251
|
Abstract
Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial for proper development of the coronary vasculature and cardiac fibrous matrix, both of which support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely regulated by complex interactions among signaling molecules and transcription factors. Here we review the roles of critical transcription factors that are required for specific aspects of epicardial development, EMT, and EPDC lineage specification in development and disease. Epicardial cells and subepicardial EPDCs express transcription factors including Wt1, Tcf21, Tbx18, and Nfatc1. As EPDCs invade the myocardium, epicardial progenitor transcription factors such as Wt1 are downregulated. EPDC differentiation into SMC and fibroblast lineages is precisely regulated by a complex network of transcription factors, including Tcf21 and Tbx18. These and other transcription factors also regulate epicardial EMT, EPDC invasion, and lineage maturation. In addition, there is increasing evidence that epicardial transcription factors are reactivated with adult cardiac ischemic injury. Determining the function of reactivated epicardial cells in myocardial infarction and fibrosis may improve our understanding of the pathogenesis of heart disease.
Collapse
|
252
|
Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, Lusis AJ. Identification of CAD candidate genes in GWAS loci and their expression in vascular cells. J Lipid Res 2013; 54:1894-905. [PMID: 23667179 PMCID: PMC3679391 DOI: 10.1194/jlr.m037085] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Indexed: 11/20/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have identified 35 loci that significantly associate with coronary artery disease (CAD) susceptibility. The majority of the genes represented in these loci have not previously been studied in the context of atherosclerosis. To characterize the roles of these candidate genes in the vessel wall, we determined their expression levels in endothelial, smooth muscle, and macrophage cells isolated from healthy, prelesioned, and lesioned mouse aortas. We also performed expression quantitative locus (eQTL) mapping of these genes in human endothelial cells under control and proatherogenic conditions. Of the 57 genes studied, 31 were differentially expressed in one or more cell types in disease state in mice, and the expression levels of 8 were significantly associated with the CAD SNPs in human cells, 7 of which were also differentially expressed in mice. By integrating human and mouse results, we predict that PPAP2B, GALNT4, MAPKAPK5, TCTN1, SRR, SNF8, and ICAM1 play a causal role in the susceptibility to atherosclerosis through a role in the vasculature. Additionally, we highlight the genetic complexity of a subset of CAD loci through the differential expression of multiple candidate genes per locus and the involvement of genes that lie outside linkage disequilibrium blocks.
Collapse
Affiliation(s)
- Ayca Erbilgin
- Departments of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA
| | - Mete Civelek
- Medicine, David Geffen School of Medicine, Los Angeles, CA
| | | | - Calvin Pan
- Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Raffi Hagopian
- Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Judith A. Berliner
- Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Aldons J. Lusis
- Departments of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA
- Medicine, David Geffen School of Medicine, Los Angeles, CA
- Human Genetics, and David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
253
|
Zhang Z, Zhao Z, Liu B, Li D, Zhang D, Chen H, Liu D. Systems biomedicine: It’s your turn—Recent progress in systems biomedicine. QUANTITATIVE BIOLOGY 2013. [DOI: 10.1007/s40484-013-0009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
254
|
Ferguson JF, Matthews GJ, Townsend RR, Raj DS, Kanetsky PA, Budoff M, Fischer MJ, Rosas SE, Kanthety R, Rahman M, Master SR, Qasim A, Li M, Mehta NN, Shen H, Mitchell BD, O'Connell JR, Shuldiner AR, Ho WK, Young R, Rasheed A, Danesh J, He J, Kusek JW, Ojo AO, Flack J, Go AS, Gadegbeku CA, Wright JT, Saleheen D, Feldman HI, Rader DJ, Foulkes AS, Reilly MP. Candidate gene association study of coronary artery calcification in chronic kidney disease: findings from the CRIC study (Chronic Renal Insufficiency Cohort). J Am Coll Cardiol 2013; 62:789-98. [PMID: 23727086 DOI: 10.1016/j.jacc.2013.01.103] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/16/2013] [Accepted: 01/20/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study sought to identify loci for coronary artery calcification (CAC) in patients with chronic kidney disease (CKD). BACKGROUND CKD is associated with increased CAC and subsequent coronary heart disease (CHD), but the mechanisms remain poorly defined. Genetic studies of CAC in CKD may provide a useful strategy for identifying novel pathways in CHD. METHODS We performed a candidate gene study (∼2,100 genes; ∼50,000 single nucleotide polymorphisms [SNPs]) of CAC within the CRIC (Chronic Renal Insufficiency Cohort) study (N = 1,509; 57% European, 43% African ancestry). SNPs with preliminary evidence of association with CAC in CRIC were examined for association with CAC in the PennCAC (Penn Coronary Artery Calcification) (N = 2,560) and AFCS (Amish Family Calcification Study) (N = 784) samples. SNPs with suggestive replication were further analyzed for association with myocardial infarction (MI) in the PROMIS (Pakistan Risk of Myocardial Infarction Study) (N = 14,885). RESULTS Of 268 SNPs reaching p < 5 × 10(-4) for CAC in CRIC, 28 SNPs in 23 loci had nominal support (p < 0.05 and in same direction) for CAC in PennCAC or AFCS. Besides chr9p21 and COL4A1, known loci for CHD, these included SNPs having reported genome-wide association study association with hypertension (e.g., ATP2B1). In PROMIS, 4 of the 23 suggestive CAC loci (chr9p21, COL4A1, ATP2B1, and ABCA4) had significant associations with MI, consistent with their direction of effect on CAC. CONCLUSIONS We identified several loci associated with CAC in CKD that also relate to MI in a general population sample. CKD imparts a high risk of CHD and may provide a useful setting for discovery of novel CHD genes and pathways.
Collapse
Affiliation(s)
- Jane F Ferguson
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
He F. Lifeomics leads the age of grand discoveries. SCIENCE CHINA-LIFE SCIENCES 2013; 56:201-12. [PMID: 23526385 PMCID: PMC7088716 DOI: 10.1007/s11427-013-4464-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 12/15/2022]
Abstract
When our knowledge of a field accumulates to a certain level, we are bound to see the rise of one or more great scientists. They will make a series of grand discoveries/breakthroughs and push the discipline into an ‘age of grand discoveries’. Mathematics, geography, physics and chemistry have all experienced their ages of grand discoveries; and in life sciences, the age of grand discoveries has appeared countless times since the 16th century. Thanks to the ever-changing development of molecular biology over the past 50 years, contemporary life science is once again approaching its breaking point and the trigger for this is most likely to be ‘lifeomics’. At the end of the 20th century, genomics wrote out the ‘script of life’; proteomics decoded the script; and RNAomics, glycomics and metabolomics came into bloom. These ‘omics’, with their unique epistemology and methodology, quickly became the thrust of life sciences, pushing the discipline to new high. Lifeomics, which encompasses all omics, has taken shape and is now signalling the dawn of a new era, the age of grand discoveries.
Collapse
Affiliation(s)
- Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science (Beijing), Beijing 100850, China.
| |
Collapse
|
256
|
Brini M, Calì T, Ottolini D, Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J 2013; 280:5385-97. [PMID: 23413890 DOI: 10.1111/febs.12193] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022]
Abstract
The Ca(2+) ATPases of the plasma membrane (PMCA pumps) export Ca(2+) from all eukaryotic cells. In mammals they are the products of four separate genes. PMCA types 1 and 4 are distributed ubiquitously; PMCA types 2 and 3 are restricted to some tissues, the most important being the nervous system. Alternative splicing at two sites greatly increases the number of pump isoforms. The two ubiquitous isoforms are no longer considered as only housekeeping pumps as they also perform tissue-specific functions. The PMCAs are classical P-type pumps, their reaction cycle repeating that of all other pumps of the family. Their 3D structure has not been solved, but molecular modeling on SERCA pump templates shows the essential structural pattern of the latter. PMCAs are regulated by calmodulin, which interacts with high affinity with their cytosolic C-terminal tail. A second calmodulin-binding domain with lower affinity is present in some splicing variants of the pump. The PMCAs are essential to the regulation of cellular Ca(2+), but the all-important Ca(2+) signal is ambivalent: defects in its control generate various pathologies, the most thoroughly studied being those of genetic origin. Genetic defects of PMCA function produce disease phenotypes: the best characterized is a form of deafness in mice and in humans linked to PMCA2 mutations. A cerebellar X-linked human ataxia has recently been found to be caused by a mutation in the calmodulin-binding domain of PMCA3.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | | | | | | |
Collapse
|
257
|
Genome-wide association study in Han Chinese identifies three novel loci for human height. Hum Genet 2013; 132:681-9. [PMID: 23456168 DOI: 10.1007/s00439-013-1280-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/18/2013] [Indexed: 12/19/2022]
Abstract
Human height is a complex genetic trait with high heritability but discovery efforts in Asian populations are limited. We carried out a meta-analysis of genome-wide association studies (GWAS) for height in 6,534 subjects with in silico replication of 1,881 subjects in Han Chinese. We identified three novel loci reaching the genome-wide significance threshold (P < 5 × 10(-8)), which mapped in or near ZNF638 (rs12612930, P = 2.02 × 10(-10)), MAML2 (rs11021504, P = 7.81 × 10(-9)), and C18orf12 (rs11082671, P = 1.87 × 10(-8)). We also confirmed two loci previously reported in European populations including CS (rs3816804, P = 2.63 × 10(-9)) and CYP19A1 (rs3751599, P = 4.80 × 10(-10)). In addition, we provided evidence supporting 35 SNPs identified by previous GWAS (P < 0.05). Our study provides new insights into the genetic determination of biological regulation of human height.
Collapse
|
258
|
Yang X, Lu X, Wang L, Chen S, Li J, Cao J, Chen J, Hao Y, Li Y, Zhao L, Li H, Liu D, Wang L, Lu F, Shen C, Yu L, Wu X, Zhao Q, Ji X, Guo D, Peng X, Huang J, Gu D. Common variants at 12q24 are associated with drinking behavior in Han Chinese. Am J Clin Nutr 2013; 97:545-51. [PMID: 23364009 DOI: 10.3945/ajcn.112.046482] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Alcohol consumption is heritable, but genetic susceptibility to drinking behavior has not been investigated widely in genome-wide association studies. OBJECTIVE We aimed to identify susceptibility loci for drinking behavior (drinkers compared with nondrinkers) in Han Chinese. DESIGN We performed 2 genome-wide association studies including 1420 drinkers and 3590 nondrinkers in discovery, followed by a de novo replication analysis comprising 4896 drinkers and 13,293 nondrinkers. DNA samples of the subjects were collected for genotyping. RESULTS The association results of drinking behavior (drinkers or nondrinkers) showed a cluster of single nucleotide polymorphisms at 12q24 in discovery (P < 5 × 10(-8)), with the strongest association for rs11066280 near C12orf51 (P-combined = 3.26 × 10(-215)). Moreover, we observed the association with drinking behavior for a functional variant in ALDH2 at 12q24 (rs671, P-discovery = 5.17 × 10(-35)). We also identified the association between rs11066280 and daily alcohol intake among drinkers (P-combined = 4.01 × 10(-21)). CONCLUSION Our data indicate that common variants at 12q24 may contribute to the susceptibility of drinking behavior in Han Chinese.
Collapse
Affiliation(s)
- Xueli Yang
- Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
Although over 30 common genetic susceptibility loci have been identified to be independently associated with coronary artery disease (CAD) risk through genome-wide association studies (GWAS), genetic risk variants reported to date explain only a small fraction of heritability. To identify novel susceptibility variants for CAD and confirm those previously identified in European population, GWAS and a replication study were performed in the Koreans and Japanese. In the discovery stage, we genotyped 2123 cases and 3591 controls with 521 786 SNPs using the Affymetrix SNP Array 6.0 chips in Korean. In the replication, direct genotyping was performed using 3052 cases and 4976 controls from the KItaNagoya Genome study of Japan with 14 selected SNPs. To maximize the coverage of the genome, imputation was performed based on 1000 Genome JPT+CHB and 5.1 million SNPs were retained. CAD association was replicated for three GWAS-identified loci (1p13.3/SORT1 (rs599839), 9p21.3/CDKN2A/2B (rs4977574), and 11q22.3/ PDGFD (rs974819)) in Koreans. From GWAS and a replication, SNP rs3782889 showed a strong association (combined P=3.95 × 10(-14)), although the association of SNP rs3782889 doesn't remain statistically significant after adjusting for SNP rs11066015 (proxy SNP with BRAP (r(2)=1)). But new possible CAD-associated variant was observed for rs9508025 (FLT1), even though its statistical significance did marginally reach at the genome-wide a significance level (combined P=6.07 × 10(-7)). This study shows that three CAD susceptibility loci, which were previously identified in European can be directly replicated in Koreans and also provides additional evidences implicating suggestive loci as risk variants for CAD in East Asian.
Collapse
|
260
|
Dong L, Wang H, Wang DW, Ding H. Association of Chromosome 9p21 Genetic Variants with Risk of Coronary Heart Disease in the East Asian Population: A Meta-Analysis. Ann Hum Genet 2013; 77:183-90. [PMID: 23347249 DOI: 10.1111/ahg.12010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/09/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Liping Dong
- Department of Nephrology Puai Hospital Tongji Medical College; Huazhong University of Science & Technology; Wuhan; People's Republic of China
| | - Haoran Wang
- Departments of Internal Medicine Tongji Hospital Tongji Medical College; Huazhong University of Science & Technology; Wuhan; People's Republic of China
| | - Dao Wen Wang
- Departments of Internal Medicine Tongji Hospital Tongji Medical College; Huazhong University of Science & Technology; Wuhan; People's Republic of China
| | - Hu Ding
- Departments of Internal Medicine Tongji Hospital Tongji Medical College; Huazhong University of Science & Technology; Wuhan; People's Republic of China
| |
Collapse
|
261
|
Harato M, Huang L, Kondo F, Tsunekawa K, Feng GG, Fan JH, Ishikawa N, Fujiwara Y, Okada S. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells. BMC Neurosci 2012; 13:149. [PMID: 23227925 PMCID: PMC3541351 DOI: 10.1186/1471-2202-13-149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/07/2012] [Indexed: 11/22/2022] Open
Abstract
Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells.
Collapse
Affiliation(s)
- Misako Harato
- Department of Anesthesiology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|