251
|
Pettit RK, Weber CA, Lawrence SB, Pettit GR, Kean MJ, Cage GD. In vivo activity of anprocide alone, and in vitro activity in combination with conventional antibiotics against Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 2009; 58:1203-1206. [PMID: 19528175 DOI: 10.1099/jmm.0.008268-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alarming spread of multiple drug resistance in Staphylococcus aureus, combined with the frequent occurrence of S. aureus and Staphylococcus epidermidis in biofilm-type infections, indicates a growing need for new therapies. The experimental steroidal amide anprocide [3beta-acetoxy-17beta-(l-prolyl)amino-5alpha-androstane] significantly reduced c.f.u. ml(-1) per suture (P <0.0001) in a murine model of topical S. aureus infection. In chequerboard assays with planktonic-grown S. aureus and S. epidermidis, anprocide was synergistic with bacitracin, oxacillin, clindamycin or ceftriaxone. Anprocide was also synergistic in combination with bacitracin or oxacillin against some isolates of biofilm-grown S. aureus and S. epidermidis.
Collapse
Affiliation(s)
- Robin K Pettit
- Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Christine A Weber
- Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Stacey B Lawrence
- Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - George R Pettit
- Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Melissa J Kean
- Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Gary D Cage
- Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| |
Collapse
|
252
|
Stevens NT, Greene CM, O'Gara JP, Humphreys H. Biofilm characteristics of Staphylococcus epidermidis isolates associated with device-related meningitis. J Med Microbiol 2009; 58:855-862. [PMID: 19502363 DOI: 10.1099/jmm.0.009209-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus epidermidis biofilm causes device-related meningitis in neurosurgical patients. This study assessed the contribution of polysaccharide and protein to the development of a strong biofilm-positive phenotype in four S. epidermidis isolates associated with probable device-related meningitis, under varying environmental conditions. RT-PCR analysis of the intercellular adhesion operon (icaADBC) and assessment of polysaccharide intercellular adhesin (PIA) production indicated a correlation between increased icaA transcription and PIA production in ica(+) isolates grown in medium with 4 % ethanol and 4 % NaCl. Treatment of biofilm with sodium metaperiodate caused dispersion of adhered cells (P <0.0001), indicating involvement of PIA. Transcriptional levels of protein factors revealed that atlE transcription levels were similar in all isolates, whilst aap levels were variable, with induction being seen in two isolates following growth in the presence of alcohol or salt. Transcription of agr did not influence protein expression and RNAIII transcription varied among the strains. Although aap transcription was induced, the treatment of biofilm with proteinase K did not always disperse the biofilm. Our data suggest that, among the three ica(+) S. epidermidis isolates clinically associated with meningitis that were studied, PIA contributed to the strong biofilm-positive phenotype, whereas protein factors appeared to have a secondary role.
Collapse
Affiliation(s)
- Niall T Stevens
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education & Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Catherine M Greene
- Department of Medicine, Royal College of Surgeons in Ireland Education & Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - James P O'Gara
- School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Hilary Humphreys
- Department of Microbiology, Beaumont Hospital, Dublin 9, Ireland.,Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education & Research Centre, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
253
|
Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: Evidence for lack of penicillin-resistance in Agr-type II strains. Vet Microbiol 2009; 137:83-9. [DOI: 10.1016/j.vetmic.2008.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/29/2008] [Accepted: 12/02/2008] [Indexed: 11/22/2022]
|
254
|
Schlegelová J, Babák V, Holasová M, Dendis M. The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants. Folia Microbiol (Praha) 2009; 53:500-4. [PMID: 19381474 DOI: 10.1007/s12223-008-0078-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 07/28/2008] [Indexed: 01/30/2023]
Abstract
Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).
Collapse
Affiliation(s)
- J Schlegelová
- Veterinary Research Institute, Brno, Czech Republic.
| | | | | | | |
Collapse
|
255
|
Franciosa G, Maugliani A, Scalfaro C, Floridi F, Aureli P. Expression of internalin A and biofilm formation among Listeria monocytogenes clinical isolates. Int J Immunopathol Pharmacol 2009; 22:183-93. [PMID: 19309566 DOI: 10.1177/039463200902200121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Internalin A (InlA), a cell wall-bound protein of Listeria monocytogenes, is among the major components involved in the adhesion to and invasion of host cells expressing specific forms of E-cadherin. Some L. monocytogenes strains secrete truncated non-functional forms of InlA. The purpose of this study is to compare the biofilm-forming abilities of L. monocytogenes strains from clinical sources expressing InlA proteins in the different forms. A total of 70 L. monocytogenes strains were examined using SDS-PAGE, Western blot, DNA sequencing, and microtitre plate biofilm formation assays. We found that 8 of the 70 strains expressed truncated InlA, and that this group of strains exhibited significantly enhanced biofilm-forming ability compared to the group expressing full-length InlA. Further experiments showed that: (i) L. monocytogenes biofilms were detached by treatment with protease K; (ii) protein fragments resulting from proteolysis, rather than intact proteins, are responsible for biofilm enhancement, because biofilm formation was impaired by the protease inhibitor alpha2-macroglobulin; (iii) truncated and/or proteolytically cleaved InlA are likely involved in the biofilm enhancement, based on the effects that anti-InlA monoclonal antibodies produced on the biofilm formation of L. monocytogenes strains expressing either truncated or full-length InlA. These data provide a basis for further investigation of the molecular structure and composition of L. monocytogenes biofilms.
Collapse
Affiliation(s)
- G Franciosa
- Department of Food Safety and Veterinary Public Health, Unit of Microorganisms and Food Technologies, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | |
Collapse
|
256
|
Izano EA, Shah SM, Kaplan JB. Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms. Microb Pathog 2009; 46:207-13. [PMID: 19490830 PMCID: PMC2691864 DOI: 10.1016/j.micpath.2009.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/23/2008] [Accepted: 01/14/2009] [Indexed: 11/22/2022]
Abstract
Respiratory infections caused by nontypeable Haemophilus influenzae (NTHi) are a major medical problem. Evidence suggests that the ability to form biofilms on mucosal surfaces may play a role in NTHi pathogenesis. However, the factors that contribute to NTHi biofilm cohesion remain largely unknown. In this study we investigated the biofilm growth and detachment phenotypes of eight NTHi clinical strains in vitro. We found that the majority of strains produced biofilms within 6h when cultured statically in tubes. Biofilm formation was inhibited when culture medium was supplemented with proteinase K or DNase I. Both enzymes also caused significant detachment of pre-formed NTHi biofilms. These findings indicate that both proteinaceous adhesins and extracellular DNA contribute to NTHi biofilm cohesion. Treatment of NTHi biofilms cultured in centrifugal filter devices with DNase I, but not with proteinase K, caused a significant decrease in fluid convection through the biofilms. These results suggest that extracellular DNA is the major volumetric component of the NTHi biofilm matrix. Mechanical or enzymatic disruption of NTHi biofilms cultured in microtiter plates significantly increased their sensitivity to killing by SDS, cetylpyridinium chloride, chlorhexidine gluconate, povidone iodine and sodium hypochlorite. These findings indicate that biocide resistance in NTHi biofilms is mediated to a large part by the cohesive and protective properties of the biofilm matrix. Understanding the mechanisms of biofilm cohesion and biocide resistance in NTHi biofilms may lead to new methods for treating NTHi-associated infections.
Collapse
Affiliation(s)
- Era A. Izano
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Suhagi M. Shah
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Jeffrey B. Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| |
Collapse
|
257
|
Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 2009; 77:1623-35. [PMID: 19188357 DOI: 10.1128/iai.01036-08] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a proficient biofilm former on host tissues and medical implants. We mutagenized S. aureus strain SH1000 to identify loci essential for ica-independent mechanisms of biofilm maturation and identified multiple insertions in the rsbUVW-sigB operon. Following construction and characterization of a sigB deletion, we determined that the biofilm phenotype was due to a lack of sigma factor B (SigB) activity. The phenotype was conserved in a sigB mutant of USA300 strain LAC, a well-studied community-associated methicillin-resistant S. aureus isolate. We determined that agr RNAIII levels were elevated in the sigB mutants, and high levels of RNAIII expression are known to have antibiofilm effects. By introducing an agr mutation into the SH1000 or LAC sigB deletion strain, S. aureus regained biofilm capacity, indicating that the biofilm phenotype was agr dependent. Protease activity is linked to agr activity and ica-independent biofilm formation, and we observed that the protease inhibitors phenylmethylsulfonyl fluoride and alpha-macroglobulin could reverse the sigB biofilm defect. Similarly, inactivating genes encoding both the aureolysin and Spl extracellular proteases in the sigB mutant restored biofilm capacity. Due to the growing link between murein hydrolase activity and biofilm maturation, autolysin zymography was performed, which revealed an altered profile in the sigB mutant; again, the phenotype could be repaired through protease inactivation. These findings indicate that the lack of SigB activity results in increased RNAIII expression, thus elevating extracellular protease levels and altering the murein hydrolase activity profile. Altogether, our observations demonstrate that SigB is an essential regulator of S. aureus biofilm maturation.
Collapse
|
258
|
Abstract
Infections due to coagulase-negative staphylococci (CoNS) most frequently occur after the implantation of medical devices and are attributed to the biofilm-forming potential of CoNS. Staphylococcus haemolyticus is the second most frequently isolated CoNS from patients with hospital-acquired infections. There is only limited knowledge of the nature of S. haemolyticus biofilms. The aim of this study was to characterize S. haemolyticus biofilm formation. We analyzed the biofilm-forming capacities of 72 clinical S. haemolyticus isolates. A detachment assay with NaIO(4), proteinase K, or DNase was used to determine the main biofilm components. Biofilm-associated genes, including the ica operon, were analyzed by PCR, and the gene products were sequenced. Confocal laser scanning microscopy (CLSM) was used to elucidate the biofilm structure. Fifty-three isolates (74%) produced biofilms after growth in Trypticase soy broth (TSB) with glucose, but only 22 (31%) produced biofilms after growth in TSB with NaCl. It was necessary to dissolve the biofilm in ethanol-acetone to measure the optical density of the full biofilm mass. DNase, proteinase K, and NaIO(4) caused biofilm detachment for 100%, 98%, and 38% of the isolates, respectively. icaRADBC and polysaccharide intercellular adhesin (PIA) production were found in only two isolates. CLSM indicated that the biofilm structure of S. haemolyticus clearly differs from that of S. epidermidis. We conclude that biofilm formation is a common phenotype in clinical S. haemolyticus isolates. In contrast to S. epidermidis, proteins and extracellular DNA are of functional relevance for biofilm accumulation, whereas PIA plays only a minor role. The induction of biofilm formation and determination of the biofilm mass also needed to be optimized for S. haemolyticus.
Collapse
|
259
|
Luong TT, Lei MG, Lee CY. Staphylococcus aureus Rbf activates biofilm formation in vitro and promotes virulence in a murine foreign body infection model. Infect Immun 2009; 77:335-40. [PMID: 18955475 PMCID: PMC2612276 DOI: 10.1128/iai.00872-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/27/2008] [Accepted: 10/16/2008] [Indexed: 12/16/2022] Open
Abstract
We previously identified Rbf as an activator for biofilm formation on polystyrene surfaces in Staphylococcus aureus strain 8325-4. However, strain 8325-4 contains genetic mutations that may affect biofilm formation. To extend the observation to other strains, we used strain Newman, a weak biofilm producer, and strain UAMS-1, an osteomyelitis clinical strain, in this study. We found that mutations in the chromosomal rbf gene did not affect biofilm formation on polystyrene surfaces in these strains, but transformants of these strains carrying a multiple-copy plasmid containing the rbf gene formed stronger biofilms than the wild-type strains and the mutant strains. Using the flow cell method, we found that the chromosomal mutation in the rbf gene delayed biofilm formation, whereas strains with a plasmid containing the rbf gene accelerated biofilm formation in strains Newman and UAMS-1. These results led us to conclude that rbf is an activator of biofilm formation in different strains of S. aureus, although the degree of activation varies among strains. In a murine model of foreign body infection, the rbf mutations in strain Newman, but not in strain UAMS-1, reduced the bacterial survival rate in catheter lumen. However, UAMS-1 carrying multiple copies of rbf in a plasmid increased the bacterial survival rate. The animal studies therefore suggest that Rbf has a role in S. aureus virulence.
Collapse
Affiliation(s)
- Thanh T Luong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
| | | | | |
Collapse
|
260
|
Brady RA, Calhoun JH, Leid JG, Shirtliff ME. Infections of Orthopaedic Implants and Devices. SPRINGER SERIES ON BIOFILMS 2008. [DOI: 10.1007/978-3-540-68119-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
261
|
A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 2008; 105:19456-61. [PMID: 19047636 DOI: 10.1073/pnas.0807717105] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hospital-acquired bacterial infections are an increasingly important cause of morbidity and mortality worldwide. Staphylococcal species are responsible for the majority of hospital-acquired infections, which are often complicated by the ability of staphylococci to grow as biofilms. Biofilm formation by Staphylococcus epidermidis and Staphylococcus aureus requires cell-surface proteins (Aap and SasG) containing sequence repeats known as G5 domains; however, the precise role of these proteins in biofilm formation is unclear. We show here, using analytical ultracentrifugation (AUC) and circular dichroism (CD), that G5 domains from Aap are zinc (Zn(2+))-dependent adhesion modules analogous to mammalian cadherin domains. The G5 domain dimerizes in the presence of Zn(2+), incorporating 2-3 Zn(2+) ions in the dimer interface. Tandem G5 domains associate in a modular fashion, suggesting a "zinc zipper" mechanism for G5 domain-based intercellular adhesion in staphylococcal biofilms. We demonstrate, using a biofilm plate assay, that Zn(2+) chelation specifically prevents biofilm formation by S. epidermidis and methicillin-resistant S. aureus (MRSA). Furthermore, individual soluble G5 domains inhibit biofilm formation in a dose-dependent manner. Thus, the complex three-dimensional architecture of staphylococcal biofilms results from the self-association of a single type of protein domain. Surface proteins with tandem G5 domains are also found in other bacterial species, suggesting that this mechanism for intercellular adhesion in biofilms may be conserved among staphylococci and other Gram-positive bacteria. Zn(2+) chelation represents a potential therapeutic approach for combating biofilm growth in a wide range of bacterial biofilm-related infections.
Collapse
|
262
|
Abstract
The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.
Collapse
|
263
|
Stevens NT, Sadovskaya I, Jabbouri S, Sattar T, O'Gara JP, Humphreys H, Greene CM. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2. Cell Microbiol 2008; 11:421-32. [PMID: 19016779 DOI: 10.1111/j.1462-5822.2008.01264.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.
Collapse
Affiliation(s)
- Niall T Stevens
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education & Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
264
|
Pintens V, Massonet C, Merckx R, Vandecasteele S, Peetermans WE, Knobloch JKM, Van Eldere J. The role of sigmaB in persistence of Staphylococcus epidermidis foreign body infection. MICROBIOLOGY-SGM 2008; 154:2827-2836. [PMID: 18757816 DOI: 10.1099/mic.0.2007/015768-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcal biofilm formation depends on the transcription factor sigma(B). We further investigated the role of sigma(B) in biofilm formation and persistence in vitro and in vivo in a subcutaneous rat model. As expected, expression of all sigma(B) operon genes was transiently higher in the first 6 h of biofilm formation compared to planktonic bacteria, concurrent with a temporary upregulation of icaA and aap expression. However, we also observed a second upregulation of sigB expression in biofilm more than 2 days old without upregulation of icaA or aap. Biofilm formation by Staphylococcus epidermidis strains 8400 and 1457 was compared to that of isogenic mutants with inactivation of rsbU, of rsbUVW and of the entire sigma(B) operon. Both wild-type strains and the constitutively sigB-expressing rsbUVW mutant showed a strong biofilm-positive phenotype. The rsbUVW mutant biofilm was, however, thinner and more evenly spread than the wild-type biofilm. Inactivation of SigB in the rsbUVWsigB mutant or mutation of the positive regulator RsbU reduced both the number of sessile bacteria and polysaccharide intercellular adhesin (PIA) synthesis. These differences between the wild-types and their respective mutants appeared after 6 h in in vitro biofilms but only after 4 days in in vivo biofilms. Our results provide additional evidence for a role for sigma(B) in biofilm formation. They also suggest a role for sigma(B) in biofilm maturation and stability that is independent of PIA or accumulation-associated protein (Aap) and point to significant differences in the temporal development between in vitro and in vivo biofilms.
Collapse
Affiliation(s)
- Valerie Pintens
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Caroline Massonet
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Rita Merckx
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Stefaan Vandecasteele
- Department of Internal Medicine and Infectious Diseases, AZ Sint-Jan AV, Ruddershove 10, B-8000 Brugge, Belgium
| | - Willy E Peetermans
- Department of Internal Medicine, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Johannes K-M Knobloch
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Lübeck, 23538 Lübeck, Germany
| | - Johan Van Eldere
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
265
|
Stevens NT, Tharmabala M, Dillane T, Greene CM, O'Gara JP, Humphreys H. Biofilm and the role of the ica operon and aap in Staphylococcus epidermidis isolates causing neurosurgical meningitis. Clin Microbiol Infect 2008; 14:719-22. [PMID: 18558946 DOI: 10.1111/j.1469-0691.2008.02012.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fifty-five Staphylococcus epidermidis isolates, classified as contaminants or causing device-related meningitis, from external ventricular drain (EVD) and non-EVD cerebrospinal fluid specimens were characterized. Thirty-three of 42 (78.6%) meningitis isolates were PCR-positive for ica and aap, known determinants of polysaccharide- and protein-mediated biofilm production, whereas five of 13 (38.5%) contaminants were ica- and aap-negative; 71.4% of meningitis isolates and 84.6% of contaminants produced biofilm. ica+aap+ meningitis isolates produced more biofilm than ica+aap- isolates (p 0.0020). ica+aap- isolates did not produce more biofilm than ica-aap+ isolates (p 0.4368). Apparently, ica and aap are associated with biofilm production in S. epidermidis device-related meningitis isolates.
Collapse
Affiliation(s)
- N T Stevens
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education & Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
266
|
Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, Horstkotte MA, Aepfelbacher M, Kirschner N, Behne MJ, Moll I, Brandner JM. Regulation of Epidermal Tight-Junctions (TJ) during Infection with Exfoliative Toxin-Negative Staphylococcus Strains. J Invest Dermatol 2008; 128:906-16. [PMID: 17914452 DOI: 10.1038/sj.jid.5701070] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tight Junction (TJ) proteins have been shown to exert a barrier function within the skin. Here, we study the fate of TJ proteins during the challenge of the skin by bacterial colonization and infection. We investigated the influence of various exfoliative toxin-negative Staphylococcus strains on TJ, adherens junction (AJ), desmosomal proteins, and actin in a human keratinocyte infection culture and in a porcine skin infection model. We found that the pathogen Staphylococcus aureus downregulates TJ and subsequently AJ and desmosomal proteins, including atypical protein kinase C, an essential player in TJ formation, at the cell-cell borders of keratinocytes in a time and concentration dependent manner. Little changes in protein and RNA levels were seen, indicating redistribution of proteins. In cultured keratinocytes, a reduction of transepithelial resistance was observed. Staphylococcus epidermidis shows only minor effects. All strains induced enhanced expression of occludin and ZO-1 at the beginning of colonization/infection. Thus, we demonstrate that TJ are likely to be involved in skin infection of exfoliative toxin-negative S. aureus. As we did not find a change in actin, and as changes of TJ preceded alterations of AJs and desmosomes, we suggest that S. aureus targets TJ.
Collapse
Affiliation(s)
- Ulrich Ohnemus
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 2008; 190:3835-50. [PMID: 18375547 DOI: 10.1128/jb.00167-08] [Citation(s) in RCA: 385] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Device-associated infections involving biofilm remain a persistent clinical problem. We recently reported that four methicillin-resistant Staphylococcus aureus (MRSA) strains formed biofilm independently of the icaADBC-encoded exopolysaccharide. Here, we report that MRSA biofilm development was promoted under mildly acidic growth conditions triggered by the addition of glucose to the growth medium. Loss of sortase, which anchors LPXTG-containing proteins to peptidoglycan, reduced the MRSA biofilm phenotype. Furthermore introduction of mutations in fnbA and fnbB, which encode the LPXTG-anchored multifunctional fibrinogen and fibronectin-binding proteins, FnBPA and FnBPB, reduced biofilm formation by several MRSA strains. However, these mutations had no effect on biofilm formation by methicillin-sensitive S. aureus strains. FnBP-promoted biofilm occurred at the level of intercellular accumulation and not primary attachment. Mutation of fnbA or fnbB alone did not substantially affect biofilm, and expression of either gene alone from a complementing plasmid in fnbA fnbB mutants restored biofilm formation. FnBP-promoted biofilm was dependent on the integrity of SarA but not through effects on fnbA or fnbB transcription. Using plasmid constructs lacking regions of FnBPA to complement an fnbAB mutant revealed that the A domain alone and not the domain required for fibronectin binding could promote biofilm. Additionally, an A-domain N304A substitution that abolished fibrinogen binding did not affect biofilm. These data identify a novel S. aureus biofilm phenotype promoted by FnBPA and FnBPB which is apparently independent of the known ligand-binding activities of these multifunctional surface proteins.
Collapse
|
268
|
Greco C, Mastronardi C, Pagotto F, Mack D, Ramirez-Arcos S. Assessment of biofilm-forming ability of coagulase-negative staphylococci isolated from contaminated platelet preparations in Canada. Transfusion 2008; 48:969-77. [PMID: 18346023 DOI: 10.1111/j.1537-2995.2007.01631.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Coagulase-negative staphylococci (CoNS) are the most prevalent bacterial contaminants of platelet (PLT) preparations and have been implicated in adverse transfusion reactions worldwide. The most frequently identified contaminant is Staphylococcus epidermidis, which is noted for its ability to maintain chronic hospital-acquired infections by forming biofilms as a chief virulence mechanism. STUDY DESIGN AND METHODS Strains of S. epidermidis isolated from contaminated PLT preparations in Canada were distinguished via gene-specific polymerase chain reaction (PCR) with divIVA as a marker. Biofilm-forming ability was assessed by the presence of the gene icaD, slime production on Congo red agar, and biofilm formation on polystyrene surfaces. Production of polysaccharide intercellular adhesin (PIA) was resolved by immunofluorescence. RESULTS Eight of the 13 (62%) CoNS isolates under study were identified as S. epidermidis. Of these, four strains (50%) were classified as strong biofilm producers. Three of the four biofilm-positive strains (75%) produced slime, harbored the icaD gene, and had positive expression of PIA. CONCLUSIONS Despite the presumable commensal origin of the CoNS isolates, a large proportion of S. epidermidis strains demonstrated a potential for enhanced virulence. Identification of contaminant staphylococci as biofilm producers is thus relevant and informative with regard to treatment approach in the circumstance of inadvertent infection of a PLT recipient.
Collapse
Affiliation(s)
- Carey Greco
- Canadian Blood Services, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
269
|
Abstract
Biofilm formation in Staphylococcus aureus under in vitro growth conditions is generally promoted by high concentrations of sugar and/or salts. The addition of glucose to routinely used complex growth media triggered biofilm formation in S. aureus strain SA113. Deletion of ccpA, coding for the catabolite control protein A (CcpA), which regulates gene expression in response to the carbon source, abolished the capacity of SA113 to form a biofilm under static and flow conditions, while still allowing primary attachment to polystyrene surfaces. This suggested that CcpA mainly affects biofilm accumulation and intercellular aggregation. trans-Complementation of the mutant with the wild-type ccpA allele fully restored the biofilm formation. The biofilm produced by SA113 was susceptible to sodium metaperiodate, DNase I, and proteinase K treatment, indicating the presence of polysaccharide intercellular adhesin (PIA), protein factors, and extracellular DNA (eDNA). The investigation of several factors which were reported to influence biofilm formation in S. aureus (arlRS, mgrA, rbf, sarA, atl, ica, citZ, citB, and cidABC) showed that CcpA up-regulated the transcription of cidA, which was recently shown to contribute to eDNA production. Moreover, we showed that CcpA increased icaA expression and PIA production, presumably over the down-regulation of the tricarboxylic acid cycle genes citB and citZ.
Collapse
|
270
|
Greco C, Mastronardi C, Pagotto F, Mack D, Ramirez-Arcos S. Assessment of biofilm-forming ability of coagulase-negative staphylococci isolated from contaminated platelet preparations in Canada. Transfusion 2008. [DOI: 10.1111/j.1537-2995.2007.01631.x-i2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
271
|
Tauch A, Trost E, Tilker A, Ludewig U, Schneiker S, Goesmann A, Arnold W, Bekel T, Brinkrolf K, Brune I, Götker S, Kalinowski J, Kamp PB, Lobo FP, Viehoever P, Weisshaar B, Soriano F, Dröge M, Pühler A. The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol 2008; 136:11-21. [PMID: 18367281 DOI: 10.1016/j.jbiotec.2008.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/11/2007] [Accepted: 02/07/2008] [Indexed: 01/11/2023]
Abstract
Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are the most frequent causes of nosocomial infections and infections on indwelling medical devices, which characteristically involve biofilms. Recent advances in staphylococcal molecular biology have provided more detailed insight into the basis of biofilm formation in these opportunistic pathogens. A series of surface proteins mediate initial attachment to host matrix proteins, which is followed by the expression of a cationic glucosamine-based exopolysaccharide that aggregates the bacterial cells. In some cases, proteins may function as alternative aggregating substances. Furthermore, surfactant peptides have now been recognized as key factors involved in generating the three-dimensional structure of a staphylococcal biofilm by cell-cell disruptive forces, which eventually may lead to the detachment of entire cell clusters. Transcriptional profiling experiments have defined the specific physiology of staphylococcal biofilms and demonstrated that biofilm resistance to antimicrobials is due to gene-regulated processes. Finally, novel animal models of staphylococcal biofilm-associated infection have given us important information on which factors define biofilm formation in vivo. These recent advances constitute an important basis for the development of anti-staphylococcal drugs and vaccines.
Collapse
Affiliation(s)
- M Otto
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
273
|
Staphylococcus epidermidis Biofilms: Functional Molecules, Relation to Virulence, and Vaccine Potential. GLYCOSCIENCE AND MICROBIAL ADHESION 2008; 288:157-82. [DOI: 10.1007/128_2008_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
274
|
Corrigan RM, Rigby D, Handley P, Foster TJ. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. MICROBIOLOGY-SGM 2007; 153:2435-2446. [PMID: 17660408 DOI: 10.1099/mic.0.2007/006676-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus colonizes the moist squamous epithelium of the anterior nares. One of the adhesins likely to be responsible is the S. aureus surface protein G (SasG), which has sequence similarity with the proteins Pls (plasmin sensitive) of S. aureus and Aap (accumulation associated protein) of Staphylococcus epidermidis. Expression of SasG by a laboratory strain of S. aureus could not be detected by Western immunoblotting. To enable investigation of SasG, the gene was cloned into two expression vectors, the IPTG-inducible pMUTIN4 and the tetracycline-inducible pALC2073, and introduced into S. aureus. Expression of SasG masked the ability of exponentially grown S. aureus cells expressing protein A (Spa), clumping factor B (ClfB) and the fibronectin binding proteins A and B (FnBPA and FnBPB) to bind to IgG, cytokeratin 10 and fibronectin, respectively. SasG also masked binding to fibrinogen mediated by both ClfB and the FnBPs. Western immunoblotting showed no reduction in expression of the blocked adhesins following induction of SasG. SasG size variants with eight, six or five B repeats masked binding to the ligands, whereas variants with four, two or one repeats had no effect. SasG-expressing strains formed peritrichous fibrils (53.47+/-2.51 nm long) of varying density on the cell wall, which were labelled by immunogold negative staining with anti-SasG antibodies. SasG-expressing strains of S. aureus also formed biofilm independently of the polysaccharide intercellular adhesin (PIA). SasG variants with eight, six and five repeats formed biofilm, whereas variants with four, two or one repeats did not. It was concluded that the fibrillar nature of SasG explains its ability to mask binding of S. aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to their ligands and to promote formation of biofilm. In addition, the strong adhesion of SasG to desquamated nasal epithelial cells likely compensates for its blocking of the binding of S. aureus ClfB to cytokeratin 10, which is important in adhesion to squames by cells lacking SasG. Several clinical isolates expressed SasG at levels similar to those of SH1000 sasG : : pMUTIN4, indicating that the properties described in the laboratory strain SH1000 may be relevant in vivo.
Collapse
Affiliation(s)
- Rebecca M Corrigan
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - David Rigby
- Faculty of Life Sciences, 1.800 Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Pauline Handley
- Faculty of Life Sciences, 1.800 Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
275
|
Becker K, Bierbaum G, von Eiff C, Engelmann S, Götz F, Hacker J, Hecker M, Peters G, Rosenstein R, Ziebuhr W. Understanding the physiology and adaptation of staphylococci: A post-genomic approach. Int J Med Microbiol 2007; 297:483-501. [PMID: 17581783 DOI: 10.1016/j.ijmm.2007.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/19/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022] Open
Abstract
Staphylococcus aureus as well as coagulase-negative staphylococci are medically highly important pathogens characterized by an increasing resistance rate toward many antibiotics. Although normally being skin and mucosa commensals, some staphylococcal species and strains have the capacity to cause a wide range of infectious diseases. Many of these infections affect immunocompromised patients in hospitals. However, community-acquired staphylococcal infections due to resistant strains are also currently on the rise. In the light of this development, there is an urgent need for novel anti-staphylococcal therapeutic and prevention strategies for which a better understanding of the physiology of these bacteria is an essential prerequisite. Within the past years, staphylococci have been in the focus of genomic research, resulting in the determination and publication of a range of full-genome sequences of different staphylococcal species and strains which provided the basis for the design and application of DNA microarrays and other genomic tools. Here we summarize the results of the project group 'Staphylococci' within the research network 'Pathogenomics' giving new insights into the genome structure, molecular epidemiology, physiology, and genetic adaptation of both S. aureus and coagulase-negative staphylococci.
Collapse
Affiliation(s)
- Karsten Becker
- Universität Münster, Institut für Medizinsche Mikrobiologie, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Franke G, Dobinsky S, Mack D, Wang CJ, Sobottka I, Christner M, Knobloch JM, Horstkotte M, Aepfelbacher M, Rohde H. Expression and functional characterization of gfpmut3.1 and its unstable variants in Staphylococcus epidermidis. J Microbiol Methods 2007; 71:123-32. [DOI: 10.1016/j.mimet.2007.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/07/2007] [Accepted: 08/23/2007] [Indexed: 11/26/2022]
|
277
|
Potential use of poly-N-acetyl-beta-(1,6)-glucosamine as an antigen for diagnosis of staphylococcal orthopedic-prosthesis-related infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1609-15. [PMID: 17942607 DOI: 10.1128/cvi.00215-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus and coagulase-negative staphylococci are microorganisms most frequently isolated from orthopedic-implant-associated infections. Their capacity to maintain these infections is thought to be related to their ability to form adherent biofilms. Poly-N-acetyl-beta-(1,6)-glucosamine (PNAG) is an important constituent of the extracellular biofilm matrix of staphylococci. In the present study, we explored the possibility of using PNAG as an antigen for detecting antibodies in the blood sera of patients with staphylococcal orthopedic-prosthesis-associated infections. First, we tested the presence of anti-PNAG antibodies in an animal model, in the blood sera of guinea pigs that developed an implant-associated infection caused by biofilm-forming, PNAG-producing strains of Staphylococcus epidermidis. Animals infected with S. epidermidis RP62A showed levels of anti-PNAG immunoglobulin G (IgG) significantly higher than those of the control group. The comparative study of healthy individuals and patients with staphylococcal prosthesis-related infections showed that (i) relatively high levels of anti-PNAG IgG were present in the blood sera of the healthy control group, (ii) the corresponding levels in the infected patients were slightly but not significantly higher, and (iii) only 1 of 10 patients had a level of anti-PNAG IgM significantly higher than that of the control group. In conclusion, the encouraging results obtained in the animal study could not be readily applied for the diagnosis of staphylococcal orthopedic-prosthesis-related infections in humans, and PNAG does not seem to be an appropriate antigen for this purpose. Further studies are necessary to determine whether the developed enzyme-linked immunosorbent assay method could serve as a complementary test in the individual follow-up treatment of such infections caused by PNAG-producing staphylococci.
Collapse
|
278
|
Klingenberg C, Rønnestad A, Anderson AS, Abrahamsen TG, Zorman J, Villaruz A, Flaegstad T, Otto M, Sollid JE. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. Clin Microbiol Infect 2007; 13:1100-11. [PMID: 17850346 DOI: 10.1111/j.1469-0691.2007.01818.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Coagulase-negative staphylococci (CoNS) are the major cause of nosocomial bacteraemia in neonates. The aim of this study was to investigate whether persistent strains of CoNS possess specific bacterial characteristics as compared with sporadic non-cluster isolates. In total, 180 blood culture isolates (95 contaminants and 85 invasive isolates) obtained from a single neonatal unit over a 12-year period were studied. Pulsed-field gel electrophoresis (PFGE) identified 87 persistent CoNS strains (endemic clones). The two largest PFGE clusters belonged to a single clonal complex according to multilocus sequence typing. Patients colonised or infected with endemic clones were of lower gestational age than those infected with non-cluster strains. One Staphylococcus haemolyticus cluster appeared to selectively colonise and infect the most extreme pre-term infants. Endemic clones were characterised by high levels of antibiotic resistance and biofilm formation. All 51 isolates belonging to the two largest PFGE clusters were ica operon-positive. Genes encoding Staphylococcus epidermidis surface protein B and the production of phenol-soluble modulins (PSMs) were also more prevalent among endemic clones than among non-cluster strains. However, endemic clones were not more prevalent among invasive isolates than among contaminants. These findings indicate that multiple selective factors, including antibiotic resistance, biofilm formation, surface proteins with adhesive properties, and PSMs regulated by agr, increase the ability of CoNS to persist in a hospital environment. It may be more prudent, when searching for new therapeutic targets, to focus on ubiquitous components of CoNS instead of putative virulence factors that do not clearly contribute to increased invasive capacity.
Collapse
Affiliation(s)
- C Klingenberg
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Schlag S, Nerz C, Birkenstock TA, Altenberend F, Götz F. Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol 2007; 189:7911-9. [PMID: 17720780 PMCID: PMC2168742 DOI: 10.1128/jb.00598-07] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several environmental stresses have been demonstrated to increase polysaccharide intercellular adhesin (PIA) synthesis and biofilm formation by the human pathogens Staphylococcus aureus and Staphylococcus epidermidis. In this study we characterized an adaptive response of S. aureus SA113 to nitrite-induced stress and show that it involves concomitant impairment of PIA synthesis and biofilm formation. Transcriptional analysis provided evidence that nitrite, either as the endogenous product of respiratory nitrate reduction or after external addition, causes repression of the icaADBC gene cluster, mediated likely by IcaR. Comparative microarray analysis revealed a global change in gene expression during growth in the presence of 5 mM sodium nitrite and indicated a response to oxidative and nitrosative stress. Many nitrite-induced genes are involved in DNA repair, detoxification of reactive oxygen and nitrogen species, and iron homeostasis. Moreover, preformed biofilms could be eradicated by the addition of nitrite, likely the result of the formation of toxic acidified nitrite derivatives. Nitrite-mediated inhibition of S. aureus biofilm formation was abrogated by the addition of nitric oxide (NO) scavengers, suggesting that NO is directly or indirectly involved. Nitrite also repressed biofilm formation of S. epidermidis RP62A.
Collapse
Affiliation(s)
- Steffen Schlag
- Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
280
|
Frank KL, Patel R. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun 2007; 75:4728-42. [PMID: 17635864 PMCID: PMC2044555 DOI: 10.1128/iai.00640-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus lugdunensis is a pathogen of heightened virulence that causes infections resembling those caused by Staphylococcus aureus rather than those caused by its coagulase-negative staphylococcal counterparts. Many types of S. lugdunensis infection, including native valve endocarditis, prosthetic joint infection, and intravascular catheter-related infection, are associated with biofilm etiology. Poly-N-acetylglucosamine (PNAG), a polysaccharide synthesized by products of the icaADBC locus, is a common mechanism of intercellular adhesion in staphylococcal biofilms. Here we report the characterization of ica homologues and the in vitro biofilm formation properties of a collection of S. lugdunensis clinical isolates. Isolates formed biofilms in microtiter wells to various degrees. Biofilm formation by most isolates was enhanced with glucose but diminished by sodium chloride or ethanol. icaADBC homologues were found in all S. lugdunensis isolates tested, although the locus organization differed substantially from that of other staphylococcal ica loci. icaR was not detected in S. lugdunensis, but a novel open reading frame with putative glycosyl hydrolase function is located upstream of the ica locus. icaADBC sequence heterogeneity did not explain the variability in biofilm formation among isolates. PNAG was not detected in S. lugdunensis extracts by immunoblotting with an anti-deacetylated PNAG antibody or wheat germ agglutinin. Confocal microscopy with fluorescently labeled wheat germ agglutinin showed a paucity of PNAG in S. lugdunensis biofilms, but abundant extracellular protein was visualized with SYPRO Ruby staining. Biofilms were resistant to detachment by dispersin B and sodium metaperiodate but were susceptible to detachment by proteases. Despite the genetic presence of icaADBC homologues in S. lugdunensis isolates, PNAG is not a major component of the extracellular matrix of in vitro biofilms formed by this species. Our data suggest that the S. lugdunensis biofilm matrix contains proteinaceous factors.
Collapse
Affiliation(s)
- Kristi L Frank
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
281
|
Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 2007; 75:125-32. [PMID: 17221196 DOI: 10.1007/s00253-006-0790-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 11/28/2022]
Abstract
Bacterial infections are serious complications after orthopaedic implant surgery. Staphylococci, with Staphylococcus epidermidis as a leading species, are the prevalent and most important species involved in orthopaedic implant-related infections. The biofilm mode of growth of these bacteria on an implant surface protects the organisms from the host's immune system and from antibiotic therapy. Therapeutic agents that disintegrate the biofilm matrix would release planktonic cells into the environment and therefore allow antibiotics to eliminate the bacteria. An addition of a biofilm-degrading agent to a solution used for washing-draining procedures of infected orthopaedic implants would greatly improve the efficiency of the procedure and thus help to avoid the removal of the implant. We have previously shown that the extracellular staphylococcal matrix consists of a poly-N-acetylglucosamine (PNAG), extracellular teichoic acids (TAs) and protein components. In this study, we accessed the sensitivity of pre-formed biofilms of five clinical staphylococcal strains associated with orthopaedic prosthesis infections and with known compositions of the biofilm matrix to periodate, Pectinex Ultra SP, proteinase K, trypsin, pancreatin and dispersin B, an enzyme with a PNAG-hydrolysing activity. We also tested the effect of these agents on the purified carbohydrate components of staphylococcal biofilms, PNAG and TA. We found that the enzymatic detachment of staphylococcal biofilms depends on the nature of their constituents and varies between the clinical isolates. We suggest that a treatment with dispersin B followed by a protease (proteinase K or trypsin) could be capable to eradicate biofilms of a variety of staphylococcal strains on inert surfaces.
Collapse
Affiliation(s)
- P Chaignon
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral-Côte d'Opale, Bassin Napoléon, BP 120, 62327, Boulogne-sur-Mer Cedex, France
| | | | | | | | | | | |
Collapse
|
282
|
Al Laham N, Rohde H, Sander G, Fischer A, Hussain M, Heilmann C, Mack D, Proctor R, Peters G, Becker K, von Eiff C. Augmented expression of polysaccharide intercellular adhesin in a defined Staphylococcus epidermidis mutant with the small-colony-variant phenotype. J Bacteriol 2007; 189:4494-501. [PMID: 17449620 PMCID: PMC1913365 DOI: 10.1128/jb.00160-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
While coagulase-negative staphylococci (CoNS), with their ability to form a thick, multilayered biofilm on foreign bodies, have been identified as the major cause of implant-associated infections, no data are available about biofilm formation by staphylococcal small-colony variants (SCVs). In the past years, a number of device-associated infections due to staphylococcal SCVs were described, among them, several pacemaker infections due to SCVs of CoNS auxotrophic to hemin. To test the characteristics of SCVs of CoNS, in particular, to study the ability of SCVs to form a biofilm on foreign bodies, we generated a stable mutant in electron transport by interrupting one of the hemin biosynthetic genes, hemB, in Staphylococcus epidermidis. In fact, this mutant displayed a stable SCV phenotype with tiny colonies showing strong adhesion to the agar surface. When the incubation time was extended to 48 h or a higher inoculum concentration was used, the mutant produced biofilm amounts on polystyrene similar to those produced by the parent strain. When grown under planktonic conditions, the mutant formed markedly larger cell clusters than the parental strain which were completely disintegrated by the specific beta-1,6-hexosaminidase dispersin B but were resistant to trypsin treatment. In a dot blot assay, the mutant expressed larger amounts of polysaccharide intercellular adhesin (PIA) than the parent strain. In conclusion, interrupting a hemin biosynthetic gene in S. epidermidis resulted in an SCV phenotype. Markedly larger cell clusters and the ability of the hemB mutant to form a biofilm are related to the augmented expression of PIA.
Collapse
Affiliation(s)
- Nahed Al Laham
- Institute of Medical Microbiology, University Hospital of Münster, Domagkstr. 10, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Hennig S, Nyunt Wai S, Ziebuhr W. Spontaneous switch to PIA-independent biofilm formation in an ica-positive Staphylococcus epidermidis isolate. Int J Med Microbiol 2007; 297:117-22. [PMID: 17292669 DOI: 10.1016/j.ijmm.2006.12.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/21/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022] Open
Abstract
The ability to form biofilms on abiotic surfaces is considered a major step in Staphylococcus epidermidis pathogenesis. In the majority of isolates, biofilm formation is mediated by the production of the polysaccharide intercellular adhesin PIA which is synthesized by enzymes encoded by the ica operon. Here, we report on a spontaneous switch to proteinaceous biofilm formation in an S. epidermidis icaC::IS256 insertion mutant. Atomic force microscopy analysis of both PIA-dependent and proteinaceous biofilm revealed remarkable differences in biofilm substructures: the PIA-dependent biofilm was characterized by the presence of fibrous, net-like structures which were absent in proteinaceous biofilm. Transcription of aap, encoding the accumulation-associated protein Aap, was enhanced in a variant producing proteinaceous biofilm, while transcription of the Bap-homologous protein gene bhp was down-regulated. Regulation of PIA-independent biofilm differed from the wild type. Thus, ethanol induced proteinaceous biofilm formation, whereas NaCl abolished PIA-independent biofilm formation completely. The combined data indicate that biofilm formation in S. epidermidis is obviously ensured by more than one mechanism suggesting that this life style represents a crucial factor for this organism.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Biofilms/drug effects
- Biofilms/growth & development
- DNA Transposable Elements
- Ethanol/pharmacology
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Microscopy, Atomic Force
- Mutagenesis, Insertional
- Polysaccharides, Bacterial/biosynthesis
- Polysaccharides, Bacterial/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sodium Chloride/pharmacology
- Staphylococcus epidermidis/drug effects
- Staphylococcus epidermidis/genetics
- Staphylococcus epidermidis/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Susanne Hennig
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | |
Collapse
|
284
|
Qin Z, Yang X, Yang L, Jiang J, Ou Y, Molin S, Qu D. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol 2007; 56:83-93. [PMID: 17172522 DOI: 10.1099/jmm.0.46799-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coagulase-negative Staphylococcus epidermidis has become the leading cause of foreign-body infections due to its biofilm formation on all kinds of medical-device surfaces. The biofilm development of S. epidermidis includes two steps: the initial attachment phase and the accumulative phase. In the accumulative phase, the polysaccharide intercellular adhesin (PIA), encoded by the icaADBC locus, is the major component mediating intercellular adhesion. However, recent studies have revealed the emergence of biofilm-positive/ica-negative staphylococcal clinical isolates. In this report, two ica-negative S. epidermidis clinical strains, SE1 and SE4, exhibited their heterogeneity in biofilm architecture under static and flow conditions, compared with the biofilm-positive/ica-positive RP62A strain. Strains with this type of absence of PIA from biofilms also displayed intermediate resistance to vancomycin. More importantly, the cells of both SE1 and SE4 strains were more tolerant than those of RP62A to exposure to lysostaphin and vancomycin. Based on the results, it is suggested that the biofilm-positive/ica-negative strain represents a newly emergent subpopulation of S. epidermidis clinical strains, arising from selection by antibiotics in the nosocomial milieu, which displays a survival advantage in its host environment. Recent epidemiological data support this suggestion, by showing a tendency towards an increasing proportion of this subpopulation in staphylococci-associated infections.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Medical School of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaomei Yang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Medical School of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lei Yang
- Infection Microbiology Group, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Juan Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Medical School of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanzhu Ou
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Medical School of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Soeren Molin
- Infection Microbiology Group, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Medical School of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
285
|
O'Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, O'Gara JP. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 2007; 45:1379-88. [PMID: 17329452 PMCID: PMC1865887 DOI: 10.1128/jcm.02280-06] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Production of icaADBC-encoded polysaccharide intercellular adhesin, or poly-N-acetylglucosamine (PIA/PNAG), represents an important biofilm mechanism in staphylococci. We previously described a glucose-induced, ica-independent biofilm mechanism in four methicillin-resistant Staphylococcus aureus (MRSA) isolates. Here, biofilm regulation by NaCl and glucose was characterized in 114 MRSA and 98 methicillin-sensitive S. aureus (MSSA) isolates from diagnosed device-related infections. NaCl-induced biofilm development was significantly more prevalent among MSSA than MRSA isolates, and this association was independent of the isolate's genetic background as assessed by spa sequence typing. Among MSSA isolates, PIA/PNAG production correlated with biofilm development in NaCl, whereas in MRSA isolates grown in NaCl or glucose, PIA/PNAG production was not detected even though icaADBC was transcribed and regulated. Glucose-induced biofilm in MRSA was ica independent and apparently mediated by a protein adhesin(s). Experiments performed with strains that were amenable to genetic manipulation revealed that deletion of icaADBC had no effect on biofilm in a further six MRSA isolates but abolished biofilm in four MSSA isolates. Mutation of sarA abolished biofilm in seven MRSA and eight MSSA isolates. In contrast, mutation of agr in 13 MRSA and 8 MSSA isolates substantially increased biofilm (more than twofold) in only 5 of 21 (23%) isolates and had no significant impact on biofilm in the remaining 16 isolates. We conclude that biofilm development in MRSA is ica independent and involves a protein adhesin(s) regulated by SarA and Agr, whereas SarA-regulated PIA/PNAG plays a more important role in MSSA biofilm development.
Collapse
Affiliation(s)
- Eoghan O'Neill
- UCD School of Biomolecular and Biomedical Science, Ardmore House, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
286
|
Banner MA, Cunniffe JG, Macintosh RL, Foster TJ, Rohde H, Mack D, Hoyes E, Derrick J, Upton M, Handley PS. Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 2007; 189:2793-804. [PMID: 17277069 PMCID: PMC1855787 DOI: 10.1128/jb.00952-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is both a human skin commensal and an opportunistic pathogen, causing infections linked to implanted medical devices. This paper describes localized tufts of fibrillar appendages on a subpopulation (25%) of wild-type (WT) S. epidermidis NCTC 11047 cells. The fibrils (122.2 +/- 10.8 nm long) are usually in a lateral position on the cells. Fibrillar (Fib(+)) and nonfibrillar (Fib(-)) subpopulations were separated (enriched) by 34 sequential partitions of WT cells between a buffer phase and a hexadecane phase. Following enrichment, hydrophobic cells from the hexadecane phase comprised 70% Fib(+) cells and the less hydrophobic cells from the buffer phase entirely comprised Fib(-) cells. The Fib(+) and Fib(-) subpopulations did not revert on subculture (34 times) on solid medium. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell surface proteins from WT, Fib(+), and Fib(-) cells revealed two high-molecular-mass proteins (280 kDa and 230 kDa) on the WT and Fib(+) cells that were absent from the Fib(-) cells. Amino acid sequencing revealed that fragments of both the 280- and 230-kDa proteins had 100% identity to the accumulation-associated protein (Aap). Aap is known to cause biofilm formation if it is truncated by loss of the terminal A domain. Immunogold staining with anti-Aap antibodies labeled tuft fibrils of the WT and Fib(+) cells but not the cell surface of Fib(-) cells. The tufts were labeled with N-terminally directed antibodies (anti-A domain), showing that the fibrillar Aap was not truncated on the cell surface. Thus, the presence of full-length Aap correlated with the low biofilm-forming abilities of both WT and Fib(+) S. epidermidis NCTC 11047 populations. Reverse transcription-PCR showed that aap was transcribed in both Fib(+) and Fib(-) cells. We therefore propose that full-length Aap is expressed on cells of S. epidermidis NCTC 11047 as tufts of short fibrils and that fibril expression is regulated at a posttranscriptional level.
Collapse
Affiliation(s)
- Miriam A Banner
- Faculty of Life Sciences, 1.800 Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Petrelli D, Zampaloni C, D'Ercole S, Prenna M, Ballarini P, Ripa S, Vitali LA. Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. Eur J Clin Microbiol Infect Dis 2007; 25:773-81. [PMID: 17089093 DOI: 10.1007/s10096-006-0226-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to characterize clinical isolates of Staphylococcus epidermidis, one of the bacterial species most often implicated in foreign-body-associated infections, for their ability to form biofilms and for the presence of mecA and IS256 element. Sixty-seven Staphylococcus epidermidis clinical isolates, obtained from implantable medical devices, were investigated. Overall, 70% of the strains were positive for ica operon genes, 85% possessed atlE, and 46% contained aap. In 89% of the population, the Congo red agar test confirmed the correlation between the presence of ica genes and slime expression. Almost all of the strains could be classified as biofilm producers by both the crystal violet assay and microscopy. The bacterial population studied showed a very high frequency of strains positive for mecA as well as for the IS256 element. Although well-structured biofilms have been previously observed only in those strains possessing genes belonging to the ica operon, this study demonstrates that strains lacking specific biofilm-formation determinants can be isolated from catheters and can form a biofilm in vitro. Hence, different and yet-to-be identified factors may work together in the formation and organization of complex staphylococcal microbial communities and sustain infections associated with implanted medical devices.
Collapse
Affiliation(s)
- D Petrelli
- Department of Molecular, Cellular, and Animal Biology, University of Camerino, via F. Camerini 2, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
288
|
Monk AB, Archer GL. Use of outer surface protein repeat regions for improved genotyping of Staphylococcus epidermidis. J Clin Microbiol 2007; 45:730-5. [PMID: 17202277 PMCID: PMC1829099 DOI: 10.1128/jcm.02317-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is an important nosocomial pathogen, but little is known of its epidemiology. Accurate, reproducible typing systems would greatly improve epidemiologic investigations of S. epidermidis. The sequence-based typing technique most recently evaluated, multilocus sequence typing (MLST), often lacks discrimination and can be expensive. PCR and sequence-based analyses of the serine-aspartate repeat region of sdrG (Fbe) and the repeat region of the accumulation-associated protein gene (aap) were evaluated for the ability to discriminate among previously well-characterized S. epidermidis clinical isolates. Forty-eight strains were investigated, with sdrG found in 100% and aap found in 79% of all strains tested. Both genes demonstrated PCR product size and nucleotide sequence variation. Each system by itself gave an index of discrimination similar in value to that of MLST (0.924 and 0.953 compared to 0.96), but discrimination was further improved when combinations of the three systems were used. We conclude that typing systems using amino acid and nucleotide repeat regions of the S. epidermidis surface proteins SdrG and Aap show promise as typing tools and should be investigated using a larger panel of clinically relevant isolates.
Collapse
Affiliation(s)
- Alastair B Monk
- Division of Infectious Diseases, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | |
Collapse
|
289
|
Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, Knobloch JKM, Ragunath C, Kaplan JB, Mack D. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2006; 28:1711-20. [PMID: 17187854 DOI: 10.1016/j.biomaterials.2006.11.046] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/29/2006] [Indexed: 12/20/2022]
Abstract
Nosocomial staphylococcal foreign-body infections related to biofilm formation are a serious threat, demanding new therapeutic and preventive strategies. As the use of biofilm-associated factors as vaccines is critically restricted by their prevalence in natural staphylococcal populations we studied the distribution of genes involved in biofilm formation, the biofilm phenotype and production of polysaccharide intercellular adhesin (PIA) in clonally independent Staphylococcus aureus and Staphylococcus epidermidis strains isolated from prosthetic joint infections after total hip or total knee arthroplasty. Biofilm formation was detected in all S. aureus and 69.2% of S. epidermidis strains. Importantly, 27% of biofilm-positive S. epidermidis produced PIA-independent biofilms, in part mediated by the accumulation associated protein (Aap). Protein-dependent biofilms were exclusively found in S. epidermidis strains from total hip arthroplasty (THA). In S. aureus PIA and proteins act cooperatively in biofilm formation regardless of the infection site. PIA and protein factors like Aap are of differential importance for the pathogenesis of S. epidermidis in prosthetic joint infections (PJI) after THA and total knee arthroplasty (TKA), implicating that icaADBC cannot serve as a general virulence marker in this species. In S. aureus biofilm formation proteins are of overall importance and future work should focus on the identification of functionally active molecules.
Collapse
Affiliation(s)
- Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Tu Quoc PH, Genevaux P, Pajunen M, Savilahti H, Georgopoulos C, Schrenzel J, Kelley WL. Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 2006; 75:1079-88. [PMID: 17158901 PMCID: PMC1828571 DOI: 10.1128/iai.01143-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus produces biofilm and this mode of colonization facilitates infections that are often difficult to treat and engender high morbidity and mortality. We have exploited bacteriophage Mu transposition methods to create an insertional mutant library in a highly biofilm-forming S. aureus clinical isolate. Our screen identified 38 insertions in 23 distinct genes together with one intergenic region that significantly reduced biofilm formation. Nineteen insertions were mapped in loci not previously known to affect biofilm in this organism. These include insertions in codY, srrA, mgrA, and fmtA, a putative DEAD-box helicase, two members of the zinc-metallo-beta lactamase/beta-CASP family, and a hypothetical protein with a GGDEF motif. Fifteen insertions occurred in the icaADBC operon, which produces intercellular adhesion antigen (PIA) and is important for biofilm formation in many strains of S. aureus and Staphylococcus epidermidis. Obtaining a high proportion of independent Em-Mu disruptions in icaADBC demonstrated both the importance of PIA for biofilm formation in this clinical strain and the strong validation of the screening procedure that concomitantly uncovered additional mutants. All non-ica mutants were further analyzed by immunoblotting and biochemical fractionation for perturbation of PIA and wall teichoic acid. PIA levels were diminished in the majority of non-ica insertional mutants. Three mutant strains were chosen and were functionally complemented for restored biofilm formation by transformation with plasmids carrying the cloned wild-type gene under the control of a xylose-inducible promoter. This is a comprehensive collection of biofilm-defective mutants that underscores the multifactorial genetic program underlying the establishment of biofilm in this insidious pathogen.
Collapse
Affiliation(s)
- Patrick H Tu Quoc
- Division of Infectious Diseases, University Hospital of Geneva, 24 rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | | | |
Collapse
|
291
|
Broekhuizen CAN, de Boer L, Schipper K, Jones CD, Quadir S, Feldman RG, Dankert J, Vandenbroucke-Grauls CMJE, Weening JJ, Zaat SAJ. Peri-implant tissue is an important niche for Staphylococcus epidermidis in experimental biomaterial-associated infection in mice. Infect Immun 2006; 75:1129-36. [PMID: 17158900 PMCID: PMC1828560 DOI: 10.1128/iai.01262-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomaterial-associated infections (BAI), which are predominantly caused by Staphylococcus epidermidis, are a significant problem in modern medicine. Biofilm formation is considered the pivotal element in the pathogenesis, but in previous mouse studies we retrieved S. epidermidis from peri-implant tissue. To assess the kinetics and generality of tissue colonization, we investigated BAI using two S. epidermidis strains, two biomaterials, and two mouse strains. With small inocula all implants were culture negative, whereas surrounding tissues were positive. When higher doses were used, tissues were culture positive more often than implants, with higher numbers of CFU. This was true for the different biomaterials tested, for both S. epidermidis strains, at different times, and for both mouse strains. S. epidermidis colocalized with host cells at a distance that was >10 cell layers from the biomaterial-tissue interface. We concluded that in mouse experimental BAI S. epidermidis peri-implant tissue colonization is more important than biofilm formation.
Collapse
Affiliation(s)
- Corine A N Broekhuizen
- Department of Medical Microbiology, CINIMA (Center for Infection and Immunity Amsterdam), Academic Medical Center, Meibergdreef 15, L1-116, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA, Knobloch JKM. Biofilm formation in medical device-related infection. Int J Artif Organs 2006; 29:343-59. [PMID: 16705603 DOI: 10.1177/039139880602900404] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medical device-associated infections, most frequently caused by coagulase-negative staphylococci, especially Staphylococcus epidermidis, are of increasing importance in modern medicine. Regularly, antimicrobial therapy fails without removal of the implanted device. The most important factor in the pathogenesis of medical device-associated staphylococcal infections is the formation of adherent, multilayered bacterial biofilms. There is urgent need for an increased understanding of the functional factors involved in biofilm formation, the regulation of their expression, and the interaction of those potential virulence factors in device related infection with the host. Significant progress has been made in recent years which may ultimately lead to new rational approaches for better preventive, therapeutic, and diagnostic measures.
Collapse
Affiliation(s)
- D Mack
- Medical Microbiology and Infectious Diseases, The School of Medicine, University of Wales Swansea, Swansea, UK.
| | | | | | | | | | | |
Collapse
|
293
|
Sibbald MJJB, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJM, Raangs GC, Stokroos I, Arends JP, Dubois JYF, van Dijl JM. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 2006; 70:755-88. [PMID: 16959968 PMCID: PMC1594592 DOI: 10.1128/mmbr.00008-06] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gram-positive bacterium Staphylococcus aureus is a frequent component of the human microbial flora that can turn into a dangerous pathogen. As such, this organism is capable of infecting almost every tissue and organ system in the human body. It does so by actively exporting a variety of virulence factors to the cell surface and extracellular milieu. Upon reaching their respective destinations, these virulence factors have pivotal roles in the colonization and subversion of the human host. It is therefore of major importance to obtain a clear understanding of the protein transport pathways that are active in S. aureus. The present review aims to provide a state-of-the-art roadmap of staphylococcal secretomes, which include both protein transport pathways and the extracytoplasmic proteins of these organisms. Specifically, an overview is presented of the exported virulence factors, pathways for protein transport, signals for cellular protein retention or secretion, and the exoproteomes of different S. aureus isolates. The focus is on S. aureus, but comparisons with Staphylococcus epidermidis and other gram-positive bacteria, such as Bacillus subtilis, are included where appropriate. Importantly, the results of genomic and proteomic studies on S. aureus secretomes are integrated through a comparative "secretomics" approach, resulting in the first definition of the core and variant secretomes of this bacterium. While the core secretome seems to be largely employed for general housekeeping functions which are necessary to thrive in particular niches provided by the human host, the variant secretome seems to contain the "gadgets" that S. aureus needs to conquer these well-protected niches.
Collapse
Affiliation(s)
- M J J B Sibbald
- Department of Medical Microbiology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Venkatesh MP, Placencia F, Weisman LE. Coagulase-negative staphylococcal infections in the neonate and child: an update. ACTA ACUST UNITED AC 2006; 17:120-7. [PMID: 16934706 DOI: 10.1053/j.spid.2006.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Coagulase-negative staphylococcus (CONS) infection is the most common bloodstream infection treated in neonatal and pediatric intensive care units and significantly impacts patient mortality and morbidity. Staphylococcus epidermidis is the most common CONS species isolated clinically and investigated for its pathogenicity and virulence. Difficulties exist in the differentiation of CONS infection from culture contamination in clinical specimens, as CONS is a common skin commensal. Most CONS isolates have the mecA gene and exhibit beta-lactam resistance. The glycopeptide antibiotics, such as vancomycin, are the mainstay in therapy, although resistance has been reported. Arbekacin, linezolid, and streptogramins are newer antibiotics being evaluated as alternatives to glycopeptides. Monoclonal and polyclonal antibodies have been developed against the cell-wall components of staphylococcus and may hold promise for immune prophylaxis and treatment of CONS infection.
Collapse
Affiliation(s)
- Mohan P Venkatesh
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2300, USA
| | | | | |
Collapse
|
295
|
Mack D, Davies AP, Harris LG, Rohde H, Horstkotte MA, Knobloch JKM. Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem 2006; 387:399-408. [PMID: 16955256 DOI: 10.1007/s00216-006-0745-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/03/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Medical device-associated infections, most frequently caused by coagulase-negative staphylococci, especially Staphylococcus epidermidis, are of increasing importance in modern medicine. The formation of adherent, multilayered bacterial biofilms is the most important factor in the pathogenesis of these infections, which regularly fail to respond to appropriate antimicrobial therapy. Progress in elucidating the factors functional in elaboration of S. epidermidis biofilms and the regulation of their expression with a special emphasis on the role of quorum sensing are reviewed. Significant progress has been made in recent years, which provides the rationale for developing better preventive, therapeutic and diagnostic measures.
Collapse
Affiliation(s)
- Dietrich Mack
- Medical Microbiology and Infectious Diseases, The School of Medicine, Swansea University, Grove Building, Singleton Park, Swansea, SA2 8PP, UK.
| | | | | | | | | | | |
Collapse
|
296
|
Harvey J, Keenan KP, Gilmour A. Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol 2006; 24:380-92. [PMID: 17189764 DOI: 10.1016/j.fm.2006.06.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/16/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
When a microtitre plate assay was used to quantify biofilm production by Listeria monocytogenes strains following growth in Tryptone Soy Broth (TSB) for 48 h at 20 degrees C, 127 of 138 strains (92.0%) were classified as weak, 9 of 138 strains (6.5%) as moderate and only 2 of 138 strains (1.5%) as strong biofilm formers. The strains included environmental, animal, food (persistent and sporadic strains) and clinical isolates previously typed using esterase electrophoresis (ESE) and multi-locus enzyme electrophoresis (MEE). Strains from different sources produced similar quantities of biofilm, whereas biofilm production by ESE type II strains, irrespective of source, was greater than that observed for other ESE types. No correlation between MEE type and biofilm production was observed. A Petri dish assay which allowed parallel quantification and microscopic examination of biofilms was used to examine biofilm formation by selected L. monocytogenes strains during growth in TSB for 14 days at 20 degrees C. Results from these assays showed that following prolonged incubation, some L. monocytogenes strains categorized as weak biofilm formers by the 48 h microtitre assay, were able to form biofilms similar in terms of quantity and structure to those produced by strains classified as strong or medium biofilm formers. Results from 14-day Petri dish assays confirmed 48 h microtitre assays regarding greater biofilm production by ESE type II strains compared to other ESE types of L. monocytogenes. Biofilm production was similar for ESE type II persistent and sporadic food isolates but reduced for ESE type II clinical strains.
Collapse
Affiliation(s)
- J Harvey
- Agriculture, Food & Environmental Science Division (Food Microbiology Branch), Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, Northern Ireland
| | | | | |
Collapse
|
297
|
Batzilla CF, Rachid S, Engelmann S, Hecker M, Hacker J, Ziebuhr W. Impact of the accessory gene regulatory system (Agr) on extracellular proteins, codY expression and amino acid metabolism in Staphylococcus epidermidis. Proteomics 2006; 6:3602-13. [PMID: 16691552 DOI: 10.1002/pmic.200500732] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The quorum-sensing system Agr is part of a complex regulatory network of gene expression in staphylococci. This study presents the effect of an agr mutation on a biofilm-forming Staphylococcus epidermidis isolate by employing proteome and transcriptome analysis. The agr mutant exhibited a significantly lowered amount of extracellular proteins: amongst others SspA, AtlE, GehD and the phenol soluble modulins PSM1/2. Cytoplasmic proteome analysis and expression profiling indicated that the agr inactivation led to a strongly altered regulation of metabolism and virulence. Most strikingly, expression of CodY, a global regulator of virulence and stationary phase gene expression, was decreased in the agr mutant. In this respect, homologous genes known to be controlled by CodY in Bacillus subtilis and Lactococcus lactis were found to be up-regulated in the S. epidermidis agr mutant. The combined data show that wild-type and agr mutant differ with respect to amino acid biosynthesis and oligopeptide transport, carbohydrate utilization, as well as GMP and IMP interconversion. Due to the varying physiological properties S. epidermidis agr mutants, which often occur spontaneously, might be capable of colonizing alternative ecological niches in the human host and could, therefore, have an advantage in adapting to changing environmental conditions.
Collapse
|
298
|
Ziebuhr W, Hennig S, Eckart M, Kränzler H, Batzilla C, Kozitskaya S. Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents 2006; 28 Suppl 1:S14-20. [PMID: 16829054 DOI: 10.1016/j.ijantimicag.2006.05.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Staphylococcus epidermidis is a commensal bacterium of the human skin. However, S. epidermidis and other coagulase-negative staphylococci (CNS) emerge also as common nosocomial pathogens infecting immunocompromized patients carrying medical devices. Antibiotic resistance and the ability of many nosocomial S. epidermidis isolates to form biofilms on inert surfaces make these infections hard to treat. Epidemiological analyses using multilocus sequence typing (MLST) and genetic studies suggest that S. epidermidis isolates in the hospital environment differ from those obtained outside of medical facilities with respect to biofilm formation, antibiotic resistance, and the presence of mobile DNA elements. Since S. epidermidis isolates exhibit high genome flexibility, they are now regarded as reservoirs for the evolution and spread of resistance traits within nosocomial bacterial communities.
Collapse
Affiliation(s)
- Wilma Ziebuhr
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
299
|
Resch A, Leicht S, Saric M, Pásztor L, Jakob A, Götz F, Nordheim A. Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 2006; 6:1867-77. [PMID: 16470655 DOI: 10.1002/pmic.200500531] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathogenic staphylococci can form biofilms in which they show a higher resistance to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have an altered metabolic activity. Here, 2-D PAGE was used to identify secreted, cell wall-associated and cytoplasmic proteins expressed in Staphylococcus aureus after 8 and 48 h of growth. The proteins were separated at pH ranges of 4-7 or 6-11. The protein patterns revealed significant differences in 427 protein spots; from these, 258 non-redundant proteins were identified using ESI-MS/MS. Biofilm cells expressed higher levels of proteins associated with cell attachment and peptidoglycan synthesis, and in particular fibrinogen-binding proteins. Enzymes involved in pyruvate and formate metabolism were upregulated. Furthermore, biofilm cells expressed more staphylococcal accessory regulator A protein (SarA), which corroborates the positive effect of SarA on the expression of the intercellular adhesion operon ica and biofilm growth. In contrast, proteins, such as proteases and particularly immunodominant antigen A (IsaA) and staphylococcal secretory antigen (SsaA), were found in lower amounts. The RNA expression profiling largely supports the proteomic data. The results were mapped onto KEGG pathways.
Collapse
Affiliation(s)
- Alexandra Resch
- Mikrobielle Genetik, Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
300
|
Pathogenesis of staphylococcal device-related infections: from basic science to new diagnostic, therapeutic and prophylactic approaches. ACTA ACUST UNITED AC 2006. [DOI: 10.1097/01.revmedmi.0000244134.43170.83] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|