251
|
Marlin E, Viu-Idocin C, Arrasate M, Aragón T. The Role and Therapeutic Potential of the Integrated Stress Response in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23147823. [PMID: 35887167 PMCID: PMC9321386 DOI: 10.3390/ijms23147823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS) patients, loss of cellular homeostasis within cortical and spinal cord motor neurons triggers the activation of the integrated stress response (ISR), an intracellular signaling pathway that remodels translation and promotes a gene expression program aimed at coping with stress. Beyond its neuroprotective role, under regimes of chronic or excessive stress, ISR can also promote cell/neuronal death. Given the two-edged sword nature of ISR, many experimental attempts have tried to establish the therapeutic potential of ISR enhancement or inhibition in ALS. This review discusses the complex interplay between ISR and disease progression in different models of ALS, as well as the opportunities and limitations of ISR modulation in the hard quest to find an effective therapy for ALS.
Collapse
Affiliation(s)
- Elías Marlin
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | | | - Montserrat Arrasate
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| | - Tomás Aragón
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| |
Collapse
|
252
|
Qin N, Geng A, Xue R. Activated or Impaired: An Overview of DNA Repair in Neurodegenerative Diseases. Aging Dis 2022; 13:987-1004. [PMID: 35855336 PMCID: PMC9286913 DOI: 10.14336/ad.2021.1212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022] Open
Abstract
As the population ages, age-related neurodegenerative diseases have become a major challenge in health science. Currently, the pathology of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, is still not fully understood. Remarkably, emerging evidence indicates a role of genomic DNA damage and repair in various neurodegenerative disorders. Here, we summarized the current understanding of the function of DNA damage repair, especially base excision repair and double strand break repair pathways, in a variety of neurodegenerative diseases. We concluded that exacerbation of DNA lesions is found in almost all types of neurodegenerative diseases, whereas the activities of different DNA repair pathways demonstrate distinct trends, depending on disease type and even brain region. Specifically, key enzymes involved in base excision repair are likely impaired in Alzheimer's disease and amyotrophic lateral sclerosis but activated in Parkinson's disease, while nonhomologous end joining is likely downregulated in most types of neurodegenerative diseases. Hence, impairment of nonhomologous end joining is likely a common etiology for most neurodegenerative diseases, while defects in base excision repair are likely involved in the pathology of Alzheimer's disease and amyotrophic lateral sclerosis but are Parkinson's disease, based on current findings. Although there are still discrepancies and further studies are required to completely elucidate the exact roles of DNA repair in neurodegeneration, the current studies summarized here provide crucial insights into the pathology of neurodegenerative diseases and may reveal novel drug targets for corresponding neurodegenerative diseases.
Collapse
Affiliation(s)
- Nan Qin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
253
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
254
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
255
|
Jensen BK, McAvoy KJ, Heinsinger NM, Lepore AC, Ilieva H, Haeusler AR, Trotti D, Pasinelli P. Targeting TNFα produced by astrocytes expressing amyotrophic lateral sclerosis-linked mutant fused in sarcoma prevents neurodegeneration and motor dysfunction in mice. Glia 2022; 70:1426-1449. [PMID: 35474517 PMCID: PMC9540310 DOI: 10.1002/glia.24183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Kevin J. McAvoy
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Present address:
Manfredi LaboratoryWeill Cornell Medicine, Cornell UniversityNew YorkNYUSA
| | - Nicolette M. Heinsinger
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Angelo C. Lepore
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Hristelina Ilieva
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Aaron R. Haeusler
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
256
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease for which there is currently no robust therapy. Recent progress in understanding ALS disease mechanisms and genetics in combination with innovations in gene modulation strategies creates promising new options for the development of ALS therapies. In recent years, six gene modulation therapies have been tested in ALS patients. These target gain-of-function pathology of the most common ALS genes, SOD1, C9ORF72, FUS, and ATXN2, using adeno-associated virus (AAV)-mediated microRNAs and antisense oligonucleotides (ASOs). Here, we review the latest clinical and preclinical advances in gene modulation approaches for ALS, including gene silencing, gene correction, and gene augmentation. These techniques have the potential to positively impact the direction of future research trials and transform ALS treatments for this grave disease.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
257
|
Gene Therapy in Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11132066. [PMID: 35805149 PMCID: PMC9265980 DOI: 10.3390/cells11132066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since the discovery of Cu/Zn superoxide dismutase (SOD1) gene mutation, in 1993, as the first genetic abnormality in amyotrophic lateral sclerosis (ALS), over 50 genes have been identified as either cause or modifier in ALS and ALS/frontotemporal dementia (FTD) spectrum disease. Mutations in C9orf72, SOD1, TAR DNA binding protein 43 (TARDBP), and fused in sarcoma (FUS) genes are the four most common ones. During the last three decades, tremendous effort has been made worldwide to reveal biological pathways underlying the pathogenesis of these gene mutations in ALS/FTD. Accordingly, targeting etiologic genes (i.e., gene therapies) to suppress their toxic effects have been investigated widely. It includes four major strategies: (i) removal or inhibition of abnormal transcribed RNA using microRNA or antisense oligonucleotides (ASOs), (ii) degradation of abnormal mRNA using RNA interference (RNAi), (iii) decrease or inhibition of mutant proteins (e.g., using antibodies against misfolded proteins), and (iv) DNA genome editing with methods such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas). The promising results of these studies have led to the application of some of these strategies into ALS clinical trials, especially for C9orf72 and SOD1. In this paper, we will overview advances in gene therapy in ALS/FTD, focusing on C9orf72, SOD1, TARDBP, and FUS genes.
Collapse
|
258
|
Yoshida S. Therapeutic Strategies and Metal-Induced Oxidative Stress: Application of Synchrotron Radiation Microbeam to Amyotrophic Lateral Sclerosis in the Kii Peninsula of Japan. Front Neurol 2022; 13:884439. [PMID: 35837234 PMCID: PMC9273737 DOI: 10.3389/fneur.2022.884439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
A series of extensive gene-environment studies on amyotrophic lateral sclerosis (ALS) and Parkinsonism–dementia complex (PDC) in Guam Island, USA, and the Kii Peninsula of Japan, including Auyu Jakai, West New Guinea, have led us to hypothesize that a prolonged low calcium (Ca) and magnesium (Mg) intake, especially over generation, may cause oxidative stress to motor and nigral neurons by an increased uptake of environment metallic elements, i.e., aluminum (Al), manganese (Mn), and iron (Fe). Otherwise, 5–10% of total ALS cases are familial ALS (fALS), of which 20% of the fALS cases linked to a point mutation of Cu/Zn superoxide dismutase (SOD1). In the vicinity of the Kii Peninsula, about 7% of the ALS cases are also linked to the SOD1 mutation. Using synchrotron radiation (SR) microbeam, conglomerate inclusion (SOD1 aggregates) within a spinal motor neuron of the fALS case in the vicinity revealed a loss of copper (Cu) in contrast to extremely high contents of Zinc (Zn) and Ca. That means an exceptionally low Cu/Zn ratio with an increased Ca content, indicating the abnormalities of the active site of SOD1 protein of the fALS. Furthermore, sALS in the southernmost high incidence areas of the Kii Peninsula showed a low Cu/Zn ratio within a motor neuron, suggesting a fragility of SOD1 proteins. From the perspective of gene–environment interactions, the above two research trends may show a common oxidative stress underlying the neuronal degenerative process of ALS/PDC in the Kii Peninsula of Japan. Therefore, it is a crucial point for the prospect of therapeutic strategy to clarify a role of transition metals in the oxidative process in both ALS/PDC, including ALS elsewhere in the world. This paper reviews a history of the genetic epidemiological studies, especially from the aspect of gene–environment interaction, on ALS/PDC in the Kii and Guam high incidence foci and the results of a series of analytical research on trace metallic elements within neurons of both sALS and fALS cases, especially using a synchrotron radiation (SR) microbeam of Spring-8 and Photon Factory of Japan. The SR microbeam is an ideal X-ray source, which supplies an extremely high brilliance (high-intensity photon) and tunability (energy variability) to investigate trace metallic elements contained in biological specimens at the cellular level, even more without any damages. This research will provide a valuable information about the mechanism of oxidative stress involved in neuronal cell death in ALS and related neurodegenerative disorders. To elucidate the physicochemical mechanism of the oxidative process in neuronal degeneration, it will shed a new light on the therapeutic strategies for ALS/PDC in near future.
Collapse
|
259
|
Kishino Y, Matsukawa K, Matsumoto T, Miyazaki R, Wakabayashi T, Nonaka T, Kametani F, Hasegawa M, Hashimoto T, Iwatsubo T. Casein kinase 1δ/ε phosphorylates fused in sarcoma (FUS) and ameliorates FUS-mediated neurodegeneration. J Biol Chem 2022; 298:102191. [PMID: 35753345 PMCID: PMC9293781 DOI: 10.1016/j.jbc.2022.102191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant cytoplasmic accumulation of an RNA-binding protein, fused in sarcoma (FUS), characterizes the neuropathology of subtypes of ALS and frontotemporal lobar degeneration, although the effects of post-translational modifications of FUS, especially phosphorylation, on its neurotoxicity have not been fully characterized. Here, we show that casein kinase 1δ (CK1δ) phosphorylates FUS at 10 serine/threonine residues in vitro using mass spectrometric analyses. We also show that phosphorylation by CK1δ or CK1ε significantly increased the solubility of FUS in human embryonic kidney 293 cells. In transgenic Drosophila that overexpress wt or P525L ALS-mutant human FUS in the retina or in neurons, we found coexpression of human CK1δ or its Drosophila isologue Dco in the photoreceptor neurons significantly ameliorated the observed retinal degeneration, and neuronal coexpression of human CK1δ extended fly life span. Taken together, our data suggest a novel regulatory mechanism of the assembly and toxicity of FUS through CK1δ/CK1ε-mediated phosphorylation, which could represent a potential therapeutic target in FUS proteinopathies.
Collapse
Affiliation(s)
- Yuya Kishino
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Pathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Koji Matsukawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo
| | - Taisei Matsumoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo
| | - Ryota Miyazaki
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Fuyuki Kametani
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry; Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo.
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo.
| |
Collapse
|
260
|
Metabolic Dysfunction in Motor Neuron Disease: Shedding Light through the Lens of Autophagy. Metabolites 2022; 12:metabo12070574. [PMID: 35888698 PMCID: PMC9317837 DOI: 10.3390/metabo12070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) patients show a myriad of energetic abnormalities, such as weight loss, hypermetabolism, and dyslipidaemia. Evidence suggests that these indices correlate with and ultimately affect the duration of survival. This review aims to discuss ALS metabolic abnormalities in the context of autophagy, the primordial system acting at the cellular level for energy production during nutrient deficiency. As the primary pathway of protein degradation in eukaryotic cells, the fundamental role of cellular autophagy is the adaptation to metabolic demands. Therefore, autophagy is tightly coupled to cellular metabolism. We review evidence that the delicate balance between autophagy and metabolism is aberrant in ALS, giving rise to intracellular and systemic pathophysiology observations. Understanding the metabolism autophagy crosstalk can lead to the identification of novel therapeutic targets for ALS.
Collapse
|
261
|
Nelson RS, Dammer EB, Santiago JV, Seyfried NT, Rangaraju S. Brain Cell Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease Mechanisms. Front Neurosci 2022; 16:902146. [PMID: 35784845 PMCID: PMC9243337 DOI: 10.3389/fnins.2022.902146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (NDs) involve complex cellular mechanisms that are incompletely understood. Emerging findings have revealed that disruption of nuclear processes play key roles in ND pathogenesis. The nucleus is a nexus for gene regulation and cellular processes that together, may underlie pathomechanisms of NDs. Furthermore, many genetic risk factors for NDs encode proteins that are either present in the nucleus or are involved in nuclear processes (for example, RNA binding proteins, epigenetic regulators, or nuclear-cytoplasmic transport proteins). While recent advances in nuclear transcriptomics have been significant, studies of the nuclear proteome in brain have been relatively limited. We propose that a comprehensive analysis of nuclear proteomic alterations of various brain cell types in NDs may provide novel biological and therapeutic insights. This may be feasible because emerging technical advances allow isolation and investigation of intact nuclei from post-mortem frozen human brain tissue with cell type-specific and single-cell resolution. Accordingly, nuclei of various brain cell types harbor unique protein markers which can be used to isolate cell-type specific nuclei followed by down-stream proteomics by mass spectrometry. Here we review the literature providing a rationale for investigating proteomic changes occurring in nuclei in NDs and then highlight the potential for brain cell type-specific nuclear proteomics to enhance our understanding of distinct cellular mechanisms that drive ND pathogenesis.
Collapse
Affiliation(s)
- Ruth S. Nelson
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | | | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States,*Correspondence: Srikant Rangaraju
| |
Collapse
|
262
|
Azari A, Goodarzi A, Jafarkhani B, Eghbali M, Karimi Z, Hosseini Balef SS, Irannejad H. Novel molecular targets and mechanisms for neuroprotective modulation in neurodegenerative disorders. Cent Nerv Syst Agents Med Chem 2022; 22:88-107. [PMID: 35713146 DOI: 10.2174/1871524922666220616092132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuronal death underlies the symptoms of several human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis that their precise pathophysiology have not yet been elucidated. According to various studies the prohibition is the best therapy with neuroprotective approaches which are advanced and safe methods. METHODS This review summarizes some of the already-known and newly emerged neuroprotective targets and strategies that their experimental effects have been reported. Accordingly, literature was studied from 2000 to 2021 and appropriate articles were searched in Google Scholar and Scopus with the keywords given in the Keywords section of the current review. RESULTS Lewy bodies are the histopathologic characteristics of neurodegenerative disorders and are protein-rich intracellular deposits in which Alpha-Synuclein is its major protein. Alpha-Synuclein's toxic potential provides a compelling rationale for therapeutic strategies aimed at decreasing its burden in neuronal cells through numerous pathways including ubiquitin-proteasome system and autophagy-lysosome Pathway, proteolytic breakdown via cathepsin D, kallikrein-6 (neurosin), calpain-1 or MMP9, heat shock proteins, and proteolysis targeting chimera which consists of a target protein ligand and an E3 ubiquitin ligase (E3) followed by target protein ubiquitination (PROTACs). Other targets that have been noticed recently are the mutant huntingtin, tau proteins and glycogen synthase kinase 3β that their accumulation proceeds extensive neuronal damage and up to the minute approach such as Proteolysis Targeting Chimera promotes its degradation in cells. As various studies demonstrated that Mendelian gene mutations can result into the neurodegenerative diseases, additional target that has gained much interest is epigenetics such as mutation, phosphodiesterase, RNA binding proteins and Nuclear respiratory factor 1. CONCLUSION The novel molecular targets and new strategies compiled and introduced here can be used by scientists to design and discover more efficient small molecule drugs against the neurodegenerative diseases. And also the genes in which their mutations can lead to the α-synuclein aggregation or accumulation are discussed and considered a valuable information of epigenetics in dementia.
Collapse
Affiliation(s)
- Aala Azari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Goodarzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behrouz Jafarkhani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Karimi
- Department of Obstetrics & Gynecology, Imam Khomeini hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Sajad Hosseini Balef
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
263
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
264
|
Zhao C, Liao Y, Rahaman A, Kumar V. Towards Understanding the Relationship Between ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:892518. [PMID: 35783140 PMCID: PMC9248913 DOI: 10.3389/fnagi.2022.892518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Biological stress due to the aberrant buildup of misfolded/unfolded proteins in the endoplasmic reticulum (ER) is considered a key reason behind many human neurodegenerative diseases. Cells adapted to ER stress through the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by degeneration of the motor system. It has largely been known that ER stress plays an important role in the pathogenesis of ALS through the dysregulation of proteostasis. Moreover, accumulating evidence indicates that ER stress and UPR are important players in TDP-43 pathology. In this mini-review, the complex interplay between ER stress and the UPR in ALS and TDP-43 pathology will be explored by taking into account the studies from in vitro and in vivo models of ALS. We also discuss therapeutic strategies to control levels of ER stress and UPR signaling components that have contrasting effects on ALS pathogenesis.
Collapse
Affiliation(s)
- Chenxuan Zhao
- School of Engineering, College of Technology and Business, Guangzhou, China
| | - Yong Liao
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- *Correspondence: Yong Liao Vijay Kumar
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
- *Correspondence: Yong Liao Vijay Kumar
| |
Collapse
|
265
|
Johnson MA, Nuckols TA, Merino P, Bagchi P, Nandy S, Root J, Taylor G, Seyfried NT, Kukar T. Proximity-based labeling reveals DNA damage-induced phosphorylation of fused in sarcoma (FUS) causes distinct changes in the FUS protein interactome. J Biol Chem 2022; 298:102135. [PMID: 35709984 PMCID: PMC9372748 DOI: 10.1016/j.jbc.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/18/2023] Open
Abstract
Accumulation of cytoplasmic inclusions containing fused in sarcoma (FUS), an RNA/DNA-binding protein, is a common hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis neuropathology. We have previously shown that DNA damage can trigger the cytoplasmic accumulation of N-terminally phosphorylated FUS. However, the functional consequences of N-terminal FUS phosphorylation are unknown. To gain insight into this question, we utilized proximity-dependent biotin labeling via ascorbate peroxidase 2 aired with mass spectrometry to investigate whether N-terminal phosphorylation alters the FUS protein-protein interaction network (interactome), and subsequently, FUS function. We report the first analysis comparing the interactomes of three FUS variants: homeostatic wildtype FUS (FUS WT), phosphomimetic FUS (FUS PM; a proxy for N-terminally phosphorylated FUS), and the toxic FUS proline 525 to leucine mutant (FUS P525L) that causes juvenile amyotrophic lateral sclerosis. We found that the phosphomimetic FUS interactome is uniquely enriched for a group of cytoplasmic proteins that mediate mRNA metabolism and translation, as well as nuclear proteins involved in the spliceosome and DNA repair functions. Furthermore, we identified and validated the RNA-induced silencing complex RNA helicase MOV10 as a novel interacting partner of FUS. Finally, we provide functional evidence that N-terminally phosphorylated FUS may disrupt homeostatic translation and steady-state levels of specific mRNA transcripts. Taken together, these results highlight phosphorylation as a unique modulator of the interactome and function of FUS.
Collapse
Affiliation(s)
- Michelle A. Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas A. Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Srijita Nandy
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Georgia Taylor
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Biochemistry, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,For correspondence: Thomas Kukar
| |
Collapse
|
266
|
Gleixner AM, Verdone BM, Otte CG, Anderson EN, Ramesh N, Shapiro OR, Gale JR, Mauna JC, Mann JR, Copley KE, Daley EL, Ortega JA, Cicardi ME, Kiskinis E, Kofler J, Pandey UB, Trotti D, Donnelly CJ. NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 2022; 13:3380. [PMID: 35697676 PMCID: PMC9192689 DOI: 10.1038/s41467-022-31098-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/03/2022] [Indexed: 01/12/2023] Open
Abstract
A G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier. However, the relationship between FG nups and TDP-43 pathology remains elusive. Our studies show that nuclear depletion and cytoplasmic mislocalization of one FG nup, NUP62, is linked to TDP-43 mislocalization in C9-ALS/FTLD iPSC neurons. Poly-glycine arginine (GR) DPR accumulation initiates the formation of cytoplasmic RNA granules that recruit NUP62 and TDP-43. Cytoplasmic NUP62 and TDP-43 interactions promotes their insolubility and NUP62:TDP-43 inclusions are frequently found in C9orf72 ALS/FTLD as well as sporadic ALS/FTLD postmortem CNS tissue. Our findings indicate NUP62 cytoplasmic mislocalization contributes to TDP-43 proteinopathy in ALS/FTLD.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Brandie Morris Verdone
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charlton G Otte
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Olivia R Shapiro
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jacob R Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katie E Copley
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Elizabeth L Daley
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Juan A Ortega
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Elena Cicardi
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kofler
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Udai B Pandey
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davide Trotti
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
267
|
Koga S, Josephs KA, Aiba I, Yoshida M, Dickson DW. Neuropathology and emerging biomarkers in corticobasal syndrome. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328586. [PMID: 35697501 PMCID: PMC9380481 DOI: 10.1136/jnnp-2021-328586] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome characterised by progressive asymmetric limb rigidity and apraxia with dystonia, myoclonus, cortical sensory loss and alien limb phenomenon. Corticobasal degeneration (CBD) is one of the most common underlying pathologies of CBS, but other disorders, such as progressive supranuclear palsy (PSP), Alzheimer's disease (AD) and frontotemporal lobar degeneration with TDP-43 inclusions, are also associated with this syndrome.In this review, we describe common and rare neuropathological findings in CBS, including tauopathies, synucleinopathies, TDP-43 proteinopathies, fused in sarcoma proteinopathy, prion disease (Creutzfeldt-Jakob disease) and cerebrovascular disease, based on a narrative review of the literature and clinicopathological studies from two brain banks. Genetic mutations associated with CBS, including GRN and MAPT, are also reviewed. Clinicopathological studies on neurodegenerative disorders associated with CBS have shown that regardless of the underlying pathology, frontoparietal, as well as motor and premotor pathology is associated with CBS. Clinical features that can predict the underlying pathology of CBS remain unclear. Using AD-related biomarkers (ie, amyloid and tau positron emission tomography (PET) and fluid biomarkers), CBS caused by AD often can be differentiated from other causes of CBS. Tau PET may help distinguish AD from other tauopathies and non-tauopathies, but it remains challenging to differentiate non-AD tauopathies, especially PSP and CBD. Although the current clinical diagnostic criteria for CBS have suboptimal sensitivity and specificity, emerging biomarkers hold promise for future improvements in the diagnosis of underlying pathology in patients with CBS.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
268
|
Coyne AN, Rothstein JD. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat Rev Neurol 2022; 18:348-362. [PMID: 35488039 PMCID: PMC10015220 DOI: 10.1038/s41582-022-00653-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
269
|
Nakano J, Chiba K, Niwa S. An ALS-associated KIF5A mutant forms oligomers and aggregates and induces neuronal toxicity. Genes Cells 2022; 27:421-435. [PMID: 35430760 PMCID: PMC9322661 DOI: 10.1111/gtc.12936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
KIF5A is a kinesin superfamily motor protein that transports various cargos in neurons. Mutations in Kif5a cause familial amyotrophic lateral sclerosis (ALS). These ALS mutations are in the intron of Kif5a and induce mis-splicing of KIF5A mRNA, leading to splicing out of exon 27, which in human KIF5A encodes the cargo-binding tail domain of KIF5A. Therefore, it has been suggested that ALS is caused by loss of function of KIF5A. However, the precise mechanisms regarding how mutations in KIF5A cause ALS remain unclear. Here, we show that an ALS-associated mutant of KIF5A, KIF5A(Δexon27), is predisposed to form oligomers and aggregates in cultured mouse cell lines. Interestingly, purified KIF5A(Δexon27) oligomers showed more active movement on microtubules than wild-type KIF5A in vitro. Purified KIF5A(∆exon27) was prone to form aggregates in vitro. Moreover, KIF5A(Δexon27)-expressing Caenorhabditis elegans neurons showed morphological defects. These data collectively suggest that ALS-associated mutations of KIF5A are toxic gain-of-function mutations rather than simple loss-of-function mutations.
Collapse
Affiliation(s)
- Juri Nakano
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS)Tohoku UniversitySendaiMiyagiJapan
| | - Shinsuke Niwa
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS)Tohoku UniversitySendaiMiyagiJapan
| |
Collapse
|
270
|
Smukowski SN, Maioli H, Latimer CS, Bird TD, Jayadev S, Valdmanis PN. Progress in Amyotrophic Lateral Sclerosis Gene Discovery: Reflecting on Classic Approaches and Leveraging Emerging Technologies. Neurol Genet 2022; 8:e669. [PMID: 35620141 PMCID: PMC9128037 DOI: 10.1212/nxg.0000000000000669] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prominent motor neuron disease in humans. Its etiology consists of progressive motor neuron degeneration resulting in a rapid decline in motor function starting in the limbs or bulbar muscles and eventually fatally impairing central organs most typically resulting in loss of respiration. Pathogenic variants in 4 main genes, SOD1, TARDBP, FUS, and C9orf72, have been well characterized as causative for more than a decade now. However, these only account for a small fraction of all ALS cases. In this review, we highlight many additional variants that appear to be causative or confer increased risk for ALS, and we reflect on the technologies that have led to these discoveries. Next, we call attention to new challenges and opportunities for ALS and suggest next steps to increase our understanding of ALS genetics. Finally, we conclude with a synopsis of gene therapy paradigms and how increased understanding of ALS genetics can lead us to developing effective treatments. Ultimately, a consolidated update of the field can provide a launching point for researchers and clinicians to improve our search for ALS-related genes, defining pathogenic mechanisms, form diagnostics, and develop therapies.
Collapse
Affiliation(s)
- Samuel N Smukowski
- Division of Medical Genetics (S.N.S., T.D.B., S.J., P.N.V.), University of Washington School of Medicine; Department of Laboratory Medicine and Pathology (H.M., C.S.L.), University of Washington; Northwest Mental Illness Research (C.M.), Education and Clinical Centers, VA Puget Sound Health Care System; Department of Neurology (T.D.B., S.J.), University of Washington; and Geriatric Research Education and Clinical Center (T.B.), VA Puget Sound Health Care System, Seattle, WA
| | - Heather Maioli
- Division of Medical Genetics (S.N.S., T.D.B., S.J., P.N.V.), University of Washington School of Medicine; Department of Laboratory Medicine and Pathology (H.M., C.S.L.), University of Washington; Northwest Mental Illness Research (C.M.), Education and Clinical Centers, VA Puget Sound Health Care System; Department of Neurology (T.D.B., S.J.), University of Washington; and Geriatric Research Education and Clinical Center (T.B.), VA Puget Sound Health Care System, Seattle, WA
| | - Caitlin S Latimer
- Division of Medical Genetics (S.N.S., T.D.B., S.J., P.N.V.), University of Washington School of Medicine; Department of Laboratory Medicine and Pathology (H.M., C.S.L.), University of Washington; Northwest Mental Illness Research (C.M.), Education and Clinical Centers, VA Puget Sound Health Care System; Department of Neurology (T.D.B., S.J.), University of Washington; and Geriatric Research Education and Clinical Center (T.B.), VA Puget Sound Health Care System, Seattle, WA
| | - Thomas D Bird
- Division of Medical Genetics (S.N.S., T.D.B., S.J., P.N.V.), University of Washington School of Medicine; Department of Laboratory Medicine and Pathology (H.M., C.S.L.), University of Washington; Northwest Mental Illness Research (C.M.), Education and Clinical Centers, VA Puget Sound Health Care System; Department of Neurology (T.D.B., S.J.), University of Washington; and Geriatric Research Education and Clinical Center (T.B.), VA Puget Sound Health Care System, Seattle, WA
| | - Suman Jayadev
- Division of Medical Genetics (S.N.S., T.D.B., S.J., P.N.V.), University of Washington School of Medicine; Department of Laboratory Medicine and Pathology (H.M., C.S.L.), University of Washington; Northwest Mental Illness Research (C.M.), Education and Clinical Centers, VA Puget Sound Health Care System; Department of Neurology (T.D.B., S.J.), University of Washington; and Geriatric Research Education and Clinical Center (T.B.), VA Puget Sound Health Care System, Seattle, WA
| | - Paul N Valdmanis
- Division of Medical Genetics (S.N.S., T.D.B., S.J., P.N.V.), University of Washington School of Medicine; Department of Laboratory Medicine and Pathology (H.M., C.S.L.), University of Washington; Northwest Mental Illness Research (C.M.), Education and Clinical Centers, VA Puget Sound Health Care System; Department of Neurology (T.D.B., S.J.), University of Washington; and Geriatric Research Education and Clinical Center (T.B.), VA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
271
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
272
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
273
|
Ilaria M, Elisabetta Z, Viviana P, Cinzia G, Bryan J T, Giulia G, Adriano C, Jessica M. G507D mutation in FUS gene causes familial amyotrophic lateral sclerosis with a specific genotype-phenotype correlation. Neurobiol Aging 2022; 118:124-128. [DOI: 10.1016/j.neurobiolaging.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/17/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
|
274
|
Kim HJ, Mohassel P, Donkervoort S, Guo L, O'Donovan K, Coughlin M, Lornage X, Foulds N, Hammans SR, Foley AR, Fare CM, Ford AF, Ogasawara M, Sato A, Iida A, Munot P, Ambegaonkar G, Phadke R, O'Donovan DG, Buchert R, Grimmel M, Töpf A, Zaharieva IT, Brady L, Hu Y, Lloyd TE, Klein A, Steinlin M, Kuster A, Mercier S, Marcorelles P, Péréon Y, Fleurence E, Manzur A, Ennis S, Upstill-Goddard R, Bello L, Bertolin C, Pegoraro E, Salviati L, French CE, Shatillo A, Raymond FL, Haack TB, Quijano-Roy S, Böhm J, Nelson I, Stojkovic T, Evangelista T, Straub V, Romero NB, Laporte J, Muntoni F, Nishino I, Tarnopolsky MA, Shorter J, Bönnemann CG, Taylor JP. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun 2022; 13:2306. [PMID: 35484142 PMCID: PMC9050844 DOI: 10.1038/s41467-022-30015-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin β2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.
Collapse
Affiliation(s)
- Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Payam Mohassel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lin Guo
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Xaviere Lornage
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Nicola Foulds
- Wessex Clinical Genetics Services, Princess Anne Hospital, Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, England
| | - Simon R Hammans
- Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | - A Reghan Foley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Charlotte M Fare
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Alice F Ford
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | | | - Pinki Munot
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Gautam Ambegaonkar
- Department of Paediatric Neurology, Cambridge University Hospital NHS Trust, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Rahul Phadke
- Division of Neuropathology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery London, UK and Division of Neuropathology, UCL Institute of Neurology, Dubowitz Neuromuscular Centre, London, UK
| | - Dominic G O'Donovan
- Department of Histopathology Box 235, Level 5 John Bonnett Clinical Laboratories Addenbrooke's Hospital, Cambridge, UK
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Irina T Zaharieva
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Lauren Brady
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Ying Hu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea Klein
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Pediatric Neurology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alice Kuster
- Department of Neurometabolism, University Hospital of Nantes, Nantes, France
| | - Sandra Mercier
- CHU Nantes, Service de génétique médicale, Centre de Référence des Maladies Neuromusculaires AOC, 44000, Nantes, France
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Pascale Marcorelles
- Service d'anatomopathologie, CHU Brest and EA 4685 LIEN, Université de Bretagne Occidentale, Brest, France
| | - Yann Péréon
- CHU de Nantes, Centre de Référence des Maladies Neuromusculaires, Filnemus, Euro-NMD, Hôtel-Dieu, Nantes, France
| | - Emmanuelle Fleurence
- Etablissement de Santé pour Enfants et Adolescents de la région Nantaise, Nantes, France
| | - Adnan Manzur
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rosanna Upstill-Goddard
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Bello
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Cinzia Bertolin
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, IRP Città della Speranza, Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, CIR-Myo Myology Center, University of Padova, IRP Città della Speranza, Padova, Italy
| | | | - Andriy Shatillo
- Institute of Neurology, Psychiatry and Narcology of NAMS of Ukraine, Kharkiv, Ukraine
| | - F Lucy Raymond
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Susana Quijano-Roy
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Johann Böhm
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Isabelle Nelson
- Sorbonne Université, INSERM, Centre of Research in Myology, UMRS974, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Teresinha Evangelista
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Norma B Romero
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - James Shorter
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
275
|
Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int J Mol Sci 2022; 23:ijms23094824. [PMID: 35563214 PMCID: PMC9101723 DOI: 10.3390/ijms23094824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a revolutionary, cutting-edge approach to permanently ameliorate or amend many neuromuscular diseases by targeting their genetic origins. Motor neuron diseases and muscular dystrophies, whose genetic causes are well known, are the frontiers of this research revolution. Several genetic treatments, with diverse mechanisms of action and delivery methods, have been approved during the past decade and have demonstrated remarkable results. However, despite the high number of genetic treatments studied preclinically, those that have been advanced to clinical trials are significantly fewer. The most clinically advanced treatments include adeno-associated virus gene replacement therapy, antisense oligonucleotides, and RNA interference. This review provides a comprehensive overview of the advanced gene therapies for motor neuron diseases (i.e., amyotrophic lateral sclerosis and spinal muscular atrophy) and muscular dystrophies (i.e., Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and myotonic dystrophy) tested in clinical trials. Emphasis has been placed on those methods that are a few steps away from their authoritative approval.
Collapse
|
276
|
Yasuda K, Watanabe TM, Kang MG, Seo JK, Rhee HW, Tate SI. Valosin-containing protein (VCP) regulates the stability of fused in sarcoma (FUS) granules in cells by changing ATP concentrations. FEBS Lett 2022; 596:1412-1423. [PMID: 35445401 DOI: 10.1002/1873-3468.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/08/2022]
Abstract
Fused in sarcoma (FUS), a DNA/RNA-binding protein, undergoes liquid-liquid phase separation to form granules in cells. Aberrant FUS granulation is associated with neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We found that FUS granules contain a multifunctional AAA ATPase, valosin-containing protein (VCP), which is known as a key regulator of protein degradation. FUS granule stability depends on ATP concentrations in cells. VCP ATPase changes the FUS granule stability time-dependently by consuming ATP to reduce its concentrations in the granules: VCPs in de novo FUS granules stabilize the granules, while long-lasting VCP colocalization destabilizes the granules. The proteolysis-promoting function of VCP may subsequently dissolve the unstabilized granules. We propose that VCP colocalized to the FUS granules acts as a timer to limit the residence time of the granules in cells.
Collapse
Affiliation(s)
- Kyota Yasuda
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Minatomachi-Minami 2-2-3, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Myeong-Gyun Kang
- Department of Chemistry, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
277
|
Fiondella L, Cavallieri F, Canali E, Cabboi MP, Marti A, Sireci F, Fiocchi A, Montanari G, Montepietra S, Valzania F. Co-Occurrence of Multiple Sclerosis and Amyotrophic Lateral Sclerosis in an FUS-Mutated Patient: A Case Report. Brain Sci 2022; 12:brainsci12050531. [PMID: 35624917 PMCID: PMC9139033 DOI: 10.3390/brainsci12050531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
A concomitant presentation of relapsing remitting multiple sclerosis (RRMS) and amyotrophic lateral sclerosis (ALS) is quite rare. However, a review of the literature showed an increased co-occurrence of both diseases, including in genetically determined cases. We report the case of a 49-year-old woman with a history of RRMS who developed a progressive subacute loss of strength in her left arm. The patient’s father died from ALS, and her paternal uncle had Parkinson’s disease. Brain and cervical MRIs were performed, and new demyelinating lesions were excluded. Electromyography (EMG) of the upper limbs showed fibrillations and fasciculations in distal muscles of both arms. In the following months, the patient presented a progressive loss of strength in the proximal and distal muscles of the right arm and hyperreflexia in the lower limbs. EMG and central motor conduction were consistent with ALS. A genetic test was carried out, revealing a mutation in the FUS gene (exon 15; c. 1562 G>A). To our knowledge, the co-occurrence of MS and ALS in patients with FUS mutation is extremely rare. We hypothesize a common pathway for both diseases based on the possibility of a shared oligodendroglial dysfunction due to FUS mutation.
Collapse
Affiliation(s)
- Luigi Fiondella
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0522295569
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Canali
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
| | - Maria Paola Cabboi
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
| | - Alessandro Marti
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
| | - Francesca Sireci
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
| | - Alena Fiocchi
- Physical Medicine and Rehabilitation Unit, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Gloria Montanari
- Pneumology Unit, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Sara Montepietra
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (E.C.); (M.P.C.); (A.M.); (F.S.); (S.M.); (F.V.)
| |
Collapse
|
278
|
Nakaya T. A specific gene-splicing alteration in the SNRNP70 gene as a hallmark of an ALS subtype. Gene 2022; 818:146203. [PMID: 35101583 DOI: 10.1016/j.gene.2022.146203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) has been considered as one of the progressive neurodegenerative diseases. Numerous genetic factors in divergent molecular pathways have been identified as causative factors of ALS. However, the underlying molecular mechanism that causes this disease remains undetermined; as a result, this has driven the search to find consensus disease-specific hallmarks. In this study, we focused on the alteration of the ratio of two specific gene-splicing events in the SNRNP70 gene from RNA-seq data derived from patients with ALS and control subjects. The splicing profile was significantly and specifically changed in one previously identified ALS subtype. Conversely, the gene expression profile of other ALS cases containing a splicing alteration in the SNRNP70 gene was similar to that of the subtype, whereas ALS cases without this change have exhibited less similarity. These results indicate that this splicing event in the SNRNP70 gene could represent a novel and broadly applicable molecular hallmark of a subtype of ALS.
Collapse
Affiliation(s)
- Tadashi Nakaya
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan.
| |
Collapse
|
279
|
The pathogenesis of amyotrophic lateral sclerosis: Mitochondrial dysfunction, protein misfolding and epigenetics. Brain Res 2022; 1786:147904. [PMID: 35390335 DOI: 10.1016/j.brainres.2022.147904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with multiple complex mechanisms involved. Among them, mitochondrial dysfunction plays an important role in ALS. Multiple studies have shown that mitochondria are closely associated with reactive oxygen species production and oxidative stress and exhibit different functional states in different genetic backgrounds. In this review we explored the roles of Ca2+, autophagy, mitochondrial quality control in the regulation of mitochondrial homeostasis and their relationship with ALS. In addition, we also summarized and analyzed the roles of protein misfolding and abnormal aggregation in the pathogenesis of ALS. Moreover, we also discussed how epigenetic mechanisms such as DNA methylation and protein post-translational modification affect initiation and progression of ALS. Nevertheless, existing events still cannot fully explain the pathogenesis of ALS at present, more studies are required to explore pathological mechanisms of ALS.
Collapse
|
280
|
Disease Modeling of Rare Neurological Disorders in Zebrafish. Int J Mol Sci 2022; 23:ijms23073946. [PMID: 35409306 PMCID: PMC9000079 DOI: 10.3390/ijms23073946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are those which affect a small number of people compared to the general population. However, many patients with a rare disease remain undiagnosed, and a large majority of rare diseases still have no form of viable treatment. Approximately 40% of rare diseases include neurologic and neurodevelopmental disorders. In order to understand the characteristics of rare neurological disorders and identify causative genes, various model organisms have been utilized extensively. In this review, the characteristics of model organisms, such as roundworms, fruit flies, and zebrafish, are examined, with an emphasis on zebrafish disease modeling in rare neurological disorders.
Collapse
|
281
|
Martinez B, Peplow PV. MicroRNA expression in animal models of amyotrophic lateral sclerosis and potential therapeutic approaches. Neural Regen Res 2022; 17:728-740. [PMID: 34472458 PMCID: PMC8530133 DOI: 10.4103/1673-5374.322431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/03/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
A review of recent animal models of amyotrophic lateral sclerosis showed a large number of miRNAs had altered levels of expression in the brain and spinal cord, motor neurons of spinal cord and brainstem, and hypoglossal, facial, and red motor nuclei and were mostly upregulated. Among the miRNAs found to be upregulated in two of the studies were miR-21, miR-155, miR-125b, miR-146a, miR-124, miR-9, and miR-19b, while those downregulated in two of the studies included miR-146a, miR-29, miR-9, and miR-125b. A change of direction in miRNA expression occurred in some tissues when compared (e.g., miR-29b-3p in cerebellum and spinal cord of wobbler mice at 40 days), or at different disease stages (e.g., miR-200a in spinal cord of SOD1(G93A) mice at 95 days vs. 108 and 112 days). In the animal models, suppression of miR-129-5p resulted in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and tended to improve motor neuron survival in the SOD1(G93A) mouse model. Suppression of miR-155 was also associated with increased lifespan, while lowering of miR-29a tended to improve lifespan in males and increase muscle strength in SOD1(G93A) mice. Overexpression of members of miR-17~92 cluster improved motor neuron survival in SOD1(G93A) mice. Treatment with an artificial miRNA designed to target hSOD1 increased lifespan and improved muscle strength in SOD1(G93A) animals. Further studies with animal models of amyotrophic lateral sclerosis are warranted to validate these findings and identify specific miRNAs whose suppression or directed against hSOD1 results in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and improved motor neuron survival in SOD1(G93A) animals.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
282
|
Ondaro J, Hernandez-Eguiazu H, Garciandia-Arcelus M, Loera-Valencia R, Rodriguez-Gómez L, Jiménez-Zúñiga A, Goikolea J, Rodriguez-Rodriguez P, Ruiz-Martinez J, Moreno F, Lopez de Munain A, Holt IJ, Gil-Bea FJ, Gereñu G. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front Cell Dev Biol 2022; 10:836196. [PMID: 35419363 PMCID: PMC8996160 DOI: 10.3389/fcell.2022.836196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.
Collapse
Affiliation(s)
- Jon Ondaro
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Haizea Hernandez-Eguiazu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maddi Garciandia-Arcelus
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Loera-Valencia
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Laura Rodriguez-Gómez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrés Jiménez-Zúñiga
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julen Goikolea
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Javier Ruiz-Martinez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Adolfo Lopez de Munain
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Ian James Holt
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Francisco Javier Gil-Bea
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gorka Gereñu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), Leioa, Spain
| |
Collapse
|
283
|
van Bree EJ, Guimarães RLFP, Lundberg M, Blujdea ER, Rosenkrantz JL, White FTG, Poppinga J, Ferrer-Raventós P, Schneider AFE, Clayton I, Haussler D, Reinders MJT, Holstege H, Ewing AD, Moses C, Jacobs FMJ. A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci. Genome Res 2022; 32:656-670. [PMID: 35332097 PMCID: PMC8997352 DOI: 10.1101/gr.275515.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022]
Abstract
Genome-wide association studies (GWAS) have been highly informative in discovering disease-associated loci but are not designed to capture all structural variations in the human genome. Using long-read sequencing data, we discovered widespread structural variation within SINE-VNTR-Alu (SVA) elements, a class of great ape-specific transposable elements with gene-regulatory roles, which represents a major source of structural variability in the human population. We highlight the presence of structurally variable SVAs (SV-SVAs) in neurological disease-associated loci, and we further associate SV-SVAs to disease-associated SNPs and differential gene expression using luciferase assays and expression quantitative trait loci data. Finally, we genetically deleted SV-SVAs in the BIN1 and CD2AP Alzheimer's disease-associated risk loci and in the BCKDK Parkinson's disease-associated risk locus and assessed multiple aspects of their gene-regulatory influence in a human neuronal context. Together, this study reveals a novel layer of genetic variation in transposable elements that may contribute to identification of the structural variants that are the actual drivers of disease associations of GWAS loci.
Collapse
Affiliation(s)
- Elisabeth J van Bree
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Rita L F P Guimarães
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.,Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Mischa Lundberg
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Elena R Blujdea
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jimi L Rosenkrantz
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Fred T G White
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Josse Poppinga
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paula Ferrer-Raventós
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Anne-Fleur E Schneider
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Isabella Clayton
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - David Haussler
- UC Santa Cruz Genomics Institute, and Howard Hughes Medical Institute, UC Santa Cruz, Santa Cruz, California 95064, USA
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2628 XE Delft, The Netherlands
| | - Henne Holstege
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, 2628 XE Delft, The Netherlands.,Amsterdam Neuroscience, Complex Trait Genetics, University of Amsterdam, Amsterdam, The Netherlands
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Colette Moses
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Frank M J Jacobs
- Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.,Amsterdam Neuroscience, Complex Trait Genetics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
284
|
Moya MV, Kim RD, Rao MN, Cotto BA, Pickett SB, Sferrazza CE, Heintz N, Schmidt EF. Unique molecular features and cellular responses differentiate two populations of motor cortical layer 5b neurons in a preclinical model of ALS. Cell Rep 2022; 38:110556. [PMID: 35320722 PMCID: PMC9059890 DOI: 10.1016/j.celrep.2022.110556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Oxphos and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease. Moya et al. use bacTRAP mouse lines to characterize two highly related subpopulations of layer 5b projection neurons in motor cortex that are differentially susceptible to neurodegeneration in the SOD1-G93A mouse model of ALS. They identify the regulation of genes involved in bioenergetics as a key factor regulating susceptibility.
Collapse
Affiliation(s)
- Maria V Moya
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Rachel D Kim
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Meghana N Rao
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Bianca A Cotto
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Sarah B Pickett
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Caroline E Sferrazza
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric F Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA.
| |
Collapse
|
285
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
286
|
Sprunger ML, Lee K, Sohn BS, Jackrel ME. Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. iScience 2022; 25:103900. [PMID: 35252808 PMCID: PMC8889142 DOI: 10.1016/j.isci.2022.103900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Matrin-3 (MATR3) is a DNA- and RNA-binding protein implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and distal myopathy. Here, we report the development of a yeast model of MATR3 proteotoxicity and aggregation. MATR3 is toxic and forms dynamic shell-like nuclear condensates in yeast. Disease-associated mutations in MATR3 impair condensate dynamics and disrupt condensate morphology. MATR3 toxicity is largely driven by its RNA-recognitions motifs (RRMs). Further, deletion of one or both RRMs drives coalescence of these condensates. Aberrant phase separation of several different RBPs underpins ALS/FTD, and we have engineered Hsp104 variants to reverse this misfolding. Here, we demonstrate that these same variants also counter MATR3 toxicity. We suggest that these Hsp104 variants which rescue MATR3, TDP-43, and FUS toxicity might be employed against a range of ALS/FTD-associated proteins. We anticipate that our yeast model could be a useful platform to screen for modulators of MATR3 misfolding.
Collapse
Affiliation(s)
- Macy L. Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Ken Lee
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
287
|
Rizzuti M, Melzi V, Gagliardi D, Resnati D, Meneri M, Dioni L, Masrori P, Hersmus N, Poesen K, Locatelli M, Biella F, Silipigni R, Bollati V, Bresolin N, Comi GP, Van Damme P, Nizzardo M, Corti S. Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Cell Mol Life Sci 2022; 79:189. [PMID: 35286466 PMCID: PMC8921154 DOI: 10.1007/s00018-022-04217-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by progressive degeneration of motor neurons (MNs). Most cases are sporadic, whereas 10% are familial. The pathological mechanisms underlying the disease are partially understood, but it is increasingly being recognized that alterations in RNA metabolism and deregulation of microRNA (miRNA) expression occur in ALS. In this study, we performed miRNA expression profile analysis of iPSC-derived MNs and related exosomes from familial patients and healthy subjects. We identified dysregulation of miR-34a, miR-335 and miR-625-3p expression in both MNs and exosomes. These miRNAs regulate genes and pathways which correlate with disease pathogenesis, suggesting that studying miRNAs deregulation can contribute to deeply investigate the molecular mechanisms underlying the disease. We also assayed the expression profile of these miRNAs in the cerebrospinal fluid (CSF) of familial (fALS) and sporadic patients (sALS) and we identified a significant dysregulation of miR-34a-3p and miR-625-3p levels in ALS compared to controls. Taken together, all these findings suggest that miRNA analysis simultaneously performed in different human biological samples could represent a promising molecular tool to understand the etiopathogenesis of ALS and to develop new potential miRNA-based strategies in this new propitious therapeutic era.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Valentina Melzi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Delia Gagliardi
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Davide Resnati
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Megi Meneri
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Laura Dioni
- EPIGET LAB, Unit of Occupational Medicine, Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Pegah Masrori
- Department of Neurosciences, Laboratory of Neurobiology, Center for Brain and Disease, KU Leuven, University of Leuven, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Laboratory of Neurobiology, Center for Brain and Disease, KU Leuven, University of Leuven, Leuven, Belgium
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Martina Locatelli
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Fabio Biella
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Unit of Occupational Medicine, Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Philip Van Damme
- Department of Neurosciences, Laboratory of Neurobiology, Center for Brain and Disease, KU Leuven, University of Leuven, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy. .,Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
288
|
Scarian E, Fiamingo G, Diamanti L, Palmieri I, Gagliardi S, Pansarasa O. The Role of VCP Mutations in the Spectrum of Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Front Neurol 2022; 13:841394. [PMID: 35273561 PMCID: PMC8902152 DOI: 10.3389/fneur.2022.841394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurological diseases which, respectively, and primarily affect motor neurons and frontotemporal lobes. Although they can lead to different signs and symptoms, it is now evident that these two pathologies form a continuum and that hallmarks of both diseases can be present within the same person in the so-called ALS-FTD spectrum. Many studies have focused on the genetic overlap of these pathologies and it is now clear that different genes, such as C9orf72, TARDBP, SQSTM1, FUS, and p97/VCP can be mutated in both the diseases. VCP was one of the first genes associated with both FTD and ALS representing an early example of gene overlapping. VCP belongs to the type II AAA (ATPases Associated with diverse cellular activities) family and is involved in ubiquitinated proteins degradation, autophagy, lysosomal clearance and mitochondrial quality control. Since its numerous roles, mutations in this gene lead to different pathological features, first and foremost TDP-43 mislocalization. This review aims to outline recent findings on VCP roles and on how its mutations are linked to the neuropathology of ALS and FTD.
Collapse
Affiliation(s)
- Eveljn Scarian
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Fiamingo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ilaria Palmieri
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
289
|
Shupik MA, Gutner UA, Ustyugov AA, Rezvykh AP, Funikov SY, Maloshitskaya OA, Sokolov SA, Lebedev AT, Alessenko AV. Changes in the Metabolism of Sphingomyelin and Ceramide in the Brain Structures and Spinal Cord of Transgenic Mice (FUS(1-359)) Modeling Amyotrophic Lateral Sclerosis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
290
|
Ain Q, Schmeer CW, Wengerodt D, Hofmann Y, Witte OW, Kretz A. Optimized Protocol for Proportionate CNS Cell Retrieval as a Versatile Platform for Cellular and Molecular Phenomapping in Aging and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23063000. [PMID: 35328432 PMCID: PMC8950438 DOI: 10.3390/ijms23063000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Efficient purification of viable neural cells from the mature CNS has been historically challenging due to the heterogeneity of the inherent cell populations. Moreover, changes in cellular interconnections, membrane lipid and cholesterol compositions, compartment-specific biophysical properties, and intercellular space constituents demand technical adjustments for cell isolation at different stages of maturation and aging. Though such obstacles are addressed and partially overcome for embryonic premature and mature CNS tissues, procedural adaptations to an aged, progeroid, and degenerative CNS environment are underrepresented. Here, we describe a practical workflow for the acquisition and phenomapping of CNS neural cells at states of health, physiological and precocious aging, and genetically provoked neurodegeneration. Following recent, unprecedented evidence of post-mitotic cellular senescence (PoMiCS), the protocol appears suitable for such de novo characterization and phenotypic opposition to classical senescence. Technically, the protocol is rapid, efficient as for cellular yield and well preserves physiological cell proportions. It is suitable for a variety of downstream applications aiming at cell type-specific interrogations, including cell culture systems, Flow-FISH, flow cytometry/FACS, senescence studies, and retrieval of omic-scale DNA, RNA, and protein profiles. We expect suitability for transfer to other CNS targets and to a broad spectrum of engineered systems addressing aging, neurodegeneration, progeria, and senescence.
Collapse
Affiliation(s)
- Quratul Ain
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
- Correspondence: (Q.A.); (A.K.); Tel.: +49-3641-9396630 (Q.A.); +49-3641-9323499 (A.K.)
| | - Christian W. Schmeer
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
| | - Diane Wengerodt
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
| | - Yvonne Hofmann
- Department of Internal Medicine V, Jena University Hospital, 07747 Jena, Germany;
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
| | - Alexandra Kretz
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
- Correspondence: (Q.A.); (A.K.); Tel.: +49-3641-9396630 (Q.A.); +49-3641-9323499 (A.K.)
| |
Collapse
|
291
|
Chavda V, Patel C, Modh D, Ertas YN, Sonak SS, Munshi NK, Anand K, Soni A, Pandey S. Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic. Curr Drug Metab 2022; 23:200-222. [PMID: 35272595 DOI: 10.2174/1389200223666220310113110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a terminal neuro-degenerative disorder that is clinically recognized as a gradual degeneration of the upper and lower motor neurons, with an average duration of 3 to 5 years from initiation of symptoms to death. The mechanisms underlying the pathogenesis and progression of the disease are multifactorial. Therefore, to find effective treatments, it is necessary to understand this heterogeneity underlying the progression of ALS. Recent developments in gene therapy have opened a new avenue to treat this condition, especially for the characterized genetic types. Gene therapy methods have been studied in a variety of pre-clinical settings and clinical trials, and they may be a promising path for developing an effective and safe ALS cure. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. The use and incorporation of high-throughput "omics" methods has radically transformed our thought about ALS, strengthening our understanding of the disease's dynamic molecular architecture, differentiating distinct patient subtypes, and creating a reasonable basis for the identification of biomarkers and novel individualised treatments. Future clinical and laboratory trials would also focus on the diverse relationships between metabolism and ALS to address the issue of whether targeting deficient metabolism in ALS is an effective way to change disease progression. In this review, we focus on the detailed pathogenesis of ALS and highlight principal genes, i.e., SOD1, TDP-43, C9orf72, and FUS, targeted therapeutic approaches of ALS. An attempt is made to provide up-to-date information on clinical outcomes, including various biomarkers which are thought to be important players in early ALS detection.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutic, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Chirag Patel
- Department of Pharmacology, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Dharti Modh
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering at Erciyes University, Kayseri, Turkey
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Shreya S Sonak
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Nafisa K Munshi
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Krishna Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein 9300, South Africa
| | - Arun Soni
- Department of Pharmacology, SSR College of Pharmacy, Silvassa, Dadra and Nagar Haveli - 396230(India)
| | - Sonal Pandey
- Research and Development, Meril Diagnostic Pvt. Ltd, Vapi - 396191 (India)
| |
Collapse
|
292
|
Mechanistic Insights of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: An Update on a Lasting Relationship. Metabolites 2022; 12:metabo12030233. [PMID: 35323676 PMCID: PMC8951432 DOI: 10.3390/metabo12030233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of the upper and lower motor neurons. Despite the increasing effort in understanding the etiopathology of ALS, it still remains an obscure disease, and no therapies are currently available to halt its progression. Following the discovery of the first gene associated with familial forms of ALS, Cu–Zn superoxide dismutase, it appeared evident that mitochondria were key elements in the onset of the pathology. However, as more and more ALS-related genes were discovered, the attention shifted from mitochondria impairment to other biological functions such as protein aggregation and RNA metabolism. In recent years, mitochondria have again earned central, mechanistic roles in the pathology, due to accumulating evidence of their derangement in ALS animal models and patients, often resulting in the dysregulation of the energetic metabolism. In this review, we first provide an update of the last lustrum on the molecular mechanisms by which the most well-known ALS-related proteins affect mitochondrial functions and cellular bioenergetics. Next, we focus on evidence gathered from human specimens and advance the concept of a cellular-specific mitochondrial “metabolic threshold”, which may appear pivotal in ALS pathogenesis.
Collapse
|
293
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
294
|
Rhine K, Dasovich M, Yoniles J, Badiee M, Skanchy S, Ganser L, Ge Y, Fare CM, Shorter J, Leung AKL, Myong S. Poly(ADP-ribose) drives condensation of FUS via a transient interaction. Mol Cell 2022; 82:969-985.e11. [PMID: 35182479 PMCID: PMC9330637 DOI: 10.1016/j.molcel.2022.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 μM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 μM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Morgan Dasovich
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joey Yoniles
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sophie Skanchy
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laura Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingda Ge
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charlotte M. Fare
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony K. L. Leung
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.,Corresponding Authors; &
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
295
|
Codron P, Cassereau J, Vourc'h P. InFUSing antisense oligonucleotides for treating ALS. Trends Mol Med 2022; 28:253-254. [PMID: 35246398 DOI: 10.1016/j.molmed.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
The question of a loss or toxic gain of function in FUS-related amyotrophic lateral sclerosis is still debated. Recently, Korobeynikov et al. argued that FUS mutations lead to a gain of function and showed that lowering wild-type and mutant FUS levels could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Philippe Codron
- Centre de ressources et de compétences sur la SLA, Centre Hospitalier Universitaire d'Angers, Angers, France; Laboratoire de Neurobiologie et Neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France; Univ Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France.
| | - Julien Cassereau
- Centre de ressources et de compétences sur la SLA, Centre Hospitalier Universitaire d'Angers, Angers, France; Univ Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Patrick Vourc'h
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France; UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.
| |
Collapse
|
296
|
Lu T, Yang J, Luo L, Wei D. FUS mutations in Asian amyotrophic lateral sclerosis patients: a case report and literature review of genotype-phenotype correlations. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:580-584. [PMID: 35232295 DOI: 10.1080/21678421.2021.2023189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive weakness and muscular atrophy in the upper or lower limbs, ultimately leading to paralysis and death. Genetic studies have demonstrated that mutation in the gene encoding fused in sarcoma (FUS) is an uncommon cause of ALS. Here, we report a case of a 31-year-old Asian man with ALS with rare onset of dropped-head syndrome. Symptoms, including asymmetric proximal weakness of the upper limbs, hoarseness, dysphagia, and nocturnal dyspnea, emerged over a period of 5 months. After genetic testing, the patient was confirmed to harbor a novel pathogenic heterozygous mutation, c.1558C > T (p.R520C). We summarize the genotype-clinical phenotype relationships in 42 Asian patients with ALS-FUS.
Collapse
Affiliation(s)
- Ting Lu
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China.,The First Clinical Medical Institute, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
| | - Jie Yang
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China
| | - Lijun Luo
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China
| | - Dongsheng Wei
- Department of Neurology, The First Hospital of Wuhan, Wuhan, PR China
| |
Collapse
|
297
|
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in Neurodegeneration: From Disease Cause to Tools of Biomarker Discovery and Therapeutics. Genes (Basel) 2022; 13:genes13030425. [PMID: 35327979 PMCID: PMC8951370 DOI: 10.3390/genes13030425] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases originate from neuronal loss in the central nervous system (CNS). These debilitating diseases progress with age and have become common due to an increase in longevity. The National Institute of Environmental Health Science’s 2021 annual report suggests around 6.2 million Americans are living with Alzheimer’s disease, and there is a possibility that there will be 1.2 million Parkinson’s disease patients in the USA by 2030. There is no clear-cut universal mechanism for identifying neurodegenerative diseases, and therefore, they pose a challenge for neurobiology scientists. Genetic and environmental factors modulate these diseases leading to familial or sporadic forms. Prior studies have shown that miRNA levels are altered during the course of the disease, thereby suggesting that these noncoding RNAs may be the contributing factor in neurodegeneration. In this review, we highlight the role of miRNAs in the pathogenesis of neurodegenerative diseases. Through this review, we aim to achieve four main objectives: First, we highlight how dysregulation of miRNA biogenesis led to these diseases. Second, we highlight the computational or bioinformatics tools required to identify the putative molecular targets of miRNAs, leading to biological molecular pathways or mechanisms involved in these diseases. Third, we focus on the dysregulation of miRNAs and their target genes leading to several neurodegenerative diseases. In the final section, we highlight the use of miRNAs as potential diagnostic biomarkers in the early asymptomatic preclinical diagnosis of these age-dependent debilitating diseases. Additionally, we discuss the challenges and advances in the development of miRNA therapeutics for brain targeting. We list some of the innovative strategies employed to deliver miRNA into target cells and the relevance of these viral and non-viral carrier systems in RNA therapy for neurodegenerative diseases. In summary, this review highlights the relevance of studying brain-enriched miRNAs, the mechanisms underlying their regulation of target gene expression, their dysregulation leading to progressive neurodegeneration, and their potential for biomarker marker and therapeutic intervention. This review thereby highlights ways for the effective diagnosis and prevention of these neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07012, USA
- Correspondence:
| | - Erica Lee
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Teresa Li
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Maria Rampersaud
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| |
Collapse
|
298
|
Biomarkers in Human Peripheral Blood Mononuclear Cells: The State of the Art in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23052580. [PMID: 35269723 PMCID: PMC8910056 DOI: 10.3390/ijms23052580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients’ stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.
Collapse
|
299
|
Lu YQ, Chen JM, Lin H, Feng SY, Che CH, Liu CY, Huang HP, Zou ZY. Novel Intronic Mutations of TBK1 Promote Aberrant Splicing Modes in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2022; 15:691534. [PMID: 35283724 PMCID: PMC8908445 DOI: 10.3389/fnmol.2022.691534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) has been identified as a causative gene of amyotrophic lateral sclerosis (ALS) in the Caucasian population in 2015. Here, we sequenced for TBK1 variants in a cohort of 15 familial ALS (fALS) and 275 sporadic ALS (sALS) of Chinese origin by targeted next-generation sequencing. We identified one likely benign missense variant (p. Ser398Pro), two missense variants of uncertain significance (p. Ile37Leu and p. Tyr677Asn), and two novel heterozygous variants in introns of TBK1, c.1522-3T > G and c.2066 + 4A > G. We performed splicing assays through minigene plasmids and RNA pull-down assay to determine that the two substitutions of nucleotides disrupted the binding of the important splicing regulator hnRNPA1 and promoted aberrant pre-mRNA splicing modes. The c.1522-3T > G variant promoted nearly 50.0% of abnormal transcripts (3 different types of insertions and deletions (indels) in junction of intron 13-exon 14) and the c.2066 + 4A > G variant inhibited about 75.0% inclusion of exon 19, both causing premature stop codon and producing TBK1 protein without CCD2. Immunofluorescence analysis showed that the expression of TBK1 with intronic variants was lower since less TBK1 distribution was observed in HEK293T cells. Both patients carrying TBK1 c.1522-3T > G and c.2066 + 4A > G variants developed a rapidly progressive ALS, with a survival of 31 and 10 months, respectively. The frequency of loss of function (LoF) variants in TBK1 was 0.73% in sALS in our cohort. We emphasize that intronic sequencing and pre-mRNA splicing analysis cannot be ignored to demonstrate the complex mutational spectrum and pathogenesis of ALS.
Collapse
Affiliation(s)
- Ying-Qian Lu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jian-Min Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Hua-Pin Huang,
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhang-Yu Zou,
| |
Collapse
|
300
|
Biochemical and subcellular characterization of a squid hnRNPA/B-like protein 2 in osmotic stress activated cells reflects molecular properties conserved in this protein family. Mol Biol Rep 2022; 49:4257-4268. [PMID: 35192131 DOI: 10.1007/s11033-022-07260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND We have identified endogenous p65 to be an SDS-stable dimer protein composed of ~ 37 kDa hnRNPA/B-like subunits. We have investigated molecular properties involved in the stability of dimeric form, and their regulation in the transition between monomeric and dimeric forms of hnRNPA/B-like protein 2. We also investigated a cellular property conserved between squid hnRNPA/B-like protein 2 and human hnRNPA1 protein in a neuronal context. METHODS AND RESULTS Here we show biochemical properties of a recombinant hnRNPA/B-like protein 2 (rP2) in vitro experiments, as one of p65 subunit. We found that interaction between rP2 and RNA molecules interfered with the dynamics of rP2 dimers formation, involved in disulfide bonds and/or postranslational alterations in distinct stage of SDS-stable dimers formation. In addition, we have performed immunofluorescence in SH-SY5Y cells and observed that the pEGFP-P2 fusion protein was expressed in the nucleus, similar to what is observed for human hnRNPA1 protein. CONCLUSION Our results reinforce the idea that p65 is an SDS-stable dimer. Thus, a deeper understanding between monomeric and dimeric transition dynamic is critical into evolution of several neurodegenerative disease.
Collapse
|