251
|
Xu H, el-Gewely MR. P53-responsive genes and the potential for cancer diagnostics and therapeutics development. BIOTECHNOLOGY ANNUAL REVIEW 2002; 7:131-64. [PMID: 11686042 DOI: 10.1016/s1387-2656(01)07035-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
P53 protein regulates cell responses to DNA damage to keep genomic stability by transactivation and trans-repression of its downstream target genes. P53 protein also has activators, inactivators, or co-factors via interaction with other proteins. Both the p53-regulated genes and interacted proteins form a huge network. As tumors usually escape from proliferating controls by means of accumulation of genetic alterations, p53 is one of the most important tumor suppressor genes that can be targeted for diagnosis, prognosis, and therapeutic intervention. Reviewing the p53-network is of great importance. In this review, we are focusing on cancer-related p53 downstream-regulated genes. Various methods dealing with the discovery of p53-regulated genes by the detection of gene expression have been applied. Recently high throughput functional genomics methods, such as DNA microarray, serial analysis of gene expression (SAGE), differential display, and protein two-dimensional gel electrophoresis, have provided a wealth of information on the dynamics of cell context responses. Hundreds of genes have been discovered whose transcriptions are regulated by p53 protein. They were grouped, based on their functions, into sub-classes including cell-cycle regulation, DNA repair, angiogenesis, metastasis, and multidrug resistance. P53 plays a pivotal role in keeping genomic stability and tumor suppression. The deeper we investigate the cell responses as mediated by p53, the more complex p53-network becomes. However, understanding p53-network, offers great opportunities to develop more sensitive and accurate diagnostic/prognostic tools, as well as more efficient therapies for cancer.
Collapse
Affiliation(s)
- H Xu
- Department of Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | |
Collapse
|
252
|
Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J. Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect 2002; 4:449-60. [PMID: 11932196 DOI: 10.1016/s1286-4579(02)01560-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a unique cytokine and critical mediator of host defenses with a role in septic shock and chronic inflammatory and autoimmune diseases. Its mechanism of action is incompletely understood. Here, we attempt to correlate current knowledge on the molecular pathways of MIF activity with its functions in immunity and disease.
Collapse
Affiliation(s)
- Hongqi Lue
- Laboratory of Biochemistry, Institute for Interfacial Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
253
|
Yan C, Wang H, Boyd DD. ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. J Biol Chem 2002; 277:10804-12. [PMID: 11792711 DOI: 10.1074/jbc.m112069200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The murine homologue of the ATF3 transcription factor increases tumor metastases but, surprisingly, represses 72-kDa type IV metalloproteinase (MMP-2) expression. The current study describes a novel mechanism by which ATF3 regulates transcription. Progressive deletions of the MMP-2 promoter indicated a 38-base pair region (-1659/-1622) necessary for the ATF3-mediated repression. This region lacked CREB/AP-1 motifs but contained a consensus p53 motif shown previously to regulate MMP-2 expression. The activity of a p53 response element-driven luciferase reporter was reduced in ATF3-expressing HT1080 clones. Although MMP-2 promoter activity was not repressed by ATF3 in p53-deficient Saos-2 cells, p53 re-expression increased MMP-2 promoter activity and restored the sensitivity to ATF3. The activity of a GAL4-driven reporter in HT1080 cells co-expressing the full-length p53 sequence fused to the GAL4 DNA binding domain was diminished by ATF3. p53-ATF3 protein-protein interactions were demonstrated both in vivo and in vitro. Cell cycle analysis, performed as an independent assay of p53 function, revealed that gamma-irradiation-induced slowed G(2)/M cell cycle progression (attributable to p53) was countered by ATF3. Thus, ATF3 represses MMP-2 expression by decreasing the trans-activation of this gene by p53.
Collapse
Affiliation(s)
- Chunhong Yan
- Department of Cancer Biology, M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | | |
Collapse
|
254
|
Abstract
The incidence of skin cancer has been rising in recent years with significant effects on public health. Primary prevention has proven inadequate in impacting the incidence of skin cancer, thus stimulating the development of chemopreventive strategies. The majority of skin cancer chemoprevention studies focus on occurrence of new nonmelanoma skin cancers (NMSC) in individuals with a previous NMSC, or on reduction in the number of premalignant skin lesions such as actinic keratoses (AK). Dysplastic nevi, a likely precursor of melanoma, are also potential targets for chemoprevention strategies. Premalignant lesions are especially attractive as endpoints since they are more common than frank cancer, resulting in reduced sample size, length, and cost of clinical trials. Development of new agents that affect the pathogenesis of skin cancer will be discussed, from elucidation of molecular targets to implementation of trials designed to determine the effects of chemopreventive interventions on human skin cancer.
Collapse
Affiliation(s)
- Janine G Einspahr
- Arizona Cancer Center, University of Arizona, 1515, North Campbell Avenue, Tucson 85724, USA.
| | | | | | | |
Collapse
|
255
|
She QB, Ma WY, Dong Z. Role of MAP kinases in UVB-induced phosphorylation of p53 at serine 20. Oncogene 2002; 21:1580-9. [PMID: 11896587 DOI: 10.1038/sj.onc.1205239] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2001] [Revised: 11/30/2001] [Accepted: 12/06/2001] [Indexed: 11/10/2022]
Abstract
Phosphorylation of the p53 tumor suppressor protein is one of the key regulatory steps in its activation process. Serine 20 phosphorylation of p53 has been shown to be required for the activation of p53 following UV radiation, but the signaling pathway mediating UV-induced phosphorylation is unknown. Here, we determined the role of MAP kinases in UVB-induced phosphorylation and found that JNKs are directly involved in the phosphorylation of p53 at serine 20. In a mouse JB6 epidermal cell line, dominant negative JNK1 abrogated UVB-induced phosphorylation of p53 at serine 20, whereas dominant negative p38 kinase or its inhibitor, SB202190, partially attenuated the phosphorylation. In contrast, dominant negative ERK2 or the MEK1 inhibitor, PD98059, had no effect on p53 phosphorylation at serine 20. Importantly, UVB-activated or active recombinant JNK1/2, or the p38 kinase downstream target, MAPKAPK-2, but not ERKs or p38 kinase, phosphorylated p53 at serine 20 in vitro. Furthermore, phosphorylation of p53 at serine 20 by UVB-activated JNKs and UVB-induced p53-dependent transcriptional activity were suppressed in Jnk1 or Jnk2 knockout (Jnk1(-/-) or Jnk2(-/-)) cells. Additionally, Jnk1(-/-), Jnk2(-/-), and p53-deficient (p53(-/-)) cells, as well as re-introduction of a p53 mutant with substitution of serine 20 to alanine into p53(-/-) cells, were defective for UVB-induced apoptosis. These findings strongly suggest that JNKs are the major direct signaling mediators of UVB-induced p53 phosphorylation at serine 20.
Collapse
Affiliation(s)
- Qing-Bai She
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, Minnesota, MN 55912, USA
| | | | | |
Collapse
|
256
|
Zhang Y, Ma WY, Kaji A, Bode AM, Dong Z. Requirement of ATM in UVA-induced signaling and apoptosis. J Biol Chem 2002; 277:3124-31. [PMID: 11723137 DOI: 10.1074/jbc.m110245200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solar UVA, but not UVC, reaches the earth's surface and therefore is an important etiological factor for the induction of human skin cancer. ATM kinase is an important regulator of cell survival and cell cycle checkpoints. Here, we observe that UVA, unlike UVC, triggers ATM kinase activity, and the activation may occur through reactive oxygen species produced after irradiation of cells with UVA. We also show that ATM activation is involved in the apoptotic response to UVA but not UVC. Furthermore, we provide evidence that ATM-dependent p53 and c-Jun N-terminal kinase (JNK) pathways are linked to UVA-induced apoptosis. On the other hand, UVC-induced apoptosis occurs through ATR-dependent p53 phosphorylation as well as the JNK pathway. Therefore, these results suggest that ATM, like p53, is involved in the UVA-induced apoptosis to suppress carcinogenesis.
Collapse
Affiliation(s)
- Yiguo Zhang
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
257
|
Kwon YW, Ueda S, Ueno M, Yodoi J, Masutani H. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J Biol Chem 2002; 277:1837-44. [PMID: 11706017 DOI: 10.1074/jbc.m105033200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) cause untoward effects including carcinogenesis. Here we investigated the effect of MC on apoptosis. MC induced apoptosis, preceded by serine 15 phosphorylation and accumulation of p53. MC failed to cause apoptosis in p53-deficient MG63 cells, whereas ectopic expression of p53 in MG63 cells restored the response to MC. Therefore, MC-induced apoptosis was dependent on p53. MC also activated p38 mitogen-activated protein kinase (MAPK) at 16-24 h. Accumulation of p53 and p53 phosphorylated at serine 15 was not changed by SB203580, a specific inhibitor of p38 MAPK or overexpression of a dominant negative mutant of p38 MAPK at 8 h after MC treatment, whereas the accumulation was suppressed at 24 h. These results suggest that MC induces accumulation and phosphorylation of p53 via a p38 MAPK-independent (early) and p38 MAPK-dependent (late) pathway. SB203580 repressed MC-induced apoptosis. MC induced p38 MAPK activation in p53 expressing cells but not in p53-deficient cells, indicating that the p38 MAPK activation was dependent on early p53 activation. The current study shows that both p53 and p38 MAPK activation are required for MC-induced apoptosis and provides a novel model of a functional regulation between p53 and p38 MAPK in chemical stress-induced apoptosis.
Collapse
Affiliation(s)
- Yong-Won Kwon
- Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
258
|
Kim SJ, Ju JW, Oh CD, Yoon YM, Song WK, Kim JH, Yoo YJ, Bang OS, Kang SS, Chun JS. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J Biol Chem 2002; 277:1332-9. [PMID: 11689560 DOI: 10.1074/jbc.m107231200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nitric oxide regulates cartilage destruction by causing dedifferentiation and apoptosis of chondrocytes. We investigated the role of the mitogen-activated protein kinase subtypes, extracellular signal-regulated protein kinase (ERK)-1/2, and p38 kinase in NO-induced apoptosis of rabbit articular chondrocytes and their involvement in dedifferentiation. Generation of NO with sodium nitroprusside (SNP) caused dedifferentiation, as indicated by the inhibition of type II collagen expression and proteoglycan synthesis. NO additionally caused apoptosis, accompanied by p53 accumulation and caspase-3 activation. SNP treatment stimulated activation of ERK-1/2 and p38 kinase. Inhibition of ERK-1/2 with PD98059 rescued SNP-induced dedifferentiation but enhanced apoptosis up to 2-fold, whereas inhibition of p38 kinase with SB203580 enhanced dedifferentiation, with significant blockage of apoptosis. The stimulation of apoptosis by ERK inhibition was accompanied by increased p53 accumulation and caspase-3 activity, whereas the inhibitory effect of p38 kinase blockade was associated with reduced p53 accumulation and caspase-3 activity. Our results indicate that NO-induced p38 kinase functions as an induction signal for apoptosis and in the maintenance of chondrocyte phenotype, whereas ERK activity causes dedifferentiation and operates as an anti-apoptotic signal. NO generation is less proapoptotic in chondrocytes that are dedifferentiated by serial monolayer culture or phorbol ester treatment. NO-induced p38 kinase activity is low in dedifferentiated cells compared with that in differentiated chondrocytes, with lower levels of p53 accumulation and caspase-3 activity. Our findings collectively suggest that ERK-1/2 and p38 kinase oppositely regulate NO-induced apoptosis of chondrocytes, in association with p53 accumulation, caspase-3 activation, and differentiation status.
Collapse
Affiliation(s)
- Song-Ja Kim
- National Research Laboratory, Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
MATSUOKA M, IGISU H. Effects of Heavy Metals on Mitogen-Activated Protein Kinase Pathways. Environ Health Prev Med 2002. [DOI: 10.1265/ehpm.2001.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
260
|
Abstract
Since the initial concept of p53 as a sensor of DNA-damage, the picture of the role of p53 has widened to include the sensing of much more diverse forms of stress, including hypoxia and constitutive activation of growth-promoting cascades. The pathways by which these processes regulate p53 are partially overlapping, but imply different patterns of post-translational modifications. In this review, we summarize current knowledge on post-translational modifications of p53, and we discuss how hypoxia and oncogene activation stresses may induce p53 independently of DNA damage.
Collapse
Affiliation(s)
- O Pluquet
- Group of Molecular Carcinogenesis, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, France
| | | |
Collapse
|
261
|
Abe Y, Matsumoto S, Wei S, Nezu K, Miyoshi A, Kito K, Ueda N, Shigemoto K, Hitsumoto Y, Nikawa J, Enomoto Y. Cloning and characterization of a p53-related protein kinase expressed in interleukin-2-activated cytotoxic T-cells, epithelial tumor cell lines, and the testes. J Biol Chem 2001; 276:44003-11. [PMID: 11546806 DOI: 10.1074/jbc.m105669200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human protein kinase, p53-related protein kinase (PRPK), was cloned from an interleukin-2-activated cytotoxic T-cell subtraction library. PRPK appears to be a homologue of a growth-related yeast serine/threonine protein kinase, YGR262c. However, a complementation assay using YGR262c-disrupted yeast indicated that PRPK is not functionally identical to the yeast enzyme. PRPK expression was observed in interleukin-2-activated cytotoxic T-cells, some human epithelial tumor cell lines, and the testes. The intrinsic transcriptional activity of p53 was up-regulated by a transient transfection of PRPK to COS-7 cells. PRPK was shown to bind to p53 and to phosphorylate p53 at Ser-15. These results indicate that PRPK may play an important role in the cell cycle and cell apoptosis through phosphorylation of p53.
Collapse
Affiliation(s)
- Y Abe
- First Department of Pathology and Hygiene, Ehime University School of Medicine, Shigenobu, Ehime 791-0295, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Morita KI, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, Ichijo H. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J 2001; 20:6028-36. [PMID: 11689443 PMCID: PMC125685 DOI: 10.1093/emboj/20.21.6028] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that activates the JNK and p38 MAP kinase cascades and is activated in response to oxidative stress such as hydrogen peroxide (H(2)O(2)). A yeast two-hybrid screening identified a serine/threonine protein phosphatase 5 (PP5) as a binding partner of ASK1. PP5 directly dephosphorylated an essential phospho-threonine residue within the kinase domain of ASK1 and thereby inactivated ASK1 activity in vitro and in vivo. The interaction between PP5 and ASK1 was induced by H(2)O(2) treatment and was followed by the decrease in ASK1 activity. PP5 inhibited not only H(2)O(2)-induced sustained activation of ASK1 but also ASK1-dependent apoptosis. Thus, PP5 appears to act as a physiological inhibitor of ASK1-JNK/p38 pathways by negative feedback.
Collapse
Affiliation(s)
- Kei-ichi Morita
- Cell Signaling and Oral Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Corresponding author e-mail:
| | - Masao Saitoh
- Cell Signaling and Oral Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Corresponding author e-mail:
| | - Kei Tobiume
- Cell Signaling and Oral Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Corresponding author e-mail:
| | - Hiroshi Matsuura
- Cell Signaling and Oral Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Corresponding author e-mail:
| | - Shoji Enomoto
- Cell Signaling and Oral Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Corresponding author e-mail:
| | - Hideki Nishitoh
- Cell Signaling and Oral Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Corresponding author e-mail:
| | - Hidenori Ichijo
- Cell Signaling and Oral Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Corresponding author e-mail:
| |
Collapse
|
263
|
Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, Barretina J, Amendola A, Nardacci R, Métivier D, Este JA, Piacentini M, Kroemer G. Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med 2001; 194:1097-110. [PMID: 11602639 PMCID: PMC2193513 DOI: 10.1084/jem.194.8.1097] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Syncytia arising from the fusion of cells expressing a lymphotropic human immunodeficiency virus (HIV)-1-encoded envelope glycoprotein complex (Env) gene with cells expressing the CD4/CXCR4 complex undergo apoptosis through a mitochondrion-controlled pathway initiated by the upregulation of Bax. In syncytial apoptosis, phosphorylation of p53 on serine 15 (p53S15) precedes Bax upregulation, the apoptosis-linked conformational change of Bax, the insertion of Bax in mitochondrial membranes, subsequent release of cytochrome c, caspase activation, and apoptosis. p53S15 phosphorylation also occurs in vivo, in HIV-1(+) donors, where it can be detected in preapoptotic and apoptotic syncytia in lymph nodes, as well as in peripheral blood mononuclear cells, correlating with viral load. Syncytium-induced p53S15 phosphorylation is mediated by the upregulation/activation of mammalian target of rapamycin (mTOR), also called FKBP12-rapamycin-associated protein (FRAP), which coimmunoprecipitates with p53. Inhibition of mTOR/FRAP by rapamycin reduces apoptosis in several paradigms of syncytium-dependent death, including in primary CD4(+) lymphoblasts infected by HIV-1. Concomitantly, rapamycin inhibits p53S15 phosphorylation, mitochondrial translocation of Bax, loss of the mitochondrial transmembrane potential, mitochondrial release of cytochrome c, and nuclear chromatin condensation. Transfection with dominant negative p53 has a similar antiapoptotic action as rapamycin, upstream of the Bax upregulation/translocation. In summary, we demonstrate that phosphorylation of p53S15 by mTOR/FRAP plays a critical role in syncytial apoptosis driven by HIV-1 Env.
Collapse
Affiliation(s)
- Maria Castedo
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Karine F. Ferri
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Julià Blanco
- Institut de Recerca de la SIDA-Caixa, Laboratori de Retrovirologia, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, 08916 Badalona, Catalonia, Spain
| | - Thomas Roumier
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Nathanael Larochette
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Jordi Barretina
- Institut de Recerca de la SIDA-Caixa, Laboratori de Retrovirologia, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, 08916 Badalona, Catalonia, Spain
| | - Alessandra Amendola
- Istituto Nazionale Malattie Infettive “L. Spallanzani”, University of Rome Tor Vergata, Rome 00133, Italy
| | - Roberta Nardacci
- Istituto Nazionale Malattie Infettive “L. Spallanzani”, University of Rome Tor Vergata, Rome 00133, Italy
| | - Didier Métivier
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | - José A. Este
- Institut de Recerca de la SIDA-Caixa, Laboratori de Retrovirologia, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, 08916 Badalona, Catalonia, Spain
| | - Mauro Piacentini
- Istituto Nazionale Malattie Infettive “L. Spallanzani”, University of Rome Tor Vergata, Rome 00133, Italy
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Guido Kroemer
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
264
|
Hannigan MO, Zhan L, Ai Y, Kotlyarov A, Gaestel M, Huang CK. Abnormal migration phenotype of mitogen-activated protein kinase-activated protein kinase 2-/- neutrophils in Zigmond chambers containing formyl-methionyl-leucyl-phenylalanine gradients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3953-61. [PMID: 11564814 DOI: 10.4049/jimmunol.167.7.3953] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Time-lapsed video microscopy and confocal imaging were used to study the migration of wild-type (WT) and mitogen-activated protein kinase-activated protein kinase 2 (MK2-/-) mouse neutrophils in Zigmond chambers containing fMLP gradients. Confocal images of polarized WT neutrophils showed an intracellular gradient of phospho-MK2 from the anterior to the posterior region of the neutrophils. Compared with WT neutrophils, MK2-/- neutrophils showed a partial loss of directionality but higher migration speed. Immunoblotting experiments showed a lower protein level of p38 mitogen-activated protein kinase and a loss of fMLP-induced extracellular signal-related kinase phosphorylation in MK2-/- neutrophils. These results suggest that MK2 plays an important role in the regulation of neutrophil migration and may also affect other signaling molecules.
Collapse
Affiliation(s)
- M O Hannigan
- Department of Pathology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
265
|
Parra M, Jardí M, Koziczak M, Nagamine Y, Muñoz-Cánoves P. p53 Phosphorylation at serine 15 is required for transcriptional induction of the plasminogen activator inhibitor-1 (PAI-1) gene by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. J Biol Chem 2001; 276:36303-10. [PMID: 11470783 DOI: 10.1074/jbc.m103735200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a widely spread environmental carcinogen that causes DNA lesions leading to cell killing. MNNG can also induce a cell-protective response by inducing the expression of DNA repair/transcription-related genes. We recently demonstrated that urokinase-type plasminogen activator, an extracellular protease to which no DNA repair functions have been assigned, was induced by MNNG. Here, we show that the physiological inhibitor of urokinase-type plasminogen activator, PAI-1, is also induced by MNNG in a p53-dependent fashion, because MNNG induced PAI-1 in p53-expressing cells but not in p53-/- cells. MNNG induced p53 phosphorylation at serine 15, resulting in stabilization of the p53 protein, and this phosphorylation event was central for p53-dependent PAI-1 transcription. Finally, we showed that PAI-1 transcriptional induction by MNNG required a p53-responsive element located at -136 base pairs in the PAI-1 promoter, because specific mutation of this site abrogated the induction. Because PAI-1 is a prognostic factor in many metastatic cancers, being involved in the control of tumor invasiveness, our finding that a genotoxic agent induces the PAI-1 gene via p53 adds a new feature to the role of the tumor-suppressor p53 protein. Our results also suggest the possibility that genotoxic agents contribute to tumor metastasis by inducing PAI-1 without involving genetic modification.
Collapse
Affiliation(s)
- M Parra
- Institut de Recerca Oncologica, Center d'Oncologia Molecular, Aut. Castelldefels, km 2.7, L'Hospitalet Ll., E-08907 Barcelona, Spain
| | | | | | | | | |
Collapse
|
266
|
Ljungman M, O'Hagan HM, Paulsen MT. Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation. Oncogene 2001; 20:5964-71. [PMID: 11593403 DOI: 10.1038/sj.onc.1204734] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2001] [Revised: 06/07/2001] [Accepted: 06/14/2001] [Indexed: 11/09/2022]
Abstract
Blockage of transcription has been shown to induce the tumor suppressor p53 in human cells. We here show that RNA synthesis inhibitors blocking the phosphorylation of the carboxyl terminal domain (CTD) of RNA polymerase II, such as DRB and H7, induced rapid nuclear accumulation of p53 proteins that were not phosphorylated at ser15 or acetylated at lys382. In contrast, agents that inhibit the elongation phase of transcription, such as UV light, camptothecin or actinomycin D, induced the accumulation of nuclear p53 proteins that were modified at both of these sites. Furthermore, using a panel of DNA repair-deficient cells we show that persistent DNA lesions in the transcribed strand of active genes are responsible for the induction of the ser15 and lys382 modifications following UV-irradiation. We conclude that inhibition of transcription is sufficient for the accumulation of p53 in the nucleus regardless of whether the ser15 site of p53 is phosphorylated or not. Importantly, blockage of the elongation phase of transcription triggers a distinct signaling pathway leading to p53 modifications on ser15 and lys382. We propose that the elongating RNA polymerase complex may act as a sensor of DNA damage and as an integrator of cellular stress signals.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, Division of Cancer Biology, University of Michigan Comprehensive Cancer Center, 150 E. Medical Center Drive, Ann Arbor, MI 48109-0936, USA.
| | | | | |
Collapse
|
267
|
Park SA, Park HJ, Lee BI, Ahn YH, Kim SU, Choi KS. Bcl-2 blocks cisplatin-induced apoptosis by suppression of ERK-mediated p53 accumulation in B104 cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:18-26. [PMID: 11532334 DOI: 10.1016/s0169-328x(01)00176-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bcl-2 has been reported to inhibit neurotoxicity induced by cisplatin. However, neither the mechanism of cisplatin-induced neurotoxicity nor the mechanism by which Bcl-2 confers neuroprotection is clear. In this study, the signaling pathways involved in cisplatin-induced neurotoxicity were examined using a rat neuroblastoma cell line, B104. Treatment of B104 cells with cisplatin induced apoptosis, accompanying the accumulation of p53 and Bax protein. Interestingly, extracellular signal-regulated kinase 1/2 (ERK1/2) activities of MAP kinases were markedly enhanced prior to cisplatin-induced accumulation of p53 and Bax. Inhibition of ERK1/2 activities using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death preventing cisplatin-induced accumulation of p53 and Bax. These results suggest that ERK mediates cisplatin-induced p53 activation to trigger apoptosis in B104 cells. Overexpression of Bcl-2 in B104 cells resulted in the complete resistance to cisplatin-induced apoptosis blocking ERK activation and the subsequent signaling pathway of p53. Our study clearly demonstrates that the action site of Bcl-2 localizes upstream of ERK in cisplatin-induced apoptotic signaling pathway.
Collapse
Affiliation(s)
- S A Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
268
|
Yeh PY, Chuang SE, Yeh KH, Song YC, Cheng AL. Nuclear extracellular signal-regulated kinase 2 phosphorylates p53 at Thr55 in response to doxorubicin. Biochem Biophys Res Commun 2001; 284:880-6. [PMID: 11409876 DOI: 10.1006/bbrc.2001.5043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we showed that nuclear ERK2 phosphorylates p53 at Thr55 in response to doxorubicin. p53 was found to physically interact with ERK2 as evidenced by Western blotting of ERK2 coimmunoprecipitated complex. The gene fragment encoded for N-terminal 68 amino acids was subcloned and fused with 6-His. Each serine or threonine site in this fragment, the possible phosphorylation site, was mutated to alanine. The recombinant proteins were used as substrates in ERK2 kinase assay. The results show that ERK2 phosphorylated p53 at Thr55. Further, electromobility shift assay showed that the phosphorylation of p53 by nuclear ERK2 was closely related to the transactivating activity of p53. These findings suggest that ERK2 may play a role in response to DNA damage via interaction with p53.
Collapse
Affiliation(s)
- P Y Yeh
- Cancer Research Center, College of Medicine, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
269
|
Nomura M, Kaji A, Ma W, Miyamoto K, Dong Z. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Mol Carcinog 2001; 31:83-9. [PMID: 11429785 DOI: 10.1002/mc.1043] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Caffeic acid phenethyl ester (CAPE), which is derived from the propolis of honeybee hives, has been shown to block tumor promotion and to have toxic effects on several cancer cells. The mechanism of the anti-tumor promotion activity of CAPE is unclear, however. In this study, we found that CAPE suppressed 12-O-tetradecanoylphorbol-13-acetate-induced cell transformation and induced apoptosis in mouse epidermal JB6 Cl 41 cells. No difference in induction of apoptosis was observed between normal lymphoblasts and sphingomyelinase-deficient cell lines. Although CAPE treatment of two p53 mutant tumor cell lines, NCI-H358 and SK-OV-3, and p53-deficient (p53(-/-)) cells caused the cleavage of caspase-3 as well as DNA fragmentation, caspase-3 cleavage was seen early (at 6 h) only in cells expressing wild-type p53 (p53(+/+)) and Cl 41 cells. These results suggested that p53 may be involved in the early stage of CAPE-induced apoptosis. The p53-dependent transcription activation occurred 2 h after treatment with CAPE and reached a maximum at 6 h in Cl 41 p53 DNA-binding sequence stable transfectant cells. In addition, phosphorylation of p53 at serine 15 and serine 392 was induced in Cl 41 cells within 6 h after treatment with CAPE. Therefore, CAPE may induce apoptosis through p53-dependent and p53-independent pathways and its anti-tumor promotion activity may have occurred through the induction of apoptosis.
Collapse
Affiliation(s)
- M Nomura
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
270
|
McMahon M, Woods D. Regulation of the p53 pathway by Ras, the plot thickens. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1471:M63-71. [PMID: 11342185 DOI: 10.1016/s0304-419x(00)00027-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M McMahon
- Cancer Research Institute, UCSF/Mt. Zion Comprehensive Cancer Center, San Francisco, CA 94115, USA.
| | | |
Collapse
|
271
|
Ballard-Croft C, White DJ, Maass DL, Hybki DP, Horton JW. Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-alpha. Am J Physiol Heart Circ Physiol 2001; 280:H1970-81. [PMID: 11299196 DOI: 10.1152/ajpheart.2001.280.5.h1970] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the hypothesis that burn trauma promotes cardiac myocyte secretion of inflammatory cytokines such as tumor necrosis factor (TNF)-alpha and produces cardiac contractile dysfunction via the p38 mitogen-activated protein kinase (MAPK) pathway. Sprague-Dawley rats were divided into four groups: 1) sham burn rats given anesthesia alone, 2) sham burn rats given the p38 MAPK inhibitor SB203580 (6 mg/kg po, 15 min; 6- and 22-h postburn), 3) rats given third-degree burns over 40% total body surface area and treated with vehicle (1 ml of saline) plus lactated Ringer solution for resuscitation (4 ml x kg(-1). percent burn(-1)), and 4) burn rats given injury and fluid resuscitation plus SB203580. Rats from each group were killed at several times postburn to examine p38 MAPK activity (by Western blot analysis or in vitro kinase assay); myocardial function and myocyte secretion of TNF-alpha were examined at 24-h postburn. These studies showed significant activation of p38 MAPK at 1-, 2-, and 4-h postburn compared with time-matched shams. Burn trauma impaired cardiac mechanical performance and promoted myocyte secretion of TNF-alpha. SB203580 inhibited p38 MAPK activity, reduced myocyte secretion of TNF-alpha, and prevented burn-mediated cardiac deficits. These data suggest p38 MAPK activation is one aspect of the signaling cascade that culminates in postburn secretion of TNF-alpha and contributes to postburn cardiac dysfunction.
Collapse
Affiliation(s)
- C Ballard-Croft
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9160, USA
| | | | | | | | | |
Collapse
|
272
|
Matsuoka M, Igisu H. Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells. Biochem Biophys Res Commun 2001; 282:1120-5. [PMID: 11302731 DOI: 10.1006/bbrc.2001.4700] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When MCF-7 cells were incubated with 10 or 20 microM CdCl(2), p53 protein level increased after 18 h. Among serines in p53 protein immunoprecipitated from cells treated with CdCl(2), only Ser 15 was phosphorylated. No clear phosphorylation was found on Ser 6, 9, 20, 37, and 392. Accumulation of p53 protein phosphorylated at Ser 15 was also found after 18 h exposure. While phosphorylation of extracellular signal-regulated protein kinase, c-Jun NH2-terminal kinase and p38 was found in cells treated with CdCl(2), treatment with U0126, LL-Z1640-2, or SB203580 did not suppress Ser 15 phosphorylation. On the other hand, treatment with wortmannin or caffeine suppressed CdCl(2)-induced Ser 15 phosphorylation and accumulation of p53 protein. The present results showed that cadmium induces phosphorylation of p53 at Ser 15 in MCF-7 cells depending on phosphatidylinositol 3-kinase related kinases, but not on mitogen-activated protein kinases.
Collapse
Affiliation(s)
- M Matsuoka
- Department of Environmental Toxicology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| | | |
Collapse
|
273
|
Sablina AA, Chumakov PM, Levine AJ, Kopnin BP. p53 activation in response to microtubule disruption is mediated by integrin-Erk signaling. Oncogene 2001; 20:899-909. [PMID: 11314025 DOI: 10.1038/sj.onc.1204156] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2000] [Revised: 11/28/2000] [Accepted: 12/07/2000] [Indexed: 12/22/2022]
Abstract
The p53 tumor suppressor is activated in response to various stresses driving the cells into growth arrest or apoptosis. We have addressed the question of how disintegration of microtubule system induces activation of p53. Depolymerization of microtubules by colcemid in rat and human quiescent fibroblasts resulted in accumulation of transcriptionally active p53 that caused cell-cycle arrest at the G1/S boundary. The p53 activation correlated with prominent activation of Erk1/2 MAP kinases that resulted from colcemid-stimulated development of focal adhesions. Inhibition of focal contacts development by plating of cells onto poly-L-lysine abrogated both Erk1/2 and p53 activations in colcemid-treated cells, while plating of cells onto fibronectin caused transient up-regulation of p53 even in the absence of colcemid. Pre-treatment of cells with the specific MEK1 inhibitor PD098059 also attenuated colcemid-induced p53 activation and G1 cell cycle arrest. Cell types which either failed to develop focal adhesions in response to colcemid treatment (human MCF-7 epithelial cells), or lacked colcemid-induced sustained Erk activation (primary mouse embryo fibroblasts and 12(1) cells) showed virtually no p53 up-regulation in response to disruption of microtubules during G0/G1. Our results indicate that p53 activation is not triggered by disintegration of microtubule system by itself, but rather originates from some of the consequences of such disintegration, in particular, from the development of focal adhesions leading to activation of Erk signaling pathway.
Collapse
Affiliation(s)
- A A Sablina
- Institute of Cancerogenesis, Russian Cancer Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
274
|
Persons DL, Yazlovitskaya EM, Pelling JC. Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 2000; 275:35778-85. [PMID: 10958792 DOI: 10.1074/jbc.m004267200] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor protein is a transcription factor that plays a major role in the DNA damage response. After DNA damage, p53 levels increase due primarily to stabilization of the protein. The molecular mechanisms leading to stabilization of p53 after DNA damage have not been completely elucidated. Recently we reported that cisplatin treatment activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) and that inhibition of ERK1/2 resulted in enhanced sensitivity to cisplatin. In the present study, we examined the potential role of ERK1/2 activation in regulation of the p53 response to cisplatin. In the ovarian carcinoma cell line A2780, inhibition of ERK1/2 activation with the mitogen-activated protein kinase/ERK kinase 1 (MEK1) inhibitor PD98059 resulted in decreased p53 protein half-life and diminished accumulation of p53 protein during exposure to cisplatin. We also demonstrated that p53 protein co-immunoprecipitated with ERK1/2 protein and was phosphorylated by activated recombinant murine ERK2 in vitro. Furthermore, PD98059 decreased the phosphorylation of p53 at serine 15 during cisplatin exposure, suggesting that ERK1/2 mediates in part phosphorylation of p53 during the cisplatin DNA response. These results strongly suggest that cisplatin-induced ERK activation is an up-stream regulator of the p53 response to DNA damage caused by cisplatin.
Collapse
Affiliation(s)
- D L Persons
- Department of Pathology and Laboratory Medicine and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7232, USA.
| | | | | |
Collapse
|
275
|
Abstract
The p53 tumor suppressor gene is a sequence-specific transcription factor that activates the expression of genes engaged in promoting growth arrest or cell death in response to genotoxic stress. A possible role for p53-related modulation of neuronal viability has been suggested by the finding that p53 expression is elevated in damaged neurons in acute models of injury such as ischemia and epilepsy and in brain tissue samples derived from patients with chronic neurodegenerative diseases. Moreover, the absence of p53 has been shown to protect neurons from a wide variety of acute toxic insults. Signal transduction pathways associated with p53-induced cell death are being unraveled and suggest that intervention may prove fruitful in maintaining neuronal viability and restoring function following cytopathic insults.
Collapse
Affiliation(s)
- R S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, Washington 98195-6470, USA
| | | |
Collapse
|