251
|
Chen HZ, Zhao BX, Zhao WX, Li L, Zhang B, Wu Q. Akt phosphorylates the TR3 orphan receptor and blocks its targeting to the mitochondria. Carcinogenesis 2008; 29:2078-88. [PMID: 18713840 DOI: 10.1093/carcin/bgn197] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) phosphorylates and regulates the function of many cellular proteins involved in processes such as metabolism, apoptosis and proliferation. However, the precise mechanisms by which Akt promotes cell survival and inhibits apoptosis have been characterized in part only. TR3, an orphan receptor, functions as a transcription factor that can both positively or negatively regulate gene expression. We have reported previously that the translocation of TR3 from the nucleus to the mitochondria can elicit a proapoptotic effect in gastric cancer cells. In our present study, we demonstrate that Akt phosphorylates cytoplasmic TR3 through its physical interaction with the N-terminus of TR3. When coexpressed with Akt, TR3 mitochondrial targeting was blocked and this protein adopted a diffuse expression pattern in the cytoplasm. Moreover, Akt displayed an ability to disrupt the interaction of TR3 with Bcl-2, which is thought to be a critical requirement for mitochondrial TR3 to elicit apoptosis. Consistently, insulin was also found to induce the phosphorylation of TR3 and abolish 12-O-tetradecanoylphorbol-13-acetate-induced mitochondrial localization, which was dependent upon the activation of the phophatidylinositol-3-OH-kinase-Akt signaling pathway. Taken together, our current data demonstrate a unique role for Akt in inhibiting TR3 functions that are not related to transcriptional activity but that correlate with the regulation of its mitochondrial association. This may represent a novel signal pathway by which Akt exerts its antiapoptotic effects in gastric cancer cells, i.e. by regulating the phosphorylation and redistribution of orphan receptors.
Collapse
Affiliation(s)
- Hang-Zi Chen
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | |
Collapse
|
252
|
Jiang MM, Dai Y, Gao H, Zhang X, Wang GH, He JY, Hu QY, Zeng JZ, Zhang XK, Yao XS. Cardenolides from Antiaris toxicaria as potent selective Nur77 modulators. Chem Pharm Bull (Tokyo) 2008; 56:1005-8. [PMID: 18591820 DOI: 10.1248/cpb.56.1005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Toxicarioside D (1), a new cardenolide, along with 10 other known ones, was isolated from the stem of Antiaris toxicaria LESCH. by bioassay-guided fractionation. Their structures were determined on the basis of spectroscopic analysis. All the reported compounds effectively inhibited the growth of various cancer cell lines at nanomolar concentrations. Inhibition of cancer cell growth was accompanied with induction of the expression of Nur77, a potent apoptotic member of the steroid/thyroid hormone receptor superfamily.
Collapse
Affiliation(s)
- Miao-Miao Jiang
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Lin PC, Chen YL, Chiu SC, Yu YL, Chen SP, Chien MH, Chen KY, Chang WL, Lin SZ, Chiou TW, Harn HJ. Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. J Neurochem 2008; 106:1017-26. [DOI: 10.1111/j.1471-4159.2008.05432.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
254
|
Garcia W, Figueira ACM, de Oliveira Neto M, de Guzzi CA, Buzzá HH, Portugal RV, Calgaro MR, Polikarpov I. Probing conformational changes in orphan nuclear receptor: the NGFI-B intermediate is a partially unfolded dimer. Biophys Chem 2008; 137:81-7. [PMID: 18676081 DOI: 10.1016/j.bpc.2008.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 07/12/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the alpha-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners.
Collapse
Affiliation(s)
- Wanius Garcia
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
255
|
|
256
|
Yip KW, Godoi PH, Zhai D, Garcia X, Cellitti JF, Cuddy M, Gerlic M, Chen YA, Satterthwait A, Vasile S, Sergienko E, Reed JC. A TR3/Nur77 Peptide-Based High-Throughput Fluorescence Polarization Screen for Small Molecule Bcl-B Inhibitors. ACTA ACUST UNITED AC 2008; 13:665-73. [DOI: 10.1177/1087057108320918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear receptor TR3/Nur77/NR4A1 binds several antiapoptotic Bcl-2-family proteins (Bcl-B, Bcl-2, Bfl-1) in a non-BH3-dependent manner. A 9-amino-acid peptide derived from full-length TR3 with polyarginine tail (TR3-r8) recapitulates TR3's binding specificity, displaying high affinity for Bcl-B. TR3-r8 peptide was used to screen for small molecule Bcl-B inhibitors. A fluorescence polarization assay (FPA) employing fluorescein isothiocyanate (FITC)-labeled TR3-r8 peptide (FITC-TR3-r8) and Bcl-B protein was optimized, with nonfluorescent TR3-r8 serving to demonstrate reversible, competitive binding. Approximately 50,000 compounds were screened at 3.75 mg/L, yielding 145 reproducible hits with ≥50% FITC-TR3-r8 displacement (a confirmed hit rate of 0.29%). After dose-response analyses and counterscreening with an unrelated FITC-based FPA, 6 candidate compounds remained. Nuclear magnetic resonance (NMR) showed that 2 of these compounds bound Bcl-B, but not glutathione S-transferase (GST) control protein. One Bcl-B-binding compound was unable to displace FITClabeled BH3 peptides from Bcl-B, confirming a unique binding mechanism compared with traditional antagonists of antiapoptotic Bcl-2-family proteins. This compound bound Bcl-B with Kd1.94 ± 0.38 µM, as determined by isothermal titration calorimetry. Experiments using Bcl-B overexpressing HeLa cells demonstrated that this compound induced Bcl-B-dependent cell death. The current FPA represents a screen that can identify noncanonical inhibitors of Bcl-2-family proteins. ( Journal of Biomolecular Screening 2008:665-673)
Collapse
Affiliation(s)
- Kenneth W. Yip
- Burnham Institute for Medical Research, La Jolla, California
| | | | - Dayong Zhai
- Burnham Institute for Medical Research, La Jolla, California
| | - Xochella Garcia
- San Diego Center for Chemical Genomics, Burnham Institute for Medical Research, La Jolla, California
| | | | - Michael Cuddy
- Burnham Institute for Medical Research, La Jolla, California
| | - Motti Gerlic
- Burnham Institute for Medical Research, La Jolla, California
| | - YA Chen
- Burnham Institute for Medical Research, La Jolla, California
| | | | - Stefan Vasile
- San Diego Center for Chemical Genomics, Burnham Institute for Medical Research, La Jolla, California
| | - Eduard Sergienko
- San Diego Center for Chemical Genomics, Burnham Institute for Medical Research, La Jolla, California
| | - John C. Reed
- Burnham Institute for Medical Research, La Jolla, California,
| |
Collapse
|
257
|
Abstract
Receptors for glucocorticoids, estrogens, androgens, and thyroid hormones have been detected in mitochondria of various cell types by Western blotting, immunofluorescence labeling, confocal microscopy, and immunogold electron microscopy. A role of these receptors in mitochondrial transcription, OXPHOS biosynthesis, and apoptosis is now being revealed. Steroid and thyroid hormones regulate energy production, inducing nuclear and mitochondrial OXPHOS genes by way of cognate receptors. In addition to the action of the nuclearly localized receptors on nuclear OXPHOS gene transcription, a parallel direct action of the mitochondrially localized receptors on mitochondrial transcription has been demonstrated. The coordination of transcription activation in nuclei and mitochondria by the respective receptors is in part realized by their binding to common trans acting elements in the two genomes. Recent evidence points to a role of the mitochondrial receptors in cell survival and apoptosis, exerted by genomic and nongenomic mechanisms. The identification of additional receptors of the superfamily of nuclear receptors and of other nuclear transcription factors in mitochondria increases their arsenal of regulatory molecules and further underlines the central role of these organelles in the integration of growth, metabolic, and cell survival signals.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, Athens, Greece
| | | |
Collapse
|
258
|
Zhang XP, Xu HM, Jiang YY, Yu S, Cai Y, Lu B, Xie Q, Ju TF. Influence of dexamethasone on mesenteric lymph node of rats with severe acute pancreatitis. World J Gastroenterol 2008; 14:3511-7. [PMID: 18567079 PMCID: PMC2716613 DOI: 10.3748/wjg.14.3511] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the influence and mechanisms of dexamethasone on mesenteric lymph node of rats with severe acute pancreatitis (SAP).
METHODS: The SAP rats were assigned to model, treated or sham-operated groups. The mortality, pathological changes of mesenteric lymph nodes, expression levels of NF-κB, P-selectin, Bax, Bcl-2 and caspase-3 protein and changes in apoptotic indexes in lymph nodes were observed at 3, 6 and 12 h after operation. The blood levels of endotoxin, superoxide dismutase (SOD), malondialdehyde (MDA), and endothelin-1 (ET-1) in blood were determined.
RESULTS: SOD content, expression of Bax protein and apoptotic index were significantly higher in the treated group than in the model group at different time points (P < 0.05 or P < 0.01). Other blood-detecting indexes and histopathological scores of mesenteric lymph nodes were lower in the treated than in the model group (P < 0.05, P < 0.01 or P < 0.01). NF-κB protein expression was negative in all groups. Comparing P-selectin and caspase-3 expression levels among all three groups, there was no marked difference between the model and treated group.
CONCLUSION: Dexamethasone can protect mesenteric lymph nodes. The mechanism may be by reducing the content of inflammatory mediators in the blood and inducing lymphocyte apoptosis.
Collapse
|
259
|
Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, Pascual J, Imamura S, Kishi S, Amatruda JF, Kanki JP, Green DR, D’Andrea AA, Look AT. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 2008; 133:864-77. [PMID: 18510930 PMCID: PMC2719897 DOI: 10.1016/j.cell.2008.03.037] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 01/25/2008] [Accepted: 03/24/2008] [Indexed: 12/20/2022]
Abstract
Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore gamma-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after gamma-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy.
Collapse
Affiliation(s)
| | | | - Richard D. Kennedy
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | - Shintaro Imamura
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Shuji Kishi
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - James F. Amatruda
- Department of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alan A. D’Andrea
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - A. Thomas Look
- Department of Pediatric Oncology
- Division of Hematology/Oncology, Department of Pediatrics, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
260
|
Tao R, Hancock WW. Resistance of Foxp3+ regulatory T cells to Nur77-induced apoptosis promotes allograft survival. PLoS One 2008; 3:e2321. [PMID: 18509529 PMCID: PMC2386419 DOI: 10.1371/journal.pone.0002321] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 04/22/2008] [Indexed: 12/29/2022] Open
Abstract
The NR4A nuclear receptor family member Nur77 (NR4A1) promotes thymocyte apoptosis during negative selection of autoreactive thymocytes, but may also function in mature extrathymic T cells. We studied the effects of over-expression of Nur77 on the apoptosis of murine peripheral T cells, including thymic-derived Foxp3+ regulatory (Treg) cells. Overexpression of Nur77 in the T cell lineage decreased numbers of peripheral CD4 and CD8 T cells by ∼80% compared to wild-type (WT) mice. However, the proportions of Treg cells were markedly increased in the thymus (61% of CD4+Foxp3+ singly positive thymocytes vs. 8% in WT) and secondary lymphoid organs (40–50% of CD4+Foxp3+ T cells vs. 7–8% in WT) of Nur77 transgenic (Nur77Tg) mice, and immunoprecipitation studies showed Nur77 was associated with a recently identified HDAC7/Foxp3 transcriptional complex. Upon activation through the T cell receptor in vitro or in vivo, Nur77Tg T cells showed only marginally decreased proliferation but significantly increased apoptosis. Fully allogeneic cardiac grafts transplanted to Nur77Tg mice survived long-term with well-preserved structure, and recipient splenocytes showed markedly enhanced apoptosis and greatly reduced anti-donor recall responses. Allografts in Nur77Tg recipients had significantly increased expression of multiple Treg-associated genes, including Foxp3, Foxp1, Tip60 and HDAC9. Allograft rejection was restored by CD25 monoclonal antibody therapy, indicating that allograft acceptance was dependent upon Treg function in Nur77Tg recipients. These data show that compared to conventional CD4 and CD8 T cells, Foxp3+ Tregs are relatively resistant to Nur77-mediated apoptosis, and that tipping the balance between the numbers of Tregs and responder T cells in the early period post-transplantation can determine the fate of the allograft. Hence, induced expression of Nur77 might be a novel means to achieve long-term allograft survival.
Collapse
Affiliation(s)
- Ran Tao
- Department of Pathology and Laboratory Medicine, Stokes Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Stokes Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
261
|
Protecting effects of dexamethasone on thymus of rats with severe acute pancreatitis. Mediators Inflamm 2008; 2007:72361. [PMID: 18288275 PMCID: PMC2234334 DOI: 10.1155/2007/72361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/05/2007] [Indexed: 01/06/2023] Open
Abstract
Purpose. To study the protecting effects of dexamethasone on thymus of rats with severe acute pancreatitis (SAP). Methods. The SAP rats were randomly assigned to the model group and dexamethasone-treated group, the other normal healthy rats were assigned to the sham operation group. The rat survival, thymus pathological changes, apoptotic index, as well as expression levels of NF-κB, P-selectin, Bax, Bcl-2, and Caspase-3 protein of all groups were observed, respectively, at 3 hours, 6 hours, and 12 hours. The contents of amylase and endotoxin in plasma as well as the contents of TNF-α, PLA2, and NO in serum were determined.
Results. There was no marked difference between the model group and treated group in survival. The contents of different indexes in blood of treated group were lower than those of the model group to various degrees at different time points. The thymus pathological score was lower in treated group than in model group at 12 hours.The treated group in Caspase-3 protein expression of thymus significantly exceeded the model group at 12 hours. The apoptotic index was significantly higher in treated group than in model group. Conclusion. Dexamethasone has protecting effects on thymus of SAP rats.
Collapse
|
262
|
The protecting effects and mechanisms of Baicalin and Octreotide on heart injury in rats with SAP. Mediators Inflamm 2008; 2007:19469. [PMID: 18274634 PMCID: PMC2220025 DOI: 10.1155/2007/19469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 10/24/2007] [Indexed: 12/13/2022] Open
Abstract
Purpose. To observe the protecting effects and mechanisms
of Baicalin and Octreotide on heart injury in rats with severe
acute pancreatitis (SAP).
Methods. The SAP rat models were randomly divided into
the model group, Baicalin-treated group, Octreotide treated group,
and sham operation group. The contents of some inflammatory
indexes in blood were determined. The rat mortality, pathological
changes of heart, the changes of NF-κB,
P-Selectin, Bax, Bcl-2, and Caspase-3 protein
expression levels as well as apoptotic index were observed in all
groups, respectively, at 3 hours, 6 hours, and 12 hours after
operation.
Results. The survival rate of model group was less
than treated groups at 12 hours, difference was significant. The
contents of some inflammatory indexes of the treated groups were
lower than those of the model group to various degrees at
different time points. The pathological myocardial changes under
light microscope were milder in treated groups than in model
group. The changes of
NF-κB,
P-Selectin, Bax, Bcl-2, and Caspase-3 protein expression levels in
all groups were different. There was only a case of myocardial
cell apoptosis in an Octreotide-treated group at 6 hours.
Conclusion. Baicalin and Octreotide have protecting
effects on heart injury of rats with SAP.
Collapse
|
263
|
The mitochondrial localization of RelB and NFATx in immature T cells. Cell Mol Biol Lett 2008; 13:493-501. [PMID: 18463795 PMCID: PMC6275919 DOI: 10.2478/s11658-008-0019-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 03/13/2008] [Indexed: 01/14/2023] Open
Abstract
In order to exert their activity, transcription factors must be transported to the nucleus. Certain transcription factors have also been found on mitochondria. Here, the localization of RelB and NFATx in the mitochondrial fractions of normal thymocytes and thymic lymphoma cells is shown for the first time. CREB was only found in the nucleus, while p50 (NFκB) was found in both the nucleus and the cytoplasm, but outside the mitochondria. The translocation of transcription factors to the mitochondria is differentially regulated. Unlike RelB, which is always present in the mitochondrial fraction, NFATx appeared on the mitochondria in cells treated with ionomycin together with an immunosuppressant and inhibitor of calcineurin (FK506). This data reveals that the mitochondrial localization of some transcription factors is precisely controlled by a calcium signal sensitive to FK506 in T cells.
Collapse
|
264
|
Kim BY, Kim H, Cho EJ, Youn HD. Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation. Exp Mol Med 2008; 40:71-83. [PMID: 18305400 DOI: 10.3858/emm.2008.40.1.71] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we investigated the role of Nur77, an orphan nuclear receptor, in HIF-alpha transcriptional activity. We found that Nur77 associates and stabilizes HIF-1alpha via indirect interaction. Nur77 was found to interact with pVHL in vivo via the alpha-domain of pVHL. By binding to pVHL, Nur77 competed with elongin C for pVHL binding. Moreover, Nur77-binding to pVHL inhibited the pVHL-mediated ubiquitination of HIF-1alpha and ultimately increased the stability and transcriptional activity of HIF-1alpha. The ligand-binding domain of Nur77 was found to interact with pVHL and the expression of this ligand-binding domain was sufficient to stabilize and transactivate HIF-1alpha. Under the conditions that cobalt chloride was treated or pVHL was knocked down, Nur77 could not stabilize HIF-alpha. Moreover, Nur77 could not further stabilize HIF-2alpha in A498/VHL stable cells, which is consistent with our finding that Nur77 indirectly stabilizes HIF-alpha by binding to pVHL. Thus, our results suggest that an orphan nuclear receptor Nur77 binds to pVHL, thereby stabilizes and increases HIF-alpha transcriptional activity under the non-hypoxic conditions.
Collapse
Affiliation(s)
- Bu Yeon Kim
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | |
Collapse
|
265
|
Thompson J, Winoto A. During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. ACTA ACUST UNITED AC 2008; 205:1029-36. [PMID: 18443228 PMCID: PMC2373836 DOI: 10.1084/jem.20080101] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis accompanying negative selection is a central but poorly understood event in T cell development. The Nur77 nuclear steroid receptor and Bim, a proapoptotic BH3-only member of the Bcl-2 family, are two molecules implicated in this process. However, how they relate to each other and how Nur77 induces apoptosis remain unclear. In thymocytes, Nur77 has been shown to induce cell death through a transcriptional-dependent pathway, but in cancer cell lines, Nur77 was reported to induce apoptosis through conversion of Bcl-2 into a killer protein at the mitochondria. Whether this Nur77 transcriptional-independent pathway actually occurs in vivo remains controversial. Using an optimized fractionation protocol for thymocytes, here we report that stimulation of CD4+CD8+ thymocytes results in translocation of Nur77 and its family member Nor-1 to the mitochondria, leading to their association with Bcl-2 and exposure of the Bcl-2 proapoptotic BH3 domain. In two T cell receptor transgenic models of negative selection, F5 and HY, a conformational change of the Bcl-2 molecule in the negatively selected T cell population was similarly observed. Thus, the Nur77 family and Bim pathways converge at mitochondria to mediate negative selection.
Collapse
Affiliation(s)
- Jennifer Thompson
- Cancer Research Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
266
|
Fujii Y, Matsuda S, Takayama G, Koyasu S. ERK5 is involved in TCR-induced apoptosis through the modification of Nur77. Genes Cells 2008; 13:411-9. [DOI: 10.1111/j.1365-2443.2008.01177.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
267
|
Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H. Mitochondrial nuclear receptors and transcription factors: who's minding the cell? J Neurosci Res 2008; 86:961-71. [PMID: 18041090 PMCID: PMC2670446 DOI: 10.1002/jnr.21564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria are power organelles generating biochemical energy, ATP, in the cell. Mitochondria play a variety of roles, including integrating extracellular signals and executing critical intracellular events, such as neuronal cell survival and death. Increasing evidence suggests that a cross-talk mechanism between mitochondria and the nucleus is closely related to neuronal function and activity. Nuclear receptors (estrogen receptors, thyroid (T3) hormone receptor, peroxisome proliferators-activated receptor gamma2) and transcription factors (cAMP response binding protein, p53) have been found to target mitochondria and exert prosurvival and prodeath pathways. In this context, the regulation of mitochondrial function via the translocation of nuclear receptors and transcription factors may underlie some of the mechanisms involved in neuronal survival and death. Understanding the function of nuclear receptors and transcription factors in the mitochondria may provide important pharmacological utility in the treatment of neurodegenerative conditions. Thus, the modulation of signaling pathways via mitochondria-targeting nuclear receptors and transcription factors is rapidly emerging as a novel therapeutic target.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- The Geriatric Research Education and Clinical Center, Veteran’s Affairs Medical Center, Bedford, MA 01730
| | - Swati Sharma
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- The Geriatric Research Education and Clinical Center, Veteran’s Affairs Medical Center, Bedford, MA 01730
| | - Jinho Kim
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- The Geriatric Research Education and Clinical Center, Veteran’s Affairs Medical Center, Bedford, MA 01730
| | - Robert J. Ferrante
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Department of Pathology and Psychiatry, Boston University School of Medicine, Boston, MA 02118
- The Geriatric Research Education and Clinical Center, Veteran’s Affairs Medical Center, Bedford, MA 01730
| | - Hoon Ryu
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- The Geriatric Research Education and Clinical Center, Veteran’s Affairs Medical Center, Bedford, MA 01730
| |
Collapse
|
268
|
Cho SD, Lei P, Abdelrahim M, Yoon K, Liu S, Guo J, Papineni S, Chintharlapalli S, Safe S. 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane activates Nur77-independent proapoptotic responses in colon cancer cells. Mol Carcinog 2008; 47:252-263. [PMID: 17957723 DOI: 10.1002/mc.20378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1,1-Bis(3'-indolyl)-1-(p-methoxyphenyl)methane (DIM-C-pPhOCH(3)) is a methylene-substituted diindolylmethane (C-DIM) analog that activates the orphan receptor nerve growth factor-induced-Balpha (NGFI-Balpha, Nur77). RNA interference studies with small inhibitory RNA for Nur77 demonstrate that DIM-C-pPhOCH(3) induces Nur77-dependent and -independent apoptosis, and this study has focused on delineating the Nur77-independent proapoptotic pathways induced by the C-DIM analog. DIM-C-pPhOCH(3) induced caspase-dependent apoptosis in RKO colon cancer cells through decreased mitochondrial membrane potential which is accompanied by increased mitochondrial bax/bcl-2 ratios and release of cytochrome c into the cytosol. DIM-C-pPhOCH(3) also induced phosphatidylinositol-3-kinase-dependent activation of early growth response gene-1 which, in turn, induced expression of the proapoptotic nonsteroidal anti-inflammatory drug-activated gene-1 (NAG1) in RKO and SW480 colon cancer cells. Moreover, DIM-C-pPhOCH(3) also induced NAG-1 expression in colon tumors in athymic nude mice bearing RKO cells as xenografts. DIM-C-pPhOCH(3) also activated the extrinsic apoptosis pathway through increased phosphorylation of c-jun N-terminal kinase which, in turn, activated C/EBP homologous transcription factor (CHOP) and death receptor 5 (DR5). Thus, the effectiveness of DIM-C-pPhOCH(3) as a tumor growth inhibitor is through activation of Nur77-dependent and -independent pathways.
Collapse
Affiliation(s)
- Sung Dae Cho
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Liu SB, He YY, Zhang Y, Lee WH, Qian JQ, Lai R, Jin Y. A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications. PLoS One 2008; 3:e1770. [PMID: 18335045 PMCID: PMC2262142 DOI: 10.1371/journal.pone.0001770] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 02/07/2008] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In vertebrates, non-lens betagamma-crystallins are widely expressed in various tissues, but their functions are unknown. The molecular mechanisms of trefoil factors, initiators of mucosal healing and being greatly involved in tumorigenesis, have remained elusive. PRINCIPAL FINDINGS A naturally existing 72-kDa complex of non-lens betagamma-crystallin (alpha-subunit) and trefoil factor (beta-subunit), named betagamma-CAT, was identified from frog Bombina maxima skin secretions. Its alpha-subunit and beta-subunit (containing three trefoil factor domains), with a non-covalently linked form of alphabeta(2), show significant sequence homology to ep37 proteins, a group of non-lens betagamma-crystallins identified in newt Cynops pyrrhogaster and mammalian trefoil factors, respectively. betagamma-CAT showed potent hemolytic activity on mammalian erythrocytes. The specific antiserum against each subunit was able to neutralize its hemolytic activity, indicating that the two subunits are functionally associated. betagamma-CAT formed membrane pores with a functional diameter about 2.0 nm, leading to K(+) efflux and colloid-osmotic hemolysis. High molecular weight SDS-stable oligomers (>240-kDa) were detected by antibodies against the alpha-subunit with Western blotting. Furthermore, betagamma-CAT showed multiple cellular effects on human umbilical vein endothelial cells. Low dosages of betagamma-CAT (25-50 pM) were able to stimulate cell migration and wound healing. At high concentrations, it induced cell detachment (EC(50) 10 nM) and apoptosis. betagamma-CAT was rapidly endocytosed via intracellular vacuole formation. Under confocal microscope, some of the vacuoles were translocated to nucleus and partially fused with nuclear membrane. Bafilomycin A1 (a specific inhibitor of the vacuolar-type ATPase) and nocodazole (an agent of microtuble depolymerizing), while inhibited betagamma-CAT induced vacuole formation, significantly inhibited betagamma-CAT induced cell detachment, suggesting that betagamma-CAT endocytosis is important for its activities. CONCLUSIONS/SIGNIFICANCE These findings illustrate novel cellular functions of non-lens betagamma-cyrstallins and action mechanism via association with trefoil factors, serving as clues for investigating the possible occurrence of similar molecules and action mechanisms in mammals.
Collapse
Affiliation(s)
- Shu-Bai Liu
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying He
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Hui Lee
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Qiao Qian
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Ren Lai
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yang Jin
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
270
|
Search for cellular partners of human papillomavirus type 16 E2 protein. Arch Virol 2008; 153:983-90. [PMID: 18305892 DOI: 10.1007/s00705-008-0061-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/25/2008] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that infect cutaneous and mucosal epithelia. Type 16 (HPV16) displays tropism to genital epithelia, giving rise to genital warts and cervical intraepithelial neoplasia (CIN), which is a precursor lesion to invasive carcinoma of the cervix. The great majority of human cervical cancers contain integrated HPV DNA where the E2 gene is usually disrupted, suggesting that the loss of the E2 protein is an important step in HPV-induced carcinogenesis. The HPV16 E2 protein is a regulatory protein that seems to be essential for creating favourable conditions for establishment of infection and proper completion of the viral life cycle. Recently, diverse activities of the E2 proteins have been described, but the molecular basis of these processes has not beenfully elucidated. Using a yeast two-hybrid system, we have identified epithelial cellular proteins that bind to the E2 protein of HPV16.
Collapse
|
271
|
Zhao Y, Liu Y, Zheng D. Alpha 1-antichymotrypsin/SerpinA3 is a novel target of orphan nuclear receptor Nur77. FEBS J 2008; 275:1025-38. [PMID: 18248459 DOI: 10.1111/j.1742-4658.2008.06269.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nur77 is one member of the nuclear receptor superfamily. As a transcription factor, Nur77 participates in a variety of biological processes, including T cell development, inflammatory responses, steroid hormone synthesis, and hepatic glucose metabolism. It typically acts via binding to the Nur77 responsive element (NBRE) in the promoter regions of its target genes. In the present study, we identified a novel Nur77-regulated gene, alpha1-antichymotrypsin/SerpinA3, via an approach combining computational prediction and wet-laboratory validations. First, we identified 483 candidate genes via a human genome-wide scan for NBREs in their proximal promoters. Three out of 14 function-associated genes were further identified to be transactivated by Nur77 in luciferase reporter gene assays in HEK 293T cells. The transactivation assay proved that the NBRE (-182 to -175) in the SerpinA3 promoter region is a novel Nur77-dependent functional motif in HEK 293T and HepG2 cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that Nur77 physically associates with the SerpinA3 promoter region both in vitro and in vivo. Nur77 overexpression and RNA interference-mediated Nur77 gene knockdown analysis confirmed that SerpinA3 is indeed a novel Nur77-targeted gene. These data may throw light on the function of Nur77 in inflammatory responses and acute-phase reactions as well as the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Yongjuan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
272
|
Sibayama-Imazu T, Fujisawa Y, Masuda Y, Aiuchi T, Nakajo S, Itabe H, Nakaya K. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J Cancer Res Clin Oncol 2008; 134:803-12. [PMID: 18202854 DOI: 10.1007/s00432-007-0349-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/03/2007] [Indexed: 12/11/2022]
Abstract
PURPOSE We examined the growth-inhibitory and apoptosis-inducing effects of vitamin K(2) (VK(2); menaquinone-4) on various lines of human ovarian cancer cells to study the mechanism of induction of apoptosis by VK(2). METHODS Cell proliferation was determined by XTT method, and apoptotic cells were detected by Hoechst staining. TR3, also known as Nur77 and NGFI-B, was detected by immunoblotting and immunofluorescence analysis. Role of TR3 on induction of apoptosis was examined by a siRNA experiment. RESULTS AND CONCLUSIONS We found that PA-1 cells were the most sensitive to VK(2) (IC(50) = 5.0 +/- 0.7 microM), while SK-OV-3 cells were resistant to VK(2). Immunoblotting and immunofluorescence analyses indicated that levels of TR3 were elevated in cell lysates 48 h after the start of treatment with 30 microM VK(2). In the VK(2)-treated cells, TR3 accumulated at significant levels in mitochondria, as well as in the nuclei of PA-1 cells. No similar changes were observed in SK-OV-3 cells under the same conditions. Treatment of PA-1 cells with small interfering RNA (siRNA) directed against TR3, and with cycloheximide or SP600125 (an inhibitor of c-jun N-terminal kinase; JNK), separately, inhibited the VK(2)-induced synthesis of TR3 and apoptosis. From these results, we can conclude that an increase in the synthesis of TR3 and the accumulation of TR3 in mitochondria and in nuclei might be involved in the induction of apoptosis by VK(2) and that the synthesis of TR3 might be regulated through a JNK signaling pathway.
Collapse
Affiliation(s)
- Toshiko Sibayama-Imazu
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
273
|
Gissendanner CR, Kelley K, Nguyen TQ, Hoener MC, Sluder AE, Maina CV. The Caenorhabditis elegans NR4A nuclear receptor is required for spermatheca morphogenesis. Dev Biol 2008; 313:767-86. [PMID: 18096150 PMCID: PMC3845373 DOI: 10.1016/j.ydbio.2007.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/30/2007] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
Abstract
The gene nhr-6 encodes the Caenorhabditis elegans ortholog of the NR4A nuclear receptor. We determined the biological functions of NHR-6 through the isolation and characterization of a deletion allele of nhr-6, lg6001. We demonstrate that nhr-6 has an essential role in the development of the C. elegans somatic gonad. Specifically, nhr-6 is required for the development of the hermaphrodite spermatheca, a somatic gonad organ that serves as the site of sperm storage and oocyte fertilization. Using a variety of spermatheca cell markers, we have determined that loss of nhr-6 function causes severe morphological defects in the spermatheca and associated spermathecal valves. This appears to be due to specific requirements for nhr-6 in regulating cell proliferation and cell differentiation during development of these structures. The improper development of these structures in nhr-6(lg6001) mutants leads to defects in ovulation and significantly reduced fecundity of C. elegans hermaphrodites. The phenotypes of nhr-6(lg6001) mutants are consistent with a role for nhr-6 in organogenesis, similar to the functions of its mammalian homologs.
Collapse
Affiliation(s)
- Chris R Gissendanner
- Department of Biology, University of Louisiana at Monroe, Monroe, LA 71209, USA.
| | | | | | | | | | | |
Collapse
|
274
|
Sani MA, Castano S, Dufourc EJ, Gröbner G. Restriction of lipid motion in membranes triggered by β-sheet aggregation of the anti-apoptotic BH4 domain. FEBS J 2008; 275:561-72. [DOI: 10.1111/j.1742-4658.2007.06222.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
275
|
Psarra AMG, Sekeris CE. Nuclear receptors and other nuclear transcription factors in mitochondria: regulatory molecules in a new environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:1-11. [PMID: 18062929 DOI: 10.1016/j.bbamcr.2007.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/27/2007] [Accepted: 10/29/2007] [Indexed: 12/25/2022]
Abstract
The mitochondrion is the major energy generating organelle of the cell and the site of other basic processes, including apoptosis. The mitochondrial functions are performed in concert with other cell compartments and are regulated by various extracellular and intracellular signals. Several nuclear receptors and other nuclear transcription factors, such as NF-kappa B, AP-1, CREB and p53, involved in growth, metabolic and developmental processes, have been detected in mitochondria. This finding raises the question as to the role of these regulatory molecules in their "new" environment. Experimental evidence supports the action of the mitochondrially localized transcription factors on mitochondrial transcription, energy yield and apoptosis, extending the known nuclear role of these molecules outside the nucleus. A principle of coordination of nuclear and mitochondrial gene transcription has been ascertained as regards the regulatory action of steroid and thyroid hormones on energy yield. Accordingly, the same nuclear receptors, localized in the two compartments-nuclei and mitochondria-regulate transcription of genes serving a common function by way of interaction with common binding sites in the two genomes. This principle is now expanding to encompass other nuclearly and mitochondrially localized transcription factors.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, 4 Soranou Efesiou, 11527, Athens, Greece
| | | |
Collapse
|
276
|
Zheng X, Chang RL, Cui XX, Avila GE, Hebbar V, Garzotto M, Shih WJ, Lin Y, Lu SE, Rabson AB, Kong ANT, Conney AH. Effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) in combination with paclitaxel (Taxol) on prostate Cancer LNCaP cells cultured in vitro or grown as xenograft tumors in immunodeficient mice. Clin Cancer Res 2007; 12:3444-51. [PMID: 16740769 DOI: 10.1158/1078-0432.ccr-05-2823] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) in combination with paclitaxel (Taxol) on prostate cancer cells cultured in vitro or grown as tumors in immunodeficient mice. EXPERIMENTAL DESIGN Human prostate cancer LNCaP cells in culture were treated with TPA alone or in combination with paclitaxel. NCr immunodeficient mice with well-established LNCaP tumors received i.p. injections with vehicle or with TPA, paclitaxel, or TPA in combination with paclitaxel. The animals either received daily treatment for 5 consecutive days followed by a 2-day intermission, which was repeated for a total of 28 days (experiment 1), or continuous daily treatment for 28 days (experiment 2). RESULTS Treatment of LNCaP cells with a combination of TPA and paclitaxel synergistically inhibited the growth and induced apoptosis in cultured LNCaP cells, and this treatment also induced a marked increase in phosphorylated c-Jun-NH2-kinase (JNK). In animal experiments, tumor growth occurred in all mice treated with vehicle. When treated with TPA alone, the percentage of animals with some tumor regression was 33% in experiment 1 and 100% in experiment 2. Treatment of animals with paclitaxel alone caused some tumor regression in 17% and 57% of the animals in experiments 1 and 2, respectively. All animals treated with TPA + paclitaxel in both experiments had some tumor regression. CONCLUSIONS TPA and paclitaxel in combination had a stronger inhibitory effect on the growth of LNCaP cells in culture or as xenograft tumors in immunodeficient mice than either agent alone. Clinical trials with TPA alone or in combination with paclitaxel in patients with prostate cancer may be warranted.
Collapse
Affiliation(s)
- Xi Zheng
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Li GD, Fang JX, Chen HZ, Luo J, Zheng ZH, Shen YM, Wu Q. Negative regulation of transcription coactivator p300 by orphan receptor TR3. Nucleic Acids Res 2007; 35:7348-59. [PMID: 17962304 PMCID: PMC2175348 DOI: 10.1093/nar/gkm870] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
p300 regulates the transcriptional activity of a variety of transcription factors by forming an activation complex and/or promoting histone acetylation. Here, we show a unique characteristic of orphan receptor TR3 in negatively regulating the function of p300. TR3 was found to interact with p300 and inhibited the acetylation of transcription factors induced by p300, resulting in the repression of their transcriptional activity. Further analysis revealed that both a conserved transcriptional adapter motif (TRAM) in p300 and a specific sequence FLELFIL in TR3 were critical for their interaction. TR3 binding completely covered the histone acetyltransferase (HAT) domain of p300 and resulted in suppression of the HAT activity, as the p300-induced histone H3 acetylation and transcription were inhibited with the presence TR3. Furthermore, an agonist of TR3, a natural octaketide isolated from Dothiorella sp. HTF3 of an endophytical fungus, was shown to be a potent compound for inhibiting p300 HAT activity (IC50 = 1.5 μg/ml) in vivo. More importantly, this agonist could repress the transcriptional activity of transcription factors, and proliferation of cancer cells. Taken together, our results not only delineate a novel transcriptional repressor function for TR3, but also reveal its modulation on p300 HAT activity as the underlying mechanism.
Collapse
Affiliation(s)
- Gui-deng Li
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | |
Collapse
|
278
|
Kondo E, Yoshino T. Expression of apoptosis regulators in germinal centers and germinal center-derived B-cell lymphomas: insight into B-cell lymphomagenesis. Pathol Int 2007; 57:391-7. [PMID: 17587238 DOI: 10.1111/j.1440-1827.2007.02115.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Germinal centers (GC) are unique sites in peripheral lymphoid tissue where clonal selection of B cells takes place in response to stimulation by various antigens. To select a proper B-cell clone for antibody-mediated immunity, multiple apoptotic signals synchronize in the GC, both in negative and positive selection pathways. At the same time, GC have been known to be a major source of B-cell lymphomas including follicular and Burkitt's, and also some diffuse large B-cell lymphomas. Therefore, uncovering the biological characteristics of GC would greatly contribute to understanding lymphomagenesis, or progression of B-cell lymphomas of GC origin. Herein the authors briefly explain the expression and pathophysiological significance of apoptosis regulators in GC, focusing particularly on Bcl-2, Fas (CD95) and a transcription factor, nuclear factor of activated T cells, which seems to play a critical role in regulating cellular dynamics of GC B cells via B-cell antigen receptor. The expression of these molecules is then compared with that of the neoplastic counterpart B-cell lymphomas in order to consider lymphomagenesis of GC origin. In conclusion, follicular lymphoma closely reflected characteristics of GC among these B-cell lymphomas, although it acquires strong expression of apoptosis-resistant gene, bcl-2.
Collapse
MESH Headings
- Apoptosis/physiology
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Germinal Center/metabolism
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- fas Receptor/genetics
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Eisaku Kondo
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | |
Collapse
|
279
|
Stasik I, Rapak A, Kalas W, Ziolo E, Strzadala L. Ionomycin-induced apoptosis of thymocytes is independent of Nur77 NBRE or NurRE binding, but is accompanied by Nur77 mitochondrial targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1483-90. [PMID: 17588685 DOI: 10.1016/j.bbamcr.2007.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 11/28/2022]
Abstract
The induction of thymocyte apoptosis through the Nur77-mediated intrinsic pathway can be of physiological importance in the clonal deletion of autoreactive thymocytes during negative selection in the thymus and/or in thymocytes undergoing oncogenic transformation. Ionomycin treatment induces endogenous Nur77 expression as well as apoptosis and cytochrome c release in thymocytes. Here it is shown for the first time that in normal thymocytes undergoing apoptosis, ionomycin induces translocation of endogenous Nur77 not only to the nucleus, but also to mitochondria. Immunosuppressant FK506 inhibits Nur77 NBRE and NurRE binding activity but has no effect on thymocytes apoptosis, the subcellular localization of Nur77, or cytochrome c release. This indicates that thymocytes can undergo apoptosis through the intrinsic Nur77-mediated mitochondrial pathway and that the transactivation activity of Nur77 monomers or dimers is not necessary for thymocyte apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cells, Cultured
- Cytochromes c/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Immunosuppressive Agents/pharmacology
- Ionomycin/pharmacology
- Ionophores/pharmacology
- Mice
- Mice, Inbred C57BL
- Mitochondria/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Protein Binding
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/antagonists & inhibitors
- Receptors, Steroid/metabolism
- Response Elements/genetics
- Tacrolimus/pharmacology
- Thymus Gland/cytology
- Thymus Gland/drug effects
- Thymus Gland/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Izabela Stasik
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
280
|
Zhao WX, Tian M, Zhao BX, Li GD, Liu B, Zhan YY, Chen HZ, Wu Q. Orphan receptor TR3 attenuates the p300-induced acetylation of retinoid X receptor-alpha. Mol Endocrinol 2007; 21:2877-89. [PMID: 17761950 DOI: 10.1210/me.2007-0107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acetylation modification regulates the functions of histone and nonhistone proteins, including transcriptional activity, protein interaction, and subcellular localization. Although many nuclear receptors have been shown to be modified by acetylation, whether retinoid X receptors (RXRs) are acetylated and how the acetylation is regulated remains unknown. Here, we provide the first evidence of RXRalpha acetylation by p300 on lysine 145. Acetylation of RXRalpha by p300 facilitated its DNA binding and subsequently increased its transcriptional activity. Furthermore, we discovered that TR3, an orphan receptor, exerted a negative regulation on p300-induced RXRalpha acetylation. TR3 significantly reduced the p300-induced RXRalpha acetylation and transcriptional activity, and such inhibition required the interaction of TR3 with RXRalpha. Binding of TR3 to RXRalpha resulted in the sequestration of RXRalpha from p300. 9-cis retinoic acid, a ligand for RXRalpha, enhanced the association of RXRalpha with TR3, rather than acetylation of RXRalpha by p300. Biological function analysis revealed that the mitogenic activity of RXRalpha stimulated by p300 was acetylation dependent and could be repressed by TR3. Upon the treatment of 9-cis retinoic acid, RXRalpha was translocated with TR3 from the nucleus to the mitochondria, and apoptosis was induced. Taken together, our data demonstrate the distinct regulatory mechanisms of p300 and TR3 on RXRalpha acetylation and reveal a previously unrecognized role for orphan receptor in the transcriptional control of retinoid receptors.
Collapse
Affiliation(s)
- Wen-Xiu Zhao
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Rapak A, Stasik I, Ziolo E, Strzadala L. Apoptosis of lymphoma cells is abolished due to blockade of cytochrome c release despite Nur77 mitochondrial targeting. Apoptosis 2007; 12:1873-8. [PMID: 17701362 DOI: 10.1007/s10495-007-0107-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Nur77 is reported to undergo translocation to mitochondria in response to apoptotic signaling in a variety of cancer cell lines. It was shown that on the mitochondrial membrane, Nur77 interacts with Bcl-2, leading to the conversion of this protein from a protector to a killer with subsequent release of cytochrome c to the cytosol. Here it is shown that in thymic lymphoma cells resistant to calcium-mediated apoptosis, cytochrome c release is abolished despite of Nur77 mitochondrial targeting. However, cytochrome c release and apoptosis can be restored by treatment with FK506. Hence, the molecular target regulation of the sensitivity of lymphoma cells to calcium signaling is associated with cytochrome c release and is FK506 sensitive. These results provide new insight into the role of FK506-sensitive factors as a critical link between calcium signaling and resistance of lymphoma cells to death.
Collapse
Affiliation(s)
- Andrzej Rapak
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wroclaw, Poland
| | | | | | | |
Collapse
|
282
|
Henze D, Köthe L, Scharf A, Clausen T. Reliability of the microdialysis pump CMA 107 under hyperbaric conditions. J Neurosci Methods 2007; 164:312-9. [PMID: 17560660 DOI: 10.1016/j.jneumeth.2007.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/25/2007] [Accepted: 05/01/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Microdialysis measurements of extracellular substances under hyperbaric conditions were manifold used in several investigations. However, to our knowledge there is no analysis, which verified the applicability of microdialysis pumps under hyperbaric conditions. Thus, a goal of this study was to investigate the reliability of the microdialysis pump (MDP) CMA 107 in a hyperbaric environment up to 2.4bar absolute pressure. METHODS The CMA 107 with a perfusion rate of 2microL/min was stored in a decompression chamber. The ambient pressure was increased from 1 to 2.4bar absolute within 15min, maintained for 90min and then decreased to 1bar within 15min. The vials were changed every 15min, weighed before as well as after collecting the sample volume and the absolute recovery of glutamate, pyruvate, lactate, glucose and glycerol was determined. The same setup was performed under normobaric conditions. RESULTS The pumping capacity was 1.7% greater than expected under normobaric conditions, 36.5% less than expected in the compression phase, 10.5% less than expected in the isopression phase and 26.3% greater than expected in the decompression phase under hyperbaric conditions. The absolute recoveries under hyperbaric conditions were affected during the isopression phase with a deviation from -6 to +20% compared to normobaric environments. CONCLUSION The study demonstrated that an absolute ambient pressure up to 2.4bar did influence the pumping capacity and the reliability of the absolute recovery. These results need to be taken into consideration when interpreting microdialysis studies performed under hyperbaric conditions.
Collapse
Affiliation(s)
- Dirk Henze
- Department of Anesthesiology and Intensive Care Medicine, Martin-Luther-University Halle-Wittenberg, Dryanderstr. 4-7, 06108 Halle (Saale), Germany.
| | | | | | | |
Collapse
|
283
|
Liang B, Song X, Liu G, Li R, Xie J, Xiao L, Du M, Zhang Q, Xu X, Gan X, Huang D. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis. Exp Cell Res 2007; 313:2833-44. [PMID: 17543302 DOI: 10.1016/j.yexcr.2007.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 04/12/2007] [Accepted: 04/27/2007] [Indexed: 02/05/2023]
Abstract
Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 microM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca(2+) from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death.
Collapse
Affiliation(s)
- Bin Liang
- Center for Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Abstract
Nur77, Nurr1, and NOR-1 form the NR4A subfamily of the nuclear hormone receptor superfamily of transcription factors and have been described in the regulation of differentiation, proliferation, apoptosis, and survival of many different cell types. The expression of NR4A nuclear receptors in vascular pathologies has only recently been revealed, after which studies on the functional involvement of NR4A receptors in vascular disease were initiated. This review summarizes our current view on involvement of Nur77, Nurr1, and NOR-1 in atherosclerotic vascular disease and discusses NR4A function in vascular response to injury.
Collapse
MESH Headings
- Animals
- Apoptosis
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Differentiation
- Cell Proliferation
- Cell Survival
- DNA-Binding Proteins/metabolism
- Graft Occlusion, Vascular/metabolism
- Graft Occlusion, Vascular/pathology
- Humans
- Membrane Transport Proteins/metabolism
- Muscle, Smooth, Vascular/blood supply
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Nerve Tissue Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Peter I Bonta
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
285
|
Calgaro MR, Neto MDO, Figueira ACM, Santos MAM, Portugal RV, Guzzi CA, Saidemberg DM, Bleicher L, Vernal J, Fernandez P, Terenzi H, Palma MS, Polikarpov I. Orphan nuclear receptor NGFI-B forms dimers with nonclassical interface. Protein Sci 2007; 16:1762-72. [PMID: 17600153 PMCID: PMC2203355 DOI: 10.1110/ps.062692207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells.
Collapse
MESH Headings
- Circular Dichroism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- Dimerization
- Mass Spectrometry
- Models, Biological
- Models, Molecular
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Protein Structure, Secondary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/isolation & purification
- Receptors, Glucocorticoid/chemistry
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/isolation & purification
- Scattering, Small Angle
- Solutions
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/isolation & purification
Collapse
Affiliation(s)
- Marcos R Calgaro
- Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, CEP 13566-590 São Carlos, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Kakkar P, Singh BK. Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 2007; 305:235-53. [PMID: 17562131 DOI: 10.1007/s11010-007-9520-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/16/2007] [Indexed: 02/07/2023]
Abstract
In their reductionist approach in unraveling phenomena inside the cell, scientists in recent times have focused attention to mitochondria. An organelle with peculiar evolutionary history and organization, it is turning out to be an important cell survival switch. Besides controlling bioenergetics of a cell it also has its own genetic machinery which codes 37 genes. It is a major source of generation of reactive oxygen species, acts as a safety device against toxic increases of cytosolic Ca2+ and its membrane permeability transition is a critical control point in cell death. Redox status of mitochondria is important in combating oxidative stress and maintaining membrane permeability. Importance of mitochondria in deciding the response of cell to multiplicity of physiological and genetic stresses, inter-organelle communication, and ultimate cell survival is constantly being unraveled and discussed in this review. Mitochondrial events involved in apoptosis and necrotic cell death, such as activation of Bcl-2 family proteins, formation of permeability transition pore, release of cytochrome c and apoptosis inducing factors, activation of caspase cascade, and ultimate cell death is the focus of attention not only for cell biologists, but also for toxicologists in unraveling stress responses. Mutations caused by ROS to mitochondrial DNA, its inability to repair it completely and creation of a vicious cycle of mutations along with role of Bcl-2 family genes and proteins has been implicated in many diseases where mitochondrial dysfunctions play a key role. New therapeutic approaches toward targeting low molecular weight compounds to mitochondria, including antioxidants is a step toward nipping the stress in the bud.
Collapse
Affiliation(s)
- Poonam Kakkar
- Herbal Research Section, Industrial Toxicology Research Centre, P.O. Box-80, M G Marg, Lucknow, 226 001, India.
| | | |
Collapse
|
287
|
Dawson MI, Xia Z, Liu G, Ye M, Fontana JA, Farhana L, Patel BB, Arumugarajah S, Bhuiyan M, Zhang XK, Han YH, Stallcup WB, Fukushi JI, Mustelin T, Tautz L, Su Y, Harris DL, Waleh N, Hobbs PD, Jong L, Chao WR, Schiff LJ, Sani BP. An adamantyl-substituted retinoid-derived molecule that inhibits cancer cell growth and angiogenesis by inducing apoptosis and binds to small heterodimer partner nuclear receptor: effects of modifying its carboxylate group on apoptosis, proliferation, and protein-tyrosine phosphatase activity. J Med Chem 2007; 50:2622-39. [PMID: 17489579 PMCID: PMC2528874 DOI: 10.1021/jm0613323] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptotic and antiproliferative activities of small heterodimer partner (SHP) nuclear receptor ligand (E)-4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC), which was derived from 6-[3'-(1-adamantyl)-4'-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN), and several carboxyl isosteric or hydrogen bond-accepting analogues were examined. 3-Cl-AHPC continued to be the most effective apoptotic agent, whereas tetrazole, thiazolidine-2,4-dione, methyldinitrile, hydroxamic acid, boronic acid, 2-oxoaldehyde, and ethyl phosphonic acid hydrogen bond-acceptor analogues were inactive or less efficient inducers of KG-1 acute myeloid leukemia and MDA-MB-231 breast, H292 lung, and DU-145 prostate cancer cell apoptosis. Similarly, 3-Cl-AHPC was the most potent inhibitor of cell proliferation. 4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorophenyltetrazole, (2E)-5-{2-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]ethenyl}-1H-tetrazole, 5-{4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorobenzylidene}thiazolidine-2,4-dione, and (3E)-4-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]-2-oxobut-3-enal were very modest inhibitors of KG-1 proliferation. The other analogues were minimal inhibitors. Fragment-based QSAR analyses relating the polar termini with cancer cell growth inhibition revealed that length and van der Waals electrostatic surface potential were the most influential features on activity. 3-Cl-AHPC and the 3-chlorophenyltetrazole and 3-chlorobenzylidenethiazolidine-2,4-dione analogues were also able to inhibit SHP-2 protein-tyrosine phosphatase, which is elevated in some leukemias. 3-Cl-AHPC at 1.0 microM induced human microvascular endothelial cell apoptosis but did not inhibit cell migration or tube formation.
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Affiliation(s)
- Hang-Zi Chen
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Fujian 361005, China
| | | |
Collapse
|
289
|
Lee KW, Cobb LJ, Paharkova-Vatchkova V, Liu B, Milbrandt J, Cohen P. Contribution of the orphan nuclear receptor Nur77 to the apoptotic action of IGFBP-3. Carcinogenesis 2007; 28:1653-8. [PMID: 17434920 DOI: 10.1093/carcin/bgm088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tumor suppression by insulin-like growth factor-binding protein-3 (IGFBP-3) has been demonstrated to occur via insulin-like growth factor-dependent and -independent mechanisms in vitro and in vivo. We have recently described IGFBP-3-induced mitochondrial translocation of the nuclear receptors RXRalpha/Nur77 in the induction of prostate cancer (CaP) cell apoptosis. Herein, we demonstrate that IGFBP-3 and Nur77 associate in the cytoplasmic compartment in 22RV1 CaP cells. Nur77 is a major component of IGFBP-3-induced apoptosis as shown by utilizing mouse embryonic fibroblasts (MEFs) derived from Nur77 wild-type and knockout (KO) mice. However, dose-response experiments revealed that a small component of IGFBP-3-induced apoptosis is Nur77 independent. Reintroduction of Nur77 into Nur77 KO MEFs restores full responsiveness to IGFBP-3. IGFBP-3 induces phosphorylation of Jun N-terminal kinase and inhibition of Akt phosphorylation and activity, which have been associated with Nur77 translocation. Finally, IGFBP-3 administration to CaP xenografts on SCID mice induced apoptosis and translocated Nur77 out of the nucleus. Taken together, our results verify an important role for the orphan nuclear receptor Nur77 in the apoptotic actions of IGFBP-3.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Cell Line, Tumor
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Fibroblasts/cytology
- Fibroblasts/enzymology
- Fibroblasts/metabolism
- Humans
- Insulin-Like Growth Factor Binding Protein 3
- Insulin-Like Growth Factor Binding Proteins/metabolism
- Insulin-Like Growth Factor Binding Proteins/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Binding/physiology
- Protein Transport/physiology
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/deficiency
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Steroid/physiology
- Subcellular Fractions/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Kuk-Wha Lee
- Division of Pediatric Endocrinology, Mattel Children's Hospital at University of California at Los Angeles, David Geffen School of Medicine, 10833 Le Conte Avenue, MDCC 22-315, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
290
|
Abstract
BACKGROUND AND PURPOSE Programmed cell death (pcd) plays a critical role in the development of the nervous system, as well as in its response to insult. Both anti-pcd and pro-pcd modulators play prominent roles in development and disease, including ischemic cerebrovascular disease. The purpose of this article is therefore to review the basics of programmed cell death. METHODS There have been over 100 000 scientific and clinical publications on the topic of programmed cell death and its most well known form, apoptosis. The principles emerging from these studies are reviewed here. RESULTS Programmed cell death is a form of cell death in which the cell plays an active role in its own demise. Apoptosis is the most well-defined form of pcd, but recent studies have begun to characterize an alternative program, autophagic cell death. In addition, there appear to be programmatic cell deaths that do not fit the criteria for either apoptosis or autophagic cell death, arguing that additional programs may also be available to cells. CONCLUSIONS Constructing a mechanistic taxonomy of all forms of pcd--based on inhibitors, activators, and identified biochemical pathways involved in each form of pcd--should offer new insight into cell deaths associated with cerebrovascular disease and other diseases, and ultimately offer new therapeutic approaches.
Collapse
|
291
|
Noguchi M, Ropars V, Roumestand C, Suizu F. Proto‐oncogene TCL1: more than just a coactivator for Akt. FASEB J 2007; 21:2273-84. [PMID: 17360849 DOI: 10.1096/fj.06-7684com] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Serine threonine kinase Akt, also called PKB (protein kinase B), plays a central role in regulating intracellular survival. Deregulation of this Akt signaling pathway underlies various human neoplastic diseases. Recently, the proto-oncogene TCL1 (T cell leukemia 1), with a previously unknown physiological function, was shown to interact with the Akt pleckstrin homology domain, enhancing Akt kinase activity; hence, it functions as an Akt kinase coactivator. In contrast to pathological conditions in which the TCL1 gene is highly activated in various human neoplasmic diseases, the physiological expression of TCL1 is tightly limited to early developmental cells as well as various developmental stages of immune cells. The NBRE (nerve growth factor-responsive element) of the proximal TCL1 promoter sequences can regulate the restricted physiological expression of TCL1 in a negative feedback mechanism. Further, based on the NMR structural studies of Akt-TCL1 protein complexes, an inhibitory peptide, "Akt-in," consisting of the betaA strand of TCL1, has been identified and has therapeutic potential. This review article summarizes and discusses recent advances in the understanding of TCL1-Akt functional interaction in order to clarify the biological action of the proto-oncogene TCL1 family and the development avenues for a suppressive drug specific for Akt, a core intracellular survival regulator.
Collapse
Affiliation(s)
- Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
292
|
Grote P, Schaeuble K, Ferrando-May E. Commuting (to) suicide: an update on nucleocytoplasmic transport in apoptosis. Arch Biochem Biophys 2007; 462:156-61. [PMID: 17395148 DOI: 10.1016/j.abb.2007.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 12/12/2022]
Abstract
Commuting is the process of travelling between a place of residence and a place of work. In the context of biology, this expression evokes the continuous movement of macromolecules between different compartments of a eukaryotic cell. Transport in and out of the nucleus is a major example of intracellular commuting. This article discusses recent findings that substantiate the emerging link between nucleocytoplasmic transport and the signalling and execution of cell death.
Collapse
Affiliation(s)
- Patricia Grote
- University of Konstanz, Department of Biology, Molecular Toxicology, P.O. Box X911, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
293
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
294
|
Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 2007; 67:651-8. [PMID: 17234775 DOI: 10.1158/0008-5472.can-06-2762] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemokine CXCL12 and its cognate receptor CXCR4 regulate malignant brain tumor growth and are potential chemotherapeutic targets. However, the molecular basis for CXCL12-induced tumor growth remains unclear, and the optimal approach to inhibiting CXCR4 function in cancer is unknown. To develop such a therapeutic approach, we investigated the signaling pathways critical for CXCL12 function in normal and malignant cells. We discovered that CXCL12-dependent tumor growth is dependent upon sustained inhibition of cyclic AMP (cAMP) production, and that the antitumor activity of the specific CXCR4 antagonist AMD 3465 is associated with blocking cAMP suppression. Consistent with these findings, we show that pharmacologic elevation of cAMP with the phosphodiesterase inhibitor Rolipram suppresses tumor cell growth in vitro and, upon oral administration, inhibits intracranial growth in xenograft models of malignant brain tumors with comparable efficacy to AMD 3465. These data indicate that the clinical evaluation of phosphodiesterase inhibitors in the treatment of patients with brain tumors is warranted.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Pediatrics, and Neurology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
295
|
Abstract
The ultimate growth of a tumour depends on not only the rate of tumour cell proliferation, but also the rate of tumour cell death (apoptosis). Nur77 (also known as TR3 or NGFI-B), an orphan member of the nuclear receptor superfamily, controls both survival and death of cancer cells. A wealth of recent experimental data demonstrates that the Nur77 activities are regulated through its subcellular localisation. In the nucleus, Nur77 functions as an oncogenic survival factor, promoting cancer cell growth. In contrast, it is a potent killer when migrating to mitochondria, where it binds to Bcl-2 and converts its survival phenotype, triggering cytochrome c release and apoptosis. Agents, such as 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN/CD437), which induce Nur77 migration from the nucleus to mitochondria, effectively induce apoptosis of cancer cells. Moreover, Nur77 translocation is highly controlled by retinoid X receptor (RXR), suggesting a role of RXR ligands in regulating the process. Thus, translocation of Nur77 from the nucleus to mitochondria represents a new paradigm in cancer cell apoptosis, and targeting the Nur77 translocation by AHPN/CD437 or RXR ligands promises to effectively restrict cancer cell growth by simultaneously promoting cancer cell death and suppressing cancer cell proliferation.
Collapse
Affiliation(s)
- Xiao-kun Zhang
- Burnham Institute for Medical Research, Cancer Center, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
296
|
Li QX, Tan P, Ke N, Wong-Staal F. Ribozyme technology for cancer gene target identification and validation. Adv Cancer Res 2007; 96:103-43. [PMID: 17161678 DOI: 10.1016/s0065-230x(06)96005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribozymes are naturally occurring RNAs with catalytic activities including cis- or trans- cleavage of RNA at predefined sequence sites. This activity has been exploited for specific gene inactivation in cells during the last two decades, and ribozymes have been important functional genomics tools, especially in the pre-RNAi era. It has also been broadly applied in drug target identification and validation in pharmaceutical R&D. This chapter covers many application principles and case studies of ribozyme technology in the areas of cancer research. We also described RNAi applications in some of the same studies for comparison. Although RNAi may be more effective than ribozymes in many respects, they are nonetheless built on many of the same principles.
Collapse
Affiliation(s)
- Qi-Xiang Li
- Immusol, Inc., San Diego, California 92121, USA
| | | | | | | |
Collapse
|
297
|
Luciano F, Krajewska M, Ortiz-Rubio P, Krajewski S, Zhai D, Faustin B, Bruey JM, Bailly-Maitre B, Lichtenstein A, Kolluri SK, Satterthwait AC, Zhang XK, Reed JC. Nur77 converts phenotype of Bcl-B, an antiapoptotic protein expressed in plasma cells and myeloma. Blood 2007; 109:3849-55. [PMID: 17227826 PMCID: PMC1874560 DOI: 10.1182/blood-2006-11-056879] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects in apoptosis mechanisms play important roles in malignancy and autoimmunity. Orphan nuclear receptor Nur77/TR3 has been demonstrated to bind antiapoptotic protein Bcl-2 and convert it from a cytoprotective to a cytodestructive protein, representing a phenotypic conversion mechanism. Of the 6 antiapoptotic human Bcl-2 family members, we found that Nur77/TR3 binds strongest to Bcl-B, showing selective reactivity with Bcl-B, Bcl-2, and Bfl-1 but not Bcl-X(L), Mcl-1, or Bcl-W. Nur77 converts the phenotype of Bcl-B from antiapoptotic to proapoptotic. Bcl-B is prominently expressed in plasma cells and multiple myeloma. Endogenous Bcl-B associates with endogenous Nur77 in RPMI 8226 myeloma cells, where RNA interference experiments demonstrated dependence on Bcl-B for Nur77-induced apoptosis. Furthermore, a Nur77-mimicking peptide killed RPMI 8226 myeloma cells through a Bcl-B-dependent mechanism. Because Bcl-B is abundantly expressed in plasma cells and some myelomas, these findings raise the possibility of exploiting the Nur77/Bcl-B mechanism for apoptosis for eradication of autoimmune plasma cells or myeloma.
Collapse
Affiliation(s)
- Frederic Luciano
- Burnham Institute for Medical Research, 10901 Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Cho SD, Yoon K, Chintharlapalli S, Abdelrahim M, Lei P, Hamilton S, Khan S, Ramaiah SK, Safe S. Nur77 agonists induce proapoptotic genes and responses in colon cancer cells through nuclear receptor-dependent and nuclear receptor-independent pathways. Cancer Res 2007; 67:674-683. [PMID: 17234778 DOI: 10.1158/0008-5472.can-06-2907] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nerve growth factor-induced Balpha (NGFI-Balpha, Nur77) is an orphan nuclear receptor with no known endogenous ligands; however, recent studies on a series of methylene-substituted diindolylmethanes (C-DIM) have identified 1,1-bis(3'-indolyl)-1-(phenyl)methane (DIM-C-Ph) and 1,1-bis(3'-indolyl)-1-(p-anisyl)methane (DIM-C-pPhOCH3) as Nur77 agonists. Nur77 is expressed in several colon cancer cell lines (RKO, SW480, HCT-116, HT-29, and HCT-15), and we also observed by immunostaining that Nur77 was overexpressed in colon tumors compared with normal colon tissue. DIM-C-Ph and DIM-C-pPhOCH3 decreased survival and induced apoptosis in RKO colon cancer cells, and this was accompanied by induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. The induction of apoptosis and TRAIL by DIM-C-pPhOCH3 was significantly inhibited by a small inhibitory RNA for Nur77 (iNur77); however, it was evident from RNA interference studies that DIM-C-pPhOCH3 also induced Nur77-independent apoptosis. Analysis of DIM-C-pPhOCH3-induced gene expression using microarrays identified several proapoptotic genes, and analysis by reverse transcription-PCR in the presence or absence of iNur77 showed that induction of programmed cell death gene 1 was Nur77 dependent, whereas induction of cystathionase and activating transcription factor 3 was Nur77 independent. DIM-C-pPhOCH3 (25 mg/kg/d) also inhibited tumor growth in athymic nude mice bearing RKO cell xenografts. These results show that Nur77-active C-DIM compounds represent a new class of anti-colon cancer drugs that act through receptor-dependent and receptor-independent pathways.
Collapse
Affiliation(s)
- Sung Dae Cho
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, College Station 77843-4466, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Cunningham NR, Artim SC, Fornadel CM, Sellars MC, Edmonson SG, Scott G, Albino F, Mathur A, Punt JA. Immature CD4+CD8+ thymocytes and mature T cells regulate Nur77 distinctly in response to TCR stimulation. THE JOURNAL OF IMMUNOLOGY 2007; 177:6660-6. [PMID: 17082578 DOI: 10.4049/jimmunol.177.10.6660] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The orphan steroid receptor, Nur77, is thought to be a central participant in events leading to TCR-mediated clonal deletion of immature thymocytes. Interestingly, although both immature and mature murine T cell populations rapidly up-regulate Nur77 after TCR stimulation, immature CD4+CD8+ thymocytes respond by undergoing apoptosis, whereas their mature descendants respond by dividing. To understand these developmental differences in susceptibility to the proapoptotic potential of Nur77, we compared its regulation and compartmentalization and show that mature, but not immature, T cells hyperphosphorylate Nur77 in response to TCR signals. Nur77 resides in the nucleus of immature CD4+CD8+ thymocytes throughout the course of its expression and is not found in either the organellar or cytoplasmic fractions. However, hyperphosphorylation of Nur77 in mature T cells, which is mediated by both the MAPK and PI3K/Akt pathways, shifts its localization from the nucleus to the cytoplasm. The failure of immature CD4+CD8+ thymocytes to hyperphosphorylate Nur77 in response to TCR stimulation may be due in part to decreased Akt activity at this developmental stage.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- CD28 Antigens/physiology
- CD4 Antigens/biosynthesis
- CD8 Antigens/biosynthesis
- Cell Differentiation/immunology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Female
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- MAP Kinase Signaling System/immunology
- Mice
- Mice, Inbred C57BL
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Phosphorylation
- Proto-Oncogene Proteins c-akt/physiology
- Receptors, Antigen, T-Cell/physiology
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/biosynthesis
- Receptors, Steroid/metabolism
- Receptors, Steroid/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Up-Regulation/immunology
Collapse
|
300
|
Farhana L, Dawson MI, Leid M, Wang L, Moore DD, Liu G, Xia Z, Fontana JA. Adamantyl-substituted retinoid-related molecules bind small heterodimer partner and modulate the Sin3A repressor. Cancer Res 2007; 67:318-25. [PMID: 17210713 PMCID: PMC2833172 DOI: 10.1158/0008-5472.can-06-2164] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (CD437/AHPN) and 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC/MM002) are inducers of apoptosis of malignant cells both in vitro and in vivo. Numerous mechanisms have been proposed for how these compounds exert this effect. This report shows that AHPN/3-Cl-AHPC binds specifically to the orphan nuclear receptor small heterodimer partner (SHP; NR0B2), and this binding promotes interaction of the receptor with a corepressor complex that minimally contains Sin3A, N-CoR, histone deacetylase 4, and HSP90. Formation of the SHP-Sin3A complex is essential for the ability of AHPN and 3-Cl-AHPC to induce apoptosis, as both knockout SHP and knockdown of Sin3A compromise the proapoptotic activity of these compounds but not other apoptosis inducers. These results suggest that AHPN/3-Cl-AHPC and their analogues are SHP ligands and their induction of apoptosis is mediated by their binding to the SHP receptor.
Collapse
Affiliation(s)
- Lulu Farhana
- John D. Dingell Veterans Affairs Medical Center and Department of Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, Michigan
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Li Wang
- Department of Medicine and Pharmacology, The University of Kansas Medical Center, Kansas City, Kansas
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Gang Liu
- Burnham Institute, La Jolla, California
| | - Zeben Xia
- Burnham Institute, La Jolla, California
| | - Joseph A. Fontana
- John D. Dingell Veterans Affairs Medical Center and Department of Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|