251
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
252
|
Ahmedy OA, El-Tanbouly DM, Al-Mokaddem AK, El-Said YA. Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats. Life Sci 2022; 309:121040. [DOI: 10.1016/j.lfs.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
253
|
Diz M, Durán-Carril ML, Castro J, Alvo S, Bada L, Viña D, García-Vázquez JA. Antitumor activity of copper(II) complexes with Schiff bases derived from N'-tosylbenzene-1,2-diamine. J Inorg Biochem 2022; 236:111975. [PMID: 36055108 DOI: 10.1016/j.jinorgbio.2022.111975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
The electrochemical oxidation of anodic metal copper in a solution of the ligands N-[(5-tert-butyl-2-hydroxyphenyl)methylidine]-N'-tosylbenzene-1,2-diamine [H2L1] and N-[(3,5-di-tert-butyl-2-hydroxyphenyl)methylidine]-N'-tosylbenzene-1,2-diamine, [H2L2] afforded homoleptic [CuL] compounds or solvate [CuLS] complexes. The addition to the electrochemical cell of coligands (L') such as 2,2'-bipyridine (2-bpy), 4,4'-bipyridine(4-bpy) or 1,10-phenanthroline (phen) allowed the synthesis, in one step, of heteroleptic [CuLL'] compounds, namely [CuL1(H2O)] (1), [CuL1(2,2'-bpy)]⋅CH3CN (2), [CuL1(phen)]·H2O (3), [Cu2L12(4,4'-bpy)] (4), [CuL2(CH3OH)] (5), [CuL2(2,2'-bpy)] (6), [CuL2(phen)] (7) and [Cu2L22(4,4'-bpy)] (8). The crystal structures of both ligands, H2L1, H2L2, and those of the complexes (2), (4), (5), (6) and (7) have been determined by X-ray diffraction techniques. Coordination polyhedron around metal atom is square planar for [CuL2(CH3OH)] (5) and [Cu2L12(4,4'-bpy)] (4) and square pyramid for the other complexes with additional chelating ligands. The cytotoxic activity of this new series of copper(II) complexes against the SH-SY5Y neuroblastoma cell line and U87-MG and U373-MG glioblastoma cell lines has been investigated. Most of the test compounds showed higher activity than cisplatin in the three cell lines. Among this series, compound [CuL1(phen)] (3) displayed the highest activity with IC50 equal to 1.77 μM on SH-SY5Y whereas compound [Cu2L12(4.4'-bpy)] (4) resulted the most potent compounds on U87 MG and U373 MG glioblastoma cell lines. Studies on the cytotoxic activity of these derivatives suggest that these compounds induce cell death by a mechanism other than apoptosis.
Collapse
Affiliation(s)
- María Diz
- Departamento de Química Inorgánica, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María L Durán-Carril
- Departamento de Química Inorgánica, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús Castro
- Departamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310 Vigo (Galicia), Spain.
| | - Samuel Alvo
- CIMUS, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucía Bada
- CIMUS, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- CIMUS, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José A García-Vázquez
- Departamento de Química Inorgánica, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
254
|
Chafik SG, Michel HE, El-Demerdash E. The Cannabinoid-2 receptor agonist, 1-phenylisatin, protects against cisplatin-induced nephrotoxicity in mice. Life Sci 2022; 308:120928. [PMID: 36058263 DOI: 10.1016/j.lfs.2022.120928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
AIM The present study investigated the potential protective effect of a selective Cannabinoid-2 (CB2) receptor agonist, 1-phenylisatin, in acute nephrotoxicity induced by cisplatin. MATERIALS AND METHODS Animals were arranged into 5 groups. Group I; normal saline, group II; 1-phenylisatin for 7 days, group III: received a single injection of cisplatin (20 mg/kg, i.p.) on day 5, group IV: 1-phenylisatin for 7 days and cisplatin on day 5 and group V: AM630, CB2 antagonist, 15 min before 1-phenylisatin for 7 days and a single injection of cisplatin on day 5. Mice were sacrificed 72 h after cisplatin injection. Kidneys were isolated for histopathological and biochemical analyses. Nephrotoxicity parameters including serum creatinine and urea were assessed as well as histopathological examination was done. Also, Oxidative stress markers; MDA and GSH, inflammatory markers; TNF-α, NF-κB (p65), MCP-1, MIP-2, and ICAM-1, along with apoptotic markers, Bax, Bcl2, and caspase-3 were studied. Further, CB2 receptor expression was investigated. KEY FINDINGS Cisplatin injection increased serum creatinine and urea levels, and increased lipid peroxidation, decreased glutathione level and increased the renal expression of pro-inflammatory markers, TNF-α, NF-κB, MCP-1, MIP-2, and ICAM-1, along with increased apoptotic markers and significantly reduced the expression of the anti-apoptotic Bcl2. Pretreatment with 1-phenylisatin significantly counteracted these effects. The CB2 receptor antagonist; AM630, increased the renal expression of caspase-3 and Bax whereas Bcl2 expression decreased. SIGNIFICANCE 1-Phenylisatin protected against cisplatin-induced nephrotoxicity owing to its anti-apoptotic, anti-inflammatory, and antioxidant effects. These actions were mostly mediated through CB2 receptor.
Collapse
Affiliation(s)
| | - Haidy E Michel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
255
|
Magnesium Isoglycyrrhizinate Reduces the Target-Binding Amount of Cisplatin to Mitochondrial DNA and Renal Injury through SIRT3. Int J Mol Sci 2022; 23:ijms232113093. [DOI: 10.3390/ijms232113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrotoxicity is the dose-limiting factor of cisplatin treatment. Magnesium isoglycyrrhizinate (MgIG) has been reported to ameliorate renal ischemia–reperfusion injury. This study aimed to investigate the protective effect and possible mechanisms of MgIG against cisplatin-induced nephrotoxicity from the perspective of cellular pharmacokinetics. We found that cisplatin predominantly accumulated in mitochondria of renal tubular epithelial cells, and the amount of binding with mitochondrial DNA (mtDNA) was more than twice that with nuclear DNA (nDNA). MgIG significantly lowered the accumulation of cisplatin in mitochondria and, in particular, the degree of target-binding to mtDNA. MgIG notably ameliorated cisplatin-induced changes in mitochondrial membrane potential, morphology, function, and cell viability, while the magnesium donor drugs failed to work. In a mouse model, MgIG significantly alleviated cisplatin-caused renal dysfunction, pathological changes of renal tubules, mitochondrial ultrastructure variations, and disturbed energy metabolism. Both in vitro and in vivo data showed that MgIG recovered the reduction of NAD+-related substances and NAD+-dependent deacetylase sirtuin-3 (SIRT3) level caused by cisplatin. Furthermore, SIRT3 knockdown weakened the protective effect of MgIG on mitochondria, while SIRT3 agonist protected HK-2 cells from cisplatin and specifically reduced platinum-binding activity with mtDNA. In conclusion, MgIG reduces the target-binding amount of platinum to mtDNA and exerts a protective effect on cisplatin-induced renal injury through SIRT3, which may provide a new strategy for the treatment of cisplatin-induced nephrotoxicity.
Collapse
|
256
|
Duan YY, Mi XJ, Su WY, Tang S, Jiang S, Wang Z, Zhao LC, Li W. Trilobatin, an Active Dihydrochalcone from Lithocarpus polystachyus, Prevents Cisplatin-Induced Nephrotoxicity via Mitogen-Activated Protein Kinase Pathway-Mediated Apoptosis in Mice. ACS OMEGA 2022; 7:37401-37409. [PMID: 36312396 PMCID: PMC9607670 DOI: 10.1021/acsomega.2c04142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Although naturally occurring flavonoids have shown beneficial effects on the side effects caused by cisplatin, there are few reports on the protective effect of dihydrochalcone on the cisplatin-induced toxicity. Trilobatin (TLB), as the major sweetener and active ingredient in Lithocarpus polystachyus Rehd, is a dihydrochalcone-like compound that can be present in concentrations of up to 10% or more in tender leaves. Herein, a cisplatin-induced acute kidney injury (AKI) model was established to investigate the protective effect and mechanism of TLB against the cisplatin-induced nephrotoxicity in mice. The results showed that TLB significantly reversed the inhibition of CRE, BUN, and MDA levels compared with the cisplatin group. Furthermore, TLB treatment (50 and 100 mg/kg) for 10 days significantly alleviated cisplatin-induced renal pathological changes. TUNEL staining showed that TLB administration can effectively improve the occurrence of apoptosis of renal tissue cells caused by cisplatin exposure. Importantly, western blot analysis verified that TLB alleviated cisplatin-induced nephrotoxicity by regulating the AKT/MAPK signaling pathway and apoptosis. In summary, our findings showed clearly that TLB has a significant preventive effect on cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yue-yang Duan
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
and Local Joint Engineering Research Center for Ginseng Breeding and
Development, Changchun 130118, China
| | - Xiao-jie Mi
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Wen-ya Su
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shan Tang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Zi Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Li-Chun Zhao
- College
of Pharmacy, Guangxi University of Chinese
Medicine, Nanning 530001, China
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
and Local Joint Engineering Research Center for Ginseng Breeding and
Development, Changchun 130118, China
| |
Collapse
|
257
|
Nazeer HY, Iqbal MO, Mumtaz A, Ahmed MM, Riaz R, Rasool MF. In vivo antioxidants, chemical characterization and biochemical and MedicinalPotential of Murraya koenigii inCisplatin-induced nephrotoxicity. Drug Dev Ind Pharm 2022; 48:566-574. [DOI: 10.1080/03639045.2022.2140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong-266003, China
- Royal Institute of Medical Sciences (RIMS), Multan, Pakistan
| | - Asma Mumtaz
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Multan Medical and Dental College, Multan 60000, Pakistan
| | - Muhammad Masood Ahmed
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Faculty of Pharmaceutical Sciences, Times Institute Multan, Multan 60000, Pakistan
| | - Romana Riaz
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, 60800, Multan, Pakistan
| |
Collapse
|
258
|
Alanezi AA, Almuqati AF, Alfwuaires MA, Alasmari F, Namazi NI, Althunibat OY, Mahmoud AM. Taxifolin Prevents Cisplatin Nephrotoxicity by Modulating Nrf2/HO-1 Pathway and Mitigating Oxidative Stress and Inflammation in Mice. Pharmaceuticals (Basel) 2022; 15:1310. [PMID: 36355481 PMCID: PMC9692949 DOI: 10.3390/ph15111310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
Cisplatin (CIS) is an effective chemotherapeutic agent used in the treatment of several malignancies. The clinical use of CIS is associated with adverse effects, including acute kidney injury (AKI). Oxidative stress and inflammation are key events in the development of CIS-induced AKI. This study investigated the protective effect of taxifolin (TAX), a bioactive flavonoid with promising health-promoting properties, on CIS-induced nephrotoxicity in mice. TAX was orally given to mice for 10 days and a single dose of CIS was injected at day 7. Serum blood urea nitrogen (BUN) and creatinine were elevated, and multiple histopathological alterations were observed in the kidney of CIS-administered mice. CIS increased renal malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappaB (NF-κB) p65, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, and decreased cellular antioxidants in mice. TAX remarkably prevented kidney injury, ameliorated serum BUN and creatinine, and renal MDA, NO, NF-κB p65, and pro-inflammatory cytokines, and boosted antioxidant defenses in CIS-administered mice. TAX downregulated Bax and caspase-3, and upregulated Bcl-2. These effects were associated with upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase (HO)-1 activity in CIS-administered mice. In conclusion, TAX prevented CIS-induced AKI by mitigating tissue injury, oxidative stress, inflammation, and cell death. The protective efficacy of TAX was associated with the upregulation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nader I. Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
259
|
Yuan Y, Chen H, Ou S, Cai B, Zhang R, Qin Y, Pan M, Cao S, Pei D, Hou FF. Generation of mitochondria-rich kidney organoids from expandable intermediate mesoderm progenitors reprogrammed from human urine cells under defined medium. Cell Biosci 2022; 12:174. [PMID: 36243732 PMCID: PMC9569036 DOI: 10.1186/s13578-022-00909-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The kidneys require vast amounts of mitochondria to provide ample energy to reabsorb nutrients and regulate electrolyte, fluid, and blood pressure homeostasis. The lack of the human model hinders the investigation of mitochondria homeostasis related to kidney physiology and disease. RESULTS Here, we report the generation of mitochondria-rich kidney organoids via partial reprogramming of human urine cells (hUCs) under the defined medium. First, we reprogrammed mitochondria-rich hUCs into expandable intermediate mesoderm progenitor like cells (U-iIMPLCs), which in turn generated nephron progenitors and formed kidney organoids in both 2D and 3D cultures. Cell fate transitions were confirmed at each stage by marker expressions at the RNA and protein levels, along with chromatin accessibility dynamics. Single cell RNA-seq revealed hUCs-induced kidney organoids (U-iKOs) consist of podocytes, tubules, and mesenchyme cells with 2D dominated with mesenchyme and 3D with tubule and enriched specific mitochondria function associated genes. Specific cell types, such as podocytes and proximal tubules, loop of Henle, and distal tubules, were readily identified. Consistent with these cell types, 3D organoids exhibited the functional and structural features of the kidney, as indicated by dextran uptake and transmission electron microscopy. These organoids can be further matured in the chick chorioallantoic membrane. Finally, cisplatin, gentamicin, and forskolin treatment led to anatomical abnormalities typical of kidney injury and altered mitochondria homeostasis respectively. CONCLUSIONS Our study demonstrates that U-iKOs recapitulate the structural and functional characteristics of the kidneys, providing a promising model to study mitochondria-related kidney physiology and disease in a personalized manner.
Collapse
Affiliation(s)
- Yapei Yuan
- grid.416466.70000 0004 1757 959XDivision of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangdong Provincial Institute of Nephrology, Guangzhou, 510515 China
| | - Huan Chen
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Sihua Ou
- grid.410737.60000 0000 8653 1072Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Baomei Cai
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Ruifang Zhang
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Yue Qin
- grid.428926.30000 0004 1798 2725CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Mengjie Pan
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Shangtao Cao
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Duanqing Pei
- grid.494629.40000 0004 8008 9315Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024 China
| | - Fan Fan Hou
- grid.416466.70000 0004 1757 959XDivision of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangdong Provincial Institute of Nephrology, Guangzhou, 510515 China ,grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| |
Collapse
|
260
|
Kim DU, Kweon B, Oh JY, Seo CS, Kim DG, Kim HY, Lee HS, Park SJ, Bae GS. Ojeoksan Ameliorates Cisplatin-Induced Acute Kidney Injury in Mice by Downregulating MAPK and NF-κB Pathways. Int J Mol Sci 2022; 23:ijms232012254. [PMID: 36293111 PMCID: PMC9603434 DOI: 10.3390/ijms232012254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Jin-Young Oh
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Korea
| | - Dong-Gu Kim
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Korea
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6842
| |
Collapse
|
261
|
Atwa AM, Abd El-Ghafar OAM, Hassanein EHM, Mahdi SE, Sayed GA, Alruhaimi RS, Alqhtani HA, Alotaibi MF, Mahmoud AM. Candesartan Attenuates Cisplatin-Induced Lung Injury by Modulating Oxidative Stress, Inflammation, and TLR-4/NF-κB, JAK1/STAT3, and Nrf2/HO-1 Signaling. Pharmaceuticals (Basel) 2022; 15:ph15101222. [PMID: 36297334 PMCID: PMC9612036 DOI: 10.3390/ph15101222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Cisplatin (CIS) is an effective chemotherapeutic agent against different cancers. The use of CIS is associated with acute lung injury (ALI) and other adverse effects, and oxidative stress and inflammation were implicated in its toxic effects. Candesartan (CAN), an angiotensin II (Ang II) receptor blocker, showed beneficial effects against oxidative stress and inflammation. Therefore, this study investigated the potential of CAN to prevent CIS-induced oxidative stress, inflammation, and lung injury in rats, pointing to the involvement of TLR4/NF-κB, JAK1/STAT3, PPARγ, and Nrf2/HO-1 signaling. The rats received CAN (5 mg/kg) for 10 days and were challenged with a single dose of CIS (7 mg/kg) on day 7. CIS caused injury to the alveoli and the bronchial tree, increased lipid peroxidation, nitric oxide, myeloperoxidase, TLR-4, NF-κB p65, iNOS, TNF-α, IL-6, IL-1β, and caspase-3, and decreased cellular antioxidants and IL-6 in the lungs of rats. CAN effectively prevented tissue injury, suppressed TLR-4/ NF-κB signaling, and ameliorated oxidative stress, inflammatory markers, and caspase-3 in CIS-administered rats. CAN enhanced antioxidants and IL-10, decreased Ang II, increased Ang (1–7), suppressed the phosphorylation of JAK1 and STAT3, and upregulated SOCS3 in CIS-administered rats. These effects were associated with the downregulation of Keap1 and enhanced Nrf2, GCLC, HO-1, and PPARγ. In conclusion, CAN prevented CIS-induced lung injury by attenuating oxidative stress, suppressing TLR-4/NF-κB and JAK1/STAT3 signaling, Ang II, and pro-inflammatory mediators, and upregulating PPARγ, and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Omnia A. M. Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Emad H. M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Somya E. Mahdi
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghadir A. Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed F. Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
- Correspondence: or
| |
Collapse
|
262
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
263
|
El-Waseif EG, Sharawy MH, Suddek GM. The modulatory effect of sodium molybdate against cisplatin-induced CKD: Role of TGF-β/Smad signaling pathway. Life Sci 2022; 306:120845. [DOI: 10.1016/j.lfs.2022.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
264
|
Tanemoto F, Nangaku M, Mimura I. Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Front Mol Biosci 2022; 9:1003227. [PMID: 36213117 PMCID: PMC9532834 DOI: 10.3389/fmolb.2022.1003227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic memory, which refers to the ability of cells to retain and transmit epigenetic marks to their daughter cells, maintains unique gene expression patterns. Establishing programmed epigenetic memory at each stage of development is required for cell differentiation. Moreover, accumulating evidence shows that epigenetic memory acquired in response to environmental stimuli may be associated with diverse diseases. In the field of kidney diseases, the “memory” of acute kidney injury (AKI) leads to progression to chronic kidney disease (CKD); epidemiological studies show that patients who recover from AKI are at high risk of developing CKD. The underlying pathological processes include nephron loss, maladaptive epithelial repair, inflammation, and endothelial injury with vascular rarefaction. Further, epigenetic alterations may contribute as well to the pathophysiology of this AKI-to-CKD transition. Epigenetic changes induced by AKI, which can be recorded in cells, exert long-term effects as epigenetic memory. Considering the latest findings on the molecular basis of epigenetic memory and the pathophysiology of AKI-to-CKD transition, we propose here that epigenetic memory contributing to AKI-to-CKD transition can be classified according to the presence or absence of persistent changes in the associated regulation of gene expression, which we designate “driving” memory and “priming” memory, respectively. “Driving” memory, which persistently alters the regulation of gene expression, may contribute to disease progression by activating fibrogenic genes or inhibiting renoprotective genes. This process may be involved in generating the proinflammatory and profibrotic phenotypes of maladaptively repaired tubular cells after kidney injury. “Priming” memory is stored in seemingly successfully repaired tubular cells in the absence of detectable persistent phenotypic changes, which may enhance a subsequent transcriptional response to the second stimulus. This type of memory may contribute to AKI-to-CKD transition through the cumulative effects of enhanced expression of profibrotic genes required for wound repair after recurrent AKI. Further understanding of epigenetic memory will identify therapeutic targets of future epigenetic intervention to prevent AKI-to-CKD transition.
Collapse
|
265
|
Pyrocatechol Alleviates Cisplatin-Induced Acute Kidney Injury by Inhibiting ROS Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2158644. [PMID: 36193072 PMCID: PMC9526614 DOI: 10.1155/2022/2158644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
As one of the most common cancer chemotherapy drugs, cisplatin is widely used in cancer management. However, cisplatin-induced nephrotoxicity occurs in patients who receive this drug. This study is aimed at developing therapeutic agents that effectively alleviate the nephrotoxic effects during cisplatin treatment. We identified a compound named pyrocatechol (PCL) from a natural product library that significantly alleviated cisplatin-induced cytotoxicity in vitro. Pyrocatechol treatment substantially ameliorated cisplatin (20 mg · kg−1) treatment-induced neuropathological indexes, including inflammatory cell infiltration and apoptosis, in vivo. Mechanistically, pyrocatechol significantly prevented oxidative stress-induced apoptosis by activating glutathione peroxidase 4 (GPX4) to reduce reactive oxygen species (ROS) accumulation in cisplatin-treated cells. In addition, pyrocatechol significantly inhibited ROS-induced JNK/P38 activation. Thus, we found that pyrocatechol prevents ROS-mediated JNK/P38 MAPK activation, apoptosis, and cytotoxicity through GPX4. Our study demonstrated that pyrocatechol is a novel therapeutic agent against cisplatin-induced kidney injury.
Collapse
|
266
|
Famurewa AC, Mukherjee AG, Wanjari UR, Sukumar A, Murali R, Renu K, Vellingiri B, Dey A, Valsala Gopalakrishnan A. Repurposing FDA-approved drugs against the toxicity of platinum-based anticancer drugs. Life Sci 2022; 305:120789. [PMID: 35817170 DOI: 10.1016/j.lfs.2022.120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Platinum-based anticancer drugs (PADs), mainly cisplatin, carboplatin, and oxaliplatin, are widely used efficacious long-standing anticancer agents for treating several cancer types. However, clinicians worry about PAD chemotherapy and its induction of severe non-targeted organ toxicity. Compelling evidence has shown that toxicity of PAD on delicate body organs is associated with free radical generation, DNA impairment, endocrine and mitochondrial dysfunctions, oxidative inflammation, apoptosis, endoplasmic reticulum stress, and activation of regulator signaling proteins, cell cycle arrest, apoptosis, and pathways. The emerging trend is the repurposing of FDA-approved non-anticancer drugs (FNDs) for combating the side effects toxicity of PADs. Thus, this review chronicled the mechanistic preventive and therapeutic effects of FNDs against PAD organ toxicity in preclinical studies. FNDs are potential clinical drugs for the modulation of toxicity complications associated with PAD chemotherapy. Therefore, FNDs may be suggested as non-natural agent inhibitors of unpalatable side effects of PADs.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike lkwo, Nigeria.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
267
|
He T, Ao J, Duan C, Yan R, Li X, Liu L, Zhang J, Li X. Bibliometric and visual analysis of nephrotoxicity research worldwide. Front Pharmacol 2022; 13:940791. [PMID: 36188597 PMCID: PMC9515790 DOI: 10.3389/fphar.2022.940791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Nephrotoxicity of drugs contributes to acute kidney injury with high mortality and morbidity, which crucially limits the application and development of drugs. Although many publications on nephrotoxicity have been conducted globally, there needs to be a scientometric study to systematically analyze the intellectual landscape and frontiers research trends in the future. Methods: Publications on nephrotoxicity from 2011 to 2021 were collected to perform bibliometric visualization using VOSviewer, CiteSpace, and Scimago Graphica software based on the Web of Science Core Collection. Results: A total of 9,342 documents were analyzed, which were primarily published in the United States (1,861), China (1,724), and Egypt (701). For institutions, King Saud University (166) had the most publications; Food and Chemical Toxicology, PLOS One, and Antimicrobial Agents and Chemotherapy were productive journals, primarily concentrating on the mechanisms of nephrotoxicity and renoprotective in cisplatin and antibiotics, especially in oxidative stress. Burst detection suggested that cisplatin, piperacillin-tazobactam, vancomycin-induced nephrotoxicity, antioxidants, and new biomaterials are frontiers of research. Conclusion: This study first provides an updated perspective on nephrotoxicity and renoprotective strategies and mechanisms. This perspective may benefit researchers in choosing suitable journals and collaborators and assisting them in the deep understanding of the nephrotoxicity and renoprotective hotspots and frontiers.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Jingwen Ao
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Rong Yan
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Xiaomei Li
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liu Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Jianyong Zhang, ; Xiaofei Li,
| | - Xiaofei Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
- *Correspondence: Jianyong Zhang, ; Xiaofei Li,
| |
Collapse
|
268
|
Zhang C, Guan Y, Zou J, Yang X, Bayliss G, Zhuang S. Histone methyltransferase MLL1 drives renal tubular cell apoptosis by p53-dependent repression of E-cadherin during cisplatin-induced acute kidney injury. Cell Death Dis 2022; 13:770. [PMID: 36068197 PMCID: PMC9448773 DOI: 10.1038/s41419-022-05104-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase that interacts with WD repeat domain 5 (WDR5) to regulate cell survival, proliferation, and senescence. The role of MLL1 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we demonstrate that MLL1, WDR5, and trimethylated H3K4 (H3K4me3) were upregulated in renal tubular cells of cisplatin-induced AKI in mice, along with increased phosphorylation of p53 and decreased expression of E-cadherin. Administration of MM102, a selective MLL1/WDR5 complex inhibitor, improved renal function and attenuated tubular injury and apoptosis, while repressing MLL1, WDR5, and H3K4me3, dephosphorylating p53 and preserving E-cadherin. In cultured mouse renal proximal tubular cells (RPTCs) exposed to cisplatin, treatment with MM102 or transfection with siRNAs for either MLL1 or WDR5 also inhibited apoptosis and p53 phosphorylation while preserving E-cadherin expression; p53 inhibition with Pifithrin-α lowered cisplatin-induced apoptosis without affecting expression of MLL1, WDR5, and H3K4me3. Interestingly, silencing of E-cadherin offset MM102's cytoprotective effects, but had no effect on p53 phosphorylation. These findings suggest that MLL1/WDR5 activates p53, which, in turn, represses E-cadherin, leading to apoptosis during cisplatin-induced AKI. Further studies showed that MM102 effectively inhibited cisplatin-triggered DNA damage response (DDR), as indicated by dephosphorylation of ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) proteins, dephosphorylation of checkpoint kinase 1 and 2 (Chk1 and Chk2); depression of γ-H2AX; and restrained cell cycle arrest, as evidenced by decreased expression of p21 and phospho-histone H3 at serine 10 in vitro and in vivo. Overall, we identify MLL1 as a novel DDR regulator that drives cisplatin-induced RPTC apoptosis and AKI by modulating the MLL1/WDR5-/ATR/ATM-Chk-p53-E-cadherin axis. Targeting the MLL1/WDR5 complex may have a therapeutic potential for the treatment of AKI.
Collapse
Affiliation(s)
- Chunyun Zhang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
- Department of Nephrology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Guan
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Jianan Zou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Xu Yang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Georgia Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA.
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
269
|
Shen Q, Wei XM, Hu JN, Li MH, Li K, Qi SM, Liu XX, Wang Z, Li W, Wang YP. Saponins From Platycodon grandiflorum Reduces Cisplatin-Induced Intestinal Toxicity in Mice through Endoplasmic Reticulum Stress-Activated Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1927-1944. [PMID: 36056466 DOI: 10.1142/s0192415x22500823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saponins from the roots of Platycodon grandiflorum, an edible medicinal plant, have shown a wide range of beneficial effects on various biological processes. In this study, an animal model was established by a single intraperitoneal injection of cisplatin (20[Formula: see text]mg/kg) for evaluating the protective effects of saponins from the roots of P. grandiflorum (PGS, 15[Formula: see text]mg/kg and 30[Formula: see text]mg/kg) in mice. The results indicated that PGS treatment for 10 days restored the destroyed intestinal mucosal oxidative system, and the loosened junctions of small intestinal villi was significantly improved. In addition, a significant mitigation of apoptotic effects deteriorated by cisplatin exposure in small intestinal villi was observed by immunohischemical staining. Also, western blot showed that PGS could effectively prevent endoplasmic reticulum (ER) stress-induced apoptosis caused by cisplatin in mice by restoring the activity of PERK (an ER kinase)-eIF2[Formula: see text]-ATF4 signal transduction pathway. Furthermore, molecular docking results of main saponins in PGS suggested a better binding ability with target proteins. In summary, the present work revealed the underlying protective mechanisms of PGS on intestinal injury induced by cisplatin in mice.
Collapse
Affiliation(s)
- Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Xiao-Meng Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Ming-Han Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Ke Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Si-Min Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Xiang-Xiang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500 P. R. China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
270
|
Xie D, Hu G, Chen C, Ahmadinejad F, Wang W, Li PL, Gewirtz DA, Li N. Loss of sphingosine kinase 2 protects against cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2022; 323:F322-F334. [PMID: 35834271 PMCID: PMC9394771 DOI: 10.1152/ajprenal.00229.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is an established chemotherapeutic drug for treatment of solid-organ cancers and is the primary drug used in the treatment of head and neck cancer; however, cisplatin-induced nephrotoxicity largely limits its clinical use. Inhibition of sphingosine kinase 2 (SphK2) has been demonstrated to alleviate various kidney diseases. Therefore, we hypothesized that inhibition of SphK2 could also protect against cisplatin-induced nephrotoxicity. Results from the present study showed that the SphK2 inhibitor ABC294640 or knockdown of SphK2 by siRNA blocked the cisplatin-induced increase of cellular injury markers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and cleaved caspase-3) by Western blot analysis in HK-2 cells, a human renal tubular cell line. In addition, SphK2 inhibition blocked cisplatin-induced activation of NF-κB by Western blot analysis and immunostaining analysis. Furthermore, SphK2 inhibition suppressed cisplatin-induced increases of proinflammatory markers (NLR family pyrin domain containing 3, interleukin-1β, and interleukin-6). Genetic deletion of the SphK2 gene in mice further confirmed that inhibition of SphK2 protected against cisplatin-induced kidney damage in vivo. Compared with wild-type mice, SphK2 knockout mice exhibited less renal dysfunction and reduced promotion of kidney injury markers, inflammatory factors, tubular morphology damage, and fibrotic staining. At the same time, the SphK2 inhibitor ABC294640 failed to interfere with the activity of cisplatin or radiation in two cell culture models of head and neck cancer. It is concluded that inhibition of Sphk2 protects against cisplatin-induced kidney injury. SphK2 may be used as a potential therapeutic target for the prevention or treatment of cisplatin-induced kidney injury.NEW & NOTEWORTHY The present study provides new findings that sphingosine kinase 2 (SphK2) is highly expressed in renal tubules, cisplatin treatment increases the expression of SphK2 in proximal tubular cells and kidneys, and inhibition of SphK2 alleviates cisplatin-induced kidney injury by suppressing the activation of NF-κB, production of inflammatory factors, and apoptosis. SphK2 may serve as a potential therapeutic target for the prevention or treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gaizun Hu
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Fereshteh Ahmadinejad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
271
|
Sears SM, Feng JL, Orwick A, Vega AA, Krueger AM, Shah PP, Doll MA, Beverly LJ, Siskind LJ. Pharmacological inhibitors of autophagy have opposite effects in acute and chronic cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2022; 323:F288-F298. [PMID: 35796459 PMCID: PMC9394729 DOI: 10.1152/ajprenal.00097.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/25/2022] Open
Abstract
The nephrotoxicity of cisplatin remains a major hurdle in the field of oncology. Thirty percent of patients treated with cisplatin develop acute kidney injury, and all patients are at risk for long-term impacts on kidney function. There are currently no Federal Drug Administration-approved agents to prevent or treat cisplatin-induced kidney injury. The dosing regimen used in preclinical models of nephrotoxicity may impact the success of therapeutic candidates in clinical trials. Here, we demonstrated that pharmacological inhibitors of autophagy have opposite effects when used as interventions in two different models of cisplatin-induced kidney injury. Eight-week-old male C57BL/6 mice were treated with either one dose of 20 mg/kg cisplatin or weekly doses of 9 mg/kg cisplatin for 4 wk or until body weight loss exceeded 30%. Concurrently, mice were administered multiple doses of 60 mg/kg chloroquine or 15 mg/kg 3-methyladenine attempting to globally inhibit autophagy. Mice that received a single high dose of cisplatin had worsened kidney function, inflammation, and cell death with the addition of chloroquine. 3-Methlyadenine did not impact the development of acute kidney injury in this model. In contrast, mice that received repeated low doses of cisplatin showed improved kidney function, reduced inflammation, and reduced fibrosis when treated with either chloroquine or 3-methyladenine. This study highlights how therapeutic candidates can have drastically different effects on the development of cisplatin-induced kidney injury depending on the dosing model used. This emphasizes the importance of choosing the appropriate model of injury for preclinical studies.NEW & NOTEWORTHY This study examined how inhibition of autophagy has opposite effects on the development of acute and chronic kidney injury. Autophagy inhibition exacerbated the development of acute kidney injury following a single high dose of cisplatin but prevented the development of injury and fibrosis following repeated low doses of cisplatin.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Joanna L Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Andrew Orwick
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Austin M Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Parag P Shah
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Levi J Beverly
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- Brown Cancer Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
272
|
Gupta S, Gudsoorkar P, Jhaveri KD. Acute Kidney Injury in Critically Ill Patients with Cancer. Clin J Am Soc Nephrol 2022; 17:1385-1398. [PMID: 35338071 PMCID: PMC9625110 DOI: 10.2215/cjn.15681221] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in cancer therapy have significantly improved overall patient survival; however, AKI remains a common complication in patients with cancer, occurring in anywhere from 11% to 22% of patients, depending on patient-related or cancer-specific factors. Critically ill patients with cancer as well as patients with certain malignancies (e.g., leukemias, lymphomas, multiple myeloma, and renal cell carcinoma) are at highest risk of developing AKI. AKI may be a consequence of the underlying malignancy itself or from the wide array of therapies used to treat it. Cancer-associated AKI can affect virtually every compartment of the nephron and can present as subclinical AKI or as overt acute tubular injury, tubulointerstitial nephritis, or thrombotic microangiopathy, among others. AKI can have major repercussions for patients with cancer, potentially jeopardizing further eligibility for therapy and leading to greater morbidity and mortality. This review highlights the epidemiology of AKI in critically ill patients with cancer, risk factors for AKI, and common pathologies associated with certain cancer therapies, as well as the management of AKI in different clinical scenarios. It highlights gaps in our knowledge of AKI in patients with cancer, including the lack of validated biomarkers, as well as evidence-based therapies to prevent AKI and its deleterious consequences.
Collapse
Affiliation(s)
- Shruti Gupta
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Prakash Gudsoorkar
- Division of Nephrology & Kidney Clinical Advancement, Research & Education Program, University of Cincinnati, Cincinnati, Ohio
| | - Kenar D. Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine, Great Neck, New York
| |
Collapse
|
273
|
Chebion G, Bugni E, Gerin V, Daudon M, Castiglione V. Drug-induced nephrolithiasis and crystalluria: the particular case of the sulfasalazine derivatives. CR CHIM 2022. [DOI: 10.5802/crchim.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
274
|
Alqahtani MJ, Mostafa SA, Hussein IA, Elhawary S, Mokhtar FA, Albogami S, Tomczyk M, Batiha GES, Negm WA. Metabolic Profiling of Jasminum grandiflorum L. Flowers and Protective Role against Cisplatin-Induced Nephrotoxicity: Network Pharmacology and In Vivo Validation. Metabolites 2022; 12:metabo12090792. [PMID: 36144196 PMCID: PMC9502427 DOI: 10.3390/metabo12090792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cisplatin (CP) is a powerful chemotherapeutic agent; however, its therapeutic use is restricted due to its nephrotoxicity. In this work, we profiled the phytoconstituents of Jasminum grandiflorum flower extract (JGF) using LC-MS/MS and explored the possible molecular mechanisms against acute renal failure through pharmacological network analysis. Furthermore, the possible molecular mechanisms of JGF against acute renal failure were verified in an in vivo nephrotoxicity model caused by cisplatin. LC-MS analysis furnished 26 secondary metabolites. Altogether, there were 112 total hit targets for the identified metabolites, among which 55 were potential consensus targets related to nephrotoxicity based on the network pharmacology approach. Upon narrowing the scope to acute renal failure, using the DisGeNET database, only 30 potential targets were determined. The computational pathway analysis illustrated that JGF might inhibit renal failure through PI3K-Akt, MAPK signaling pathway, and EGFR tyrosine kinase inhibitor resistance. This study was confirmed by in vivo experiment in which kidneys were collected for histopathology and gene expression of mitogen-activated protein kinase 4 (MKK4), MKK7, I-CAM 1, IL-6, and TNF receptor-associated factor 2 (TRAF2). The animal-administered cisplatin exhibited a substantial rise in the expression levels of the MMK4, MKK7, I CAM 1, and TRFA2 genes compared to the control group. To summarize, J. grandiflorum could be a potential source for new reno-protective agents. Further experiments are needed to confirm the obtained activities and determine the therapeutic dose and time.
Collapse
Affiliation(s)
- Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sally A. Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Seham Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fatma A. Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALSalam University, Al Gharbiya, Kafr El Zayat 31616, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence:
| |
Collapse
|
275
|
Aggarwal A, Dinda AK, Mukhopadhyay CK. Effect of Cisplatin on Renal Iron Homeostasis Components: Implication in Nephropathy. ACS OMEGA 2022; 7:27804-27817. [PMID: 35990481 PMCID: PMC9386824 DOI: 10.1021/acsomega.1c06716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cisplatin is an important chemotherapeutic drug for the treatment of solid tumors but often causes nephropathy as part of the off-target toxicity. Iron accumulation and related damage were implicated in cisplatin-induced kidney injury. However, the role of cisplatin in the renal iron sensing mechanism and its target genes responsible for iron uptake, storage, and release have not been investigated. Cellular iron homeostasis is controlled by the interaction of iron regulatory proteins (IRP1 and IRP2) and iron-responsive elements (IREs) present in the untranslated regions of iron transport and storage components. Here, we report that cisplatin does not influence the expressions of IRP targets such as transferrin receptor-1 (TfR1), divalent metal transporter-1 (DMT1), and ferroportin in renal cells despite the increased heme oxygenase-1 (HO-1) level. Ferritin subunits (Ft-H and Ft-L) are elevated in different magnitudes due to the increased mRNA expression. Intriguingly, a higher expression of Ft-L mRNA is detected than that of Ft-H mRNA. The inability of cisplatin in altering the IRE-IRP interaction is confirmed by examining IRE-containing luciferase activity, RNA electrophoretic mobility shift assay, and activation of IRPs. The labile iron pool is depleted but reversed by silencing of either Ft-H or Ft-L, suggesting increased iron storage by ferritin. Silencing of Ft-H or Ft-L promotes cell death, suggesting that ferritin acts to protect the renal cells from cisplatin-mediated toxicity. A differential increase of transcripts and equivalent increase of proteins of Ft-H and Ft-L and unaltered TfR1 and DMT1 transcripts are found in the kidneys of cisplatin-treated rats along with iron accumulation. Our results reveal that cisplatin does not influence the IRE-IRP interaction despite alteration of the cellular iron pool in renal cells. This insensitivity of the IRE-IRP system may be implicated in the accumulation of iron to contribute to cisplatin-induced nephropathy.
Collapse
Affiliation(s)
- Ayushi Aggarwal
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Amit K. Dinda
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|
276
|
Ibrahim Fouad G, El-Sayed SAM, Mabrouk M, Ahmed KA, Beherei HH. Neuroprotective Potential of Intranasally Delivered Sulforaphane-Loaded Iron Oxide Nanoparticles Against Cisplatin-Induced Neurotoxicity. Neurotox Res 2022; 40:1479-1498. [PMID: 35969308 PMCID: PMC9515146 DOI: 10.1007/s12640-022-00555-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Cisplatin (CIS) is a platinum-based chemotherapeutic drug that is widely used to treat cancer. However, its therapeutic efficiency is limited due to its potential to provoke neurotoxicity. Sulforaphane (SF) is a natural phytochemical that demonstrated several protective activities. Iron oxide nanoparticles (Fe3O4-NPs) could be used as drug carriers. This study aimed to explore the nanotoxic influence of SF-loaded within Fe3O4-NPs (N.SF), and to compare the neuroprotective potential of both N.SF and SF against CIS-induced neurotoxicity. N.SF or SF was administrated intranasally for 5 days before and 3 days after a single dose of CIS (12 mg/kg/week, i.p.) on the 6th day. Neuromuscular coordination was assessed using hanging wire and tail-flick tests. Acetylcholinesterase (AChE) activities and markers of oxidative stress were measured in the brain. In addition, the brain iron (Fe) content was estimated. CIS significantly induced a significant increase in AChE activities and lipid peroxides, and a significant decrement in glutathione (GSH) and nitric oxide (NO) contents. CIS elicited impaired neuromuscular function and thermal hyperalgesia. CIS-induced brains displayed a significant reduction in Fe content. Histopathological examination of different brain regions supported the biochemical and behavioral results. Contradict, treatment of CIS-rats with either N.SF or SF significantly decreased AChE activity, mitigated oxidative stress, and ameliorated the behavioral outcome. The histopathological features supported our results. Collectively, N.SF demonstrated superior neuroprotective activities on the behavioral, biochemical, and histopathological (striatum and cerebral cortex) aspects. N.SF could be regarded as a promising “pre-clinical” neuroprotective agent. Furthermore, this study confirmed the safe toxicological profile of Fe3O4-NPs.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
277
|
Iskander A, Yan LJ. Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD +-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022; 12:1078. [PMID: 36008971 PMCID: PMC9405866 DOI: 10.3390/biom12081078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is an FDA approved anti-cancer drug that is widely used for the treatment of a variety of solid tumors. However, the severe adverse effects of cisplatin, particularly kidney toxicity, restrict its clinical and medication applications. The major mechanisms of cisplatin-induced renal toxicity involve oxidative stress, inflammation, and renal fibrosis, which are covered in this short review. In particular, we review the underlying mechanisms of cisplatin kidney injury in the context of NAD+-dependent redox enzymes including mitochondrial complex I, NAD kinase, CD38, sirtuins, poly-ADP ribosylase polymerase, and nicotinamide nucleotide transhydrogenase (NNT) and their potential contributing roles in the amelioration of cisplatin-induced kidney injury conferred by natural products derived from plants. We also cover general procedures used to create animal models of cisplatin-induced kidney injury involving mice and rats. We highlight the fact that more studies will be needed to dissect the role of each NAD+-dependent redox enzyme and its involvement in modulating cisplatin-induced kidney injury, in conjunction with intensive research in NAD+ redox biology and the protective effects of natural products against cisplatin-induced kidney injury.
Collapse
Affiliation(s)
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
278
|
Tang X, Du X, Yu Y, Qin M, Qian L, Zhang M, Yang Y, Yu Q, Gan Z. Deep-Penetrating Triple-Responsive Prodrug Nanosensitizer Actuates Efficient Chemoradiotherapy in Pancreatic Ductal Adenocarcinoma Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202834. [PMID: 35808966 DOI: 10.1002/smll.202202834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Chemoradiotherapy (CRT) is the most accepted treatment for locally advanced pancreatic ductal adenocarcinoma (PDAC) and can significantly improve the R0 resection rate. However, there are few long-term survivors after CRT. Although some polymer nanoparticles have shown potential in alleviating the dose-limiting toxicity and assisting the chemotherapy of PDAC, there are few efficient nanosensitizers (NS) available for CRT of this malignancy, especially in the context of its hypoxic nature. Herein, based on the biological features of PDAC, a γ-glutamyl transpeptidase (GGT)/glutathione (GSH)/hypoxia triple-responsive prodrug NS to overcome the biological barrier and microenvironmental limitations confronted by CRT in PDAC is developed. Due to triple-responsiveness, deep tumor penetration, GSH/hypoxia-responsive drug release/activation, and hypoxia-induced chemoradio-sensitization can be simultaneously achieved with this NS. As a result, tumor shrinkage after CRT with this NS can be observed in both subcutaneous and orthotopic PDAC models, foreshadowing its potential in clinical neoadjuvant CRT.
Collapse
Affiliation(s)
- Xiaohu Tang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, P. R. China
| | - Yanting Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Qin
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lili Qian
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Zhang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yan Yang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
279
|
Ikeda Y, Funamoto M, Kishi S, Imanishi M, Aihara KI, Kashiwada Y, Tsuchiya K. The novel preventive effect of a Japanese ethical Kampo extract formulation TJ-90 (Seihaito) against cisplatin-induced nephrotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154213. [PMID: 35671634 DOI: 10.1016/j.phymed.2022.154213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND PURPOSE Chinese herbal medicine has been developed as the traditional Japanese Kampo medicine, and it has been widely used to cure various symptoms in clinical practice. However, only a few studies are currently available on the effect of the Kampo medicine on renal disease. Nephrotoxicity is one of major side effect of cisplatin, the first metal-based anticancer drug. In the present study, we examined the effect of the Kampo medicine against cisplatin-induced nephrotoxicity (CIN). METHODS First, we screened the ethical Kampo extract formulation having positive effect against CIN using HK-2 cells. Next, we examined the preventive action of the selected ethical Kampo extract formulation against CIN in vivo using a mouse model. RESULTS Cisplatin-induced cell death was significantly suppressed by TJ-43 (Rikkunshito) and TJ-90 (Seihaito); however, cisplatin-induced cleaved caspase-3 expression was inhibited only by TJ-90. In an in vivo mouse model of cisplatin-induced kidney injury with dysfunction and increased inflammatory cytokine expression, TJ-90 showed amelioration of these damaging effects. Cisplatin-induced apoptosis and superoxide production were inhibited by treatment with TJ-90. The expression of cleaved caspase-3, 4-hydroxynonenal, and MAPK phosphorylation increased after cisplatin administration, but decreased after the administration of TJ-90. Among 16 crude drug extracts present in Seihaito, Bamboo Culm (Chikujo in Japanese) inhibited cisplatin-induced cell death and cleaved caspase-3 expression in HK-2 cells. Moreover, the anti-tumor effect of cisplatin was not affected by TJ-90 co-treatment in cancer cell lines. CONCLUSION TJ-90 might have a novel preventive action against CIN through the suppression of inflammation, apoptosis, and oxidative stress without interfering with the anti-tumor effect of cisplatin. Collectively, these findings might contribute to innovations in supportive care for cancer treatment-related side effects.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Seiji Kishi
- Department of General Medicine, Kawasaki Medical School, Kurashiki, Japan; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Masaki Imanishi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine and Medical Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshiki Kashiwada
- Department of Pharmacognosy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
280
|
Takemura M, Ikemura K, Kondo M, Yamane F, Ueda M, Okuda M. Concomitant palonosetron ameliorates cisplatin-induced nephrotoxicity, nausea, and vomiting: a retrospective cohort study and pharmacovigilance analysis. J Pharm Health Care Sci 2022; 8:21. [PMID: 35909131 PMCID: PMC9341052 DOI: 10.1186/s40780-022-00252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Cisplatin (CDDP)-induced nephrotoxicity is the most important complication of CDDP treatment. 5-Hydroxytryptamine type 3 receptor antagonists (5-HT3RAs) are widely used to prevent chemotherapy-induced nausea and vomiting (CINV). However, in patients with the triple antiemetic (neurokinin-1 receptor antagonist, 5-HT3RA, and dexamethasone) therapy, the advantage of palonosetron in comparison with other 5-HT3RAs on CDDP-induced nephrotoxicity and CINV remains unclear. In the present study, we investigated the effect of palonosetron on CDDP-induced nephrotoxicity and CINV in patients with the triple antiemetic therapy by a retrospective cohort study and a pharmacovigilance analysis. Methods We retrospectively analyzed the effect of 5-HT3RAs on the development of nephrotoxicity and CINV in 110 patients who received CDDP, fluorouracil, and triple antiemetic therapy for the treatment of esophageal cancer. Moreover, the effect of 5-HT3RAs on CDDP-induced nephrotoxicity was validated in patients with the triple antiemetic therapy using the Japanese Adverse Drug Event Report (JADER) database. Results In a retrospective study, the incidence of nephrotoxicity (≥ grade 1) in patients receiving palonosetron (18%) was significantly lower than that in patients receiving ramosetron (another 5-HT3RA) (36%, p = 0.044). Moreover, severe nephrotoxicity ≥ grade 3 was observed in one patient treated with ramosetron, whereas hematological toxicity was comparable between the two groups (p = 0.553). Furthermore, the incidence rate of CINV within 120 h following CDDP administration in patients treated with palonosetron (18%) was significantly lower than that in patients receiving ramosetron (39%, p = 0.026). JADER database analyses revealed that the reporting odds ratio of palonosetron for CDDP-induced acute kidney injury was 0.282 (95% confidence interval: 0.169–0.472). Conclusions The findings of the present study suggested a greater potential of palonosetron against CDDP-induced nephrotoxicity and CINV than other 5-HT3RAs in patients with the triple antiemetic therapy.
Collapse
Affiliation(s)
- Miho Takemura
- Department of Clinical Pharmacy Research and Education, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Ikemura
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masayoshi Kondo
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumihiro Yamane
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikiko Ueda
- Department of Clinical Pharmacy Research and Education, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Okuda
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
281
|
Fu Y, Wang Y, Liu Y, Tang C, Cai J, Chen G, Dong Z. p53/sirtuin 1/NF-κB Signaling Axis in Chronic Inflammation and Maladaptive Kidney Repair After Cisplatin Nephrotoxicity. Front Immunol 2022; 13:925738. [PMID: 35874713 PMCID: PMC9301469 DOI: 10.3389/fimmu.2022.925738] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic inflammation contributes to maladaptive kidney repair, but its regulation is unclear. Here, we report that sirtuin 1 (SIRT1) is downregulated after repeated low-dose cisplatin (RLDC) injury, and this downregulation leads to p65 acetylation and consequent NF-κB activation resulting in a persistent inflammatory response. RLDC induced the down-regulation of SIRT1 and activation of NF-κB, which were accompanied by chronic tubular damage, tubulointerstitial inflammation, and fibrosis in mice. Inhibition of NF-κB suppressed the production of pro-inflammatory cytokines and fibrotic phenotypes in RLDC-treated renal tubular cells. SIRT1 activation by its agonists markedly reduced the acetylation of p65 (a key component of NF-κB), resulting in the attenuation of the inflammatory and fibrotic responses. Conversely, knockdown of SIRT1 exacerbated these cellular changes. At the upstream, p53 was activated after RLDC treatment to repress SIRT1, resulting in p65 acetylation, NF-κB activation and transcription of inflammatory cytokines. In mice, SIRT1 agonists attenuated RLDC-induced chronic inflammation, tissue damage, and renal fibrosis. Together, these results unveil the p53/SIRT1/NF-κB signaling axis in maladaptive kidney repair following RLDC treatment, where p53 represses SIRT1 to increase p65 acetylation for NF-κB activation, leading to chronic renal inflammation.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Yuxue Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Guochun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Charlie Norwood Veterans Affairs (VA) Medical Center, Augusta, GA, United States
- *Correspondence: Zheng Dong,
| |
Collapse
|
282
|
Zhou J, Xiao C, Zheng S, Wang Q, Zhu H, Zhang Y, Wang R. MicroRNA-214-3p aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury. Cell Stress Chaperones 2022; 27:325-336. [PMID: 35366755 PMCID: PMC9346014 DOI: 10.1007/s12192-022-01271-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023] Open
Abstract
Acute kidney injury (AKI) induced by cisplatin (cis-AKI) involves indicators such as inflammation and oxidative stress (OS) in proximal tubules, although its underlying mechanisms remain largely unknown so far. Exploration of the molecular mechanisms underlying cisplatin-induced AKI is of great significance for AKI prevention and also for preventing its progression into chronic kidney disease (CKD) or end-stage renal disease (ESRD). OS and ferroptosis are mutually causal; they finally lead to the regulatory cell injury and death induced by the accumulation of reactive oxygen species (ROS). GPX4 is critical not only in OS, but studies established as the key regulator of ferroptosis. In this context, the present study focused on determining the biological function of miR-214-3p in the cisplatin-induced ferroptosis of tubular epithelial cell (TEC) and the underlying molecular mechanism. The relationship between TEC ferroptosis and cisplatin-induced AKI was investigated in vitro and in vivo. Ferrostatin-1(Fer-1), an inhibitor of ferroptosis, was observed to confer a protective effect against the renal tubular injury and renal failure induced by cisplatin. MicroRNAs (miRNAs) regulate the genes that have important functions in the development of cis-AKI. In the present study, GPX4 was predicted as a target of miR-214-3p. Moreover, inhibiting miR-214-3p enhanced the expressions of GPX4 and SLC7A11 while decreasing the ACSL4 expression. Furthermore, miR-214-3p down-regulation protected against TEC death and renal tubule damage both in vitro and in vivo. According to these findings, inhibiting miR-214-3p would alleviate TEC ferroptosis in cis-AKI via GPX4.
Collapse
Affiliation(s)
- Junran Zhou
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shuaishuai Zheng
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Qian Wang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yingyu Zhang
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Renhe Wang
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
283
|
Liu Z, Xu Y, Bai X, Guo L, Li X, Gao J, Teng Y, Yu P. Prediction of the mechanisms of action of Zhibai Dihaung Granule in cisplatin-induced acute kidney injury: A network pharmacology study and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115241. [PMID: 35351575 DOI: 10.1016/j.jep.2022.115241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhibai Dihuang Granule (ZDG) is known as traditional Chinese patent medicine with the functions of "Ziyin decrease internal heat" in Traditional Chinses medicine. In clinical, it is also used to treat various kidney diseases. AIM OF THE STUDY We aimed to provide a basis for the curative effect of ZDG on acute kidney injury induced by cisplatin (CIAKI). MATERIALS AND METHODS The active compounds and protein targets of ZDG, as well as the potential targets of the CIAKI were searched from the database. The protein-protein interaction (PPI) network diagram and the drug-compounds-targets-disease network were constructed. Enrichment analysis was performed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the effect of ZDG on the prevention and treatment of CIAKI was experimentally validated in vivo and in vitro. RESULTS From the database, we screened 22 active compounds of ZDG and 226 related targets. We obtained 498 gene targets related to CIAKI, among which 40 genes overlapped with ZDG-related targets. Go enrichment and KEGG analysis got 339 terms and 64 pathways, respectively. Based on the above study, we speculated that ZDG has the potential effect on treatment CIAKI, and the mechanism may be related to cell apoptosis and inflammation. The results in vitro experiments showed that ZDG reduced the cytotoxicity of cisplatin to HK-2 and 293T cells, but did not affect the antitumor effect of cisplatin. Moreover, in vivo experiments further proved that ZDG effectively controlled kidney damage caused by cisplatin in SD rats. The results showed that ZDG could regulate the expression of CASP3, p65 and MAPK pathway related proteins, suggesting that ZDG's prevention of CIAKI may be related to apoptosis and inflammatory response. CONCLUSIONS Our study showed that ZDG could prevent and treat CIAKI by inhibiting cell apoptosis and inflammation, which provided a new efficacy and clinical application for ZDG.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Ye Xu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinming Bai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Lvqian Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinran Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
284
|
Numb Promotes Autophagy through p53 Pathway in Acute Kidney Injury Induced by Cisplatin. Anal Cell Pathol (Amst) 2022; 2022:8213683. [PMID: 35795076 PMCID: PMC9252835 DOI: 10.1155/2022/8213683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is an important public health concern and characterized as tubular death involved in apoptosis and necrosis. Autophagy is rapidly induced in tubules and associates with renal tubular cells homeostasis to have a complex link with tubular death in AKI. Numb is a multifunctional protein and exerts protective role in tubular death in AKI induced by Cisplatin. However, the effect of Numb on tubular autophagy remains to be investigated. In the present study, the protein expression of LC3 and Beclin-1 related to autophagy was analyzed in Cisplatin-induced AKI mice with knocking down Numb. In model of tubular injury induced by Cisplatin in vitro, downregulation of Numb in NRK-52E cells also inhibited the activation of autophagy accompanied with the decreased protein level of p53. Overexpression of Numb in NRK-52E cells activated autophagy with increased LC3 and Beclin-1 expression accompanied with increased protein level of p53. Moreover, autophagy activation following Numb overexpression was suppressed by p53 inhibitor pifithrin-α. These data indicate that Numb promotes p53-mediated activation of tubular autophagy in AKI induced by Cisplatin and therefore may provide important targets for the treatment of AKI.
Collapse
|
285
|
Rao Q, Li R, Yu H, Xiang L, He B, Wu F, Zhao G. Effects of dihydroartemisinin combined with cisplatin on proliferation, apoptosis and migration of HepG2 cells. Oncol Lett 2022; 24:275. [PMID: 35782905 PMCID: PMC9247656 DOI: 10.3892/ol.2022.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Cisplatin (DDP) is a potent and widely applied chemotherapeutic agent. However, its clinical efficacy for the treatment of liver cancer is limited by adverse effects and the development of resistance. Combinatorial therapy may alleviate these issues. Dihydroartemisinin (DHA) is a first-generation derivative of artemisinin. The effects of DDP on liver cancer when applied in combination with DHA have not previously been studied. Therefore, the present study aimed to investigate the effects of DHA combined with DDP on HepG2 cells and their potential underlying molecular mechanisms. HepG2 cells were treated with different concentrations of DHA and/or DDP. Cell Counting Kit-8 assay was used to assess the cell viability. Cell proliferation and apoptosis were quantified using flow cytometry, acridine orange/ethidium bromide (AO/EB) fluorescent dual staining and the colony formation assay. Cell migration was quantified using the Transwell and wound healing assays. The HepG2 cell protein expression levels of Fas, Fas-associated death domain (FADD), procaspase-3, cleaved caspase-3, pro-caspase-8, cleaved caspase-8, Bax, Bcl-2, E-cadherin and N-cadherin, were detected via western blotting. Gelatin zymography was used to assess the levels of MMP-9 secreted by HepG2 cells into the supernatant. Following combined DHA and DDP treatment, the percentage of apoptotic cells was significantly increased, whereas cell proliferation and migration were significantly reduced, compared with cells treated with DDP only. DHA and DPP in combination significantly inhibited the expression of MMP-9, significantly increased the protein expression levels of Fas, FADD, Bax and E-cadherin, significantly increased the ratio of cleaved caspase-3 and cleaved caspase-8 to their precursor proteins and significantly decreased the protein expression levels of Bcl-2 and N-cadherin. The findings of the present study suggested that, DHA may confer synergistic effects with DDP in potentially promoting apoptosis and inhibiting the epithelial-mesenchymal transition for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Rao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Ruochan Li
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - He Yu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Lei Xiang
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Bin He
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fenghua Wu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
286
|
Wang Q, Xi Y, Chen B, Zhao H, Yu W, Xie D, Liu W, He F, Xu C, Cheng J. Receptor of Advanced Glycation End Products Deficiency Attenuates Cisplatin-Induced Acute Nephrotoxicity by Inhibiting Apoptosis, Inflammation and Restoring Fatty Acid Oxidation. Front Pharmacol 2022; 13:907133. [PMID: 35712715 PMCID: PMC9196246 DOI: 10.3389/fphar.2022.907133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a widely used and potent anti-neoplastic agent, but severe and inescapable side effects in multiple normal tissues and organs limit its application, especially nephrotoxicity. Molecular mechanisms of cisplatin nephrotoxicity involve mitochondrial damage, oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, necroptosis, etc. Receptor of advanced glycation end products (RAGE) is a multiligand pattern recognition receptor, engaged in inflammatory signaling and mitochondrial homeostasis. Whether inhibition of RAGE alleviates cisplatin-induced nephropathy has not been investigated. Here, we revealed that RAGE deficiency attenuates cisplatin-induced acute nephrotoxicity, as evidenced by reduced apoptosis, inflammation, lipid accumulation, restored mitochondrial homeostasis and fatty acid oxidation in renal tubular epithelial cells (TECs). In vitro studies showed that, the RAGE-specific inhibitor FPS-ZM1 attenuated the cisplatin-induced decrease of cell viability and fatty acid oxidation in the normal rat renal TEC line NRK-52E cells. Taken together, RAGE knockout mitigated cisplatin-induced acute nephrotoxicity by inhibiting apoptosis, inflammation, and restoring fatty acid oxidation in TECs, suggesting that RAGE inhibition could be a therapeutic option for cisplatin-induced acute nephrotoxicity.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Yuemei Xi
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Weidong Liu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Chenxi Xu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| |
Collapse
|
287
|
Selenium Status in Diet Affects Nephrotoxicity Induced by Cisplatin in Mice. Antioxidants (Basel) 2022; 11:antiox11061141. [PMID: 35740039 PMCID: PMC9220181 DOI: 10.3390/antiox11061141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is one of the most active chemotherapy drugs to treat solid tumors. However, it also causes various side effects, especially nephrotoxicity, in which oxidative stress plays critical roles. Our previous studies found that cisplatin selectively inhibited selenoenzyme thioredoxin reductase1 (TrxR1) in the kidney at an early stage and, subsequently, induced the activation of Nrf2. However, the effects of selenium on cisplatin-induced nephrotoxicity are still unclear. In this study, we established mice models with different selenium intake levels to explore the effects of selenoenzyme activity changes on cisplatin-induced nephrotoxicity. Results showed that feeding with a selenium-deficient diet sensitize the mice to cisplatin-induced damage, whereas selenium supplementation increased the activities of selenoenzymes TrxR and glutathione peroxidase (GPx), changed the renal cellular redox environment to a reduced state, and exhibited protective effects. These results demonstrated the correlation of selenoenzymes with cisplatin-induced side effects and provided a basis for the potential approach to alleviate cisplatin-induced renal injury.
Collapse
|
288
|
Evaluation of the Concentration of Selected Elements in Patients with Cancer of the Reproductive Organs with Respect to Treatment Stage-Preliminary Study. Nutrients 2022; 14:nu14122368. [PMID: 35745098 PMCID: PMC9230810 DOI: 10.3390/nu14122368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: The aim of this study was to assess the concentrations of selected elements in female patients with cancer of the reproductive organs, taking into account the stage of treatment. (2) Methods: The study sample consisted of 51 patients with advanced endometrial cancer and ovarian cancer, undergoing chemotherapy. The median age of the studied patients with endometrial cancer was 66.0 years (IQR: from 60.75 to 70.25), and with ovarian cancer―60.0 years (IQR: from 49.0 to 64.0). Each of the qualified women, after consent to participate in the study, had her blood drawn several times (before surgery, the first course of chemotherapy, the third course of chemotherapy, and the sixth course of chemotherapy) in order to determine serum levels of macro- and micronutrients (Na, Mg, Ca, Zn, P, Cu, Fe, Cd, Ni, and Sr). (3) Results: In the study group of patients with cancer of the reproductive tract, the concentrations of iron (<0.001), magnesium (0.038), sodium (0.014), and nickel (0.037) varied significantly over the course of the study. The analysis showed that the interaction between the stage of chemotherapy and the type of cancer had an effect on the concentrations of magnesium and cadmium (p < 0.05). (4) Conclusions: In the studied group of patients with ovarian and endometrial cancer, the applied chemotherapy significantly changed the concentrations of Fe, Na, and Ni, regardless of the type of tumor. Changes in Mg and Cd concentrations resulted from the interaction between the stage of chemotherapy and the type of cancer. The results of serum concentrations of selected elements in women with cancer of the reproductive organs may help understand the physiological changes resulting from the applied chemotherapy.
Collapse
|
289
|
Kim JS, Han YK, Kong MJ, Park KM. Short-term control of diet affects cisplatin-induced acute kidney injury through modulation of mitochondrial dynamics and mitochondrial GSH. Physiol Rep 2022; 10:e15348. [PMID: 35748040 PMCID: PMC9226808 DOI: 10.14814/phy2.15348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 04/21/2023] Open
Abstract
Obesity affects acute kidney injury (AKI) induced by various clinical settings, including transplantation and cisplatin-cancer therapy. However, the effect of short-term food intake change remains to be defined. Here, we investigated the effects of short-term high-fat diet intake and food restriction on cisplatin-induced AKI. Mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) for 11 days or were not fed for 40 hh (fasting), before cisplatin administration. Cisplatin-induced functional and structural damages to kidneys in both HFD- and LFD-fed mice, with greater damages in HFD-fed mice than LFD-fed mice. HFD decreased mitochondrial total glutathione (tGSH) level, along with increases in the plasma and kidney cholesterol levels. Cisplatin caused the increase of kidney cholesterol levels and oxidative stress, along with the decrease of mitochondrial tGSH levels. In addition, cisplatin-induced mitochondrial damage and apoptosis of tubular cells in both HFD- and LFD-fed mice. An increase of Fis1 (mitochondria fission 1 protein), whereas a decrease of Opa1 (mitochondria fusion 1 protein) occurred by cisplatin. These cisplatin effects were greater in HFD-fed mice than in LFD-fed mice. Administration of mitochondria-specific antioxidant treatment during HFD feeding inhibited these cisplatin-induced changes. Fasting for 40 h also significantly reduced the cisplatin-induced changes mentioned above. These data demonstrate that short-term HFD intake worsens cisplatin-induced oxidative stress by the reduction of mitochondrial tGSH, resulting in increased cisplatin-induced nephrotoxicity. These data newly indicate that the control of calorie intake, even for a short period, affects kidney susceptibility to injury. Although most studies described the effects of a long-term high-fat diet on the kidneys, in this study, we found that even if a high-fat diet was consumed for a short-term, physiological changes and mitochondria tGSH decrease in the kidneys, and consequently increased cisplatin-nephrotoxic susceptibility. These data suggest the association of calorie intake with kidney susceptibility to cisplatin.
Collapse
Affiliation(s)
- Ji Su Kim
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Yong Kwon Han
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Min Jung Kong
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| | - Kwon Moo Park
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
290
|
Alonso A, Liauw W, Kennedy H, Alzahrani NA, Morris DL. Sodium thiosulfate during cisplatin-based hyperthermic intraperitoneal chemotherapy is associated with transient hypernatraemia without clinical sequelae. Pleura Peritoneum 2022; 7:87-93. [PMID: 35812006 PMCID: PMC9166178 DOI: 10.1515/pp-2022-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Cisplatin is commonly used during intraperitoneal chemotherapy however has well-established nephrotoxic side-effects. Sodium thiosulfate is often added to cisplatin-based hyperthermic intraperitoneal chemotherapy (HIPEC) protocols to mitigate this, however evidence regarding risk of hypernatraemia is scarce as of yet. METHODS We retrospectively identified patients undergoing cytoreductive surgery (CRS) for peritoneal surface malignancies of any origin at a single high-volume unit between April 2018 and December 2020. Patients were included if they received cisplatin-based HIPEC with intravenous sodium thiosulfate. Blood tests were collected pre-surgery and then daily during admission. Hypernatraemia was defined as serum sodium >145 mmol/L. Renal impairment was defined using the RIFLE criteria. RESULTS Eleven CRSs met inclusion criteria, the majority of which were indicated for ovarian cancer (72.7%). One (9.1%) patient with mesothelioma received mitomycin C as an additional chemotherapy agent. The incidence of hypernatraemia was 100% but all cases were transient, with no clinical sequelae observed. The rate of AKI was 36.4%, with three (27.3%) patients classified as risk and one (9.1%) instance of failure. No long-term renal impairment was observed. CONCLUSIONS Despite biochemical evidence of mild hypernatraemia but with the absence of clinical sequelae, sodium thiosulfate appears to be safe when used in adjunct to cisplatin-based HIPEC during CRS. These findings should be evaluated with further comparative studies. When describing renal impairment, it is important that standardisation in reporting occurs, with the RIFLE and Acute Kidney Injury Network criteria now the preferred consensus definitions.
Collapse
Affiliation(s)
- Anais Alonso
- Liver and Peritonectomy Unit, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales, Kogarah, Australia
| | - Winston Liauw
- Liver and Peritonectomy Unit, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales, Kogarah, Australia
| | - Helen Kennedy
- Liver and Peritonectomy Unit, St George Hospital, Kogarah, Australia
| | - Nayef A. Alzahrani
- Liver and Peritonectomy Unit, St George Hospital, Kogarah, Australia
- College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - David L. Morris
- Liver and Peritonectomy Unit, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales, Kogarah, Australia
| |
Collapse
|
291
|
Huang SH, Chu CY, Hsu YC, Wang SY, Kuo LN, Bai KJ, Yu MC, Chang JH, Liu EH, Chen HY. How platinum-induced nephrotoxicity occurs? Machine learning prediction in non-small cell lung cancer patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106839. [PMID: 35550456 DOI: 10.1016/j.cmpb.2022.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/08/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Platinum-induced nephrotoxicity is a severe and unexpected adverse drug reaction that could lead to treatment failure in non-small cell lung cancer patients. Better prediction and management of this nephrotoxicity can increase patient survival. Our study aimed to build up and compare the best machine learning models with clinical and genomic features to predict platinum-induced nephrotoxicity in non-small cell lung cancer patients. METHODS Clinical and genomic data of patients undergoing platinum chemotherapy at Wan Fang Hospital were collected after they were recruited. Twelve models were established by artificial neural network, logistic regression, random forest, and support vector machine with integrated, clinical, and genomic modes. Grid search and genetic algorithm were applied to construct the fine-tuned model with the best combination of predictive hyperparameters and features. Accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve were calculated to compare the performance of the 12 models. RESULTS In total, 118 patients were recruited for this study, among which 28 (23.73%) were experiencing nephrotoxicity. Machine learning models with clinical and genomic features achieved better prediction performances than clinical or genomic features alone. Artificial neural network with clinical and genomic features demonstrated the best predictive outcomes among all 12 models. The average accuracy, precision, recall, F1 score and area under the receiver operating characteristic curve of the artificial neural network with integrated mode were 0.923, 0.950, 0.713, 0.808 and 0.900, respectively. CONCLUSIONS Machine learning models with clinical and genomic features can be a preliminary tool for oncologists to predict platinum-induced nephrotoxicity and provide preventive strategies in advance.
Collapse
Affiliation(s)
- Shih-Hui Huang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan
| | - Chao-Yu Chu
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan
| | - Yu-Chia Hsu
- Department of Pharmaceutical Care and Health Systems, College of Pharmacy, University of Minnesota- Twin Cities, United States
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Li-Na Kuo
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan; Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Jen Bai
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Eugene H Liu
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiang-Yin Chen
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan; Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
292
|
Usefzay O, Yari S, Amiri P, Hasanein P. Evaluation of protective effects of methylene blue on cisplatin-induced nephrotoxicity. Biomed Pharmacother 2022; 150:113023. [PMID: 35483196 DOI: 10.1016/j.biopha.2022.113023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Cisplatin (CP) is used to treat various types of cancer. However, its usage is limited due to nephrotoxicity. This study aims to examine the applicability of methylene blue (MB) against CP-induced kidney injuries. In this study, twenty-eight male rats were divided into four groups. Following administration of a single dose of CP (5 mg/kg), animals received intraperitoneal injections (IP) of MB (4 mg/kg) for seven days. In the final phase of the experiment, serum was collected from rats, with blood urea nitrogen (BUN) and creatinine (Cr) levels measured. Hematoxylin-Eosin (H&E) and Masson's trichrome staining were performed to examine histological changes. Immuno-histological staining was used to evaluate caspase-3 protein expression. The results showed that the MB (4 mg/kg) + CP treated rats underwent a lesser weight loss compared to the CP group (p < 0.05 and p < 0.001, respectively). The kidney weight decreased significantly in the CP + MB group compared to the CP group (p < 0.05 and p < 001, respectively). BUN and Cr levels that were increased significantly in the serum of the CP group (p < 0.001) compared to the control group showed no significant increase in the MB + CP group compared to the control group (p = 0.842 and p = 0.989, respectively). There was a significant decrease in kidney tissue injuries in the CP + MB compared to the CP group (p < 0.001). The glomerular size was recovered in the CP + MB group compared to the CP (p < 0.05). The significant increase in the capsular space of the CP group compared to the control group (p < 0.001) was attenuated in the CP + MB. MB restored the histological alterations in the kidneys. Treatment with 4 mg/kg of MB reduced the expression levels of Caspase-3. In conclusion, this study provides evidence concerning the anti-apoptotic roles of MB in CP-induced kidney damage. In conclusion, MB has a positive impact on kidney function.
Collapse
Affiliation(s)
- Obaidullah Usefzay
- Department of Biology, Faculty of Science, Bu-Ali Sina University, Hamadan, Iran
| | - Siamak Yari
- Department of Biology, Faculty of Science, Bu-Ali Sina University, Hamadan, Iran.
| | - Parsa Amiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Hasanein
- Department of Biology, School of Basic Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
293
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
294
|
Kuruppath J, Patel P. Hypomagnesemia and Hypokalemia: Considerations for Cancer Care. Clin J Oncol Nurs 2022; 26:313-317. [PMID: 35604734 DOI: 10.1188/22.cjon.313-317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrolyte imbalances can frequently occur among patients with cancer. Hypomagnesemia and hypokalemia are side effects of certain chemotherapies, including cisplatin, cetuximab, eribulin, and ifosfamide. When patients concurrently receive chemotherapy and take medications that cause hypomagnesemia or hypokalemia, electrolyte imbalances are amplified. Provider and patient education are vital to identifying and treating these conditions in a timely manner. If medication usage depletes electrolytes, repletion through diet and supplements is essential. In symptomatic cases of electrolyte deficiency, oral and IV formulations of potassium and magnesium are options for treatment. This article discusses the importance of identifying and understanding the etiologies, symptoms, and treatment modalities of hypomagnesemia and hypokalemia.
Collapse
|
295
|
Amini N, Badavi M, Mard SA, Dianat M, Moghadam MT. The renoprotective effects of gallic acid on cisplatin-induced nephrotoxicity through anti-apoptosis, anti-inflammatory effects, and downregulation of lncRNA TUG1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:691-701. [PMID: 35303125 DOI: 10.1007/s00210-022-02227-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
Abstract
Cisplatin, an antineoplastic drug used in cancer therapy, -induced nephrotoxicity mediated by the production of reactive oxygen species (ROS). Gallic acid (GA) is identified as an antioxidant substance with free radical scavenging properties. This research was designed to examine the ameliorative impact of GA caused by cisplatin-induced nephrotoxicity through apoptosis and long non-coding RNA (lncRNA) Taurine-upregulated gene 1 (TUG1) expression. Thirty-two male Sprague Dawley rats (200 - 220 g) were randomly allocated to four groups: (1) control group; (2) rats treated with cisplatin (7.5 mg/kg, i.p.) on the fourth day; and the two other groups include rats pretreated with GA (20 and 40 mg/kg by gavage) for s7 days and cisplatin (7.5 mg/kg, i.p.) at the fourth day. The rats were anesthetized and sacrificed for collecting samples, 72 h after cisplatin administration. The blood samples were used to investigate biochemical factors and kidney tissue was evaluated for measuring oxidative stress and inflammatory factors and the gene expression of molecular parameters. The results indicated that GA administration increased the B-cell lymphoma-2 (Bcl-2) mRNA and lncRNA TUG1 expression, and reduced Bcl-2-associated x protein (Bax), and caspase-3 expression. Likewise, the TAC level increased, and kidney MDA content decreased by administration of GA. GA also decreased the inflammatory factor levels, including IL-1β and TNF-α. Moreover, GA led to the improvement of kidney dysfunction as evidenced by reducing plasma BUN (blood urea nitrogen) and Cr (creatinine). Taken together, GA could protect the kidney against cisplatin-induced nephrotoxicity through antioxidant, anti-inflammatory, and anti-apoptosis properties and reduction of lncRNA TUG1 expression.
Collapse
Affiliation(s)
- Negin Amini
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Ali Mard
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
296
|
Klumpers MJ, Witte WD, Gattuso G, Schiavello E, Terenziani M, Massimino M, Gidding CEM, Vermeulen SH, Driessen CM, van Herpen CM, van Meerten E, Guchelaar HJ, Coenen MJH, te Loo DMWM. Genome-Wide Analyses of Nephrotoxicity in Platinum-Treated Cancer Patients Identify Association with Genetic Variant in RBMS3 and Acute Kidney Injury. J Pers Med 2022; 12:jpm12060892. [PMID: 35743677 PMCID: PMC9224783 DOI: 10.3390/jpm12060892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Nephrotoxicity is a common and dose-limiting side effect of platinum compounds, which often manifests as acute kidney injury or hypomagnesemia. This study aimed to investigate the genetic risk loci for platinum-induced nephrotoxicity. Platinum-treated brain tumor and head–neck tumor patients were genotyped with genome-wide coverage. The data regarding the patient and treatment characteristics and the laboratory results reflecting the nephrotoxicity during and after the platinum treatment were collected from the medical records. Linear and logistic regression analyses were performed to investigate the associations between the genetic variants and the acute kidney injury and hypomagnesemia phenotypes. A cohort of 195 platinum-treated patients was included, and 9,799,032 DNA variants passed the quality control. An association was identified between RBMS3 rs10663797 and acute kidney injury (coefficient −0.10 (95% confidence interval −0.13–−0.06), p-value 2.72 × 10−8). The patients who carried an AC deletion at this locus had statistically significantly lower glomerular filtration rates after platinum treatment. Previously reported associations, such as BACH2 rs4388268, could not be replicated in this study’s cohort. No statistically significant associations were identified for platinum-induced hypomagnesemia. The genetic variant in RBMS3 was not previously linked to nephrotoxicity or related traits. The validation of this study’s results in independent cohorts is needed to confirm this novel association.
Collapse
Affiliation(s)
- Marije J. Klumpers
- Department of Pediatrics, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands;
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands; (W.D.W.); (M.J.H.C.)
| | - Giovanna Gattuso
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy; (G.G.); (E.S.); (M.T.); (M.M.)
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy; (G.G.); (E.S.); (M.T.); (M.M.)
| | - Monica Terenziani
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy; (G.G.); (E.S.); (M.T.); (M.M.)
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy; (G.G.); (E.S.); (M.T.); (M.M.)
| | - Corrie E. M. Gidding
- Princess Maxima Center for Pediatric Oncology, Postbox 113, 3720 AC Bilthoven, The Netherlands;
| | - Sita H. Vermeulen
- Department for Health Evidence, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands;
| | - Chantal M. Driessen
- Department of Medical Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands; (C.M.D.); (C.M.v.H.)
| | - Carla M. van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands; (C.M.D.); (C.M.v.H.)
| | - Esther van Meerten
- Department of Medical Oncology, Erasmus MC Cancer Institute, Postbox 2040, 3000 CA Rotterdam, The Netherlands;
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Postbox 9600, 2300 RC Leiden, The Netherlands;
| | - Marieke J. H. Coenen
- Department of Human Genetics, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands; (W.D.W.); (M.J.H.C.)
| | - D. Maroeska W. M. te Loo
- Department of Pediatrics, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands;
- Correspondence: ; Tel.: +31-24-361-44-15
| |
Collapse
|
297
|
Sears SM, Vega AA, Kurlawala Z, Oropilla GB, Krueger A, Shah PP, Doll MA, Miller R, Beverly LJ, Siskind LJ. F4/80 hi Resident Macrophages Contribute to Cisplatin-Induced Renal Fibrosis. KIDNEY360 2022; 3:818-833. [PMID: 36128491 PMCID: PMC9438415 DOI: 10.34067/kid.0006442021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023]
Abstract
Background Cisplatin-induced kidney injury remains a major obstacle in utilizing cisplatin as a chemotherapeutic for solid-organ cancers. Thirty percent of patients treated with cisplatin develop acute kidney injury (AKI), and even patients who do not develop AKI are at risk for long-term declines in kidney function and development of chronic kidney disease (CKD). Modeling cisplatin-induced kidney injury in mice has revealed that repeated low doses of cisplatin lead to development of kidney fibrosis. This model can be used to examine AKI-to-CKD transition processes. Macrophages play a role in some of these processes, including immune response, wound healing, and tissue remodeling. Depleting macrophage populations in the kidney reduced fibrosis development in other models of renal fibrosis. Methods We used either C57BL/6 mice with a Ccr2 genetic knockout or liposome encapsulated clodronate (Clodrosome) to deplete macrophage populations during repeated 9 mg/kg cisplatin treatments. We assessed how immune cell populations were altered in the blood and kidney of these mice and how these alterations affected development of renal fibrosis and kidney injury. Results We found that Clodrosome treatment decreased collagen deposition, myofibroblast accumulation, and inflammatory cytokine production, whereas Ccr2 genetic knockout had no effect on these markers after cisplatin treatment. Additionally, Ccr2-/- mice had decreased levels of F4/80lo infiltrating macrophages in the kidney after cisplatin treatments, but Clodrosome treatment depleted F4/80hi resident and CD206+ M2 macrophages. Conclusions These data suggest that Clodrosome depletion of F4/80hi and M2 macrophages in the kidney attenuates development of renal fibrosis after repeated low doses of cisplatin.
Collapse
Affiliation(s)
- Sophia M. Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Alexis A. Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Zimple Kurlawala
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Gabrielle B. Oropilla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Austin Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Parag P. Shah
- Department of Medicine, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Robert Miller
- University of Louisville Brown Cancer Center, Louisville, Kentucky
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Levi J. Beverly
- Department of Medicine, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| | - Leah J. Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| |
Collapse
|
298
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
299
|
Li C, Chen QY, He Y, Liu YH, Meng XM, Liu MM. Discovery of a chalcone derivative as potent necroptosis inhibitor for the treatment of acute kidney injury. Clin Exp Pharmacol Physiol 2022; 49:824-835. [PMID: 35579574 DOI: 10.1111/1440-1681.13670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Necroptosis, a form of inflammation-related programmed cell death, is a major mechanism of proximal tubular cell injury in acute kidney injury (AKI). Blockade of necroptosis signaling represents a promising strategy for clinical therapy of AKI. Previously, we identified a small molecular RIPK1 inhibitor Cpd-71 with nephroprotective activities. In order to discover more nephroprotective agents, in this study, twenty chalcone derivatives were synthesized and evaluated for their anti-necroptosis and nephroprotective activities. Among the chalcone derivatives, Cpd-2 exhibited the most potent anti-necroptosis activity (IC50 = 1.08 μM) and protective activity (EC50 = 1.49 μM) through directly binding to RIPK1 and blocking RIPK1-RIPK3-MLKL signaling pathway. Furthermore, Cpd-2 effectively attenuated cisplatin or hypoxia/reoxygenation (H/R)-induced injury and necroptotic inflammation in renal cell models. Moreover, in cisplatin- or ischemia/reperfusion (I/R) induced AKI mouse model, detection of creatinine and urea nitrogen in blood showed that Cpd-2 improved kidney function. PAS staining and immunofluorescence analysis indicated that Cpd-2 also reduced pathological damage and inhibited inflammatory development in kidney tissues. In summary, although some chalcone derivatives have been reported to prevent kidney injury previously, our present study not only discovered a promising leading compound Cpd-2, but also provided a novel and successful practice for the development of necroptosis inhibitors from natural products derivatives as AKI therapeutic agents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Li
- School of Pharmacy, Anhui Province Key Laboratory of Inflammation and Immune Diseases, Anhui Medical University, Hefei, China
| | - Qiang-Yu Chen
- School of Pharmacy, Anhui Province Key Laboratory of Inflammation and Immune Diseases, Anhui Medical University, Hefei, China
| | - Yuan He
- School of Pharmacy, Anhui Province Key Laboratory of Inflammation and Immune Diseases, Anhui Medical University, Hefei, China
| | - Yu-Hai Liu
- Dept of Emergency and Minimally Invasive Surgery, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Binhu Hospital District, Hefei
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Province Key Laboratory of Inflammation and Immune Diseases, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Inflammation and Immune Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
300
|
Alemohammad H, Motafakkerazad R, Asadzadeh Z, Farsad N, Hemmat N, Najafzadeh B, Vasefifar P, Baradaran B. siRNA-mediated silencing of Nanog reduces stemness properties and increases the sensitivity of HepG2 cells to cisplatin. Gene 2022; 821:146333. [PMID: 35182674 DOI: 10.1016/j.gene.2022.146333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Liver cancer is one of the most lethal cancers having worldwide prevalence. Despite significant progress in cancer therapy, liver cancer-induced mortality is very high. Nanog, as an essential transcription factor modulating cellular multipotency, causes tumor progression, drug resistance, and preserves stemness properties in various tumors such as liver cancer. Thus, this research was conducted to evaluate the impact of combination therapy of Nanog siRNA/cisplatin on the sensitivity of liver cancer cells to this drug. HepG2 cells were transfected with Nanog siRNA and treated with cisplatin, individually and in combination. Then, it was observed that in transfected HepG2 cells, Nanog expression was significantly reduced at mRNA level and also these cells were sensitized to cisplatin. In addition, to assess the impact of Nanog siRNA and cisplatin individually and in combination on cells' viability, migration capacity, apoptosis, and cell cycle progression, the MTT, wound healing, colony formation assay, Annexin V/PI staining, and flow cytometry assays were applied on HepG2 cells, respectively. Also, the quantitive Real-Time PCR was used to check the expression of stemness-associated genes (CD44, CD133, and Sox2), and apoptosis-related genes (caspase-3, 8, 9, BAX and Bcl2) after combination therapy. It is indicated that the combination of Nanog siRNA and cisplatin significantly reduced proliferation, migration, and colony formation ability, as well as increased apoptosis rate, and cell cycle arrest. Also, it is found that the combination of Nanog siRNA and cisplatin down-regulated the expression of stemness-associated genes and up-regulated apoptosis-related genes in HepG2 cells. Hence, it can be suggested that Nanog inhibition in combination with cisplatin is a potential therapeutic strategy for developing new therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|