251
|
Williams CL. Kazutoshi Mori and Peter Walter receive the 2014 Albert Lasker Basic Medical Research Award. J Clin Invest 2014; 124:4138-42. [PMID: 25196044 DOI: 10.1172/jci78419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
252
|
Del Vecchio CA, Feng Y, Sokol ES, Tillman EJ, Sanduja S, Reinhardt F, Gupta PB. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol 2014; 12:e1001945. [PMID: 25203443 PMCID: PMC4159113 DOI: 10.1371/journal.pbio.1001945] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022] Open
Abstract
Upregulation of PERK-Nrf2 signaling is a key mechanism by which de-differentiated cancer cells gain multi-drug resistance. Malignant carcinomas that recur following therapy are typically de-differentiated and multidrug resistant (MDR). De-differentiated cancer cells acquire MDR by up-regulating reactive oxygen species (ROS)–scavenging enzymes and drug efflux pumps, but how these genes are up-regulated in response to de-differentiation is not known. Here, we examine this question by using global transcriptional profiling to identify ROS-induced genes that are already up-regulated in de-differentiated cells, even in the absence of oxidative damage. Using this approach, we found that the Nrf2 transcription factor, which is the master regulator of cellular responses to oxidative stress, is preactivated in de-differentiated cells. In de-differentiated cells, Nrf2 is not activated by oxidation but rather through a noncanonical mechanism involving its phosphorylation by the ER membrane kinase PERK. In contrast, differentiated cells require oxidative damage to activate Nrf2. Constitutive PERK-Nrf2 signaling protects de-differentiated cells from chemotherapy by reducing ROS levels and increasing drug efflux. These findings are validated in therapy-resistant basal breast cancer cell lines and animal models, where inhibition of the PERK-Nrf2 signaling axis reversed the MDR of de-differentiated cancer cells. Additionally, analysis of patient tumor datasets showed that a PERK pathway signature correlates strongly with chemotherapy resistance, tumor grade, and overall survival. Collectively, these results indicate that de-differentiated cells up-regulate MDR genes via PERK-Nrf2 signaling and suggest that targeting this pathway could sensitize drug-resistant cells to chemotherapy. The development of multidrug resistance is the primary obstacle to treating cancers. High-grade tumors that are less differentiated typically respond poorly to therapy and carry a much worse prognosis than well-differentiated low-grade tumors. Therapy-resistant cancer cells often overexpress antioxidants or efflux proteins that pump drugs out of the cell, but how the differentiation state of cancer cells influences these resistance mechanisms is not well understood. Here we used genome-scale approaches and found that the PERK kinase and its downstream target, Nrf2—a master transcriptional regulator of the cellular antioxidant response—are key mediators of therapy resistance in poorly differentiated breast cancer cells. We show that Nrf2 is activated when cancer cells de-differentiate and that this activation requires PERK. We further show that blocking PERK-Nrf2 signaling with a small-molecule inhibitor sensitizes drug-resistant cancer cells to chemotherapy. Our results identify a novel role for PERK-Nrf2 signaling in multidrug resistance and suggest that targeting this pathway could improve the responsiveness of otherwise resistant tumors to chemotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma/drug therapy
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma/pathology
- Cell Dedifferentiation/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred NOD
- Mice, SCID
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Neoplasm Grading
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Oxidation-Reduction
- Phosphorylation
- Signal Transduction
- Transcription, Genetic
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
| | - Yuxiong Feng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Ethan S. Sokol
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Erik J. Tillman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sandhya Sanduja
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Piyush B. Gupta
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
253
|
Hwang SL, Jeong YT, Li X, Kim YD, Lu Y, Chang YC, Lee IK, Chang HW. Inhibitory cross-talk between the AMPK and ERK pathways mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Br J Pharmacol 2014; 169:69-81. [PMID: 23373714 DOI: 10.1111/bph.12124] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/12/2012] [Accepted: 12/26/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Endoplasmic reticulum (ER) stress has been implicated in the pathogeneses of insulin resistance and type 2 diabetes, and extracellular signal-regulated kinase (ERK) antagonist is an insulin sensitizer that can restore muscle insulin responsiveness in both tunicamycin-treated muscle cells and type 2 diabetic mice. The present study was undertaken to determine whether the chemical or genetic inhibition ER stress pathway targeting by ERK results in metabolic benefits in muscle cells. EXPERIMENTAL APPROACH ER stress was induced in L6 myotubes using tunicamycin (5 μg·mL(-1) ) or thapsigargin (300 nM) and cells were transfected with siRNA ERK or AMPKα2. Changes in ER stress and in the ERK and AMPK signalling pathways were explored by Western blotting. The phosphorylation levels of insulin receptor substrate 1 were analysed by immunoprecipitation and using glucose uptake assay. KEY RESULTS ER stress dampened insulin-stimulated signals and glucose uptake, whereas treatment with the specific ERK inhibitor U0126 (25 μM) rescued impaired insulin signalling via AMPK activation. In db/db mice, U0126 administration decreased markers of insulin resistance and increased the phosphorylations of Akt and AMPK in muscle tissues. CONCLUSIONS AND IMPLICATIONS Inhibition of ERK signalling pathways by a chemical inhibitor and knockdown of ERK improved AMPK and Akt signallings and reversed ER stress-induced insulin resistance in L6 myotubes. These findings suggest that ERK signalling plays an important role in the regulation of insulin signals in muscle cells under ER stress.
Collapse
Affiliation(s)
- Seung-Lark Hwang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Maas NL, Diehl JA. Molecular pathways: the PERKs and pitfalls of targeting the unfolded protein response in cancer. Clin Cancer Res 2014; 21:675-9. [PMID: 25182515 DOI: 10.1158/1078-0432.ccr-13-3239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endoplasmic reticulum (ER) is a highly specialized organelle that provides an oxidizing, profolding environment for protein synthesis and maturation. The ER also hosts a dynamic signaling network that can sense and respond to physiologic changes that affect its environment, thereby influencing overall cell fate. Limitation of nutrients and oxygen have a direct effect on the efficiency of protein folding in the ER, and are classic inducers of the ER resident signaling pathway, the unfolded protein response (UPR). Not only does the UPR regulate ER homeostasis in normal cells experiencing such stress, but strong evidence also suggests that tumor cells can co-opt the cytoprotective aspects of this response to survive the hypoxic, nutrient-restricted conditions of the tumor microenvironment.
Collapse
Affiliation(s)
- Nancy L Maas
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Alan Diehl
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
255
|
The endoplasmic reticulum stress sensor IRE1α protects cells from apoptosis induced by the coronavirus infectious bronchitis virus. J Virol 2014; 88:12752-64. [PMID: 25142592 DOI: 10.1128/jvi.02138-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The unfolded-protein response (UPR) is a signal transduction cascade triggered by perturbation of the homeostasis of the endoplasmic reticulum (ER). UPR resolves ER stress by activating a cascade of cellular responses, including the induction of molecular chaperones, translational attenuation, ER-associated degradation, and other mechanisms. Under prolonged and irremediable ER stress, however, the UPR can also trigger apoptosis. Here, we report that in cells infected with the avian coronavirus infectious bronchitis virus (IBV), ER stress was induced and the IRE1α-XBP1 pathway of UPR was activated. Knockdown and overexpression experiments demonstrated that IRE1α protects infected cells from IBV-induced apoptosis, which required both its kinase and RNase activities. Our data also suggest that splicing of XBP1 mRNA by IRE1α appears to convert XBP1 from a proapoptotic XBP1u protein to a prosurvival XBP1s protein. Moreover, IRE1α antagonized IBV-induced apoptosis by modulating the phosphorylation status of the proapoptotic c-Jun N-terminal kinase (JNK) and the prosurvival RAC-alpha serine/threonine-protein kinase (Akt). Taken together, the data indicate that the ER stress sensor IRE1α is activated in IBV-infected cells and serves as a survival factor during coronavirus infection. IMPORTANCE Animal coronaviruses are important veterinary viruses, which could cross the species barrier, becoming severe human pathogens. Molecular characterization of the interactions between coronaviruses and host cells is pivotal to understanding the pathogenicity and species specificity of coronavirus infection. It has been well established that the endoplasmic reticulum (ER) is closely associated with coronavirus replication. Here, we report that inositol-requiring protein 1 alpha (IRE1α), a key sensor of ER stress, is activated in cells infected with the avian coronavirus infectious bronchitis virus (IBV). Moreover, IRE1α is shown to protect the infected cells from apoptosis by modulating the unfolded-protein response (UPR) and two kinases related to cell survival. This study demonstrates that UPR activation constitutes a major aspect of coronavirus-host interactions. Manipulations of the coronavirus-induced UPR may provide novel therapeutic targets for the control of coronavirus infection and pathogenesis.
Collapse
|
256
|
Onomoto K, Yoneyama M, Fung G, Kato H, Fujita T. Antiviral innate immunity and stress granule responses. Trends Immunol 2014; 35:420-8. [PMID: 25153707 PMCID: PMC7185371 DOI: 10.1016/j.it.2014.07.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Viral infection triggers the activation of antiviral innate immune responses in mammalian cells. Viral RNA in the cytoplasm activates signaling pathways that result in the production of interferons (IFNs) and IFN-stimulated genes. Some viral infections have been shown to induce cytoplasmic granular aggregates similar to the dynamic ribonucleoprotein aggregates termed stress granules (SGs), suggesting that these viruses may utilize this stress response for their own benefit. By contrast, some viruses actively inhibit SG formation, suggesting an antiviral function for these structures. We review here the relationship between different viral infections and SG formation. We examine the evidence for antiviral functions for SGs and highlight important areas of inquiry towards understanding cellular stress responses to viral infection.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Gabriel Fung
- University of British Columbia (UBC) James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Laboratory of Molecular Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Laboratory of Molecular Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
257
|
PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol 2014; 34:3911-25. [PMID: 25113558 DOI: 10.1128/mcb.00980-14] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neuroinflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. Here, we have examined the interaction between ER stress and JAK/STAT-dependent inflammation in glial cells. We show that ER stress is present in the central nervous system (CNS) concomitant with inflammation and astrogliosis in the multiple sclerosis (MS) mouse model of experimental autoimmune encephalomyelitis (EAE). Astrocytes do not easily succumb to ER stress but rather activate an inflammatory program involving activation of STAT3 in a JAK1-dependent fashion. ER stress-induced activation of the JAK1/STAT3 axis leads to expression of interleukin 6 (IL-6) and several chemokines. Moreover, the activation of STAT3 signaling is dependent on PERK, a central component of the ER stress response, which we show is phosphorylated by JAK1. Disruption of PERK abrogates ER stress-induced activation of STAT3 and subsequent gene expression. Additionally, ER-stressed astrocytes, via paracrine signaling, can stimulate activation of microglia, leading to production of IL-6 and oncostatin M (OSM). These IL-6 cytokines can then synergize with ER stress in astrocytes to drive inflammation. Together, this work describes a new PERK/JAK1/STAT3 signaling pathway that elicits a feed-forward inflammatory loop involving astrocytes and microglia to drive neuroinflammation, which may be relevant in diseases such as MS.
Collapse
|
258
|
Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai) 2014; 46:629-40. [PMID: 25016584 DOI: 10.1093/abbs/gmu048] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum stress (ER stress) is triggered due to a loss of homeostasis in the ER, resulting in accumulation of misfolded proteins in the ER lumen. ER stress activates a series of adaptive mechanisms known as the unfolded protein response. Perturbation of the ER is a powerful inducer of the transcription factor C/EBP homologous protein (CHOP). Although it has been proved that excessive or adverse stress to the ER triggers apoptosis, the specific mechanisms underlying these processes induced by CHOP remain unclear. By now, CHOP-induced apoptosis in ER stress has been implicated in numerous human diseases, such as neurodegenerative diseases, diabetes, ischemic diseases, tumor, and so on. In this review, we summarized the current understanding of the roles of CHOP in the development of several diseases from the laboratory to the clinic.
Collapse
|
259
|
Nagelkerke A, Bussink J, Sweep FCGJ, Span PN. The unfolded protein response as a target for cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:277-84. [PMID: 25069067 DOI: 10.1016/j.bbcan.2014.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023]
Abstract
Various physiological and pathological conditions generate an accumulation of misfolded proteins in the endoplasmic reticulum (ER). This results in ER stress followed by a cellular response to cope with this stress and restore homeostasis: the unfolded protein response (UPR). Overall, the UPR leads to general translational arrest and the induction of specific factors to ensure cell survival or to mediate cell death if the stress is too severe. In multiple cancers, components of the UPR are overexpressed, indicating increased dependence on the UPR. In addition, the UPR can confer resistance to anti-cancer treatment. Therefore, modification of the UPR should be explored for its anti-cancer properties. This review discusses factors associated with the UPR that represent potential therapeutic targets.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
260
|
Wang R, Munoz EE, Zhu S, McGrath BC, Cavener DR. Perk gene dosage regulates glucose homeostasis by modulating pancreatic β-cell functions. PLoS One 2014; 9:e99684. [PMID: 24915520 PMCID: PMC4051701 DOI: 10.1371/journal.pone.0099684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background Insulin synthesis and cell proliferation are under tight regulation in pancreatic β-cells to maintain glucose homeostasis. Dysfunction in either aspect leads to development of diabetes. PERK (EIF2AK3) loss of function mutations in humans and mice exhibit permanent neonatal diabetes that is characterized by insufficient β-cell mass and reduced proinsulin trafficking and insulin secretion. Unexpectedly, we found that Perk heterozygous mice displayed lower blood glucose levels. Methodology Longitudinal studies were conducted to assess serum glucose and insulin, intracellular insulin synthesis and storage, insulin secretion, and β-cell proliferation in Perk heterozygous mice. In addition, modulation of Perk dosage specifically in β-cells showed that the glucose homeostasis phenotype of Perk heterozygous mice is determined by reduced expression of PERK in the β-cells. Principal Findings We found that Perk heterozygous mice first exhibited enhanced insulin synthesis and secretion during neonatal and juvenile development followed by enhanced β-cell proliferation and a substantial increase in β-cell mass at the adult stage. These differences are not likely to entail the well-known function of PERK to regulate the ER stress response in cultured cells as several markers for ER stress were not differentially expressed in Perk heterozygous mice. Conclusions In addition to the essential functions of PERK in β-cells as revealed by severely diabetic phenotype in humans and mice completely deficient for PERK, reducing Perk gene expression by half showed that intermediate levels of PERK have a profound impact on β-cell functions and glucose homeostasis. These results suggest that an optimal level of PERK expression is necessary to balance several parameters of β-cell function and growth in order to achieve normoglycemia.
Collapse
Affiliation(s)
- Rong Wang
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Elyse E. Munoz
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Siying Zhu
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Barbara C. McGrath
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Douglas R. Cavener
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
261
|
Yadav RK, Chae SW, Kim HR, Chae HJ. Endoplasmic reticulum stress and cancer. J Cancer Prev 2014; 19:75-88. [PMID: 25337575 PMCID: PMC4204165 DOI: 10.15430/jcp.2014.19.2.75] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/07/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is the principal organelle responsible for multiple cellular functions including protein folding and maturation and the maintenance of cellular homeostasis. ER stress is activated by a variety of factors and triggers the unfolded protein response (UPR), which restores homeostasis or activates cell death. Multiple studies have clarified the link between ER stress and cancer, and particularly the involvement of the UPR. The UPR seems to adjust the paradoxical microenvironment of cancer and, as such, is one of resistance mechanisms against cancer therapy. This review describes the activity of different UPRs involved in tumorigenesis and resistance to cancer therapy.
Collapse
Affiliation(s)
- Raj Kumar Yadav
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk, Korea
| | - Soo-Wan Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk, Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, College of Dentistry, Wonkwang University, Iksan, Chonbuk, Korea
| | - Han Jung Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk, Korea
| |
Collapse
|
262
|
Maas NL, Singh N, Diehl JA. Generation and characterization of an analog-sensitive PERK allele. Cancer Biol Ther 2014; 15:1106-11. [PMID: 24846185 DOI: 10.4161/cbt.29274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Restriction of nutrients and oxygen in the tumor microenvironment disrupts ER homeostasis and adaptation to such stress is mediated by the key UPR effector PERK. Given its pro-tumorigenic activity, significant efforts have been made to elucidate the molecular mechanisms that underlie PERK function. Chemical-genetic approaches have recently proven instrumental in pathway mapping and interrogating kinase function. To enable a detailed study of PERK signaling we have generated an analog-sensitive PERK allele that accepts N(6)-alkylated ATP analogs. We find that this allele can be regulated by bulky ATP-competitive inhibitors, confirming the identity of the PERK gatekeeper residue as methionine 886. Furthermore, this analog-sensitive allele can be used to specifically label substrates with thiophosphate both in vitro and in cells. These data highlight the potential for using chemical-genetic techniques to identify novel PERK substrates, thereby providing an expanded view of PERK function and further definition of its signaling networks.
Collapse
Affiliation(s)
- Nancy L Maas
- Department of Cancer Biology; University of Pennsylvania; Philadelphia, PA USA
| | - Nickpreet Singh
- Department of Cancer Biology; University of Pennsylvania; Philadelphia, PA USA
| | - J Alan Diehl
- Department of Cancer Biology; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
263
|
Yang L, Zhao D, Ren J, Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:209-18. [PMID: 24846717 DOI: 10.1016/j.bbadis.2014.05.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/03/2014] [Accepted: 05/06/2014] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress, together with the unfolded protein response (UPR), is initially considered an adaptive response aiming at maintenance of ER homeostasis. Nonetheless, ER stress, when in excess, can eventually trigger cell apoptosis and loss of function. UPR is mediated by three major transmembrane proteins, including inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor (ATF) 6. A unique role has been speculated for ER stress in the pathogenesis of diabetes mellitus (DM) and its complications. Recent studies have shown that ER stress is an early event associated with diabetic cardiomyopathy, and may be triggered by hyperglycemia, free fatty acids (FFAs) and inflammation. In this mini-review, we attempted to discuss the activation machinery for ER stress in response to these triggers en route to disrupted ER function and cellular autophagy or apoptosis, ultimately insulin resistance and development of diabetic cardiomyopathy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Dajun Zhao
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA.
| | - Jian Yang
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
264
|
Jiang Z, Chen W, Yan X, Bi L, Guo S, Zhan Z. Paeoniflorin protects cells from GalN/TNF-α-induced apoptosis via ER stress and mitochondria-dependent pathways in human L02 hepatocytes. Acta Biochim Biophys Sin (Shanghai) 2014; 46:357-67. [PMID: 24777494 DOI: 10.1093/abbs/gmu010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Paeoniflorin (PF) is one of the main effective components extracted from the root of Paeonia lactiflora, which has been used clinically to treat hepatitis in traditional Chinese medicine, but the details of the underlying mechanism remain unknown. The present study was designed to investigate the mechanism of protective effect of PF on d-galactosamine (GalN) and tumor necrosis factor-α (TNF-α)-induced cell apoptosis using human L02 hepatocytes. Our results confirmed that PF could attenuate GalN/TNF-α-induced apoptotic cell death in a dose-dependent manner. The disruption of mitochondrial membrane potential and the disturbance of intracellular Ca(2+) concentration were also recovered by PF. Western blot analysis revealed that GalN/TNF-α induced the activation of a number of signature endoplasmic reticulum (ER) stress and mitochondrial markers, while PF pre-treatment had a marked dose-dependent suppression on them. Additionally, the anti-apoptotic effect of PF was further evidenced by the inhibition of caspase-3/9 activities in L02 cells. These findings suggest that PF can effectively inhibit hepatocyte apoptosis and the underlying mechanism is related to the regulating mediators in ER stress and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Zequn Jiang
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | | | | | | | | |
Collapse
|
265
|
Zhang HM, Dai H, Hanson PJ, Li H, Guo H, Ye X, Hemida MG, Wang L, Tong Y, Qiu Y, Liu S, Wang F, Song F, Zhang B, Wang JG, Zhang LX, Yang D. Antiviral activity of an isatin derivative via induction of PERK-Nrf2-mediated suppression of cap-independent translation. ACS Chem Biol 2014; 9:1015-24. [PMID: 24547890 DOI: 10.1021/cb400775z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report here an isatin derivative 45 (ID45) against coxsackievirus B3 (CVB3) replication, which was synthesized based on a high-throughput screen of a unique natural product library. ID45 showed the most potent anti-CVB3 activity among the four synthesized compounds. Treatment of cells with ID45 before or after infection significantly reduced viral particle formation, resulting in protection of cells from virus-induced apoptosis. In addition, ID45 treatment caused remarkable up-regulation of glucose-regulated protein 78 (GRP78), a hallmark of endoplasmic reticulum (ER) stress and an indicator of enhanced cell viability. In identifying the ER stress response pathway induced by ID45, we found that ID45 activated PKR-like ER protein kinase (PERK) but failed to up-regulate eIF2α phosphorylation. Instead ID45 activated transcription factor Nrf2 (NF-E2-related factor-2), which is evidenced by its nuclear translocation and upregulation of its downstream target genes NQO1 (NAD(P)H quinone-oxidoreductase 1) and GCLM (glutamate-cysteine ligase, modifier subunit). This observation was further verified by using siRNAs of GRP78 or Nrf2, which blocked both the translocation of Nrf2 and up-regulation of its target genes, leading to aggressive viral replication and enhanced cell apoptosis. Finally, we found that ID45-induced up-regulation of NQO1 protected eIF4GI, a eukaryotic cap-dependent translation initiation factor, from cleavage by CVB3 protease and degradation by proteasomes. Taken together, our findings established that a novel antiviral mechanism of isatin derivative ID45 inhibits CVB3 replication by promoting cell survival through a PERK/Nrf2-dependent ER stress pathway, which benefits host cap-dependent translation but suppresses CVB3 cap-independent translation.
Collapse
Affiliation(s)
- Huifang M. Zhang
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Huanqin Dai
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Paul J. Hanson
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Huidong Li
- State-Key
Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Hui Guo
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate
University, Chinese Academy of Sciences, Beijing, China
| | - Xin Ye
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Maged G. Hemida
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Luoqiang Wang
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School
of Life Sciences, Anhui University, Hefei, China
| | - Yaojun Tong
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate
University, Chinese Academy of Sciences, Beijing, China
| | - Ye Qiu
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Selina Liu
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Fengping Wang
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department
of Emergency, Harbin Medical University, Heilongjiang, China
| | - Fuhang Song
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Buchang Zhang
- School
of Life Sciences, Anhui University, Hefei, China
| | - Jian-Guo Wang
- State-Key
Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Li-Xin Zhang
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School
of Life Sciences, Anhui University, Hefei, China
| | - Decheng Yang
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
266
|
Trinh MA, Ma T, Kaphzan H, Bhattacharya A, Antion MD, Cavener DR, Hoeffer CA, Klann E. The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression. Learn Mem 2014; 21:298-304. [PMID: 24741110 PMCID: PMC3994503 DOI: 10.1101/lm.032219.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proper regulation of translation is required for the expression of long-lasting synaptic plasticity. A major site of translational control involves the phosphorylation of eukaryotic initiation factor 2 α (eIF2α) by PKR-like endoplasmic reticulum (ER) kinase (PERK). To determine the role of PERK in hippocampal synaptic plasticity, we used the Cre-lox expression system to selectively disrupt PERK expression in the adult mouse forebrain. Here, we demonstrate that in hippocampal area CA1, metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) is associated with increased eIF2α phosphorylation, whereas stimulation of early- and late-phase long-term potentiation (E-LTP and L-LTP, respectively) is associated with decreased eIF2α phosphorylation. Interesting, although PERK-deficient mice exhibit exaggerated mGluR-LTD, both E-LTP and L-LTP remained intact. We also found that mGluR-LTD is associated with a PERK-dependent increase in eIF2α phosphorylation. Our findings are consistent with the notion that eIF2α phosphorylation is a key site for the bidirectional control of persistent forms of synaptic LTP and LTD and suggest a distinct role for PERK in mGluR-LTD.
Collapse
Affiliation(s)
- Mimi A Trinh
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Hosoi T, Noguchi J, Takakuwa M, Honda M, Okuma Y, Nomura Y, Ozawa K. Inhibition of inducible nitric oxide synthase and interleukin-1β expression by tunicamycin in cultured glial cells exposed to lipopolysaccharide. Brain Res 2014; 1558:11-7. [DOI: 10.1016/j.brainres.2014.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
268
|
Mihailidou C, Papavassiliou AG, Kiaris H. A crosstalk between p21 and UPR-induced transcription factor C/EBP homologous protein (CHOP) linked to type 2 diabetes. Biochimie 2014; 99:19-27. [PMID: 24239558 DOI: 10.1016/j.biochi.2013.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/06/2013] [Indexed: 02/04/2023]
|
269
|
Abstract
PURPOSE OF REVIEW The endoplasmic reticulum (ER) maintains cellular metabolic homeostasis by coordinating protein synthesis, secretion activities, lipid biosynthesis and calcium (Ca²⁺) storage. In this review, we will discuss how altered ER homeostasis contributes to dysregulation of hepatic lipid metabolism and contributes to liver-associated metabolic diseases. RECENT FINDINGS Perturbed ER functions or accumulation of unfolded protein in the ER leads to the activation of the unfolded protein response (UPR) to protect the cell from ER stress. Recent findings pinpoint the key regulatory role of the UPR in hepatic lipid metabolism and demonstrate the potential causal mechanism of ER stress in metabolic dysregulation including diabetes and obesity. SUMMARY A wide range of factors can alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatic lipid metabolism and liver disease. The UPR constitutes a series of adaptive programs that preserve ER protein-folding environment and maintain hepatic lipid homeostasis. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human liver-associated metabolic diseases.
Collapse
Affiliation(s)
- Shiyu Wang
- Degenerative Disease Research, Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | |
Collapse
|
270
|
Kim T, Do MHT, Lawson MA. Translational control of gene expression in the gonadotrope. Mol Cell Endocrinol 2014; 385:78-87. [PMID: 24035865 PMCID: PMC4009948 DOI: 10.1016/j.mce.2013.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022]
Abstract
The study of gene expression in gonadotropes has largely focused on the variety of mechanisms regulating transcription of the gonadotropin genes and ancillary factors that contribute to the overall phenotype and function of these cells in reproduction. However, there are aspects of the response to GNRH signaling that are not readily explained by changes at the level of transcription. As our understanding of regulation at the level of mRNA translation has increased, it has become evident that GNRH receptor signaling engages multiple aspects of translational regulation. This includes activation of cap-dependent translation initiation, translational pausing caused by the unfolded protein response and RNA binding protein interaction. Gonadotropin mRNAs and the mRNAs of other factors that control the transcriptional and signaling responses to GNRH have been identified as targets of regulation at the level of translation. In this review we examine the impact of translational control of the expression of gonadotropin genes and other genes relevant to GNRH-mediated control of gonadotrope function.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Minh-Ha T Do
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Mark A Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
271
|
Pytel D, Seyb K, Liu M, Ray SS, Concannon J, Huang M, Cuny GD, Diehl JA, Glicksman MA. Enzymatic Characterization of ER Stress-Dependent Kinase, PERK, and Development of a High-Throughput Assay for Identification of PERK Inhibitors. ACTA ACUST UNITED AC 2014; 19:1024-34. [PMID: 24598103 DOI: 10.1177/1087057114525853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
Abstract
PERK is serine/threonine kinase localized to the endoplasmic reticulum (ER) membrane. PERK is activated and contributes to cell survival in response to a variety of physiological stresses that affect protein quality control in the ER, such as hypoxia, glucose depravation, increased lipid biosynthesis, and increased protein translation. Pro-survival functions of PERK are triggered by such stresses, suggesting that development of small-molecule inhibitors of PERK may be efficacious in a variety of disease scenarios. Hence, we have conducted a detailed enzymatic characterization of the PERK kinase to develop a high-throughput-screening assay (HTS) that will permit the identification of small-molecule PERK inhibitors. In addition to establishing the K(m) of PERK for both its primary substrate, eIF2α, and for adenosine triphosphate, further mechanistic studies revealed that PERK targets its substrate via either a random/steady-state ordered mechanism. For HTS, we developed a time-resolved fluorescence resonance energy transfer-based assay that yielded a robust Z' factor and percent coefficient of variation value, enabling the successful screening of 79,552 compounds. This approach yielded one compound that exhibited good in vitro and cellular activity. These results demonstrate the validity of this screen and represent starting points for drug discovery efforts.
Collapse
Affiliation(s)
- Dariusz Pytel
- The Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kathleen Seyb
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Min Liu
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Soumya S Ray
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Mickey Huang
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Gregory D Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - J Alan Diehl
- The Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcie A Glicksman
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
272
|
Brewer JW. Regulatory crosstalk within the mammalian unfolded protein response. Cell Mol Life Sci 2014; 71:1067-79. [PMID: 24135849 PMCID: PMC11113126 DOI: 10.1007/s00018-013-1490-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/05/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
Increased demands on the protein folding capacity of the endoplasmic reticulum (ER) trigger the unfolded protein response (UPR). Comprised of a tripartite signaling system, the UPR regulates translation and gene transcription to manifest pro-adaptive and, if necessary, pro-apoptotic outcomes. The three UPR pathways, initiated by activating transcription factor 6, inositol requiring enzyme 1, and protein kinase RNA-activated-like ER kinase (PERK), direct distinct downstream signaling events. However, it is becoming increasingly clear that interplay between the cascades is vital in shaping the UPR. In particular, recent discoveries have revealed that PERK-dependent signals mediate both inter- and intra-pathway regulation within the UPR, underscoring the critical role of the PERK pathway in the cellular response to ER stress.
Collapse
Affiliation(s)
- Joseph W Brewer
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 1971 University Boulevard, Lynchburg, VA, 24515, USA,
| |
Collapse
|
273
|
Yang X, An L, Li X. Arsenic trioxide induced endoplasmic reticulum stress in laryngeal squamous cell line Hep-2 cells. Auris Nasus Larynx 2014; 41:81-83. [PMID: 23880367 DOI: 10.1016/j.anl.2013.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 11/22/2022]
Abstract
Arsenic trioxide (As2O3) has been used in the treatment of acute promyelocytic leukemia (APL) and many malignant solid tumors. Recently, endoplasmic reticulum (ER) stress plays an important role in As2O3-treated laryngeal squamous cell line Hep-2 cells. In the present work, the expression of ER stress-related proteins was investigated in As2O3-treated Hep-2 cells. The results showed that As2O3 increased the expression of GRP78, CHOP, phosphorylated eIF2α and ATF4, all of which are the molecule of ER stress. Therefore, As2O3 induced ER stress in Hep-2 cells.
Collapse
Affiliation(s)
- Xinxin Yang
- Jining Medical University, Jining, Shandong Province, PR China
| | - Liangxiang An
- Rizhao People's Hospital, Rizhao, Shandong Province, PR China
| | - Xiaoyu Li
- The Affiliated Hospital of Jining Medical University, Jining, Shandong Province, PR China.
| |
Collapse
|
274
|
Jung TW, Lee SY, Hong HC, Choi HY, Yoo HJ, Baik SH, Choi KM. AMPK activator-mediated inhibition of endoplasmic reticulum stress ameliorates carrageenan-induced insulin resistance through the suppression of selenoprotein P in HepG2 hepatocytes. Mol Cell Endocrinol 2014; 382:66-73. [PMID: 24055274 DOI: 10.1016/j.mce.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/11/2013] [Accepted: 09/10/2013] [Indexed: 11/23/2022]
Abstract
Carrageenan (CGN) has been shown to cause inflammation through toll-like receptor 4, which may play an important role in insulin resistance and type 2 diabetes mellitus. Selenoprotein P (SeP) has recently been identified as a novel hepatokine that causes insulin resistance. Here, we report that treatment of HepG2 cells with CGN increased both CCAAT enhancer binding protein homologous protein (CHOP) and SeP expression. Pretreatment with 4-phenylbutyrate (4-PBA), an endoplasmic reticulum stress inhibitor, and PD98059, a c-Jun N-terminal kinase (JNK) inhibitor, reversed CGN-induced SeP expression. Moreover, both 4-PBA and knock-down of SeP improved CGN-induced insulin resistance. In addition, we found that adenosine monophosphate-activated protein kinase (AMPK) activators ameliorated CGN-induced insulin resistance in addition to suppressing CHOP and SeP expression. In conclusion, CGN-induced ER stress increased the expression of SeP through the JNK pathway, while AMPK activators ameliorated CGN-induced insulin resistance via SeP inhibition through the AMPK-mediated alleviation of ER stress in hepatocytes.
Collapse
Affiliation(s)
- Tae Woo Jung
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - So Young Lee
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ho Cheol Hong
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hae Yoon Choi
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jin Yoo
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sei Hyun Baik
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Mook Choi
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
275
|
Xia P, Qi Y. Cellular inhibitor of apoptosis protein-1 and survival of beta cells undergoing endoplasmic reticulum stress. VITAMINS AND HORMONES 2014; 95:269-98. [PMID: 24559922 DOI: 10.1016/b978-0-12-800174-5.00011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pancreatic beta cells rely heavily on the endoplasmic reticulum (ER) to process folding and posttranslational modification of a large amount of insulin and many other proteins and are therefore vulnerable to ER stress. The role of the ER is thus crucial in the regulation of beta cell function and survival through the unfolded protein response (UPR) pathways. However, the UPR can either allow cells to survive by adapting to stress or kill cells through apoptosis in a context-dependent manner. How cell fate is determined following UPR activation remains enigmatic. In this review, we discuss the molecular mechanisms linking ER stress to beta cell survival or apoptosis. Specifically, we focus on the role of the cellular inhibitor of apoptosis protein-1 and propose a new model for understanding survival of beta cells undergoing ER stress.
Collapse
Affiliation(s)
- Pu Xia
- Signal Transduction Program, Centenary Institute, Sydney, Australia; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Yanfei Qi
- Signal Transduction Program, Centenary Institute, Sydney, Australia
| |
Collapse
|
276
|
Yamani L, Latreille M, Larose L. Interaction of Nck1 and PERK phosphorylated at Y⁵⁶¹ negatively modulates PERK activity and PERK regulation of pancreatic β-cell proinsulin content. Mol Biol Cell 2013; 25:702-11. [PMID: 24371088 PMCID: PMC3937095 DOI: 10.1091/mbc.e13-09-0511] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PERK is phosphorylated at Y561 in the juxtamembrane domain, and the adaptor protein Nck1, by directly interacting with phospho-Y561 PERK, negatively regulates PERK activity. Strong evidence is given supporting the biological relevance of Nck1 regulation of PERK function in modulating pancreatic β-cell proinsulin content. PERK, the PKR-like endoplasmic reticulum (ER) kinase, is an ER transmembrane serine/threonine protein kinase activated during ER stress. In this study, we provide evidence that the Src-homology domain–containing adaptor Nck1 negatively regulates PERK. We show that Nck directly binds to phosphorylated Y561 in the PERK juxtamembrane domain through its SH2 domain. We demonstrate that mutation of Y561 to a nonphosphorylatable residue (Y561F) promotes PERK activity, suggesting that PERK phosphorylation at Y561 (pY561PERK) negatively regulates PERK. In agreement, we show that pY561PERK delays PERK activation and signaling during ER stress. Compatible with a role for PERK in pancreatic β-cells, we provide strong evidence that Nck1 contributes to PERK regulation of pancreatic β-cell proteostasis. In fact, we demonstrated that down-regulation of Nck1 in mouse insulinoma MIN6 cells results in faster dephosphorylation of pY561PERK, which correlates with enhanced PERK activation, increased insulin biosynthesis, and PERK-dependent increase in proinsulin content. Furthermore, we report that pancreatic islets in whole-body Nck1-knockout mice contain more insulin than control littermates. Together our data strongly suggest that Nck1 negatively regulates PERK by interacting with PERK and protecting PERK from being dephosphorylated at its inhibitory site pY561 and in this way affects pancreatic β-cell proinsulin biogenesis.
Collapse
Affiliation(s)
- Lama Yamani
- Polypeptide Laboratory, Department of Medicine, and Health Centre Research Institute, McGill University, Montreal, QC H3A 2B2, Canada
| | | | | |
Collapse
|
277
|
Hosoi T, Honda M, Oba T, Ozawa K. ER stress upregulated PGE₂/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells. Sci Rep 2013; 3:3388. [PMID: 24291824 PMCID: PMC3844943 DOI: 10.1038/srep03388] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/02/2013] [Indexed: 12/21/2022] Open
Abstract
The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
278
|
Arensdorf AM, Diedrichs D, Rutkowski DT. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences. Front Genet 2013; 4:256. [PMID: 24348511 PMCID: PMC3844873 DOI: 10.3389/fgene.2013.00256] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Danilo Diedrichs
- Department of Mathematics and Computer Science, Wheaton College Wheaton, IL, USA
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
279
|
Gomez JA, Tyra HM, DeZwaan-McCabe D, Olivier AK, Rutkowski DT. Synthetic embryonic lethality upon deletion of the ER cochaperone p58(IPK) and the ER stress sensor ATF6α. Biochem Biophys Res Commun 2013; 443:115-9. [PMID: 24275136 DOI: 10.1016/j.bbrc.2013.11.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/13/2013] [Indexed: 11/29/2022]
Abstract
The unfolded protein response (UPR) is activated as a consequence of alterations to ER homeostasis. It upregulates a group of ER chaperones and cochaperones, as well as other genes that improve protein processing within the secretory pathway. The UPR effector ATF6α augments-but is not essential for-maximal induction of ER chaperones during stress, yet its role, if any, in protecting cellular function during normal development and physiology is unknown. A systematic analysis of multiple tissues from Atf6α-/- mice revealed that all tissues examined were grossly insensitive to loss of ATF6α. However, combined deletion of ATF6α and the ER cochaperone p58(IPK) resulted in synthetic embryonic lethality. These findings reveal for the first time that an intact UPR can compensate for the genetic impairment of protein folding in the ER in vivo. The also expose a role for p58(IPK) in normal embryonic development.
Collapse
Affiliation(s)
- Javier A Gomez
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Heather M Tyra
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Alicia K Olivier
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|
280
|
Mei Y, Thompson MD, Cohen RA, Tong X. Endoplasmic Reticulum Stress and Related Pathological Processes. JOURNAL OF PHARMACOLOGICAL & BIOMEDICAL ANALYSIS 2013; 1:1000107. [PMID: 24611136 PMCID: PMC3942890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in lipid and protein biosynthesis as well as calcium store regulation, which determines its essential role in cell function. Hypoxia, nutrient deprivation, perturbation of redox status and aberrant calcium regulation can all trigger the ER stress response, which is mediated through three main sensors, namely inositol requiring element-1 (IRE-1), protein kinase-like ER kinase (PERK) and activating transcription factor 6 (ATF6). This review explores the interaction of ER stress and ER stress-associated pathological processes, including inflammation, apoptosis, aberrant autophagy, mitochondrial dysfunction and hypoxic responses. In addition, the correlation of ER stress with lipid and calcium homeostasis and dysregulation, and its role in disease development is also presented. Improved understanding of ER stress and its cofactors in pathological processes may provide new perspective on disease development and control.
Collapse
Affiliation(s)
- Yu Mei
- Vascular Biology Section, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Melissa D Thompson
- Vascular Biology Section, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Richard A Cohen
- Vascular Biology Section, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - XiaoYong Tong
- Vascular Biology Section, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
281
|
Wang R, McGrath BC, Kopp RF, Roe MW, Tang X, Chen G, Cavener DR. Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J Biol Chem 2013; 288:33824-33836. [PMID: 24114838 DOI: 10.1074/jbc.m113.503664] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) (EIF2AK3) is essential for normal development and function of the insulin-secreting β-cell. Although genetic ablation of PERK in β-cells results in permanent neonatal diabetes in humans and mice, the underlying mechanisms remain unclear. Here, we used a newly developed and highly specific inhibitor of PERK to determine the immediate effects of acute ablation of PERK activity. We found that inhibition of PERK in human and rodent β-cells causes a rapid inhibition of secretagogue-stimulated subcellular Ca(2+) signaling and insulin secretion. These dysfunctions stem from alterations in store-operated Ca(2+) entry and sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase activity. We also found that PERK regulates calcineurin, and pharmacological inhibition of calcineurin results in similar defects on stimulus-secretion coupling. Our findings suggest that interplay between calcineurin and PERK regulates β-cell Ca(2+) signaling and insulin secretion, and that loss of this interaction may have profound implications in insulin secretion defects associated with diabetes.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Barbara C McGrath
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Richard F Kopp
- Department of Medicine, Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Michael W Roe
- Department of Medicine, Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Xin Tang
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Gong Chen
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Douglas R Cavener
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802.
| |
Collapse
|
282
|
Axten JM, Romeril SP, Shu A, Ralph J, Medina JR, Feng Y, Li WHH, Grant SW, Heerding DA, Minthorn E, Mencken T, Gaul N, Goetz A, Stanley T, Hassell AM, Gampe RT, Atkins C, Kumar R. Discovery of GSK2656157: An Optimized PERK Inhibitor Selected for Preclinical Development. ACS Med Chem Lett 2013; 4:964-8. [PMID: 24900593 DOI: 10.1021/ml400228e] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022] Open
Abstract
We recently reported the discovery of GSK2606414 (1), a selective first in class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), which inhibited PERK activation in cells and demonstrated tumor growth inhibition in a human tumor xenograft in mice. In continuation of our drug discovery program, we applied a strategy to decrease inhibitor lipophilicity as a means to improve physical properties and pharmacokinetics. This report describes our medicinal chemistry optimization culminating in the discovery of the PERK inhibitor GSK2656157 (6), which was selected for advancement to preclinical development.
Collapse
Affiliation(s)
- Jeffrey M. Axten
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Stuart P. Romeril
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Arthur Shu
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Jeffrey Ralph
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Jesús R. Medina
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Yanhong Feng
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - William Hoi Hong Li
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Seth W. Grant
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Dirk A. Heerding
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Elisabeth Minthorn
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Thomas Mencken
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Nathan Gaul
- Screening
and Compound Profiling, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania 19426, United
States
| | - Aaron Goetz
- Screening and Compound
Profiling, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27713, United States
| | - Thomas Stanley
- Screening and Compound
Profiling, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27713, United States
| | - Annie M. Hassell
- Biomolecular Structure, Computational
and Structural Chemistry, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina
27709, United States
| | - Robert T. Gampe
- Biomolecular Structure, Computational
and Structural Chemistry, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina
27709, United States
| | - Charity Atkins
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| | - Rakesh Kumar
- Oncology Research, Protein Dynamics DPU, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania
19426, United States
| |
Collapse
|
283
|
Upregulated expression of PERK in spinal ligament fibroblasts from the patients with ossification of the posterior longitudinal ligament. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23:447-54. [PMID: 24097291 DOI: 10.1007/s00586-013-3053-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Molecular mechanism of ossification of the posterior longitudinal ligament (OPLL) remains unclear. This study was to investigate different expressions of PERK between the spinal ligament fibroblasts from OPLL patients and non-OPLL patients, and demonstrate knockdown of PERK protein expression by RNA interference inhibiting expression of osteocalcin (OCN), alkaline phosphatase (ALP), and type I collagen (COL I) in the cells from OPLL patients. METHODS Spinal ligament cells were cultured using tissue fragment cell culture and identified by immunocytochemistry and immunofluorescence. The mRNA expression of osteoblast-specific genes of OCN, ALP and COL I was detected in the cells from OPLL and non-OPLL patients by semiquantitative reverse transcription-polymerase chain reaction. The protein expression of PERK was detected by Western blotting. And then, after 72 h, when RNA interference against PERK was performed on the cells from OPLL patients, expression of the osteoblast-specific genes was compared again between the transfection group and non-transfection group. RESULTS Spinal ligament fibroblasts were observed 7-10 days after cell culture. Immunocytochemistry and immunofluorescence exhibited positive results of vimentin staining. The mRNA expressions of OCN, ALP and COL I and protein expression of PERK in the cells from OPLL patients were significantly greater than those from non-OPLL patients. In addition, knockdown of PERK protein expression inhibited the mRNA expressions of OCN, ALP and COL I remarkably in the transfection group compared with the non-transfection group, at 72 h after RNA interference targeting PERK was performed on the cells from OPLL patients. CONCLUSIONS The cultured fibroblasts from OPLL patients exhibited osteogenic characteristics, and PERK-mediated ER stress might be involved in development of OPLL.
Collapse
|
284
|
Moore KA, Plant JJ, Gaddam D, Craft J, Hollien J. Regulation of sumo mRNA during endoplasmic reticulum stress. PLoS One 2013; 8:e75723. [PMID: 24058701 PMCID: PMC3776770 DOI: 10.1371/journal.pone.0075723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/16/2013] [Indexed: 01/15/2023] Open
Abstract
The unfolded protein response (UPR) is a collection of pathways that maintains the protein secretory pathway during the many physiological and pathological conditions that cause stress in the endoplasmic reticulum (ER). The UPR is mediated in part by Ire1, an ER transmembrane kinase and endoribonuclease that is activated when misfolded proteins accumulate in the ER. Ire1's nuclease initiates the cytosolic splicing of the mRNA encoding X-box binding protein (Xbp1), a potent transcription factor that then upregulates genes responsible for restoring ER function. This same nuclease is responsible for the degradation of many other mRNAs that are localized to the ER, through Regulated Ire1 Dependent Decay (RIDD). Here we show that Smt3, a homolog of small ubiquitin-like modifier (sumo), is a non-canonical RIDD target in Drosophila S2 cells. Unlike other RIDD targets, the sumo transcript does not stably associate with the ER membrane, but instead relies on an Xbp1-like stem loop and a second UPR mediator, Perk, for its degradation during stress.
Collapse
Affiliation(s)
- Kristin A. Moore
- Department of Biology and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
| | - Joshua J. Plant
- Department of Biology and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
| | - Deepika Gaddam
- Department of Biology and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
| | - Jonathan Craft
- Department of Biology and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
| | - Julie Hollien
- Department of Biology and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
285
|
Pulendran B, Oh JZ, Nakaya HI, Ravindran R, Kazmin DA. Immunity to viruses: learning from successful human vaccines. Immunol Rev 2013; 255:243-55. [PMID: 23947360 PMCID: PMC3748616 DOI: 10.1111/imr.12099] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For more than a century, immunologists and vaccinologists have existed in parallel universes. Immunologists have for long reveled in using 'model antigens', such as chicken egg ovalbumin or nitrophenyl haptens, to study immune responses in model organisms such as mice. Such studies have yielded many seminal insights about the mechanisms of immune regulation, but their relevance to humans has been questioned. In another universe, vaccinologists have relied on human clinical trials to assess vaccine efficacy, but have done little to take advantage of such trials for studying the nature of immune responses to vaccination. The human model provides a nexus between these two universes, and recent studies have begun to use this model to study the molecular profile of innate and adaptive responses to vaccination. Such 'systems vaccinology' studies are beginning to provide mechanistic insights about innate and adaptive immunity in humans. Here, we present an overview of such studies, with particular examples from studies with the yellow fever and the seasonal influenza vaccines. Vaccination with the yellow fever vaccine causes a systemic acute viral infection and thus provides an attractive model to study innate and adaptive responses to a primary viral challenge. Vaccination with the live attenuated influenza vaccine causes a localized acute viral infection in mucosal tissues and induces a recall response, since most vaccinees have had prior exposure to influenza, and thus provides a unique opportunity to study innate and antigen-specific memory responses in mucosal tissues and in the blood. Vaccination with the inactivated influenza vaccine offers a model to study immune responses to an inactivated immunogen. Studies with these and other vaccines are beginning to reunite the estranged fields of immunology and vaccinology, yielding unexpected insights about mechanisms of viral immunity. Vaccines that have been proven to be of immense benefit in saving lives offer us a new fringe benefit: lessons in viral immunology.
Collapse
|
286
|
Arensdorf AM, Rutkowski DT. Endoplasmic reticulum stress impairs IL-4/IL-13 signaling through C/EBPβ-mediated transcriptional suppression. J Cell Sci 2013; 126:4026-36. [PMID: 23813955 DOI: 10.1242/jcs.130757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the unfolded protein response (UPR) by endoplasmic reticulum (ER) stress culminates in extensive gene regulation, with transcriptional upregulation of genes that improve the protein folding capacity of the organelle. However, a substantial number of genes are downregulated by ER stress, and the mechanisms that lead to this downregulation and its consequences on cellular function are poorly understood. We found that ER stress led to coordinated transcriptional suppression of diverse cellular processes, including those involved in cytokine signaling. Using expression of the IL-4/IL-13 receptor subunit Il4ra as a sentinel, we sought to understand the mechanism behind this suppression and its impact on inflammatory signaling. We found that reinitiation of global protein synthesis by GADD34-mediated dephosphorylation of eIF2α resulted in preferential expression of the inhibitory LIP isoform of the transcription factor C/EBPβ. This regulation was in turn required for the suppression of Il4ra and related inflammatory genes. Suppression of Il4ra was lost in Cebpb(-/-) cells but could be induced by LIP overexpression. As a consequence of Il4ra suppression, ER stress impaired IL-4/IL-13 signaling. Strikingly, Cebpb(-/-) cells lacking Il4ra downregulation were protected from this signaling impairment. This work identifies a novel role for C/EBPβ in regulating transcriptional suppression and inflammatory signaling during ER stress.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
287
|
Brehm MA, Powers AC, Shultz LD, Greiner DL. Advancing animal models of human type 1 diabetes by engraftment of functional human tissues in immunodeficient mice. Cold Spring Harb Perspect Med 2013; 2:a007757. [PMID: 22553498 DOI: 10.1101/cshperspect.a007757] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of studying rodent models of type 1 diabetes (T1D), no therapy capable of preventing or curing T1D has successfully been translated from rodents to humans. This inability to translate otherwise promising therapies to clinical settings likely resides, to a major degree, from significant species-specific differences between rodent and human immune systems as well as species-related variances in islets in terms of their cellular composition, function, and gene expression. Indeed, taken collectively, these differences underscore the need to define interactions between the human immune system with human β cells. Immunodeficient mice engrafted with human immune systems and human β cells represent an interesting and promising opportunity to study these components in vivo. To meet this need, years of effort have been extended to develop mice depleted of undesirable components while at the same time, allowing the introduction of constituents necessary to recapitulate physiological settings as near as possible to human T1D. With this, these so-called "humanized mice" are currently being used as a preclinical bridge to facilitate identification and translation of novel discoveries to clinical settings.
Collapse
Affiliation(s)
- Michael A Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
288
|
Jha BK, Dong B, Nguyen CT, Polyakova I, Silverman RH. Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol Ther 2013; 21:1749-57. [PMID: 23732991 DOI: 10.1038/mt.2013.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/26/2013] [Indexed: 12/23/2022] Open
Abstract
The use of lytic viruses to preferentially infect and eliminate cancer cells while sparing normal cells is a promising experimental therapeutic approach for treating cancer. However, the efficacy of oncolytic virotherapy is often limited by two innate immunity pathways, the protein kinase PKR and the 2'-5'-oligoadenylate (OAS)/RNase L systems, which are widely present in many but not all tumor cell types. Previously, we reported that the anticancer drug, sunitinib, an inhibitor of VEGF-R and PDGF-R, has off-target effects against both PKR and RNase L. Here we show that combining sunitinib treatments with infection by an oncolytic virus, vesicular stomatitis virus (VSV), led to the elimination of prostate, breast, and kidney malignant tumors in mice. In contrast, either virus or sunitinib alone slowed tumor progression but did not eliminate tumors. In prostate tumors excised from treated mice, sunitinib decreased levels of the phosphorylated form of translation initiation factor, eIF2-α, a substrate of PKR, by 10-fold while increasing median viral titers by 23-fold. The sunitinib/VSV regimen caused complete and sustained tumor regression in both immunodeficient and immunocompetent animals. Results indicate that transient inhibition of innate immunity with sunitinib enhances oncolytic virotherapy allowing the recovery of tumor-bearing animals.
Collapse
Affiliation(s)
- Babal K Jha
- Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
289
|
Pu Y, Bassham DC. Links between ER stress and autophagy in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e24297. [PMID: 23603973 PMCID: PMC3907440 DOI: 10.4161/psb.24297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 05/23/2023]
Abstract
Autophagy is a major pathway for the delivery of proteins or organelles to be degraded in the vacuole and recycled. It can be induced by abiotic stresses, senescence, and pathogen infection. Recent research has shown that autophagy is activated by ER stress. Here we review the major progress that has been made in the study of autophagy and ER stress in plants, and describe the links between ER stress and autophagy to guide further study on how autophagy is regulated in response to ER stress.
Collapse
|
290
|
Costa BM, Yao H, Yang L, Buch S. Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death. J Neuroimmune Pharmacol 2013; 8:705-14. [PMID: 23404095 PMCID: PMC3663878 DOI: 10.1007/s11481-013-9438-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/28/2013] [Indexed: 01/09/2023]
Abstract
While it has been well-documented that drugs of abuse such as cocaine can enhance progression of human immunodeficiency virus (HIV)-associated neuropathological disorders, the underlying mechanisms mediating these effects remain poorly understood. The present study was undertaken to examine the effects of cocaine on microglial viability. Herein we demonstrate that exposure of microglial cell line-BV2 or rat primary microglia to exogenous cocaine resulted in decreased cell viability as determined by MTS and TUNEL assays. Microglial toxicity of cocaine was accompanied by an increase in the expression of cleaved caspase-3 as demonstrated by western blot assays. Furthermore, increased microglial toxicity was also associated with a concomitant increase in the production of intracellular reactive oxygen species, an effect that was ameliorated in cells pretreated with NADPH oxidase inhibitor apocynin, thus emphasizing the role of oxidative stress in this process. A novel finding of this study was the involvement of endoplasmic reticulum (ER) signaling mediators such as PERK, Elf2α, and CHOP, which were up regulated in cells exposed to cocaine. Reciprocally, blocking CHOP expression using siRNA ameliorated cocaine-mediated cell death. In conclusion these findings underscore the importance of ER stress in modulating cocaine induced microglial toxicity. Understanding the link between ER stress, oxidative stress and apoptosis could lead to the development of therapeutic strategies targeting cocaine-mediated microglial death/dysfunction.
Collapse
Affiliation(s)
- Blaise Mathias Costa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
291
|
Trinh MA, Klann E. Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol Learn Mem 2013; 105:93-9. [PMID: 23707798 DOI: 10.1016/j.nlm.2013.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/10/2023]
Abstract
Although the requirement for new protein synthesis in synaptic plasticity and memory has been well established, recent genetic, molecular, electrophysiological, and pharmacological studies have broadened our understanding of the translational control mechanisms that are involved in these processes. One of the critical translational control points mediating general and gene-specific translation depends on the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) by four regulatory kinases. Here, we review the literature highlighting the important role for proper translational control via regulation of eIF2α phosphorylation by its kinases in long-lasting synaptic plasticity and long-term memory.
Collapse
Affiliation(s)
- Mimi A Trinh
- Pharmaceutical Research Division, CNS Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | | |
Collapse
|
292
|
Bettaieb A, Nagata N, AbouBechara D, Chahed S, Morisseau C, Hammock BD, Haj FG. Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue. J Biol Chem 2013; 288:14189-14199. [PMID: 23576437 DOI: 10.1074/jbc.m113.458414] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has beneficial effects in cardiovascular, inflammatory, and metabolic diseases in murine models. Mice with targeted deletion or pharmacological inhibition of sEH exhibit improved insulin signaling in liver and adipose tissue. Herein, we assessed the role of sEH in regulating endoplasmic reticulum (ER) stress in liver and adipose tissue. We report that sEH expression was increased in the livers and adipose tissue of mice fed a high fat diet, the adipose tissue of overweight humans, and palmitate-treated cells. Importantly, sEH deficiency or inhibition in mice attenuated chronic high fat diet-induced ER stress in liver and adipose tissue. Similarly, pharmacological inhibition of sEH in HepG2 cells and 3T3-L1 adipocytes mitigated chemical-induced ER stress and activation of JNK, p38, and cell death. In addition, insulin signaling was enhanced in HepG2 cells treated with sEH substrates and attenuated in cells treated with sEH products. In summary, these findings demonstrate that sEH is a physiological modulator of ER stress and a potential target for mitigating complications associated with obesity.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Department of Nutrition, University of California, Davis, California 95616
| | - Naoto Nagata
- Department of Nutrition, University of California, Davis, California 95616
| | - Daniel AbouBechara
- Department of Nutrition, University of California, Davis, California 95616
| | - Samah Chahed
- Department of Nutrition, University of California, Davis, California 95616
| | - Christophe Morisseau
- Department of Entomology, University of California, Davis, California 95616; Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Bruce D Hammock
- Department of Entomology, University of California, Davis, California 95616; Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, California 95616; Comprehensive Cancer Center, University of California, Davis, California 95616; Department of Internal Medicine, University of California, Davis, California 95616.
| |
Collapse
|
293
|
Park SJ, Kim TS, Park CK, Lee SH, Kim JM, Lee KS, Lee IK, Park JW, Lawson MA, Lee DS. hCG-induced endoplasmic reticulum stress triggers apoptosis and reduces steroidogenic enzyme expression through activating transcription factor 6 in Leydig cells of the testis. J Mol Endocrinol 2013; 50:151-66. [PMID: 23256993 PMCID: PMC4111658 DOI: 10.1530/jme-12-0195] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endoplasmic reticulum (ER) stress generally occurs in secretory cell types. It has been reported that Leydig cells, which produce testosterone in response to human chorionic gonadotropin (hCG), express key steroidogenic enzymes for the regulation of testosterone synthesis. In this study, we analyzed whether hCG induces ER stress via three unfolded protein response (UPR) pathways in mouse Leydig tumor (mLTC-1) cells and the testis. Treatment with hCG induced ER stress in mLTC-1 cells via the ATF6, IRE1a/XBP1, and eIF2α/GADD34/ATF4 UPR pathways, and transient expression of 50 kDa protein activating transcription factor 6 (p50ATF6) reduced the expression level of steroidogenic 3β-hydroxysteroid dehydrogenase Δ5-Δ4-isomerase (3β-HSD) enzyme. In an in vivo model, high-level hCG treatment induced expression of p50ATF6 while that of steroidogenic enzymes, especially 3β-HSD, 17α-hydroxylase/C17-20 lyase (CYP17), and 17β-hydrozysteroid dehydrogenase (17β-HSD), was reduced. Expression levels of steroidogenic enzymes were restored by the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Furthermore, lentivirus-mediated transient expression of p50ATF6 reduced the expression level of 3β-HSD in the testis. Protein expression levels of phospho-JNK, CHOP, and cleaved caspases-12 and -3 as markers of ER stress-mediated apoptosis markedly increased in response to high-level hCG treatment in mLTC-1 cells and the testis. Based on transmission electron microscopy and H&E staining of the testis, it was shown that abnormal ER morphology and destruction of testicular histology induced by high-level hCG treatment were reversed by the addition of TUDCA. These findings suggest that hCG-induced ER stress plays important roles in steroidogenic enzyme expression via modulation of the ATF6 pathway as well as ER stress-mediated apoptosis in Leydig cells.
Collapse
Affiliation(s)
- Sun-Ji Park
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
The role of the unfolded protein response in diabetes mellitus. Semin Immunopathol 2013; 35:333-50. [PMID: 23529219 DOI: 10.1007/s00281-013-0369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) plays a key role in the synthesis and modification of secretory and membrane proteins in all eukaryotic cells. Under normal conditions, these proteins are correctly folded and assembled in the ER. However, when cells are exposed to environmental factors such as overproduction of ER proteins, viral infections, or glucose deprivation, the secretory and membrane proteins can accumulate in unfolded or misfolded forms in the lumen of the ER, and consequently, cause stress in the ER. To maintain cellular homeostasis, cells induce several responses to ER stress. In mammalian cells, ER stress responses are induced by a diversity of signal pathways. There are three ER-located transmembrane proteins that play important roles in mammalian ER stress responses: activating transcription factor 6, inositol-requiring protein 1, and protein kinase RNA-like endoplasmic reticulum kinase. ER stress is linked to various diseases, including diabetes. This review highlights the particular importance of ER stress-responsive molecules in insulin biosynthesis, glyconeogenesis, insulin resistance, glucose intolerance, and pancreatic β-cell apoptosis. An understanding of the pathogenic mechanism of diabetes from the aspect of ER stress is crucial in formulating therapeutic strategies.
Collapse
|
295
|
Sayers CM, Papandreou I, Guttmann DM, Maas NL, Diehl JA, Witze ES, Koong AC, Koumenis C. Identification and characterization of a potent activator of p53-independent cellular senescence via a small-molecule screen for modifiers of the integrated stress response. Mol Pharmacol 2013; 83:594-604. [PMID: 23229510 PMCID: PMC3583498 DOI: 10.1124/mol.112.081810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/10/2012] [Indexed: 01/23/2023] Open
Abstract
The Integrated Stress Response (ISR) is a signaling program that enables cellular adaptation to stressful conditions like hypoxia and nutrient deprivation in the tumor microenvironment. An important effector of the ISR is activating transcription factor 4 (ATF4), a transcription factor that regulates genes involved in redox homeostasis and amino acid metabolism and transport. Because both inhibition and overactivation of the ISR can induce tumor cell death, modulators of ATF4 expression could prove to be clinically useful. In this study, chemical libraries were screened for modulators of ATF4 expression. We identified one compound, E235 (N-(1-benzyl-piperidin-4-yl)-2-(4-fluoro-phenyl)-benzo[d]imidazo[2,1-b]thiazole-7-carboxamide), that activated the ISR and dose-dependently increased levels of ATF4 in transformed cells. A dose-dependent decrease in viability was observed in several mouse and human tumor cell lines, and knockdown of ATF4 significantly increased the antiproliferative effects of E235. Interestingly, low μM doses of E235 induced senescence in many cell types, including HT1080 human fibrosarcoma and B16F10 mouse melanoma cells. E235-mediated induction of senescence was not dependent on p21 or p53; however, p21 conferred protection against the growth inhibitory effects of E235. Treatment with E235 resulted in an increase in cells arrested at the G2/M phase with a concurrent decrease in S-phase cells. E235 also activated DNA damage response signaling, resulting in increased levels of Ser15-phosphorylated p53, γ-H2AX, and phosphorylated checkpoint kinase 2 (Chk2), although E235 does not appear to cause physical DNA damage. Induction of γ-H2AX was abrogated in ATF4 knockdown cells. Together, these results suggest that modulation of the ISR pathway with the small molecule E235 could be a promising antitumor strategy.
Collapse
Affiliation(s)
- Carly M Sayers
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Translational Research Center Room 8-124, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA 19104-5156, USA
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Malzer E, Szajewska-Skuta M, Dalton LE, Thomas SE, Hu N, Skaer H, Lomas DA, Crowther DC, Marciniak SJ. Coordinate regulation of eIF2α phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. J Cell Sci 2013; 126:1406-15. [PMID: 23418347 DOI: 10.1242/jcs.117614] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by the kinase GCN2 attenuates protein synthesis during amino acid starvation in yeast, whereas in mammals a family of related eIF2α kinases regulate translation in response to a variety of stresses. Unlike single-celled eukaryotes, mammals also possess two specific eIF2α phosphatases, PPP1R15a and PPP1R15b, whose combined deletion leads to a poorly understood early embryonic lethality. We report the characterisation of the first non-mammalian eIF2α phosphatase and the use of Drosophila to dissect its role during development. The Drosophila protein demonstrates features of both mammalian proteins, including limited sequence homology and association with the endoplasmic reticulum. Of note, although this protein is not transcriptionally regulated, its expression is controlled by the presence of upstream open reading frames in its 5'UTR, enabling induction in response to eIF2α phosphorylation. Moreover, we show that its expression is necessary for embryonic and larval development and that this is to oppose the inhibitory effects of GCN2 on anabolic growth.
Collapse
Affiliation(s)
- Elke Malzer
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Abstract
BACKGROUND Mesothelioma is an incurable cancer originating from the mesothelial cells that line the pleural, peritoneal and pericardial cavities. These cells synthesise large quantities of surface glycoproteins, rendering them dependent upon efficient endoplasmic reticulum (ER) function. When faced with elevated levels of secretory protein load, cells are said to experience ER stress, which has been implicated in the pathogenesis of many human diseases including cancer. METHOD We set out to measure markers of ER stress in malignant mesothelioma and to determine whether ER stress signalling correlates with clinical parameters. RESULTS We observed that expression of the ER stress-responsive transcription factor C/EBP homologous protein (CHOP) correlated with patient survival and remained an independent prognostic variable in pairwise comparisons with all clinical variables tested. The most parsimonious multivariate model in our study comprised only performance status and CHOP staining. In contrast, expression of the ER stress-responsive phosphatase growth arrest and DNA damage 34 (GADD34) correlated with the degree of mesothelial differentiation, being lost progressively in biphasic and sarcomatoid mesotheliomas. CONCLUSION Our findings suggest that staining for CHOP provides prognostic information that may be useful in the stratification of patients with mesothelioma. Staining for GADD34 may prove useful in classification of mesothelioma histopathology.
Collapse
|
298
|
Evolution of the unfolded protein response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2458-63. [PMID: 23369734 DOI: 10.1016/j.bbamcr.2013.01.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/07/2013] [Accepted: 01/13/2013] [Indexed: 01/05/2023]
Abstract
The unfolded protein response (UPR) is a network of signaling pathways that responds to stress in the endoplasmic reticulum (ER). The general output of the UPR is to upregulate genes involved in ER function, thus restoring and/or increasing the capacity of the ER to fold and process proteins. In parallel, many organisms have mechanisms for limiting the load on the ER by attenuating translation or degrading ER-targeted mRNAs. Despite broad conservation of these signaling pathways across eukaryotes, interesting variations demonstrate a variety of mechanisms for managing ER stress. How do early-diverging protozoa respond to stress when they lack traditional transcriptional regulation? What is the role of the ER stress sensor Ire1 in fungal species that are missing its main target? Here I describe how diverse species have optimized the UPR to fit their needs. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
299
|
Weil D, Hollien J. Cytoplasmic organelles on the road to mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:725-31. [PMID: 23337852 DOI: 10.1016/j.bbagrm.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 11/27/2022]
Abstract
Localization of both mRNAs and mRNA decay factors to internal membranes of eukaryotic cells provides a means of coordinately regulating mRNAs with common functions as well as coupling organelle function to mRNA turnover. The classic mechanism of mRNA localization to membranes is the signal sequence-dependent targeting of mRNAs encoding membrane and secreted proteins to the cytoplasmic surface of the endoplasmic reticulum. More recently, however, mRNAs encoding proteins with cytosolic or nuclear functions have been found associated with various organelles, in many cases through unknown mechanisms. Furthermore, there are several types of RNA granules, many of which are sites of mRNA degradation; these are frequently found associated with membrane-bound organelles such as endosomes and mitochondria. In this review we summarize recent findings that link organelle function and mRNA localization to mRNA decay. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
300
|
Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, Stanley TB, Sanders B, Goetz A, Gaul N, Choudhry AE, Alsaid H, Jucker BM, Axten JM, Kumar R. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 2013; 73:1993-2002. [PMID: 23333938 DOI: 10.1158/0008-5472.can-12-3109] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.
Collapse
Affiliation(s)
- Charity Atkins
- GlaxoSmithKline, Oncology R&D, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|