251
|
Tobimatsu K, Noguchi T, Hosooka T, Sakai M, Inagaki K, Matsuki Y, Hiramatsu R, Kasuga M. Overexpression of the transcriptional coregulator Cited2 protects against glucocorticoid-induced atrophy of C2C12 myotubes. Biochem Biophys Res Commun 2008; 378:399-403. [PMID: 19032942 DOI: 10.1016/j.bbrc.2008.11.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/09/2008] [Indexed: 11/19/2022]
Abstract
In patients with various catabolic conditions, glucocorticoid excess induces skeletal muscle wasting by accelerating protein degradation via the ubiquitin-proteasome pathway. Although the transcriptional coactivator p300 has been implicated in this pathological process, regulatory mechanisms and molecular targets of its action remain unclear. Here we show that CREB-binding protein (CBP)/p300-interacting transactivator with ED-rich tail 2 (Cited2), which binds to the cysteine-histidine-rich region 1 of p300 and CBP, regulates muscle mass in vitro. Adenovirus-mediated overexpression of wild-type Cited2 significantly blocked morphological alterations of C2C12 myotubes with a concomitant decrease in myosin heavy chain protein in response to synthetic glucocorticoid dexamethasone, which were attributable to the reduced induction of atrophy-related ubiquitin ligases MuRF1 and MAFbx. These myotube-sparing effects were less pronounced, however, with a carboxyl-terminally truncated mutant of Cited2 that lacked the ability to bind p300. These results suggest that the gain of Cited2 function counteracts glucocorticoid-induced muscle atrophy through inhibition of proteolysis mediated by p300-dependent gene transcription.
Collapse
Affiliation(s)
- Kazutoshi Tobimatsu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
252
|
African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-theta-mediated p300 transactivation. J Virol 2008; 83:969-80. [PMID: 19004945 DOI: 10.1128/jvi.01663-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-alpha) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-theta completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-theta enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-theta and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses.
Collapse
|
253
|
Singh K, Sinha S, Malonia SK, Bist P, Tergaonkar V, Chattopadhyay S. Tumor suppressor SMAR1 represses IkappaBalpha expression and inhibits p65 transactivation through matrix attachment regions. J Biol Chem 2008; 284:1267-78. [PMID: 18981184 DOI: 10.1074/jbc.m801088200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aberrant NF-kappaB activity promotes tumorigenesis. However, NF-kappaB also inhibits tumor growth where tumor suppressor pathways remain unaltered. Thus, its role in tumorigenesis depends upon the function of other cellular factors. Tumor suppressor SMAR1 down-modulated in high grade breast cancers is regulated by p53 and is reported to interact and stabilize p53. Because both SMAR1 and NF-kappaB are involved in tumorigenesis, we investigated the effect of SMAR1 upon NF-kappaB activity. We show that SMAR1 induction by doxorubicin or overexpression produces functional NF-kappaB complexes that are competent for binding to NF-kappaB consensus sequence. However, SMAR1 induced p65-p50 complex is phosphorylation- and transactivation-deficient. Induction of functional NF-kappaB complexes stems from down-regulation of IkappaBalpha transcription through direct binding of SMAR1 to the matrix attachment region site present in IkappaBalpha promoter and recruitment of corepressor complex. Real time PCR array for NF-kappaB target genes revealed that SMAR1 down-regulates a subset of NF-kappaB target genes that are involved in tumorigenesis. We also show that SMAR1 inhibits tumor necrosis factor alpha-induced induction of NF-kappaB suggesting that activation of NF-kappaB by SMAR1 is independent and different from classical pathway. Thus, for the first time we report that a tumor suppressor protein SMAR1 can modulate NF-kappaB transactivation and inhibit tumorigenesis by regulating NF-kappaB target genes.
Collapse
Affiliation(s)
- Kamini Singh
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, Maharastra, India
| | | | | | | | | | | |
Collapse
|
254
|
Lawless MW, Norris S, O'Byrne KJ, Gray SG. Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 2008; 13:826-52. [PMID: 19175682 PMCID: PMC3823402 DOI: 10.1111/j.1582-4934.2008.00571.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ‘histone code’ is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular ‘code’ recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment.
Collapse
Affiliation(s)
- M W Lawless
- Centre for Liver Disease, School of Medicine and Medical Science, Mater Misericordiae University Hospital - University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
255
|
Actin cytoskeleton differentially modulates NF-κB-mediated IL-8 expression in myelomonocytic cells. Biochem Pharmacol 2008; 76:1214-28. [DOI: 10.1016/j.bcp.2008.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 12/11/2022]
|
256
|
Fukushige S, Kondo E, Horii A. Methyl-CpG targeted transcriptional activation allows re-expression of tumor suppressor genes in human cancer cells. Biochem Biophys Res Commun 2008; 377:600-605. [PMID: 18929535 DOI: 10.1016/j.bbrc.2008.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
DNA methylation and histone modifications are both major features of the epigenetic silencing seen at tumor suppressor genes (TSGs) in cancer. DNA methylation inhibitors, but not, in general, histone deacetylase, can reactivate TSGs. However, DNA methylation inhibitors frequently upregulate genes whose promoters remain unmethylated. Herein we demonstrated that the methyl-CpG targeted transcriptional activation (MeTA), which allows re-expression of TSGs without DNA demethylation, is widely seen in human cancer. We further analyzed MeTA and found that transcriptional coactivators are recruited at hypermethylated promoter regions of TSGs using the methyl-CpG binding domain (MBD). Reactivation of MLH1 by MeTA accompanied acetylation of histone H3 lysine 9/14 at the promoter region. Furthermore, all ten genes analyzed in three cell lines were reactivated by the effect of MeTA. Our present results lead to an efficient way to search for transcriptionally silenced genes with highly methylated CpG islands, particularly TSGs in cancer and developmentally important genes in embryonic stem cells.
Collapse
Affiliation(s)
- Shinichi Fukushige
- Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Emiko Kondo
- Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akira Horii
- Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
257
|
Jennewein C, Kuhn AM, Schmidt MV, Meilladec-Jullig V, von Knethen A, Gonzalez FJ, Brüne B. Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5646-52. [PMID: 18832723 PMCID: PMC2679654 DOI: 10.4049/jimmunol.181.8.5646] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive. We provide evidence that peroxisome proliferator-activated receptor gamma (PPARgamma) coordinates antiinflammatory responses following its activation by AC. Exposing murine RAW264.7 macrophages to AC before LPS stimulation reduced NF-kappaB transactivation and lowered target gene expression of, that is, TNF-alpha and IL-6 compared with controls. In macrophages overexpressing a dominant negative mutant of PPARgamma, NF-kappaB transactivation in response to LPS was restored, while macrophages from myeloid lineage-specific conditional PPARgamma knockout mice proved that PPARgamma transmitted an antiinflammatory response, which was delivered by AC. Expressing a PPARgamma-Delta aa32-250 deletion mutant, we observed no inhibition of NF-kappaB. Analyzing the PPARgamma domain structures within aa 32-250, we anticipated PPARgamma sumoylation in mediating the antiinflammatory effect in response to AC. Interfering with sumoylation of PPARgamma by mutating the predicted sumoylation site (K77R), or knockdown of the small ubiquitin-like modifier (SUMO) E3 ligase PIAS1 (protein inhibitor of activated STAT1), eliminated the ability of AC to suppress NF-kappaB. Chromatin immunoprecipitation analysis demonstrated that AC prevented the LPS-induced removal of nuclear receptor corepressor (NCoR) from the kappaB site within the TNF-alpha promoter. We conclude that AC induce PPARgamma sumoylation to attenuate the removal of NCoR, thereby blocking transactivation of NF-kappaB. This contributes to an antiinflammatory phenotype shift in macrophages responding to AC by lowering proinflammatory cytokine production.
Collapse
Affiliation(s)
- Carla Jennewein
- Institute of Biochemistry I/Zentrum für Arzneimittelforschung, -Entwicklung und -Sicherheit, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
258
|
Affiliation(s)
- Robert M Strieter
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
259
|
Sun H, Chung WC, Ryu SH, Ju Z, Tran HT, Kim E, Kurie JM, Koo JS. Cyclic AMP-responsive element binding protein- and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res (Phila) 2008; 1:316-28. [PMID: 19138976 PMCID: PMC2768131 DOI: 10.1158/1940-6207.capr-07-0002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1beta has been reported to promote tumor development. However, the factors mediating IL-1beta-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1beta are less clear. Here, we report that IL-1beta up-regulated an array of proangiogenic CXC chemokine genes in the NSCLC cell line A549 and in normal human tracheobronchial epithelium cells, as determined by microarray analysis. Further analysis revealed that IL-1beta induced much higher protein levels of CXC chemokines in NSCLC cells than in normal human tracheobronchial epithelium cells. Conditioned medium from IL-1beta-treated A549 cells markedly increased endothelial cell migration, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1beta-induced CXC chemokine gene overexpression in NSCLC cells was abrogated with the knockdown of cyclic AMP-responsive element binding protein (CREB) or nuclear factor kappaB (NF-kappaB). Moreover, the expression of the CXC chemokine genes as well as CREB and NF-kappaB activities was greatly increased in the tumorigenic NSCLC cell line compared with normal, premalignant immortalized or nontumorigenic cell lines. A disruptor of the interaction between CREB-binding protein and transcription factors such as CREB and NF-kappaB, 2-naphthol-AS-E-phosphate (KG-501), inhibited IL-1beta-induced CXC chemokine gene expression and angiogenic activity in NSCLC. We propose that targeting CREB or NF-kappaB using small-molecule inhibitors, such as KG-501, holds promise as a preventive and/or therapeutic approach for NSCLC.
Collapse
Affiliation(s)
| | | | - Seung-Hee Ryu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | | | - Hai T. Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Edward Kim
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ja Seok Koo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
260
|
Abstract
The RelA (p65) NF-kappaB (nuclear factor kappaB) subunit contains an extremely active C-terminal transcriptional activation domain, required for its cellular function. In the present article, we review our knowledge of this domain, its modifications and its known interacting proteins. Moreover, we discuss how analysis of its evolutionary conservation reveals distinct subdomains and conserved residues that might give insights into its regulation and function.
Collapse
|
261
|
Clarke DL, Sutcliffe A, Deacon K, Bradbury D, Corbett L, Knox AJ. PKCβΙΙ Augments NF-κB-Dependent Transcription at the CCL11 Promoter via p300/CBP-Associated Factor Recruitment and Histone H4 Acetylation. THE JOURNAL OF IMMUNOLOGY 2008; 181:3503-14. [DOI: 10.4049/jimmunol.181.5.3503] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
262
|
PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol 2008; 45:385-93. [PMID: 18657544 DOI: 10.1016/j.yjmcc.2008.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 11/20/2022]
Abstract
Diabetic cardiomyopathy is characterized by structural alterations such as cardiomyocyte hypertrophy, necrosis and focal fibrosis. Hyperglycemia-induced oxidative damage may play an important role in this pathogenetic process. Recent studies have shown that poly (ADP-ribose) polymerase (PARP) is activated in response to oxidative stress and cellular damage as well, plays a role in gene expression. This study investigated mechanisms of diabetes-induced, PARP-mediated development of structural alterations in the heart. Two models of diabetic complications were used to determine the role of PARP in oxidative stress, cardiac hypertrophy and fibrosis in the heart. PARP-1 knockout (PARP(-/-)) mice and their respective controls were fed a 30% galactose diet while male Sprague-Dawley rats were injected with streptozotocin and subsequently treated with PARP inhibitor 3-aminobenzamide (ABA). The in vivo experiments were verified in in vitro models which utilized both neonatal cardiomyocytes and endothelial cells. Our results indicate that hyperhexosemia caused upregulation of extracellular matrix proteins in association with increased transcriptional co-activator p300 levels, cardiomyocyte hypertrophy and increased oxidative stress. These pathogenetic changes were not observed in the PARP(-/-) mice and diabetic rats treated with ABA. Furthermore, these changes appear to be influenced by histone deacetylases. Similar results were obtained in isolated cardiomyocytes and endothelial cells. This study has elucidated for the first time a PARP-dependent, p300-associated pathway mediating the development of structural alterations in the diabetic heart.
Collapse
|
263
|
Sun J, Ramnath RD, Zhi L, Tamizhselvi R, Bhatia M. Substance P enhances NF-kappaB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am J Physiol Cell Physiol 2008; 294:C1586-C1596. [PMID: 18434625 DOI: 10.1152/ajpcell.00129.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuropeptide substance P (SP), as a major mediator of neuroimmunomodulatory activity, modulates diverse functions of immune cells, including macrophages. In the current study, we focused on the yet uncertain role of SP in enhancing the inducible/inflammatory chemokine response of macrophages and the signaling mechanism involved. We studied the effect on the murine monocyte/macrophage cell line RAW 264.7 as well as isolated primary macrophages. Our data show that SP, at nanomolar concentrations, elicited selective chemokine production from murine macrophages. Among the chemokines examined, macrophage inflammatory protein-2 and monocyte chemoattractant protein-1 are two major chemokines that were synthesized by macrophages in response to SP. Furthermore, SP treatment strongly induced the classic pathway of IkappaB-dependent NF-kappaB activation and enhanced DNA binding as well as transactivation activity of the transcription factor. SP-evoked transcriptional induction of chemokines was specific, since it was blocked by treatment with selective neurokinin-1 receptor antagonists. Moreover, SP stimulation of macrophages activated the ERK1/2 and p38 MAPK but not JNKs. Blockade of these two MAPK pathways with specific inhibitors abolished SP-elicited nuclear translocation of phosphorylated NF-kappaB p65 and NF-kappaB-driven chemokine production, suggesting that the two MAPKs lie in the signaling pathways leading to the chemokine response. Collectively, our data demonstrate that SP enhances selective inflammatory chemokine production by murine macrophages via ERK/p38 MAPK-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
264
|
Abstract
Hepatic ischemia/reperfusion (I/R) results in a chain of events that culminate in liver dysfunction and injury. I/R injury is characterized by early oxidant stress followed by an intense acute inflammatory response that involves the transcription factor nuclear factor (NF)-kappaB. In addition to being a primary regulator of pro-inflammatory gene expression, NF-kappaB may play other roles in the hepatic response to I/R, such as mediating the expression of anti-apoptotic genes, preventing the accumulation of damaging reactive oxygen species, facilitating liver regeneration, and mediating the protective effects of ischemic preconditioning. In the present study, we review the diverse functions of NF-kappaB during hepatic I/R injury.
Collapse
Affiliation(s)
- Thomas Shin
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
265
|
Ma S, Tang J, Feng J, Xu Y, Yu X, Deng Q, Lu Y. Induction of p21 by p65 in p53 null cells treated with Doxorubicin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:935-40. [DOI: 10.1016/j.bbamcr.2008.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/16/2022]
|
266
|
Prevention of hypoxia-induced neuronal apoptosis through histone deacetylase inhibition. ACTA ACUST UNITED AC 2008; 64:863-70; discussion 870-1. [PMID: 18404049 DOI: 10.1097/ta.0b013e318166b822] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND We have recently discovered that administration of valproic acid (VPA), a histone deacetylase inhibitor, enhances nuclear histone acetylation and improves survival after lethal hemorrhage in rats. In the present study, neurons were subjected to severe hypoxic condition in vitro to test whether VPA would prevent hypoxia-induced apoptosis, and to explore the possible mechanisms. METHODS Primary hippocampal and cortical cultures dissociated from E18 rat embryos were plated in quadruplicate at a density of 2 x 10/well in neurobasal medium supplemented with B-27 on glass cover-slips coated with poly-l-lysine. On the 10th day after plating, cells were incubated in a hypoxia chamber (0.5% O2, 10% CO2, 89.5% N2) at 37 degrees C for 6 hour and 16 hour in the presence or absence of VPA (1 mmol/L). The cells were then fixed, stained with antiactivated caspase-3 and antiacetyl histone H3 lysine 9 (Ac H3 K9) antibodies and visualized under confocal microscope. The caspase-3 positive cells were counted as apoptotic. Ratio of the apoptotic to total cells stained with 4',6-diamidino-2-phenylindole was determined. Numerical data were subjected to t test analysis. p < 0.05 was considered statistically significant. Western blot was performed to determine the level of acetylation of nuclear factor-kappa B (NF-kappaB) and phospho-JNK (c-Jun N-terminal kinase) in cells treated with or without VPA. Luciferase report assay was employed to analyze the activation of NF-kappaB after the cells were transfected with NF-kBLuc with or without VPA treatment. RESULTS Exposure of neurons to VPA prevented apoptotic cell death under hypoxic conditions (20% apoptosis). In contrast, about 95% cells underwent apoptosis at the same level of hypoxia. VPA treatment induced acetylation of histone H3 K9 and NF-kappaB lysine 310. NF-kappaB was activated at the same time as the protein acetylation. Moreover, JNK phosphorylation was inhibited after the cells were treated with VPA under hypoxia condition. CONCLUSION VPA enhances acetylation of histone 3 at lysine 9 and NF-kappaB at 310, induces NF-kappaB activation, reduces JNK activation, and protects the neurons from hypoxia-induced apoptosis in vitro.
Collapse
|
267
|
Liu M, Kluger MS, D'Alessio A, García-Cardeña G, Pober JS. Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1088-99. [PMID: 18292233 DOI: 10.2353/ajpath.2008.070603] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We analyzed tumor necrosis factor (TNF) responses of human umbilical artery and vein endothelial cells (HUAECs and HUVECs) in organ and cell culture. In organ culture, TNF induced expression of E-selectin, VCAM-1, and ICAM-1 on HUVECs but only ICAM-1 on HUAECs. Activation of nuclear factor-kappaB, c-jun, and ATF2 by TNF was comparable in HUAECs and HUVECs, whereas binding of transcription factors and p300 co-activator to the E-selectin enhancer was lower in HUAECs compared to HUVECs. In cell culture, HUAECs rapidly acquired inducible E-selectin and VCAM-1 whereas ICAM-1 inducibility decreased. Culture of HUVECs rapidly decreased TNF responses of all three genes. By 72 hours in cell culture, TNF-treated HUVECs and HUAECs showed comparable adhesion molecule induction and transcription factor binding to the E-selectin enhancer. Freshly isolated HUAECs expressed higher levels of Kruppel-like factor 2 (KLF2) than HUVECs, consistent with greater KLF2 induction by arterial levels of shear stress in vitro. KLF2 expression decreased rapidly in both cell types during culture. Transduction of HUVECs with KLF2 reduced TNF-mediated induction of E-selectin and VCAM-1 while increasing ICAM-1 induction and reduced transcription factor/co-activator binding to the E-selectin enhancer. In conclusion, the differential responses of HUAECs and HUVECs to TNF in organ culture correlate with transcription factor/co-activator binding to DNA and converge during cell culture. Flow-induced expression of KLF2 contributes to the in situ responses of HUAECs but not of HUVECs.
Collapse
Affiliation(s)
- Meng Liu
- Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06509, USA
| | | | | | | | | |
Collapse
|
268
|
Buerki C, Rothgiesser KM, Valovka T, Owen HR, Rehrauer H, Fey M, Lane WS, Hottiger MO. Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65. Nucleic Acids Res 2008; 36:1665-80. [PMID: 18263619 PMCID: PMC2275151 DOI: 10.1093/nar/gkn003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor kappaB (NF-kappaB) plays an important role in the transcriptional regulation of genes involved in immunity and cell survival. We show here in vitro and in vivo acetylation of RelA/p65 by p300 on lysine 314 and 315, two novel acetylation sites. Additionally, we confirmed the acetylation on lysine 310 shown previously. Genetic complementation of RelA/p65-/- cells with wild type and non-acetylatable mutants of RelA/p65 (K314R and K315R) revealed that neither shuttling, DNA binding nor the induction of anti-apoptotic genes by tumor necrosis factor alpha was affected by acetylation on these residues. Microarray analysis of these cells treated with TNFalpha identified specific sets of genes differently regulated by wild type or acetylation-deficient mutants of RelA/p65. Specific genes were either stimulated or repressed by the acetylation-deficient mutants when compared to RelA/p65 wild type. These results support the hypothesis that site-specific p300-mediated acetylation of RelA/p65 regulates the specificity of NF-kappaB dependent gene expression.
Collapse
Affiliation(s)
- Christine Buerki
- Institute of Veterinary Biochemistry and Molecular Biology, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Hassa PO, Covic M, Bedford MT, Hottiger MO. Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1. J Mol Biol 2008; 377:668-78. [PMID: 18280497 DOI: 10.1016/j.jmb.2008.01.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/11/2008] [Accepted: 01/16/2008] [Indexed: 11/29/2022]
Abstract
Nuclear factor kappa B (NF-kappaB) plays an important role in the transcriptional regulation of genes involved in inflammation and cell survival. Transcriptional coactivators that methylate histones become increasingly important. Recently, we provided evidence that coactivator-associated arginine methyltransferase 1 (CARM1) is a transcriptional coactivator of NF-kappaB and functions as a promoter-specific regulator of NF-kappaB recruitment to chromatin. Here, we show that protein arginine methyltransferase 1 (PRMT1) synergistically coactivates NF-kappaB-dependent gene expression at the macrophage inflammatory protein 2 and human immunodeficiency virus 1 long terminal repeat promoters in concert with the transcriptional coactivators p300/CREB binding protein, CARM1, and poly(ADP-ribose) polymerase 1. PRMT1 formed a complex with poly(ADP-ribose) polymerase 1 and NF-kappaB in vivo and interacted directly with the NF-kappaB subunit p65 in vitro. The methyltransferase activity of PRMT1 appeared essential for its coactivator function in context with CARM1 and p300/CREB binding protein. These results suggest that the cooperative action between PRMT1 and CARM1 is required for NF-kappaB-dependent gene expression.
Collapse
Affiliation(s)
- Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
270
|
Hou CH, Tan TW, Tang CH. AMP-activated protein kinase is involved in COX-2 expression in response to ultrasound in cultured osteoblasts. Cell Signal 2008; 20:978-88. [PMID: 18276112 DOI: 10.1016/j.cellsig.2008.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 01/17/2008] [Accepted: 01/17/2008] [Indexed: 01/31/2023]
Abstract
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and in clinical studies. Cyclooxygenase-2 (COX-2) is a crucial mediator in mechanically induced bone formation. AMP-activated protein kinase (AMPK) has reported to sense and regulate the cellular energy status in various cell types. Here we found that US-mediated COX-2 expression was attenuated by LKB1 and AMPKalpha1 small interference RNA (siRNA) in human osteoblasts. Pretreatment of osteoblasts with AMPK inhibitor (araA and compound C), p38 inhibitor (SB203580), NF-kappaB inhibitor (PDTC), IkappaB protease inhibitor (TPCK) and NF-kappaB inhibitor peptide also inhibited the potentiating action of US. US increased the kinase activity and phosphorylation of LKB1, AMPK and p38. Stimulation of osteoblasts with US activated IkappaB kinase alpha/beta (IKKalpha/beta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. US-mediated an increase of IKKalpha/beta activity, kappaB-luciferase activity and p65 and p50 binding to the NF-kappaB element was inhibited by araA, SB203580 and LKB1 siRNA. Our results suggest that US increased COX-2 expression in osteoblasts via the LKB1/AMPKalpha1/p38/IKKalphabeta and NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Chun-Han Hou
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
271
|
Ahmed KM, Li JJ. ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr Cancer Drug Targets 2008; 7:335-42. [PMID: 17979628 DOI: 10.2174/156800907780809769] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ionizing radiation (IR) plays a key role in both areas of carcinogenesis and anticancer radiotherapy. The ATM (ataxia-telangiectasia mutated) protein, a sensor to IR and other DNA-damaging agents, activates a wide variety of effectors involved in multiple signaling pathways, cell cycle checkpoints, DNA repair and apoptosis. Accumulated evidence also indicates that the transcription factor NF-kappaB (nuclear factor-kappaB) plays a critical role in cellular protection against a variety of genotoxic agents including IR, and inhibition of NF-kappaB leads to radiosensitization in radioresistant cancer cells. NF-kappaB was found to be defective in cells from patients with A-T (ataxia-telangiectasia) who are highly sensitive to DNA damage induced by IR and UV lights. Cells derived from A-T individuals are hypersensitive to killing by IR. Both ATM and NF-kappaB deficiencies result in increased sensitivity to DNA double strand breaks. Therefore, identification of the molecular linkage between the kinase ATM and NF-kappaB signaling in tumor response to therapeutic IR will lead to a better understanding of cellular response to IR, and will promise novel molecular targets for therapy-associated tumor resistance. This review article focuses on recent findings related to the relationship between ATM and NF-kappaB in response to IR. Also, the association of ATM with the NF-kappaB subunit p65 in adaptive radiation response, recently observed in our lab, is also discussed.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Division of Molecular Radiobiology, Purdue University School of Health Sciences, Purdue Cancer Center, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
272
|
Liu GH, Qu J, Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:713-27. [PMID: 18241676 DOI: 10.1016/j.bbamcr.2008.01.002] [Citation(s) in RCA: 543] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/31/2007] [Accepted: 01/03/2008] [Indexed: 01/25/2023]
Abstract
Constitutively activated NF-kappaB occurs in many inflammatory and tumor tissues. Does it interfere with anti-inflammatory or anti-tumor signaling pathway? Here, we report that NF-kappaB p65 subunit repressed the Nrf2-antioxidant response element (ARE) pathway at transcriptional level. In the cells where NF-kappaB and Nrf2 were simultaneously activated, p65 unidirectionally antagonized the transcriptional activity of Nrf2. In the p65-overexpressing cells, the ARE-dependent expression of heme oxygenase-1 was strongly suppressed. However, p65 inhibited the ARE-driven gene transcription in a way that was independent of its own transcriptional activity. Two mechanisms were found to coordinate the p65-mediated repression of ARE: (1) p65 selectively deprives CREB binding protein (CBP) from Nrf2 by competitive interaction with the CH1-KIX domain of CBP, which results in inactivation of Nrf2. The inactivation depends on PKA catalytic subunit-mediated phosphorylation of p65 at S276. (2) p65 promotes recruitment of histone deacetylase 3 (HDAC3), the corepressor, to ARE by facilitating the interaction of HDAC3 with either CBP or MafK, leading to local histone hypoacetylation. This investigation revealed the participation of NF-kappaB p65 in the negative regulation of Nrf2-ARE signaling, and might provide a new insight into a possible role of NF-kappaB in suppressing the expression of anti-inflammatory or anti-tumor genes.
Collapse
Affiliation(s)
- Guang-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing, PR China
| | | | | |
Collapse
|
273
|
Rockel JS, Kudirka JC, Guzi AJ, Bernier SM. Regulation of Sox9 activity by crosstalk with nuclear factor-kappaB and retinoic acid receptors. Arthritis Res Ther 2008; 10:R3. [PMID: 18182117 PMCID: PMC2374456 DOI: 10.1186/ar2349] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/08/2007] [Accepted: 01/09/2008] [Indexed: 11/19/2022] Open
Abstract
Introduction Sox9 and p300 cooperate to induce expression of cartilage-specific matrix proteins, including type II collagen, aggrecan and link protein. Tumour necrosis factor (TNF)-α, found in arthritic joints, activates nuclear factor-κB (NF-κB), whereas retinoic acid receptors (RARs) are activated by retinoid agonists, including all-trans retinoic acid (atRA). Like Sox9, the activity of NF-κB and RARs depends upon their association with p300. Separately, both TNF-α and atRA suppress cartilage matrix gene expression. We investigated how TNF-α and atRA alter the expression of cartilage matrix genes. Methods Primary cultures of rat chondrocytes were treated with TNF-α and/or atRA for 24 hours. Levels of transcripts encoding cartilage matrix proteins were determined by Northern blot analyses and quantitative real-time PCR. Nuclear protein levels, DNA binding and functional activity of transcription factors were assessed by immunoblotting, electrophoretic mobility shift assays and reporter assays, respectively. Results Together, TNF-α and atRA diminished transcript levels of cartilage matrix proteins and Sox9 activity more than each factor alone. However, neither agent altered nuclear levels of Sox9, and TNF-α did not affect protein binding to the Col2a1 48-base-pair minimal enhancer sequence. The effect of TNF-α, but not that of atRA, on Sox9 activity was dependent on NF-κB activation. Furthermore, atRA reduced NF-κB activity and DNA binding. To address the role of p300, we over-expressed constitutively active mitogen-activated protein kinase kinase kinase (caMEKK)1 to increase p300 acetylase activity. caMEKK1 enhanced basal NF-κB activity and atRA-induced RAR activity. Over-expression of caMEKK1 also enhanced basal Sox9 activity and suppressed the inhibitory effects of TNF-α and atRA on Sox9 function. In addition, over-expression of p300 restored Sox9 activity suppressed by TNF-α and atRA to normal levels. Conclusion NF-κB and RARs converge to reduce Sox9 activity and cartilage matrix gene expression, probably by limiting the availability of p300. This process may be critical for the loss of cartilage matrix synthesis in inflammatory joint diseases. Therefore, agents that increase p300 levels or activity in chondrocytes may be useful therapeutically.
Collapse
Affiliation(s)
- Jason S Rockel
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada.
| | | | | | | |
Collapse
|
274
|
Ahmed KM, Li JJ. NF-kappa B-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med 2008; 44:1-13. [PMID: 17967430 PMCID: PMC2266095 DOI: 10.1016/j.freeradbiomed.2007.09.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 01/05/2023]
Abstract
Ionizing radiation (IR) began to be a powerful medical modality soon after Wilhelm Röntgen's discovery of X-rays in 1895. Today, more than 50% of cancer patients receive radiotherapy at some time during the course of their disease. Recent technical developments have significantly increased the precision of dose delivery to the target tumor, making radiotherapy more efficient in cancer treatment. However, tumor cells have been shown to acquire a radioresistance that has been linked to increased recurrence and failure in many patients. The exact mechanisms by which tumor cells develop an adaptive resistance to therapeutic fractional irradiation are unknown, although low-dose IR has been well defined for radioadaptive protection of normal cells. This review will address the radioadaptive response, emphasizing recent studies of molecular-level reactions. A prosurvival signaling network initiated by the transcription factor NF-kappa B, DNA-damage sensor ATM, oncoprotein HER-2, cell cyclin elements (cyclin B1), and mitochondrial functions in radioadaptive resistance is discussed. Further elucidation of the key elements in this prosurvival network may generate novel targets for resensitizing the radioresistant tumor cells.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Division of Molecular Radiobiology and Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907, USA
| | - Jian Jian Li
- Division of Molecular Radiobiology and Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907, USA
| |
Collapse
|
275
|
Abstract
Epidemiological, clinical and experimental studies have established a positive correlation between green tea consumption and cardiovascular health. Catechins, the major polyphenolic compounds in green tea, exert vascular protective effects through multiple mechanisms, including antioxidative, anti-hypertensive, anti-inflammatory, anti-proliferative, anti-thrombogenic, and lipid lowering effects. (1) Tea catechins present antioxidant activity by scavenging free radicals, chelating redox active transition-metal ions, inhibiting redox active transcription factors, inhibiting pro-oxidant enzymes and inducing antioxidant enzymes. (2) Tea catechins inhibit the key enzymes involved in lipid biosynthesis and reduce intestinal lipid absorption, thereby improving blood lipid profile. (3) Catechins regulate vascular tone by activating endothelial nitric oxide. (4) Catechins prevent vascular inflammation that plays a critical role in the progression of atherosclerotic lesions. The anti-inflammatory activities of catechins may be due to their suppression of leukocyte adhesion to endothelium and subsequent transmigration through inhibition of transcriptional factor NF-kB-mediated production of cytokines and adhesion molecules both in endothelial cells and inflammatory cells. (5) Catechins inhibit proliferation of vascular smooth muscle cells by interfering with vascular cell growth factors involved in atherogenesis. (6) Catechins suppress platelet adhesion, thereby inhibiting thrombogenesis. Taken together, catechins may be novel plant-derived small molecules for the prevention and treatment of cardiovascular diseases. This review highlights current developments in green tea extracts and vascular health, focusing specifically on the role of tea catechins in the prevention of various vascular diseases and the underlying mechanisms for these actions. In addition, the possible structure-activity relationship of catechins is discussed.
Collapse
Affiliation(s)
- Pon Velayutham
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Anandh Babu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
276
|
Gonzalez-Rey E, Delgado M. Vasoactive intestinal peptide inhibits cyclooxygenase-2 expression in activated macrophages, microglia, and dendritic cells. Brain Behav Immun 2008; 22:35-41. [PMID: 17826030 DOI: 10.1016/j.bbi.2007.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a potent lipid mediator produced by the inducible form of the enzyme cyclooxygenase (COX-2) in inflammatory cells. PGE2 and COX-2 are critical mediators in the pathogenesis of several inflammatory and degenerative diseases, and have therefore emerged as therapeutic targets for the treatment of such disorders. Vasoactive intestinal peptide (VIP) is a well-known anti-inflammatory neuropeptide that protects against several immune disorders by regulating a wide panel of inflammatory mediators. In this work we show the inhibitory effect of VIP on COX-2 expression and subsequent production of PGE2 by macrophages, dendritic cells, and microglia activated with different inflammatory stimuli. This inhibitory effect is exerted at the transcriptional level and mediated through the VIP receptor VPAC1. VIP downregulates NFkappaB-dependent gene activation of the COX-2 promoter. These findings demonstrate a novel property of VIP that might contribute to their anti-inflammatory effects in vivo, i.e., the inhibition of the inducible COX-2/PGE2 system.
Collapse
|
277
|
Arlt A, Rosenstiel P, Kruse ML, Grohmann F, Minkenberg J, Perkins ND, Fölsch UR, Schreiber S, Schäfer H. IEX-1 directly interferes with RelA/p65 dependent transactivation and regulation of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:941-52. [PMID: 18191642 DOI: 10.1016/j.bbamcr.2007.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 11/29/2007] [Accepted: 12/12/2007] [Indexed: 11/28/2022]
Abstract
The early response gene IEX-1 plays a complex role in the regulation of apoptosis. Depending on the cellular context and the apoptotic stimulus, IEX-1 is capable to either enhance or suppress apoptosis. To further dissect the molecular mechanisms involved in the modulation of apoptosis by IEX-1, we analysed the molecular crosstalk between IEX-1 and the NF-kappaB pathway. Using GST-pulldown assays, a direct interaction of IEX-1 with the C-terminal region of the subunit RelA/p65 harbouring the transactivation domain of the NF-kappaB transcription factor was shown. This interaction negatively regulates RelA/p65 dependent transactivation as shown by GAL4-and luciferase assay and was confirmed for the endogenous proteins by co-immunoprecipitation experiments. Using deletion constructs, we were able to map the C-terminal region of IEX-1 as the critical determinant of the interaction with RelA/p65. We could further show, that IEX-1 mediated NF-kappaB inhibition accounts for the reduced expression of the anti-apoptotic NF-kappaB target genes Bcl-2, Bcl-xL, cIAP1 and cIAP2, thereby sensitizing cells for apoptotic stimuli. Finally, ChIP-assays revealed that IEX-1 associates with the promoter of these genes. Altogether, our findings suggest a critical role of IEX-1 in the NF-kappaB dependent regulation of apoptotic responses.
Collapse
Affiliation(s)
- Alexander Arlt
- Laboratory of Molecular Gastroenterology and Hepatology, 1st Department of Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Chiu YC, Fong YC, Lai CH, Hung CH, Hsu HC, Lee TS, Yang RS, Fu WM, Tang CH. Thrombin-induced IL-6 production in human synovial fibroblasts is mediated by PAR1, phospholipase C, protein kinase C alpha, c-Src, NF-kappa B and p300 pathway. Mol Immunol 2007; 45:1587-99. [PMID: 18062909 DOI: 10.1016/j.molimm.2007.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 09/30/2007] [Accepted: 10/04/2007] [Indexed: 11/15/2022]
Abstract
Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis and proinflammatory processes. Abnormalities in these processes are primary features of rheumatoid arthritis (RA) in synovial tissues. We investigated the signaling pathway involved in IL-6 production caused by thrombin in synovial fibroblasts. Thrombin caused concentration- and time-dependent increases in IL-6 production. By using pharmacological inhibitors or activators or genetic inhibition by the protease activated receptor (PAR), siRNA revealed that the PAR1 receptor but not other PAR receptors is involved in thrombin-mediated up-regulation of IL-6. Thrombin-mediated IL-6 production was attenuated by thrombin inhibitor (PPACK), phospholipase C inhibitor (U73122), protein kinase C alpha inhibitor (Ro320432), Src inhibitor (PP2), NF-kappaB inhibitor (PDTC), I kappa B protease inhibitor (TPCK), or NF-kappaB inhibitor peptide. Stimulation of synovial fibroblasts with thrombin activated I kappa B kinase alpha/beta (IKK alpha/beta), I kappa B alpha phosphorylation, I kappa B alpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Thrombin-mediated an increase of IKK alpha/beta activity, kappaB-luciferase activity and p65 and p50 binding to the NF-kappaB element was inhibited by PPACK, U73122, Ro320432 and PP2. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of p50 acetylation on the IL-6 promoter was enhanced by thrombin. Our results suggest that thrombin increased IL-6 production in synovial fibroblasts via the PAR1 receptor/PI-PLC/PKC alpha/c-Src/NF-kappaB and p300 signaling pathway.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- Department of Orthopaedics, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 2007; 26:4985-95. [PMID: 18007589 DOI: 10.1038/sj.emboj.7601928] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/24/2007] [Indexed: 01/12/2023] Open
Abstract
The establishment of HIV proviral latency requires the creation of repressive chromatin structures that impair the initiation of transcription and restrict RNAP II elongation. We have found that C-promoter binding factor-1 (CBF-1), a CSL (CBF-1, Su(H) and Lag-1)-type transcription factor and key effector of the Notch signaling pathway, is a remarkably potent and specific inhibitor of the HIV-1 LTR promoter. Knockdown of endogenous CBF-1 using specific small hairpin RNAs expressed on lentiviral vectors results in the partial reactivation of latent HIV proviruses, recruitment of RNAP II, loss of histone deacetylases and the concomitant acetylation of histones. An important property of any repressor utilized to establish HIV latency is that it must become displaced or deactivated upon T-cell activation. Consistent with this hypothesis, CBF-1 mRNA and protein levels are highest in quiescent or unstimulated T cells but decline rapidly in response to proliferative stimulation such as activation of the T-cell receptor or treatment with TNF-alpha. We conclude that CBF-1 is a previously overlooked factor that induces transcriptional silencing during the establishment of HIV latency.
Collapse
|
280
|
Mycobacterium bovis bacillus Calmette-Guerin induces CCL5 secretion via the Toll-like receptor 2-NF-kappaB and -Jun N-terminal kinase signaling pathways. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:277-83. [PMID: 17989335 DOI: 10.1128/cvi.00368-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In response to Mycobacterium bovis bacillus Calmette-Guérin (BCG), CC chemokines are secreted from host cells to attract components of the innate and adaptive immune systems to the site of infection. Toll-like receptor 2 (TLR2) has been shown to recognize M. bovis BCG and to initiate signaling pathways that result in enhanced secretion of CC chemokines. Despite the essential requirement of TLR2 in M. bovis BCG infection, the mechanisms by which it induces secretion of CC chemokines are not well defined. In this study, we report that stimulation of HEK293 cells expressing human TLR2 with M. bovis BCG resulted in increased CCL2 and CCL5 secretion, as determined by an enzyme-linked immunosorbent assay. M. bovis BCG infection resulted in the activation of c-Jun N-terminal kinase (JNK), and the inhibition of JNK activity had a significant effect on M. bovis BCG-dependent CCL5 secretion in TLR2-expressing cells but no effect on M. bovis BCG-dependent CCL2 secretion from infected HEK293 cells expressing human TLR2. The M. bovis BCG-induced CCL5 release was attenuated by sulfasalazine (a well-described inhibitor of NF-kappaB activity), BAY 11-7082 (an IkappaB phosphorylation inhibitor), and ALLN (a well-described inhibitor of NF-kappaB activation that prevents degradation of IkappaB and eventually results in a lack of translocated NF-kappaB in the nucleus). In addition, stimulation of TLR2-expressing cells with M. bovis BCG resulted in translocation of NF-kappaB subunits from the cytoplasmic to the nuclear fraction, and stimulation of cells with M. bovis BCG activated IkappaB kinase alphabeta. These findings indicate that M. bovis BCG induces CCL5 production through mechanisms that include a TLR2-dependent component that requires JNK and NF-kappaB activities.
Collapse
|
281
|
Chan EM, Chan RJ, Comer EM, Goulet RJ, Crean CD, Brown ZD, Fruehwald AM, Yang Z, Boswell HS, Nakshatri H, Gabig TG. MOZ and MOZ-CBP cooperate with NF-kappaB to activate transcription from NF-kappaB-dependent promoters. Exp Hematol 2007; 35:1782-92. [PMID: 17920756 DOI: 10.1016/j.exphem.2007.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 07/18/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Monocytic zinc finger (MOZ) maintains hematopoietic stem cells and, upon fusion to the coactivator CREB-binding protein (CBP), induces acute myeloid leukemia (AML). Leukemic stem cells in AML often exhibit excessive signal-dependent activity of the transcription factor nuclear factor (NF)-kappaB. Because aberrant interaction between NF-kappaB and coactivators represents an alternative mechanism for enhancing NF-kappaB activity, we evaluated whether MOZ and MOZ-CBP cooperate with NF-kappaB to activate transcription from NF-kappaB-dependent promoters. METHODS The ability of MOZ, MOZ mutants, and MOZ-CBP to enhance expression of NF-kappaB-dependent promoters was tested in reporter studies. The interaction between MOZ and NF-kappaB was evaluated by both coimmunoprecipitation and glutathione S-transferase pulldown assays. RESULTS MOZ activates transcription from the NF-kappaB-dependent interleukin-8 promoter; interestingly, this effect is markedly enhanced by CBP. Although MOZ has less potent transcriptional activity than MOZ-CBP, both proteins cooperate with steroid receptor coactivator-1 to activate transcription. MOZ also induces multiple NF-kappaB-dependent viral promoters. Importantly, MOZ associates in a protein complex with the p65 subunit of NF-kappaB and interacts directly with p65 in vitro. Transcriptional activity of MOZ requires its C-terminal domain, which is absent from MOZ-CBP, indicating that the transcriptional activity of MOZ-CBP derives from its CBP sequence. CONCLUSIONS MOZ interacts with the p65 subunit of NF-kappaB and enhances expression of NF-kappaB-dependent promoters. The more potent transcriptional activity of MOZ-CBP derives from its CBP sequence. Thus, interaction between NF-kappaB and MOZ-CBP may play an important role in the pathogenesis of certain acute myeloid leukemias.
Collapse
|
282
|
Méndez-Samperio P, Pérez A, Trejo A. Sphingosine kinase, phosphatidylinositol 3-kinase, Akt, NF-κB, and p300 are required for CCL5 production in Mycobacterium bovis Bacillus Calmette–Guérin (BCG)-infected epithelial cells. Cell Immunol 2007; 249:94-100. [DOI: 10.1016/j.cellimm.2007.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 01/23/2023]
|
283
|
Tang CH, Lu DY, Yang RS, Tsai HY, Kao MC, Fu WM, Chen YF. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia. THE JOURNAL OF IMMUNOLOGY 2007; 179:1292-302. [PMID: 17617622 DOI: 10.4049/jimmunol.179.2.1292] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.
Collapse
Affiliation(s)
- Chih-Hsin Tang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
284
|
Harzenetter MD, Novotny AR, Gais P, Molina CA, Altmayr F, Holzmann B. Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. THE JOURNAL OF IMMUNOLOGY 2007; 179:607-15. [PMID: 17579082 DOI: 10.4049/jimmunol.179.1.607] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Communication between the nervous and immune systems involves the release of neuropeptides, such as calcitonin gene-related peptide (CGRP), from sensory nerves during inflammation. CGRP may inhibit the activities of both innate and adaptive immune cells, but the molecular pathways underlying this function are largely unknown. In this study, we identify CGRP as a potent inhibitor of TLR-stimulated production of inflammatory mediators, such as TNF-alpha and CCL4, by murine dendritic cells. Inhibition of TLR responses was independent of IL-10 and did not involve perturbation of canonical TLR signaling, including activation of MAPK and NF-kappaB. Instead, the inhibitory activity of CGRP was mediated by the cAMP/protein kinase A pathway leading to rapid up-regulation of the transcriptional repressor, inducible cAMP early repressor (ICER). Ectopically expressed ICER directly repressed the LPS-stimulated activity of a synthetic Tnf promoter, as well as TNF-alpha protein production driven by the endogenous promoter. Inhibition of dendritic cell gene expression by CGRP was associated with the presence of a composite cAMP response element/kappaB promoter element. In a murine model of endotoxemia, CGRP markedly attenuated serum TNF-alpha levels, and this effect was associated with the up-regulation of ICER. Together, these results establish a novel pathway for the negative regulation of TLR responses through the nervous system that critically involves induction of the transcriptional repressor ICER by the neuropeptide CGRP.
Collapse
Affiliation(s)
- Marit D Harzenetter
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | | | | | | | | | | |
Collapse
|
285
|
Matsuoka H, Fujimura T, Mori H, Aramori I, Mutoh S. Mechanism of HDAC inhibitor FR235222-mediated IL-2 transcriptional repression in Jurkat cells. Int Immunopharmacol 2007; 7:1422-32. [PMID: 17761346 DOI: 10.1016/j.intimp.2007.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Interleukin (IL)-2 is an essential cytokine in T cell proliferation and homeostasis. The importance of IL-2 down-regulation in preventing acute rejection in organ transplantation and the development of autoimmune diseases has been demonstrated by the therapeutic usefulness of the widely used immunosuppressants cyclosporine A and FK506. Recently, a histone deacetylase (HDAC) inhibitor, FR235222, has been shown to inhibit IL-2 gene expression and to possess immunosuppressive activity in vivo. To elucidate the inhibitory mechanism of FR235222 in IL-2 gene expression, we performed Affymetrix GeneChip analysis of activated Jurkat cells treated with or without FR235222. Here, we show that many NF-kappaB-regulated genes are transcriptionally down-regulated by FR235222 in activated Jurkat cells. Further, luciferase reporter assays revealed that FR235222 selectively inhibits NF-kappaB activity without impairing NF-AT or AP-1 at the concentrations at which it potently inhibits IL-2 promoter activation. These results indicate that FR235222 inhibits IL-2 gene expression via a different mechanism to CsA and FK506, and that FR235222 has the ability to inhibit NF-kappaB activity, which may be partly related to the potent inhibition of IL-2 gene expression by FR235222. Our findings may help our understanding of the molecular mechanism of the inhibition of IL-2 gene expression by HDAC inhibitors and provide insight into the development of more effective and safer new immunosuppressants.
Collapse
Affiliation(s)
- Hideaki Matsuoka
- Pharmacology Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan.
| | | | | | | | | |
Collapse
|
286
|
Hsu HC, Fong YC, Chang CS, Hsu CJ, Hsu SF, Lin JG, Fu WM, Yang RS, Tang CH. Ultrasound induces cyclooxygenase-2 expression through integrin, integrin-linked kinase, Akt, NF-kappaB and p300 pathway in human chondrocytes. Cell Signal 2007; 19:2317-28. [PMID: 17692505 DOI: 10.1016/j.cellsig.2007.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/18/2022]
Abstract
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and in clinical studies. However, the precise molecular events generated by US in chondrocytes have not been clarified well. Here we found that US stimulation transiently increased the surface expression of alpha2, alpha5, beta1 or beta3 but not alpha3 or alpha4 integrins in human chondrocytes, as shown by flow cytometric analysis. US stimulation increased prostaglandin E(2) formation as well as the protein and mRNA levels of cyclooxygenase-2 (COX-2). At the mechanistic level, anti-integrin beta1 and beta3 antibodies or beta1 and beta3 integrin small interference RNA attenuated the US-induced COX-2 expression. Integrin-linked kinase (ILK) inhibitor (KP-392), Akt inhibitor, NF-kappaB inhibitor (PDTC) or IkappaB protease inhibitor (TPCK) also inhibited the potentiating action of US. US stimulation promotes kinase activity of ILK, phosphorylation of Akt. In addition, US stimulation also induces IKKalpha/beta phosphorylation, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. The binding of p65 to the NF-kappaB element, as well as the recruitment of p300 and the enhancement of p50 acetylation on the COX-2 promoter was enhanced by US. Taken together, our results provide evidence that US stimulation increases COX-2 expression in chondrocytes via the integrin/ILK/Akt/NF-kappaB and p300 signaling pathway.
Collapse
Affiliation(s)
- Horng-Chaung Hsu
- Department of Orthopaedics, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Sun S, Tang Y, Lou X, Zhu L, Yang K, Zhang B, Shi H, Wang C. UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. ACTA ACUST UNITED AC 2007; 178:231-44. [PMID: 17620405 PMCID: PMC2064443 DOI: 10.1083/jcb.200611081] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a latent transcription factor, nuclear factor κB (NF-κB) translocates from the cytoplasm into the nucleus upon stimulation and mediates the expression of genes that are important in immunity, inflammation, and development. However, little is known about how it is regulated inside the nucleus. By a two-hybrid approach, we identify a prefoldin-like protein, ubiquitously expressed transcript (UXT), that is expressed predominantly and interacts specifically with NF-κB inside the nucleus. RNA interference knockdown of UXT leads to impaired NF-κB activity and dramatically attenuates the expression of NF-κB–dependent genes. This interference also sensitizes cells to apoptosis by tumor necrosis factor-α. Furthermore, UXT forms a dynamic complex with NF-κB and is recruited to the NF-κB enhanceosome upon stimulation. Interestingly, the UXT protein level correlates with constitutive NF-κB activity in human prostate cancer cell lines. The presence of NF-κB within the nucleus of stimulated or constitutively active cells is considerably diminished with decreased endogenous UXT levels. Our results reveal that UXT is an integral component of the NF-κB enhanceosome and is essential for its nuclear function, which uncovers a new mechanism of NF-κB regulation.
Collapse
Affiliation(s)
- Shaogang Sun
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Williams SA, Greene WC. Regulation of HIV-1 latency by T-cell activation. Cytokine 2007; 39:63-74. [PMID: 17643313 PMCID: PMC2063506 DOI: 10.1016/j.cyto.2007.05.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 01/06/2023]
Abstract
HIV-infected patients harbor approximately 10(5)-10(6) memory CD4 T-cells that contain fully integrated but transcriptionally silent HIV proviruses. While small in number, these latently infected cells form a drug-insensitive reservoir that importantly contributes to the life-long persistence of HIV despite highly effective antiviral therapy. In tissue culture, latent HIV proviruses can be activated when their cellular hosts are exposed to select proinflammatory cytokines or their T-cell receptors are ligated. However, due to a lack of potency and/or dose-limiting toxicity, attempts to purge virus from this latent reservoir in vivo with immune-activating agents, such as anti-CD3 antibodies and IL-2, have failed. A deeper understanding of the molecular underpinnings of HIV latency is clearly required, including determining whether viral latency is actively reinforced by transcriptional repressors, defining which inducible host transcription factors most effectively antagonize latency, and elucidating the role of chromatin in viral latency. Only through such an improved understanding will it be possible to identify combination therapies that might allow complete purging of the latent reservoir and to realize the difficult and elusive goal of complete eradication of HIV in infected patients.
Collapse
Affiliation(s)
- Samuel A. Williams
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Physiology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94141-1230
| |
Collapse
|
289
|
Wietek C, O'Neill LAJ. Diversity and regulation in the NF-kappaB system. Trends Biochem Sci 2007; 32:311-9. [PMID: 17561400 DOI: 10.1016/j.tibs.2007.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/11/2007] [Accepted: 05/23/2007] [Indexed: 11/20/2022]
Abstract
The nuclear factor (NF)-kappaB family of transcription factors is a key participant in multiple biological processes, most notably in the immune and inflammatory response. Five proteins make up the NF-kappaB family, and these proteins can hetero- and homo-dimerize, giving rise to diversity. Recently, it has been shown that certain members can also interact directly with other transcription factors such as signal transducers of activated transcription, interferon regulatory factor family members and p53, providing further diversity. We propose that this promiscuity might help explain the many of roles of NF-kappaB in specialized cell function and fate. Furthermore, the state of a cell and its cellular background in addition to overall promoter structure and variations in the kappaB target sequence will all define the composition and activity of multimeric NF-kappaB complexes.
Collapse
Affiliation(s)
- Claudia Wietek
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
290
|
Barco A. The Rubinstein?Taybi syndrome: modeling mental impairment in the mouse. GENES BRAIN AND BEHAVIOR 2007; 6 Suppl 1:32-9. [PMID: 17543037 DOI: 10.1111/j.1601-183x.2007.00320.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mental impairment syndromes are diagnosed based on below-average general intellectual function originated during developmental periods. Intellectual abilities rely on the capability of our brain to obtain, process, store and retrieve information. Advances in the past decade on the molecular basis of memory have led to a better understanding of how a normal brain works but also have shed new light on our understanding of many pathologies of the nervous system, including diverse syndromes involving mental impairment. The recent multidisciplinary analysis of various mouse models for Rubinstein-Taybi syndrome has shown the power of animal models to produce an important leap forward in our understanding of a complex mental disease while simultaneously opening new avenues for its treatment. These studies also suggest that some of the cognitive and physiological deficits observed in mental impairment syndromes may not simply be caused by defects originated during development but may result from the continued requirement of specific enzymatic activities throughout life.
Collapse
Affiliation(s)
- A Barco
- Instituto de Neurociencias de Alicante (UMH-CSIC), Campus de Sant Joan, Sant Joan d'Alacant, Spain.
| |
Collapse
|
291
|
Cheng J, Kydd AR, Nakase K, Noonan KM, Murakami A, Tao H, Dwyer M, Xu C, Zhu Q, Marasco WA. Negative regulation of the SH2-homology containing protein-tyrosine phosphatase-1 (SHP-1) P2 promoter by the HTLV-1 Tax oncoprotein. Blood 2007; 110:2110-20. [PMID: 17540846 PMCID: PMC1976352 DOI: 10.1182/blood-2006-11-058388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Expression of SH(2)-homology-containing protein-tyrosine phosphatase-1 (SHP-1), a candidate tumor suppressor, is repressed in human T-cell leukemia virus type-1 (HTLV-1)-transformed lymphocyte cell lines, adult T-cell leukemia (ATL) cells, and in other hematologic malignancies. However, the mechanisms underlying regulation and repression of SHP-1 remain unclear. Herein, we cloned the putative full-length, hematopoietic cell-specific SHP-1 P2 promoter and identified the "core" promoter regions. HTLV-1 Tax profoundly represses P2 promoter activity and histone deacetylase-1 (HDAC1) potentiates such inhibition. NF-kappaB was implicated as both a rate-limiting factor for basal P2 promoter activity and important for Tax-induced promoter silencing (TIPS). Chromatin immunoprecipitation studies demonstrated that NF-kappaB dissociates from the SHP-1 P2 promoter following the binding of Tax and HDAC1. This is in agreement with coimmunoprecipitation studies where NF-kappaB competed with HDAC1 for association with Tax protein. We propose that in TIPS, Tax recruits HDAC1 to the SHP-1 P2 promoter and forms an inhibitory complex that results in deacetylation and dissociation of NF-kappaB from the promoter and attenuation of SHP-1 expression. TIPS provides a possible first step toward HTLV-1 leukemogenesis through its down-modulation of this key immediate early negative regulator of IL-2 signaling.
Collapse
MESH Headings
- Acetylation
- Adult
- Blotting, Western
- Chromatin Immunoprecipitation
- Gene Expression Regulation, Leukemic
- Gene Expression Regulation, Viral
- Gene Products, tax/physiology
- Gene Silencing
- Histone Deacetylase 1
- Histone Deacetylases/metabolism
- Human T-lymphotropic virus 1/genetics
- Humans
- Immunoprecipitation
- Interleukin-2/metabolism
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/virology
- Luciferases/metabolism
- Mutagenesis, Site-Directed
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jihua Cheng
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Wang J, Wang X, Hussain S, Zheng Y, Sanjabi S, Ouaaz F, Beg AA. Distinct Roles of Different NF-κB Subunits in Regulating Inflammatory and T Cell Stimulatory Gene Expression in Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6777-88. [PMID: 17513725 DOI: 10.4049/jimmunol.178.11.6777] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TLRs play a critical role in inducing inflammatory and immune responses against microbial agents. In this study, we have investigated the role of NF-kappaB transcription factors in regulating TLR-induced gene expression in dendritic cells, a key APC type. The p50 and cRel NF-kappaB subunits were found to be crucial for regulating genes important for dendritic cell-induced T cell responses (e.g., CD40, IL-12, and IL-18) but not for genes encoding inflammatory cytokines (e.g., TNF-alpha, IL-1alpha, and IL-6). In striking contrast, the RelA subunit was crucial for expression of inflammatory cytokine genes but not T cell stimulatory genes. These novel findings reveal a fundamentally important difference in biological function of genes regulated by different NF-kappaB subunits. Focusing on RelA target gene specificity mechanisms, we investigated whether the kappaB site and/or the unique composition of RelA played the most crucial role. Surprisingly, studies of IL-6 expression showed that the kappaB site is not a primary determinant of RelA target gene specificity. Instead, a major specificity mechanism is the unique ability of RelA to interact with the transcriptional coactivator CREB-binding protein, a function not shared with the closely related cRel subunit. Together, our findings indicate novel and critically important overall roles of NF-kappaB in TLR-induced gene expression that are mediated by unique functions of distinct subunits.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
293
|
Huang WC, Ju TK, Hung MC, Chen CC. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell 2007; 26:75-87. [PMID: 17434128 PMCID: PMC2312502 DOI: 10.1016/j.molcel.2007.02.019] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/16/2007] [Accepted: 02/16/2007] [Indexed: 12/15/2022]
Abstract
CBP plays a central role in coordinating and integrating multiple signaling pathways. Competition between NF-kappaB and p53 for CBP is a crucial determinant of whether a cell proliferates or undergoes apoptosis. However, how the CBP-dependent crosstalk between these two transcription factors is regulated remains unclear. Here, we show that IKKalpha phosphorylates CBP at serine 1382 and serine 1386 and consequently increases CBP's HAT and transcriptional activities. Importantly, such phosphorylation enhances NF-kappaB-mediated gene expression and suppresses p53-mediated gene expression by switching the binding preference of CBP from p53 to NF-kappaB, thus promoting cell growth. The CBP phosphorylation also correlates with constitutive IKKalpha activation in human lung tumor tissue compared with matched nontumor lung tissue. Our results suggest that phosphorylation of CBP by IKKalpha regulates the CBP-mediated crosstalk between NF-kappaB and p53 and thus may be a critical factor in the promotion of cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Wei-Chien Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan; Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
294
|
Tang CH, Yang RS, Chen YF, Fu WM. Basic fibroblast growth factor stimulates fibronectin expression through phospholipase C gamma, protein kinase C alpha, c-Src, NF-kappaB, and p300 pathway in osteoblasts. J Cell Physiol 2007; 211:45-55. [PMID: 17252537 DOI: 10.1002/jcp.20896] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fibronectin (Fn) is involved in early stages of bone formation and basic fibroblast growth factor (bFGF) is an important factor regulating osteogenesis. bFGF increased Fn expression, which was attenuated by phosphatidylinositol phospholipase inhibitor (U73122), protein kinase C inhibitor (GF109203X), Src inhibitor (PP2), NF-kappaB inhibitor (PDTC), IkappaBalpha phosphorylation inhibitor (Bay 117082), or IkappaB protease inhibitor (TPCK). bFGF-induced increase of Fn-luciferase activity was antagonized by cells transfected with Fn construct without NF-kappaB regulatory site. Stimulation of osteoblasts with bFGF activated IkappaB kinase alpha/beta (IKK alpha/beta) and increased IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex and kappaB-luciferase activity. bFGF-mediated an increase of IKKalpha/beta activity and DNA-binding activity was inhibited by U73122, GF109203X, or PP2. The binding of p65 to the NF-kappaB element, as well as the recruitment of p300 and the enhancement of p50 acetylation on the Fn promoter was enhanced by bFGF. Overexpression of constitutively active FGF receptor 2 (FGFR2) increased Fn-luciferase activity, which was inhibited by co-transfection with dominant negative (DN) mutants of PLCgamma2, PKCalpha, c-Src, IKKalpha, or IKKbeta. Our results suggest that bFGF increased Fn expression in rat osteoblasts via the FGFR2/PLCgamma2/PKCalpha/c-Src/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Chih-Hsin Tang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
295
|
Park JS, Jung SH, Seo H, Kim HS. SB203580 enhances interleukin-1 receptor antagonist gene expression in IFN-γ-stimulated BV2 microglial cells through a composite nuclear factor-κB/PU.1 binding site. Neurosci Lett 2007; 416:169-74. [PMID: 17316994 DOI: 10.1016/j.neulet.2007.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 11/23/2022]
Abstract
Interleukin-1 receptor antagonist (IL-1ra) is a naturally occurring antagonist of IL-1alpha and IL-1beta binding to the IL-1 receptors and alleviates various inflammatory reactions. Therefore, the upregulation of IL-1ra expression is important for preventing and/or treating inflammatory diseases including many neurodegenerative diseases. This study found that SB203580, which is generally known as a p38 MAP kinase inhibitor and an anti-inflammatory agent, increased the level of IL-1ra expression in IFN-gamma-stimulated BV2 microglial cells. This effect is believed to occur through the inhibition of protein kinase B (PKB), independently of the p38 MAP kinase pathways. Further mechanistic studies using an IL-1ra promoter revealed that a composite NF-kappaB/PU.1 binding site plays an important role in this SB203580-mediated upregulation of IL-1ra. Considering that IFN-gamma is a major stimulator of the innate and adaptive immune responses, the upregulation of anti-inflammatory IL-1ra expression by SB203580 in the IFN-gamma-stimulated microglia might provide a new therapeutic modality for various inflammatory diseases of the central nervous system.
Collapse
Affiliation(s)
- Jin-Sun Park
- Department of Neuroscience and Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, South Korea
| | | | | | | |
Collapse
|
296
|
dela Paz NG, Simeonidis S, Leo C, Rose DW, Collins T. Regulation of NF-kappaB-dependent gene expression by the POU domain transcription factor Oct-1. J Biol Chem 2007; 282:8424-34. [PMID: 17192276 DOI: 10.1074/jbc.m606923200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintenance of the cells of the vessel wall in a quiescent state is an important aspect of normal vascular physiology. Transcriptional repressors are widely believed to regulate this process, yet the exact factors involved and the mechanism of repression are not known. Here, we report that the POU domain transcription factor Oct-1 represses the expression of E-selectin and vascular cell adhesion molecule (VCAM-1), two cytokine-inducible, NF-kappaB-dependent endothelial-leukocyte adhesion molecules that participate in the leukocyte recruitment phase of the inflammatory response. Co-transfection and microinjection studies demonstrate that Oct-1 blocks tumor necrosis factor alpha-stimulated E-selectin and VCAM-1 expression. Gene expression arrays indicate that control of tumor necrosis factor alpha-induced, NF-kappaB-dependent gene expression by Oct-1 is promoter-specific. A DNA-binding mutant of Oct-1 represses NF-kappaB-dependent reporter gene expression. Biochemically, Oct-1 interacts with p65, suggesting that Oct-1 is involved in the regulation of NF-kappaB transactivation function. NF-kappaB-dependent gene expression is more pronounced in Oct-1-deficient than in wild-type murine embryonic fibroblasts, and reintroduction of human Oct-1 abolishes these differences. Finally, the cytokine interleukin-6 induces Oct-1 gene expression, providing a biologically relevant means by which NF-kappaB-dependent gene expression can be selectively reverted by Oct-1 to quiescent levels.
Collapse
Affiliation(s)
- Nathaniel G dela Paz
- Molecular Pathology Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California 92093-0673, and Department of Pathology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
297
|
Kim YM, Cao D, Reed W, Wu W, Jaspers I, Tal T, Bromberg PA, Samet JM. Zn2+-induced NF-κB-dependent transcriptional activity involves site-specific p65/RelA phosphorylation. Cell Signal 2007; 19:538-46. [PMID: 17008051 DOI: 10.1016/j.cellsig.2006.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 08/13/2006] [Indexed: 01/01/2023]
Abstract
Zinc is an essential micronutrient, but is proinflammatory when inhaled into the lung. While it is recognized that zinc exposure of airway epithelial cells activates the transcription factor NF-kappaB and increases the expression of inflammatory cytokines to mediate this response, the underlying mechanism of NF-kappaB activation remains to be characterized. In this study, we investigated these Zn2+-induced signaling mechanisms in the BEAS-2B human airway epithelial cell line. Fifty micromolars Zn2+ induced NF-kappaB-dependent transcriptional activity. However, this occurred independently of IkappaBalpha degradation, an essential event in activation of the canonical NF-kappaB pathway, which is induced by physiological stimuli such as TNFalpha and IL-1beta. We also observed that 50 microM Zn2+ exposure caused p65/RelA phosphorylation on Ser 276, Ser 529, and Ser 536 in both cytoplasmic and nuclear cell fractions. Mutational analysis pointed to Ser 536 of p65/RelA as the determinant of Zn2+-induced NF-kappaB transactivation in BEAS-2B cells. Pharmacological inhibition of IKKalpha/beta activity reduced both Zn2+-induced p65/RelA phosphorylation at Ser 536 and NF-kappaB-dependent transcriptional activity, suggesting that IKKalpha/beta is necessary for these Zn2+-induced effects. Taken together, these data show that exposure to supraphysiological concentrations of Zn2+ induces NF-kappaB-dependent transcription through an alternate mechanism, suggesting a novel pathway for cellular responses to environmental stress.
Collapse
Affiliation(s)
- Yu-Mee Kim
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Park J, Lee JH, La M, Jang MJ, Chae GW, Kim SB, Tak H, Jung Y, Byun B, Ahn JK, Joe CO. Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx. J Mol Biol 2007; 368:388-97. [PMID: 17362989 DOI: 10.1016/j.jmb.2007.02.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 02/05/2007] [Accepted: 02/12/2007] [Indexed: 01/18/2023]
Abstract
We propose a biochemical mechanism by which Daxx modulates NF-kappaB transcriptional activity. Both chromatin immunoprecipitation (ChIP) assay and electrophoretic mobility shift assay (EMSA) have confirmed Daxx-mediated repression of transcriptional competence of NF-kappaB in HeLa cells. Overexpression of Daxx repressed the expression of NF-kappaB-regulated genes such as I kappa B alpha and IL8. Co-immunoprecipitation assay revealed the existence of intermolecular association between endogenous Daxx and p65 subunit of NF-kappaB stimulated by TNFalpha. Here, we suggest that Daxx-mediated repression of NF-kappaB transactivation correlates with the inhibition of p65 acetylation by Daxx. Based on the finding that the Daxx binding N-terminal side of p65 includes the major sites of acetylation mediated by p300/CBP, we further propose that the physical interaction between Daxx and p65 provides a functional framework for the inhibition of p65 acetylation by p300/CBP and subsequent repression of NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Jinhwi Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Kang YJ, Wingerd BA, Arakawa T, Smith WL. Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 177:8111-22. [PMID: 17114486 DOI: 10.4049/jimmunol.177.11.8111] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infections involving LPS-bearing, Gram-negative bacteria can lead to acute inflammation and septic shock. Cyclooxygenase-2 (COX-2), the target of nonsteroidal anti-inflammatory drugs and selective COX-2 inhibitors, is importantly involved in these responses. We examined the dynamics of COX-2 gene expression in RAW264.7 murine macrophages treated with LPS as a model for COX-2 gene expression during inflammation. We established, using Northern blotting, nuclear run-on assays, and RT-PCR, that COX-2 transcriptional activation continues for at least 12 h after LPS treatment and involves at least three phases. Previous studies with murine macrophages identified an NF-kappaB site, a C/EBP site, and a cAMP response element-1 (CRE-1) as cis-acting elements in the COX-2 promoter. We identified three additional functional elements including a second CRE (CRE-2), an AP-1 site, and an E-box that overlaps CRE-1. The E-box mediates transcriptional repression whereas the other cis-elements are activating. Using electrophoretic mobility supershift and chromatin immunoprecipitation assays, we cataloged binding to each functional cis element and found them occupied to varying extents and by different transcription factors during the 12 h following LPS treatment. This suggests that the cis elements and their cognate transcription factors participate in a sequential, coordinated regulation of COX-2 gene expression during an inflammatory response. In support of this concept, we found, using inhibitors of Jun kinase and NF-kappaB p50 nuclear localization, that COX-2 gene transcription was completely dependent on phospho-c-Jun plus p50 at 6 h after LPS treatment but was only partially dependent on the combination of these factors at later treatment times.
Collapse
Affiliation(s)
- Yeon-Joo Kang
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
300
|
Skoog T, Hamsten A, Eriksson P. Allele-specific chromatin remodeling of the tumor necrosis factor-α promoter. Biochem Biophys Res Commun 2006; 351:777-83. [PMID: 17084384 DOI: 10.1016/j.bbrc.2006.10.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 10/24/2006] [Indexed: 11/25/2022]
Abstract
The -863 C/A polymorphism in the tumor necrosis factor-alpha (TNF-alpha) promoter has been suggested to influence TNF-alpha expression. Here we elucidated the molecular mechanisms underlying the allele-specific regulation of TNF-alpha gene expression under basal and LPS-stimulated conditions in THP-1 cells and in human primary macrophages. We show that the binding of two NF-kappaB complexes, the p50/p50 homodimer and the p50/p65 heterodimer, was upregulated upon LPS stimulation. Both complexes bound to the C-allele whereas the A-allele only bound the p50/p65 complex. Two DNase I hypersensitive sites appeared in the TNF-alpha promoter after LPS stimulation of THP-1 cells. DNase I hypersensitivity of the TNF-alpha promoter was also analyzed in human monocytes prepared from individuals of different -863C/A genotype. Hypersensitivity was increased in the promoter harboring the mutant A-allele, particularly after LPS stimulation. In summary, binding of transcription factor NF-kappaB to the TNF-alpha promoter is associated with allele-specific remodeling of chromatin structure.
Collapse
Affiliation(s)
- Tiina Skoog
- Atherosclerosis Research Unit, King Gustaf V Research Institute, Karolinska Institute, Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| | | | | |
Collapse
|