker panels that were assessed for their performance in a third set (test set; n = 40). Four marker panels showed a sensitivity of 60% or more and a specificity of 100% in both the training and validation sets, whereas bile cytology displayed a sensitivity of 40% to 46% and a specificity of 100%. In an independent test set of bile fluid samples, a five-gene panel (CCND2, CDH13, GRIN2B, RUNX3, and TWIST1) detected EHC at a sensitivity of 83%, which was far higher than that of bile cytology (46%, P = 0.004). Using bile fluids, a methylation assay consisting of a five-gene panel may be useful for detecting EHC and in helping to increase the sensitivity of preoperative diagnoses.
Collapse
Affiliation(s)
- So-Hyun Shin
- Laboratory of Epigenetics, Cancer Research Institute, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Yang Y, Nephew K, Kim S. A novel k-mer mixture logistic regression for methylation susceptibility modeling of CpG dinucleotides in human gene promoters. BMC Bioinformatics 2012; 13 Suppl 3:S15. [PMID: 22536899 PMCID: PMC3311103 DOI: 10.1186/1471-2105-13-s3-s15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background DNA methylation is essential for normal development and differentiation and plays a crucial role in the development of nearly all types of cancer. Aberrant DNA methylation patterns, including genome-wide hypomethylation and region-specific hypermethylation, are frequently observed and contribute to the malignant phenotype. A number of studies have recently identified distinct features of genomic sequences that can be used for modeling specific DNA sequences that may be susceptible to aberrant CpG methylation in both cancer and normal cells. Although it is now possible, using next generation sequencing technologies, to assess human methylomes at base resolution, no reports currently exist on modeling cell type-specific DNA methylation susceptibility. Thus, we conducted a comprehensive modeling study of cell type-specific DNA methylation susceptibility at three different resolutions: CpG dinucleotides, CpG segments, and individual gene promoter regions. Results Using a k-mer mixture logistic regression model, we effectively modeled DNA methylation susceptibility across five different cell types. Further, at the segment level, we achieved up to 0.75 in AUC prediction accuracy in a 10-fold cross validation study using a mixture of k-mers. Conclusions The significance of these results is three fold: 1) this is the first report to indicate that CpG methylation susceptible "segments" exist; 2) our model demonstrates the significance of certain k-mers for the mixture model, potentially highlighting DNA sequence features (k-mers) of differentially methylated, promoter CpG island sequences across different tissue types; 3) as only 3 or 4 bp patterns had previously been used for modeling DNA methylation susceptibility, ours is the first demonstration that 6-mer modeling can be performed without loss of accuracy.
Collapse
|
291
|
Worsham MJ, Stephen JK, Chen KM, Havard S, Shah V, Gardner G, Schweitzer VG. Delineating an epigenetic continuum in head and neck cancer. Cancer Lett 2012; 342:178-84. [PMID: 22388100 DOI: 10.1016/j.canlet.2012.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 11/28/2022]
Abstract
A tissue field of somatic genetic alterations precedes the histopathological phenotypic changes of carcinoma. Genomic changes could be of potential use in the diagnosis and prognosis of pre-invasive squamous head and neck carcinoma (HNSCC) lesions and as markers for cancer risk assessment. Studies of sequential molecular alterations and genetic progression of pre-invasive HNSCC have not been clearly defined. Studies have shown recurring alterations at chromosome 9p21 (location of the CDKN2A) and TP53 mutations in the early stages of HNSCC. However, gene silencing via hypermethylation is still a relatively new idea in the development of HNSCC and little is known about the contribution of epigenetics to the development of neoplasia, its transformation, progression, and recurrence in HNSCC. This review examines the role of promoter hypermethylation of tumor suppressor genes in the progression continuum from benign papillomas to malignancy in HNSCC.
Collapse
Affiliation(s)
- Maria J Worsham
- Department of Otolaryngology/Head and Neck Surgery, Henry Ford Health System, Detroit, MI, United States.
| | | | | | | | | | | | | |
Collapse
|
292
|
Okamoto K. Epigenetics: A way to understand the origin and biology of testicular germ cell tumors. Int J Urol 2012; 19:504-11. [DOI: 10.1111/j.1442-2042.2012.02986.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
293
|
Solyom S, Kazazian HH. Mobile elements in the human genome: implications for disease. Genome Med 2012; 4:12. [PMID: 22364178 PMCID: PMC3392758 DOI: 10.1186/gm311] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/22/2012] [Indexed: 02/07/2023] Open
Abstract
Perhaps as much as two-thirds of the mammalian genome is composed of mobile genetic elements ('jumping genes'), a fraction of which is still active or can be reactivated. By their sheer number and mobility, retrotransposons, DNA transposons and endogenous retroviruses have shaped our genotype and phenotype both on an evolutionary scale and on an individual level. Notably, at least the non-long terminal repeat retrotransposons are still able to cause disease by insertional mutagenesis, recombination, providing enzymatic activities for other mobile DNA, and perhaps by transcriptional overactivation and epigenetic effects. Currently, there are nearly 100 examples of known retroelement insertions that cause disease. In this review, we highlight those genome-scale technologies that have expanded our knowledge of the diseases that these mobile elements can elicit, and we discuss the potential impact of these findings for medicine. It is now likely that at least some types of cancer and neurological disorders arise as a result of retrotransposon mutagenesis.
Collapse
Affiliation(s)
- Szilvia Solyom
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Broadway Research Building, Room 412, 733 N, Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
294
|
Shiba-Ishii A, Noguchi M. Aberrant stratifin overexpression is regulated by tumor-associated CpG demethylation in lung adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1653-62. [PMID: 22310466 DOI: 10.1016/j.ajpath.2011.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/02/2011] [Accepted: 12/09/2011] [Indexed: 01/05/2023]
Abstract
We previously have shown the aberrant overexpression of stratifin (SFN, 14-3-3 ς) in lung adenocarcinoma. Although SFN is known to facilitate tumor cell proliferation, the mechanism that underlies its aberrant expression has remained unclear. SFN, the downstream target of p53, often has been reported to be hypermethylated and subsequently silenced in certain cancers; however, its hypomethylation-linked reactivation has not yet been validated. In this study, we investigated the DNA methylation status of the SFN promoter region using 8 lung cancer cell lines and 32 specimens of adenocarcinoma tissue. Real-time methylation-specific PCR analysis showed that although both normal lung tissue and adenocarcinoma in situ bore a completely methylated SFN promoter, the promoter region in almost all invasive adenocarcinomas was at least partially methylated. The expression of SFN and its level of methylation were correlated strongly. Furthermore, statistical analysis revealed that the level of methylation became reduced with progression of the pathologic stage, although no clear relationship between methylation level and p53 abnormality was found. These results suggest that methylation-related silencing of SFN occurs in both normal lung tissues and adenocarcinoma in situ, and that demethylation of the SFN promoter participates in the aberrant expression of SFN in invasive adenocarcinoma cells, independently of p53 alteration. This novel finding might be informative for clarifying the mechanism that underlies the progression of early lung adenocarcinoma.
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Pathology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
295
|
Park SY, Kwon HJ, Choi Y, Lee HE, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH. Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell phenotypes. Mod Pathol 2012; 25:185-96. [PMID: 22037257 DOI: 10.1038/modpathol.2011.160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although DNA methylation profiles in breast cancer have been connected to breast cancer molecular subtype, there have been no studies of the association of DNA methylation with stem cell phenotype. This study was designed to evaluate the promoter CpG island methylation of 15 genes in relation to breast cancer subtype, and to investigate whether the patterns of CpG island methylation in each subtype are associated with their cancer stem cell phenotype represented by CD44+/CD24- and ALDH1 expression. We performed MethyLight analysis of the methylation status of 15 promoter CpG island loci involved in breast cancer progression (APC, DLEC1, GRIN2B, GSTP1, HOXA1, HOXA10, IGF2, MT1G, RARB, RASSF1A, RUNX3, SCGB3A1, SFRP1, SFRP4, and TMEFF2) and determined cancer stem cell phenotype by CD44/CD24 and ALDH1 immunohistochemistry in 36 luminal A, 33 luminal B, 30 luminal-HER2, 40 HER2 enriched, and 40 basal-like subtypes of breast cancer. The number of CpG island loci methylated differed significantly between subtypes, and was highest in the luminal-HER2 subtype and lowest in the basal-like subtype. Methylation frequencies and levels in 12 of the 15 genes differed significantly between subtypes, and the basal-like subtype had significantly lower methylation frequencies and levels in nine of the genes than the other subtypes. CD44+/CD24- and ALDH1+ putative stem cell populations were most enriched in the basal-like subtype. Methylation of promoter CpG islands was significantly lower in CD44+/CD24-cell (+) tumors than in CD44+/CD24-cell (-) tumors, even within the basal-like subtype. ALDH1 (+) tumors were also less methylated than ALDH1 (-) tumors. Our findings showed that promoter CpG island methylation was different in relation to breast cancer subtype and stem cell phenotype of tumor, suggesting that breast cancers have distinct patterns of CpG island methylation according to molecular subtypes and these are associated with different stem cell phenotypes of the tumor.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Abstract
CTCF is an evolutionary conserved and ubiquitously expressed protein that binds thousands of sites in the human genome. Ectopic expression of CTCF in various normal and tumoral human cell lines inhibits cell division and clonogenicity, with the consequence to consider CTCF a potential tumor-suppressor factor. In this review article, we focused on the molecular mechanisms engaged by CTCF to modulate the expression of several key-regulators of differentiation, cellular senescence, cell cycle control and progression, whose expression is frequently altered in tumors. Moreover, we discussed common features of CTCF at each tumor-related DNA-binding sequence, such as protein-partners, post-translational modifications, and distinctive epigenetic marks establishment. The investigation of the molecular mechanisms engaged by CTCF to modulate tumor-related genes emphasizes the cell-type dependency of its tumor suppressor role. Indeed, the ability of CTCF to bind their promoters strictly depends by cell-type features as DNA methylation, BORIS-binding and post-translational modifications as PARYlation.
Collapse
Affiliation(s)
- Francesco Paolo Fiorentino
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
297
|
Koutsimpelas D, Pongsapich W, Heinrich U, Mann S, Mann WJ, Brieger J. Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor genes in head and neck squamous cell carcinoma: pharmacological genome demethylation reduces proliferation of head and neck squamous carcinoma cells. Oncol Rep 2012; 27:1135-41. [PMID: 22246327 PMCID: PMC3583513 DOI: 10.3892/or.2012.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/02/2011] [Indexed: 01/19/2023] Open
Abstract
Promoter hypermethylation of tumor suppressor genes (TSGs) is a common feature of primary cancer cells. However, to date the somatic epigenetic events that occur in head and neck squamous cell carcinoma (HNSCC) tumorigenesis have not been well-defined. In the present study, we analyzed the promoter methylation status of the genes mutL homolog 1 (MLH1), Ras-association domain family member 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in 23 HNSCC samples, three control tissues and one HNSCC cell line (UM-SCC 33) using methylation-specific PCR (MSP). The expression of the three proteins was quantified by semi-quantitative immunohistochemical analysis. The cell line was treated with the demethylating agent 5-azacytidine (5-Aza) and the methylation status after 5-Aza treatment was analyzed by MSP and DNA sequencing. Proliferation was determined by Alamar blue staining. We found that the MGMT promoter in 57% of the analyzed primary tumor samples and in the cell line was hypermethylated. The MLH promoter was found to be methylated in one out of 23 (4%) tumor samples while in the examined cell line the MLH promoter was unmethylated. The RASSF1A promoter showed methylation in 13% of the tumor samples and in the cell line. MGMT expression in the group of tumor samples with a hypermethylated promoter was statistically significantly lower compared to the group of tumors with no measured hypermethylation of the MGMT promoter. After treatment of the cell line with the demethylating agent 5-Aza no demethylation of the methylated MGMT and RASSF1A genes were determined by MSP. DNA sequencing verified the MSP results, however, increased numbers of unmethylated CpG islands in the promoter region of MGMT and RASSF1A were observed. Proliferation was significantly (p<0.05) reduced after treatment with 5-Aza. In summary, we have shown promoter hypermethylation of the tumor suppressor genes MGMT and RASSF1A in HNSCC, suggesting that this epigenetic inactivation of TSGs may play a role in the development of HNSCC. 5-Aza application resulted in partial demethylation of the MGMT and RASSF1A TSGs and reduced proliferation of the tumor cells suggesting further evaluation of 5-Aza for HNSCC treatment.
Collapse
Affiliation(s)
- Dimitrios Koutsimpelas
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
298
|
Stephen JK, Chen KM, Havard S, Harris G, Worsham MJ. Promoter methylation in head and neck tumorigenesis. Methods Mol Biol 2012; 863:187-206. [PMID: 22359294 DOI: 10.1007/978-1-61779-612-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In addition to genetic alterations of gains and losses, epigenetic events of promoter methylation appear to further undermine a destabilized genomic repertoire in squamous head and neck carcinoma (HNSCC). This chapter provides an overview of frequently methylated tumor suppressor genes in benign head and neck papillomas, primary HNSCC tumors, and HNSCC cell lines and their relevance as epigenetic markers in head and neck tumorigenesis.
Collapse
Affiliation(s)
- Josena K Stephen
- Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
299
|
Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 2012; 3:21-38. [PMID: 22332098 PMCID: PMC3262611 DOI: 10.3945/an.111.000992] [Citation(s) in RCA: 633] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes.
Collapse
Affiliation(s)
- Krista S Crider
- Division of Birth Defects and Developmental Disabilities, National Center on Birth Defects and Developmental Disabilities, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
300
|
Abstract
Cervical carcinoma is one of the major causes of death in women worldwide. It is difficult to foresee a dramatic increase in cure rate even with the most optimal combination of cytotoxic drugs, surgery, and radiation; therefore, testing of molecular targeted therapies against this malignancy is highly desirable. Cervical cancer is a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes (TSGs). In the last decade, in addition to genetic alterations, epigenetic inactivation of TSGs by promoter hypermethylation has been recognized as an important and alternative mechanism in tumorigenesis. In cervical cancer, epigenetic alterations can affect the expression of papillomavirus as well as host genes in relation to stages representing the multistep process of carcinogenesis. Here we discuss these epigenetic alterations in cervical cancer focusing on DNA methylation.
Collapse
|