251
|
Abstract
In this issue of JEM, He et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211004) associate novel P2RY8 genetic variants to lupus, expanding the field of monogenic autoimmunity. The authors demonstrate that P2RY8 prevents the expansion of DNA-reactive B cells by restraining B cell mobility and activation within the germinal center.
Collapse
Affiliation(s)
- Maud Tusseau
- Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- National Reference Centre for Rheumatic and AutoImmune and Systemic Diseases in Children (RAISE), Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
252
|
Genomic abnormalities of TP53 define distinct risk groups of paediatric B-cell non-Hodgkin lymphoma. Leukemia 2022; 36:781-789. [PMID: 34675373 PMCID: PMC8885412 DOI: 10.1038/s41375-021-01444-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Children with B-cell non-Hodgkin lymphoma (B-NHL) have an excellent chance of survival, however, current clinical risk stratification places as many as half of patients in a high-risk group receiving very intensive chemo-immunotherapy. TP53 alterations are associated with adverse outcome in many malignancies; however, whilst common in paediatric B-NHL, their utility as a risk classifier is unknown. We evaluated the clinical significance of TP53 abnormalities (mutations, deletion and/or copy number neutral loss of heterozygosity) in a large UK paediatric B-NHL cohort and determined their impact on survival. TP53 abnormalities were present in 54.7% of cases and were independently associated with a significantly inferior survival compared to those without a TP53 abnormality (PFS 70.0% vs 100%, p < 0.001, OS 78.0% vs 100%, p = 0.002). Moreover, amongst patients clinically defined as high-risk (stage III with high LDH or stage IV), those without a TP53 abnormality have superior survival compared to those with TP53 abnormalities (PFS 100% vs 55.6%, p = 0.005, OS 100% vs 66.7%, p = 0.019). Biallelic TP53 abnormalities were either maintained from the presentation or acquired at progression in all paired diagnosis/progression Burkitt lymphoma cases. TP53 abnormalities thus define clinical risk groups within paediatric B-NHL and offer a novel molecular risk stratifier, allowing more personalised treatment protocols.
Collapse
|
253
|
Zhang T, Lu Y, Liu X, Zhao M, He J, Liu X, Li L, Qiu L, Qian Z, Zhou S, Meng B, Zhai Q, Ren X, Zhang H, Wang X. Comprehensive analysis of TP53 mutation characteristics and identification of patients with inferior prognosis and enhanced immune escape in diffuse large B-cell lymphoma. Am J Hematol 2022; 97:E14-E17. [PMID: 34710245 DOI: 10.1002/ajh.26392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Yaxiao Lu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Xia Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Mengmeng Zhao
- Marvel Medical Laboratory Tianjin Marvelbio Technology Co. Ltd Tianjin China
| | - Jin He
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Xianming Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Bin Meng
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin China
| | - Qiongli Zhai
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin China
| | - Xiubao Ren
- Department of Immunology/Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer the Sino‐US Center for Lymphoma and Leukemia Research Tianjin China
| |
Collapse
|
254
|
Neurofibromatosis Type 1 Gene Alterations Define Specific Features of a Subset of Glioblastomas. Int J Mol Sci 2021; 23:ijms23010352. [PMID: 35008787 PMCID: PMC8745708 DOI: 10.3390/ijms23010352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.
Collapse
|
255
|
Gao F, Tian L, Shi H, Zheng P, Wang J, Dong F, Hu K, Ke X. Genetic Landscape of Relapsed and Refractory Diffuse Large B-Cell Lymphoma: A Systemic Review and Association Analysis With Next-Generation Sequencing. Front Genet 2021; 12:677650. [PMID: 34925435 PMCID: PMC8675234 DOI: 10.3389/fgene.2021.677650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
In our research, we screened 1,495 documents, compiled the whole-exome sequencing data of several studies, formed a data set including 92 observations of RRDLBCL (Relapsed and refractory diffuse large B-cell lymphoma), and performed association analysis on the high-frequency mutations among them. The most common mutations in the data set include TTN, KMT2D, TP53, IGLL5, CREBBP, BCL2, MYD88, and SOCS1 etc. Among these, CREBBP, KMT2D, and BCL2 have a strong association with each other, and SOCS1 has a strong association with genes such as STAT6, ACTB, CIITA, ITPKB, and GNA13. TP53 lacks significant associations with most genes. Through SOM clustering, expression-level analysis and protein interaction analysis of common gene mutations, we believe that RRDLBCL can be divided into five main types. We tested the function of the model and described the clinical characteristics of each subtype through a targeted sequencing RRDLBCL cohort of 96 patients. The classification is stated as follows: 1) JAK-STAT-related type: including STAT6, SOCS1, CIITA, etc. The genetic lineage is similar to PMBL and cHL. Retrospective analysis suggests that this subtype responds poorly to induction therapy (R-CHOP, p < 0.05). 2) BCL-CREBBP type: Epigenetic mutations such as KMT2D and CREBBP are more common in this type, and are often accompanied by BCL2 and EZH2 mutations. 3) MCD type: including MYD88 and CD79B, PIM1 is more common in this subtype. 4) TP53 mutation: TP53 mutant patients, which suggests the worst prognosis (p < 0.05) and worst response to CART treatment. 5) Undefined type (Sparse item type): Major Genetic Change Lacking Type, which has a better prognosis and better response to CART treatment. We also reviewed the literature from recent years concerning the previously mentioned common gene mutations.
Collapse
Affiliation(s)
- Fan Gao
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Hui Shi
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Peihao Zheng
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Fei Dong
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai Hu
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
256
|
Montesinos-Rongen M, Brunn A, Sanchez-Ruiz M, Küppers R, Siebert R, Deckert M. Impact of a Faulty Germinal Center Reaction on the Pathogenesis of Primary Diffuse Large B Cell Lymphoma of the Central Nervous System. Cancers (Basel) 2021; 13:cancers13246334. [PMID: 34944954 PMCID: PMC8699297 DOI: 10.3390/cancers13246334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary The pathogenetic mechanisms and peculiar tropism of primary CNS lymphoma (PCNSL) of the central nervous system (CNS) have been the subject of debate for decades. Hypothesis-driven targeted molecular studies have revealed that PCNSLs derived from self-/polyreactive B cells that have escaped developmental control mechanisms. The early acquisition of activating mutations targeting the B cell receptor pathway provides a survival advantage. The failure of the germinal center (GC) reaction and its checkpoints increases tumor B cell affinity for the CNS. During this faulty GC reaction, PCNSL tumor cells acquire further oncogenic alterations converging on the Toll-like receptor, B cell receptor, and NF-κB pathway. These activated pathways sustain proliferation. Concomitantly, cells become unable to complete terminal B cell differentiation, becoming trapped within the vicious cycle of the GC reaction as low-affinity IgM+ B cells related to memory cells. Abstract Primary lymphoma of the central nervous system (PCNSL, CNS) is a specific diffuse large B cell lymphoma (DLBCL) entity confined to the CNS. Key to its pathogenesis is a failure of B cell differentiation and a lack of appropriate control at differentiation stages before entrance and within the germinal center (GC). Self-/polyreactive B cells rescued from apoptosis by MYD88 and/or CD79B mutations accumulate a high load of somatic mutations in their rearranged immunoglobulin (IG) genes, with ongoing somatic hypermutation (SHM). Furthermore, the targeting of oncogenes by aberrant SHM (e.g., PIM1, PAX5, RHOH, MYC, BTG2, KLHL14, SUSD2), translocations of the IG and BCL6 genes, and genomic instability (e.g., gains of 18q21; losses of 9p21, 8q12, 6q21) occur in these cells in the course of their malignant transformation. Activated Toll-like receptor, B cell receptor (BCR), and NF-κB signaling pathways foster lymphoma cell proliferation. Hence, tumor cells are arrested in a late B cell differentiation stage, corresponding to late GC exit B cells, which are genetically related to IgM+ memory cells. Paradoxically, the GC reaction increases self-/polyreactivity, yielding increased tumor BCR reactivity for multiple CNS proteins, which likely contributes to CNS tropism of the lymphoma. The loss of MHC class I antigen expression supports tumor cell immune escape. Thus, specific and unique interactions of the tumor cells with resident CNS cells determine the hallmarks of PCNSL.
Collapse
Affiliation(s)
- Manuel Montesinos-Rongen
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
| | - Monica Sanchez-Ruiz
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, 45122 Essen, Germany;
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany;
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
- Correspondence: ; Tel.: +49-221-478-5265; Fax: +49-221-478-3712
| |
Collapse
|
257
|
Wilson WH, Wright GW, Huang DW, Hodkinson B, Balasubramanian S, Fan Y, Vermeulen J, Shreeve M, Staudt LM. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 2021; 39:1643-1653.e3. [PMID: 34739844 PMCID: PMC8722194 DOI: 10.1016/j.ccell.2021.10.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
In diffuse large B cell lymphoma (DLBCL), tumors belonging to the ABC but not GCB gene expression subgroup rely upon chronic active B cell receptor signaling for viability, a dependency that is targetable by ibrutinib. A phase III trial ("Phoenix;" ClinicalTrials.gov: NCT01855750) showed a survival benefit of ibrutinib addition to R-CHOP chemotherapy in younger patients with non-GCB DLBCL, but the molecular basis for this benefit was unclear. Analysis of biopsies from Phoenix trial patients revealed three previously characterized genetic subtypes of DLBCL: MCD, BN2, and N1. The 3-year event-free survival of younger patients (age ≤60 years) treated with ibrutinib plus R-CHOP was 100% in the MCD and N1 subtypes while the survival of patients with these subtypes treated with R-CHOP alone was significantly inferior (42.9% and 50%, respectively). This work provides a mechanistic understanding of the benefit of ibrutinib addition to chemotherapy, supporting its use in younger patients with non-GCB DLBCL.
Collapse
Affiliation(s)
- Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brendan Hodkinson
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | | | - Yue Fan
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Jessica Vermeulen
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Martin Shreeve
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
258
|
Li Z, Yu F, Ye W, Mao L, Huang J, Shao Y, Yan J, Yu W, Jin J, Wang J. Clinical Features and Prognostic Significance of NOTCH1 Mutations in Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:746577. [PMID: 34956871 PMCID: PMC8695434 DOI: 10.3389/fonc.2021.746577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of large lymphoid B cell malignancy with distinct clinical and genetic features. Recently, NOTCH1 mutations were identified in DLBCL cases by Next-generation sequencing (NGS), but the clinical features and prognostic impact were not systematically studied. Here, NOTCH1 genes in 161 DLBCL samples were sequenced by NGS. The prognostic value of NOTCH1 mutations was assessed in the context of clinical and laboratory factors, such as international prognostic index (IPI), cell-of-origin classification, double expression of BCL2 and c-MYC. The combined data from three Western cohorts were used to validate these results. As a result, NOTCH1 mutations were found in 17(10.6%) patients, and three patients had a hotspot mutation of c.7541_7542delCT. The presence of NOTCH1 mutations was significantly associated with poor complete response and progression free survival(PFS), which was independent of established clinical and laboratory parameters. In addition, 30 (1.92%) of 1562 patients treated with R-CHOP regimen in those combined Western cohorts had NOTCH1 mutations. Meta-analysis of the Western cohorts confirmed that NOTCH1 mutations were also associated with poor PFS and OS. In conclusion, DLBCL patients with the NOTCH1 mutations have worse PFS and OS, and the NOTCH1 mutations can be used as an independent predictor for patients with DLBCL.
Collapse
Affiliation(s)
- Zhongqi Li
- The Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Junrong Yan
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Jinghan Wang, ; Jie Jin,
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Jinghan Wang, ; Jie Jin,
| |
Collapse
|
259
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
260
|
[Reflections on the innovative research and development of hematologic oncology drugs under the new situation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:969-973. [PMID: 35045665 PMCID: PMC8770877 DOI: 10.3760/cma.j.issn.0253-2727.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
261
|
Molecular interactions of IRF4 in B cell development and malignancies. Biophys Rev 2021; 13:1219-1227. [DOI: 10.1007/s12551-021-00825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
|
262
|
Kos IA, Thurner L, Bittenbring JT, Christofyllakis K, Kaddu-Mulindwa D. Advances in Lymphoma Molecular Diagnostics. Diagnostics (Basel) 2021; 11:diagnostics11122174. [PMID: 34943410 PMCID: PMC8699850 DOI: 10.3390/diagnostics11122174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Lymphomas encompass a diverse group of malignant lymphoid neoplasms. Over recent years much scientific effort has been undertaken to identify and understand molecular changes in lymphomas, resulting in a wide range of genetic alterations that have been reported across all types of lymphomas. As many of these changes are now incorporated into the World Health Organization’s defined criteria for the diagnostic evaluation of patients with lymphoid neoplasms, their accurate identification is crucial. Even if many alterations are not routinely evaluated in daily clinical practice, they may still have implications in risk stratification, treatment, prognosis or disease monitoring. Moreover, some alterations can be used for targeted treatment. Therefore, these advances in lymphoma molecular diagnostics in some cases have led to changes in treatment algorithms. Here, we give an overview of and discuss advances in molecular techniques in current clinical practice, as well as highlight some of them in a clinical context.
Collapse
|
263
|
Immunotherapy for Diffuse Large B-Cell Lymphoma: Current Landscape and Future Directions. Cancers (Basel) 2021; 13:cancers13225827. [PMID: 34830980 PMCID: PMC8616088 DOI: 10.3390/cancers13225827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Immunotherapy has played a pivotal role in the management of relapsed DLBCL. Stem cell transplant and CAR T-cell therapy are curative treatment modalities for relapsed disease. Despite this, a subset of patients continues to progress, and their outcomes remain dismal. Newer therapeutic options to optimize outcomes as well as minimize toxicity are warranted. Abstract Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease. B-cell receptor (BCR) pathway is essential for malignant B-cell growth, survival, and proliferation. Various immune cells, including T-cells and macrophages in the tumor microenvironment (TME) contribute to tumor cell survival and pathogenesis of chemo-resistance. The presence of many targets on the malignant B-cells and in the TME has led to emergence of novel therapeutic agents. Stem cell transplant is the oldest treatment modality leveraging immune system in DLBCL. Subsequently, CD20 targeting monoclonal antibody and chimeric antigen receptor (CAR) T-cell therapy changed the treatment landscape of DLBCL. Recently, multiple novel immunotherapeutic agents have been added in the armamentarium for the management of DLBCL, and many are under development. In this review article, we will review latest updates of immunotherapeutic agents in the management of DLBCL.
Collapse
|
264
|
Mansouri L, Thorvaldsdottir B, Laidou S, Stamatopoulos K, Rosenquist R. Precision diagnostics in lymphomas - Recent developments and future directions. Semin Cancer Biol 2021; 84:170-183. [PMID: 34699973 DOI: 10.1016/j.semcancer.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Genetics is an integral part of the clinical diagnostics of lymphomas that improves disease subclassification and patient risk-stratification. With the introduction of high-throughput sequencing technologies, a rapid, in-depth portrayal of the genomic landscape in major lymphoma entities was achieved. Whilst a few lymphoma entities were characterized by a predominant gene mutation (e.g. Waldenström's macroglobulinemia and hairy cell leukemia), the vast majority demonstrated a very diverse genetic landscape with a high number of recurrent gene mutations (e.g. chronic lymphocytic leukemia and diffuse large B cell lymphoma), indeed reflecting the great clinical heterogeneity among lymphomas. These studies have allowed better understanding of the ontogeny and evolution of different lymphomas, while also identifying new genetic markers that can complement lymphoma diagnostics and improve prognostication. However, despite these efforts, there is still a limited number of gene mutations with predictive impact that can guide treatment selection. In this review, we will highlight clinically relevant diagnostic, prognostic and predictive markers in lymphomas that are used today in routine diagnostics. We will also discuss how comprehensive genomic characterization using broad sequencing panels, allowing for the simultaneous detection of different types of genetic aberrations, may aid future development of precision diagnostics in lymphomas. This may in turn pave the way for the implementation of tailored precision therapy strategies at the individual patient level.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stamatia Laidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
265
|
Diffuse large B-cell lymphomas in adults with aberrant coexpression of CD10, BCL6, and MUM1 are enriched in IRF4 rearrangements. Blood Adv 2021; 6:2361-2372. [PMID: 34654055 PMCID: PMC9006278 DOI: 10.1182/bloodadvances.2021006034] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
DLBCL in adults aberrantly coexpressing CD10, BCL6, and MUM1 is genetically heterogeneous and enriched in IRF4-rearranged cases. IRF4-rearranged DLBCL in adults share genetic features with LBCL-IRF4 in children but with higher genomic complexity and often ABC GEP.
Diffuse large B-cell lymphoma (DLBCL) with aberrant coexpression of CD10+BCL6+MUM1+ (DLBCL-AE), classified as germinal center B cell (GCB) type by the Hans algorithm (HA), was genetically characterized. To capture the complexity of DLBCL-AE, we used an integrated approach that included gene expression profiling (GEP), fluorescence in situ hybridization, targeted gene sequencing, and copy number (CN) arrays. According to GEP, 32/54 (59%) cases were classified as GCB-DLBCL, 16/54 (30%) as activated B-cell (ABC) DLBCL, and 6/54 (11%) as unclassifiable. The discrepancy between HA and GEP was 41%. Three genetic subgroups were identified. Group 1 included 13/50 (26%) cases without translocations and mainly showing and ABC/MCD molecular profile. Group 2 comprised 11/50 (22%) cases with IRF4 alterations (DLBCL-IRF4), frequent mutations in IRF4 (82%) and NF-κB pathway genes (MYD88, CARD11, and CD79B), and losses of 17p13.2. Five cases each were classified as GCB- or ABC-type. Group 3 included 26/50 (52%) cases with 1 or several translocations in BCL2/BCL6/MYC/IGH, and GCB/EZB molecular profile predominated. Two cases in this latter group showed complex BCL2/BCL6/IRF4 translocations. DLBCL-IRF4 in adults showed a similar copy number profile and shared recurrent CARD11 and CD79B mutations when compared with LBCL-IRF4 in the pediatric population. However, adult cases showed higher genetic complexity, higher mutational load with frequent MYD88 and KMT2D mutations, and more ABC GEP. IRF4 mutations were identified only in IRF4-rearranged cases, indicating its potential use in the diagnostic setting. In conclusion, DLBCL-AE is genetically heterogeneous and enriched in cases with IRF4 alterations. DLBCL-IRF4 in adults has many similarities to the pediatric counterpart.
Collapse
|
266
|
de Groen RA, van Eijk R, Böhringer S, van Wezel T, Raghoo R, Ruano D, Jansen PM, Briaire-de Bruijn I, de Groot FA, Kleiverda K, te Boome L, Terpstra V, Levenga H, Nicolae A, Posthuma EF, Focke-Snieders I, Hardi L, den Hartog WC, Bohmer LH, Hogendoorn PC, van den Berg A, Diepstra A, Nijland M, Lugtenburg PJ, Kersten MJ, Pals ST, Veelken H, Bovée JV, Cleven AH, Vermaat JS. Frequent mutated B2M, EZH2, IRF8, and TNFRSF14 in primary bone diffuse large B-cell lymphoma reflect a GCB phenotype. Blood Adv 2021; 5:3760-3775. [PMID: 34478526 PMCID: PMC8679674 DOI: 10.1182/bloodadvances.2021005215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/20/2022] Open
Abstract
Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is a rare extranodal lymphoma subtype. This retrospective study elucidates the currently unknown genetic background of a large clinically well-annotated cohort of DLBCL with osseous localizations (O-DLBCL), including PB-DLBCL. A total of 103 patients with O-DLBCL were included and compared with 63 (extra)nodal non-osseous (NO)-DLBCLs with germinal center B-cell phenotype (NO-DLBCL-GCB). Cell-of-origin was determined by immunohistochemistry and gene-expression profiling (GEP) using (extended)-NanoString/Lymph2Cx analysis. Mutational profiles were identified with targeted next-generation deep sequencing, including 52 B-cell lymphoma-relevant genes. O-DLBCLs, including 34 PB-DLBCLs, were predominantly classified as GCB phenotype based on immunohistochemistry (74%) and NanoString analysis (88%). Unsupervised hierarchical clustering of an extended-NanoString/Lymph2Cx revealed significantly different GEP clusters for PB-DLBCL as opposed to NO-DLBCL-GCB (P < .001). Expression levels of 23 genes of 2 different targeted GEP panels indicated a centrocyte-like phenotype for PB-DLBCL, whereas NO-DLBCL-GCB exhibited a centroblast-like constitution. PB-DLBCL had significantly more frequent mutations in four GCB-associated genes (ie, B2M, EZH2, IRF8, TNFRSF14) compared with NO-DLBCL-GCB (P = .031, P = .010, P = .047, and P = .003, respectively). PB-DLBCL, with its corresponding specific mutational profile, was significantly associated with a superior survival compared with equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB (P = .016). This study is the first to show that PB-DLBCL is characterized by a GCB phenotype, with a centrocyte-like GEP pattern and a GCB-associated mutational profile (both involved in immune surveillance) and a favorable prognosis. These novel biology-associated features provide evidence that PB-DLBCL represents a distinct extranodal DLBCL entity, and its specific mutational landscape offers potential for targeted therapies (eg, EZH2 inhibitors).
Collapse
Affiliation(s)
| | | | | | | | - Richard Raghoo
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | - Valeska Terpstra
- Department of Pathology, Haaglanden Medical Center, The Hague, The Netherlands
| | | | - Alina Nicolae
- Department of Pathology, Groene Hart Hospital, Gouda, The Netherlands
| | | | | | | | | | - Lara H. Bohmer
- Department of Hematology, Haga Hospital, The Hague, The Netherlands
| | | | | | | | - Marcel Nijland
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pieternella J. Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Steven T. Pals
- Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands; and
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
267
|
Chen CC, Hsu CC, Chen SL, Lin PH, Chen JP, Pan YR, Huang CE, Chen YJ, Chen YY, Wu YY, Yang MH. RAS Mediates BET Inhibitor-Endued Repression of Lymphoma Migration and Prognosticates a Novel Proteomics-Based Subgroup of DLBCL through Its Negative Regulator IQGAP3. Cancers (Basel) 2021; 13:cancers13195024. [PMID: 34638508 PMCID: PMC8508075 DOI: 10.3390/cancers13195024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The inhibitors of BET proteins represent a promising class of therapeutic agents that target the oncogenic activity of MYC and repress DLBCL cell migration, but the mechanism of such repression remains elusive. Herein, we found that BET inhibitor JQ1 abrogated the amoeboid movement of DLBCL cells through a small GTPase-driven mechanism, including both restrained RAS signaling and MYC-mediated suppression of GTP-RhoA activity. BET inhibition drastically increased the expression of a GTPase regulatory protein, the IQ motif containing GTPase activating protein 3 (IQGAP3), in DLBCL. Proteomics-based re-stratification identified a specific subgroup of DLBCL patients whose tumors harbored an enhanced PI3K activity and had an inferior survival, whereas a lower IQGAP3 expression level further portended a very dismal outcome for those patients. The inhibitors of both BET and RAS (through attenuated PI3K signaling) activities effectively ameliorated the outspread of in vivo DLBCL tumors, indicating the potential of their synergism in the treatment of specific DLBCL subtypes. Abstract Phenotypic heterogeneity and molecular diversity make diffuse large B-cell lymphoma (DLBCL) a challenging disease. We recently illustrated that amoeboid movement plays an indispensable role in DLBCL dissemination and inadvertently identified that the inhibitor of bromodomain and extra-terminal (BET) proteins JQ1 could repress DLBCL migration. To explore further, we dissected the impacts of BET inhibition in DLBCL. We found that JQ1 abrogated amoeboid movement of DLBCL cells through both restraining RAS signaling and suppressing MYC-mediated RhoA activity. We also demonstrated that BET inhibition resulted in the upregulation of a GTPase regulatory protein, the IQ motif containing GTPase activating protein 3 (IQGAP3). IQGAP3 similarly exhibited an inhibitory effect on RAS activity in DLBCL cells. Through barcoded mRNA/protein profiling in clinical samples, we identified a specific subgroup of DLBCL tumors with enhanced phosphatidylinositol-3-kinase (PI3K) activity, which led to an inferior survival in these patients. Strikingly, a lower IQGAP3 expression level further portended those with PI3K-activated DLBCL a very dismal outcome. The inhibition of BET and PI3K signaling activity led to effective suppression of DLBCL dissemination in vivo. Our study provides an important insight into the ongoing efforts of targeting BET proteins as a therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Sung-Lin Chen
- Institute of Biotechnology in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Po-Han Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ju-Pei Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yi-Ru Pan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence:
| |
Collapse
|
268
|
Gong C, Krupka JA, Gao J, Grigoropoulos NF, Giotopoulos G, Asby R, Screen M, Usheva Z, Cucco F, Barrans S, Painter D, Zaini NBM, Haupl B, Bornelöv S, Ruiz De Los Mozos I, Meng W, Zhou P, Blain AE, Forde S, Matthews J, Khim Tan MG, Burke GAA, Sze SK, Beer P, Burton C, Campbell P, Rand V, Turner SD, Ule J, Roman E, Tooze R, Oellerich T, Huntly BJ, Turner M, Du MQ, Samarajiwa SA, Hodson DJ. Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Mol Cell 2021; 81:4059-4075.e11. [PMID: 34437837 DOI: 10.1016/j.molcel.2021.07.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
Collapse
Affiliation(s)
- Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Joanna A Krupka
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Jie Gao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ryan Asby
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael Screen
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Zelvera Usheva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | | | - Björn Haupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Igor Ruiz De Los Mozos
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Peixun Zhou
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Alex E Blain
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Sorcha Forde
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Jamie Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Michelle Guet Khim Tan
- Department of Clinical Translational Research, Singapore General Hospital, Outram Road, Singapore 169856, Singapore
| | - G A Amos Burke
- Department of Paediatric Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Philip Beer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Reuben Tooze
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK; Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
269
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
270
|
Cheng S, Zhang W, Inghirami G, Tam W. Mutation analysis links angioimmunoblastic T-cell lymphoma to clonal hematopoiesis and smoking. eLife 2021; 10:66395. [PMID: 34581268 PMCID: PMC8480981 DOI: 10.7554/elife.66395] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
Background Although advance has been made in understanding the pathogenesis of mature T-cell neoplasms, the initiation and progression of angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), remain poorly understood. A subset of AITL/PTCL-NOS patients develop concomitant hematologic neoplasms (CHN), and a biomarker to predict this risk is lacking. Methods We generated and analyzed the mutation profiles through 537-gene targeted sequencing of the primary tumors and matched bone marrow/peripheral blood samples in 25 patients with AITL and two with PTCL-NOS. Results Clonal hematopoiesis (CH)-associated genomic alterations, found in 70.4% of the AITL/PTCL-NOS patients, were shared among CH and T-cell lymphoma, as well as concomitant myeloid neoplasms or diffuse large B-cell lymphoma (DLBCL) that developed before or after AITL. Aberrant AID/APOBEC activity-associated and tobacco smoking-associated mutational signatures were respectively enriched in the early CH-associated mutations and late non-CH-associated mutations during AITL/PTCL-NOS development. Moreover, analysis showed that the presence of CH harboring ≥2 pathogenic TET2 variants with ≥15% of allele burden conferred higher risk for CHN (p=0.0006, hazard ratio = 14.01, positive predictive value = 88.9%, negative predictive value = 92.1%). Conclusions We provided genetic evidence that AITL/PTCL-NOS, CH, and CHN can frequently arise from common mutated hematopoietic precursor clones. Our data also suggests smoking exposure as a potential risk factor for AITL/PTCL-NOS progression. These findings provide insights into the cell origin and etiology of AITL and PTCL-NOS and provide a novel stratification biomarker for CHN risk in AITL patients. Funding R01 grant (CA194547) from the National Cancer Institute to WT.
Collapse
Affiliation(s)
- Shuhua Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Wei Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, United States
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| |
Collapse
|
271
|
Hyperstable SGK1 steps out of AKT's shadow. Blood 2021; 138:917-918. [PMID: 34529017 DOI: 10.1182/blood.2021012518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
|
272
|
Defining and Treating High-grade B-cell lymphoma, NOS. Blood 2021; 140:943-954. [PMID: 34525177 DOI: 10.1182/blood.2020008374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
High-grade B-cell lymphoma, not otherwise specified (HGBL, NOS) is a recently introduced diagnostic category for aggressive B-cell lymphomas. It includes tumors with Burkitt-like or blastoid morphology that do not have double-hit cytogenetics and that cannot be classified as other well-defined lymphoma subtypes. HBCL, NOS are rare and heterogeneous; most have germinal center B-cell phenotype, and up to 45% carry a single-hit MYC rearrangement, but otherwise they have no unifying immunophenotypic or cytogenetic characteristics. Recent analyses utilizing gene expression profiling (GEP) revealed that up to 15% of tumors currently classified as diffuse large B-cell lymphoma display a HGBL-like GEP signature, indicating a potential to significantly expand the HGBL category using more objective molecular criteria. Optimal treatment of HGBL, NOS is poorly defined due to its rarity and inconsistent diagnostic patterns. A minority of patients have early-stage disease which can be managed with standard RCHOP-based approaches with or without radiation. For advanced-stage HGBL, NOS, which often presents with aggressive, disseminated disease, high lactate dehydrogenase, and involvement of extranodal organs (including the central nervous system [CNS]), intensified Burkitt lymphoma-like regimens with CNS prophylaxis may be appropriate. However, many patients diagnosed at age > 60 years are not eligible for intensive immunochemotherapy. An improved, GEP and/or genomic-based pathologic classification that could facilitate HGBL-specific trials is needed to improve outcomes for all patients. In this review, we discuss the current clinicopathologic concept of HGBL, NOS, existing data on its prognosis and treatment, and delineate potential future taxonomy enrichments based on emerging molecular diagnostics.
Collapse
|
273
|
Primary mediastinal Large B-cell Lymphoma. Blood 2021; 140:955-970. [PMID: 34496020 DOI: 10.1182/blood.2020008376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBCL) is a separate entity in the WHO classification based on clinico-pathologic features and a distinct molecular signature which overlaps with nodular sclerosis classical Hodgkin lymphoma (NScHL). Molecular classifiers can distinguish PMBCL from diffuse large B-cell lymphoma (DLBCL) using RNA derived from paraffin-embedded tissue and are integral to future studies. However, given that ~5% of DLBCL can have a 'molecular' PMBCL phenotype in the absence of mediastinal involvement, clinical information will remain critical for diagnosis. Studies over the last 10-20 years have elucidated the biologic hallmarks of PMBCL which are reminiscent of cHL, including the importance of JAK-STAT and NFKB signaling pathways as well as an immune evasion phenotype through multiple converging genetic aberrations. The outcome of PMBCL has improved in the modern rituximab era, however controversies remain whether there is a single standard treatment for all patients and when to integrate radiotherapy. Regardless of the frontline therapy, refractory disease can occur in up to 10% of patients and correlates with poor outcome. With emerging data supporting high efficacy of PD1 inhibitors in PMBCL, studies are underway integrating them into the up-front setting.
Collapse
|
274
|
Hodson DJ. Diffuse large B-cell lymphoma genetics - simplifying the subtyping. Br J Haematol 2021; 195:651-652. [PMID: 34492737 DOI: 10.1111/bjh.17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
275
|
Morin RD, Arthur SE, Hodson DJ. Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes? Br J Haematol 2021; 196:814-829. [PMID: 34467527 DOI: 10.1111/bjh.17811] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The term diffuse large B-cell lymphoma (DLBCL) includes a heterogeneous collection of biologically distinct tumours. This heterogeneity currently presents a barrier to the successful deployment of novel, biologically targeted therapies. Molecular profiling studies have recently proposed new molecular classification systems. These have the potential to resolve the biological heterogeneity of DLBCL into manageable subgroups of tumours that rely on shared oncogenic programmes. In many cases these biological programmes straddle the boundaries of our existing systems for classifying B-cell lymphomas. Here we review the findings from these major molecular profiling studies with a specific focus on those that propose new genetic subgroups of DLBCL. We highlight the areas of consensus and discordance between these studies and discuss the implications for current clinical practice and for clinical trials. Finally, we address the outstanding challenges and solutions to the introduction of genomic subtyping and precision medicine in DLBCL.
Collapse
Affiliation(s)
- Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Sarah E Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
276
|
Bhavsar S, Liu YC, Gibson SE, Moore EM, Swerdlow SH. Mutational Landscape of TdT+ Large B-cell Lymphomas Supports Their Distinction From B-lymphoblastic Neoplasms: A Multiparameter Study of a Rare and Aggressive Entity. Am J Surg Pathol 2021; 46:71-82. [PMID: 34392269 DOI: 10.1097/pas.0000000000001750] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the current World Health Organization classification, terminal deoxynucleotidyl transferase (TdT) expression in a high grade/large cell B-cell lymphoma (LBCL) indicates a B-lymphoblastic lymphoma/leukemia (B-LBL), although TdT expression in what appear to be mature LBCL or following mature B-cell neoplasms is reported. The frequency of TdT+ LBCL, how to best categorize these cases, and their clinicopathologic features, molecular landscape, and relationship to classic B-LBL remain to be better defined. TdT expression was therefore assessed in 258 LBCL and the results correlated with the cytologic, phenotypic, and cytogenetic findings. Targeted mutational analysis, review of prior biopsies, and assessment of clinical associations was performed in the 6 cases with >10% TdT+ cells. All 6 TdT+ LBCL were blastoid-appearing, CD34-, MYC+, BCL2+, and had MYC rearrangements (R) (5/6 with BCL2 and/or BCL6-R). 5/6 had a prior TdT- LBCL and/or follicular lymphoma and all had an aggressive course. Fifteen nonsynonymous variants in 11 genes were seen in the 4/5 tested cases with mutations. TdT+ and TdT- areas in 1 case showed identical mutations. The mutational profiles were more like those reported in germinal center B-cell type-diffuse LBCL rather than B-LBL. Evolution from preceding TdT- lymphomas was nondivergent in 1/3 tested cases and partially divergent in 2. The clinicopathologic and cytogenetic features of these 6 cases were similar to those found in a meta-analysis that included additional cases of TdT+ LBCL or B-LBL following follicular lymphoma. Thus, TdT+, CD34- large B-cell neoplasms with MYC rearrangements and often a "double hit" are rare, frequently a transformational event and aggressive but are distinct from classic B-LBL.
Collapse
Affiliation(s)
- Shweta Bhavsar
- Department of Pathology, UPMC Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | | |
Collapse
|
277
|
Combination of novel molecular targeted agent plus R-CHOP-based regimen versus R-CHOP alone in previously untreated diffuse large B-cell lymphoma (DLBCL) patients: a systematic review and meta-analysis. Ann Hematol 2021; 100:2969-2978. [PMID: 34378095 DOI: 10.1007/s00277-021-04623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
Abstract
The addition of molecular targeted agents (MTAs) to R-CHOP has been one of the main focuses of research in patients with DLBCL. Despite encouraging preliminary results, recent randomized controlled trials (RCT) have not shown a definitive benefit over standard R-CHOP. Here we conducted a systematic review and meta-analysis to investigate the impact of this strategy. A systematic literature review was conducted to identify RCT that evaluated the addition of MTA to R-CHOP-based regimen versus R-CHOP alone in previously untreated DLBCL patients. Fixed and random effects models were used to estimate pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CI). Progression-free survival (PFS), overall survival, and adverse events (AE) were analyzed. A total of seven RCT including 3,255 patients with DLBCL met the eligibility criteria. Three different types of MTAs (bortezomib, ibrutinib, and lenalidomide) were investigated in combination with R-CHOP. Overall, R-CHOP plus MTA showed a slightly better PFS (HR=0.86; 95% CI: 0.76-0.98). No differences were observed according to the cell of origin subtype of DLBCL. Interestingly, patients younger than 60 years had a significantly better PFS with R-CHOP plus MTAs (HR=0.72; 95% CI: 0.56-0.93), while no benefit was observed in patients older than 60 years (HR=0.96). The combination strategy showed higher odds to develop serious AEs (OR= 1.46, 95% CI 1.11-1.91). R-CHOP plus MTA seems only to slightly improve PFS in patients with DLBCL, particularly in younger patients. An increase in toxicity was observed in comparison to R-CHOP.
Collapse
|
278
|
Mishina T, Oshima-Hasegawa N, Tsukamoto S, Fukuyo M, Kageyama H, Muto T, Mimura N, Rahmutulla B, Nagai Y, Kayamori K, Hino Y, Mitsukawa S, Takeda Y, Ohwada C, Takeuchi M, Tsujimura H, Iseki T, Nakaseko C, Ikeda JI, Itami M, Yokote K, Ohara O, Kaneda A, Sakaida E. Genetic subtype classification using a simplified algorithm and mutational characteristics of diffuse large B-cell lymphoma in a Japanese cohort. Br J Haematol 2021; 195:731-742. [PMID: 34378195 DOI: 10.1111/bjh.17765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Abstract
Recent large-scale genetic studies have proposed a new genetic classification of diffuse large B-cell lymphoma (DLBCL), which is clinically and biologically heterogeneous. However, the classification methods were complicated to be introduced into clinical practice. Here we retrospectively evaluated the mutational status and copy number changes of 144 genes in 177 Japanese patients with DLBCL, using targeted DNA sequencing. We developed a simplified algorithm for classifying four genetic subtypes-MYD88, NOTCH2, BCL2, and SGK1-by assessing alterations in 18 representative genes and BCL2 and BCL6 rearrangement status, integrating the significant genes from previous studies. In our cohort and another validation cohort from published data, the classification results in our algorithm showed close agreement with the other established algorithm. A differential prognosis among the four groups was observed. The NOTCH2 group showed a particularly poorer outcome than similar groups in previous reports. Furthermore, our study revealed unreported genetic features in the DLBCL subtypes that are mainly reported in Japanese patients, such as CD5-positive DLBCL and methotrexate-associated lymphoproliferative disorders. These results indicate the utility of our simplified method for DLBCL genetic subtype classification, which can facilitate the optimisation of treatment strategies. In addition, our study highlights the genetic features of Japanese patients with DLBCL.
Collapse
Affiliation(s)
- Tatsuzo Mishina
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nagisa Oshima-Hasegawa
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Kageyama
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Tomoya Muto
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yurie Nagai
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Kensuke Kayamori
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Yutaro Hino
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shio Mitsukawa
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Chikako Ohwada
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Hematology, International University of Health and Welfare, Narita, Japan
| | | | - Hideki Tsujimura
- Division of Hematology-Oncology, Chiba Cancer Center, Chiba, Japan
| | - Tohru Iseki
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Chiaki Nakaseko
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
279
|
Prognostication of Primary Tumor Location in Early-Stage Nodal Diffuse Large B-Cell Lymphoma: An Analysis of the SEER Database. Cancers (Basel) 2021; 13:cancers13163954. [PMID: 34439110 PMCID: PMC8392260 DOI: 10.3390/cancers13163954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
The prognostic role of primary tumor location for clinical outcomes of patients with early-stage nodal diffuse large B-cell lymphoma (DLBCL) remains uncertain. We evaluated the relationship between primary tumor site and overall survival (OS) in 9738 early-stage nodal DLBCL patients from the Surveillance, Epidemiology, and End Results (SEER) database. The primary site of the tumors was characterized as supradiaphragm and subdiaphragm according to the definition of lymph node distribution in the Ann Arbor staging. The OS was significantly better for patients of the supradiaphragm group (n = 6038) compared to the ones from the subdiaphragm group (n = 3655) (hazard ratio (HR) 1.24; 95%CI: 1.16-1.33; P < 0.001), and it was preserved after propensity score matching (PSM) (HR 1.15; 95% CI: 1.07-1.24; P < 0.001). Gene enrichment analyses demonstrated that the subdiaphragm group has an upregulated extracellular matrix (ECM)-related signaling, which reportedly can promote growth, invasion, and metastasis of the cancer, and downregulated interferon response, which is considered to have anti-tumor function. Our results indicate the two tumor locations (supradiaphragm and subdiaphragm) presented different prognostic implications for the overall survival, suggesting that the tumor's location could serve as a prognostic biomarker for early-stage nodal DLBCL patients.
Collapse
|
280
|
Poynton E, Okosun J. Liquid biopsy in lymphoma: Is it primed for clinical translation? EJHAEM 2021; 2:616-627. [PMID: 35844685 PMCID: PMC9175672 DOI: 10.1002/jha2.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
The simultaneous growth in our understanding of lymphoma biology and the burgeoning therapeutic options has come with a renewed drive for precision-based approaches and how best to incorporate them into contemporary and future patient care. In the hunt for accurate and sensitive biomarkers, liquid biopsies, particularly circulating tumour DNA, have come to the forefront as a promising tool in multiple cancer types including lymphomas, with considerable implications for clinical practice. Liquid biopsy analyses could supplement existing tissue biopsies with distinct advantages including the minimally invasive nature and the ease with which it can be repeated during a patient's clinical journey. Circulating tumour DNA (ctDNA) analyses has been and continues to be evaluated across lymphoma subtypes with potential applications as a diagnostic, disease monitoring and treatment selection tool. To make the leap into the clinic, these assays must demonstrate accuracy, reliability and a quick turnaround to be employed in the real-time clinical management of lymphoma patients. Here, we review the available ctDNA assays and discuss key practical and technical issues around improving sensitivity. We then focus on their potential roles in several lymphoma subtypes exemplified by recent studies and provide a glimpse of different features that can be analysed beyond ctDNA.
Collapse
Affiliation(s)
- Edward Poynton
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Jessica Okosun
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
281
|
He MY, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia 2021; 35:2151-2165. [PMID: 34017074 DOI: 10.1038/s41375-021-01285-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease and represents the most common subtype of lymphoma. Although 60-70% of all patients can be cured by the current standard of care in the frontline setting, the majority of the remaining patients will experience treatment resistance and have a poor clinical outcome. Numerous efforts have been made to improve the efficacy of the standard regimen by, for example, dose intensification or adding novel agents. However, these results generally failed to demonstrate significant clinical benefits. Hence, understanding treatment resistance is a pressing need to optimize the outcome of those patients. In this Review, we first describe the conceptual sources of treatment resistance in DLBCL and then provide detailed and up-to-date molecular insight into the mechanisms of resistance to the current treatment options in DLBCL. We lastly highlight the potential strategies for rationally managing treatment resistance from both the preventive and interventional perspectives.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
282
|
Yu H, Fu D, Xu PP, Cheng S, Wang L, Zhang YZ, Zhao WL. Implication of immune cell signature of tumor microenvironment in diffuse large B-cell lymphoma. Hematol Oncol 2021; 39:616-624. [PMID: 34331367 DOI: 10.1002/hon.2905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/26/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease with complex tumor microenvironment (TME) alterations. However, immune cell signatures of TME and their prognostic value remain unclear in DLBCL. We aimed to identify high-risk DLBCL with specific immune cell signatures in TME. Clinical and gene expression data of DLBCL patients were obtained from previously reported retrospective datasets in Gene Expression Omnibus (GSE108466 and GSE5378616 ) and a multi-center prospective clinical trial NHL001 (NCT01852435). Patients treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) regimen (n = 159) from GSE10846 were referred as training cohort for CHOP regimen, while patients treated with rituximab-CHOP (R-CHOP) regimen (n = 192) from GSE10846 as training cohort for R-CHOP regimen. Patients from NHL001 (n = 68) and GSE53786 (n = 57) were referred as validation cohorts for R-CHOP regimen. CIBERSORT was applied to estimate the relative proportions of 22 subtype of immune cells. We established a prognostic model for model for R-CHOP regimen included Age, performance status, lactate dehydrogenase, T cells follicular helper and macrophages M0, defining a low-risk group with 2-years OS of 92.9% and a high-risk group with 2-years OS of 52.5% (HR 6.57 [3.27-13.18], p < 0.0001). Immune cell signatures could be used as prognostic markers and provided further insights for individualized immunotherapeutic strategies in DLBCL.
Collapse
Affiliation(s)
- Hao Yu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Zeng Zhang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
283
|
Characterization of DLBCL with a PMBL gene expression signature. Blood 2021; 138:136-148. [PMID: 33684939 DOI: 10.1182/blood.2020007683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBL) is a type of aggressive B-cell lymphoma that typically affects young adults, characterized by presence of a bulky anterior mediastinal mass. Lymphomas with gene expression features of PMBL have been described in nonmediastinal sites, raising questions about how these tumors should be classified. Here, we investigated whether these nonmediastinal lymphomas are indeed PMBLs or instead represent a distinct group within diffuse large B-cell lymphoma (DLBCL). From a cohort of 325 de novo DLBCL cases, we identified tumors from patients without evidence of anterior mediastinal involvement that expressed a PMBL expression signature (nm-PMBLsig+; n = 16; 5%). A majority of these tumors expressed MAL and CD23, proteins typically observed in bona fide PMBL (bf-PMBL). Evaluation of clinical features of nm-PMBLsig+ cases revealed close associations with DLBCL, and a majority displayed a germinal center B cell-like cell of origin (GCB). In contrast to patients with bf-PMBL, patients with nm-PMBLsig+ presented at an older age and did not show pleural disease, and bone/bone marrow involvement was observed in 3 cases. However, although clinically distinct from bf-PMBL, nm-PMBLsig+ tumors resembled bf-PMBL at the molecular level, with upregulation of immune response, JAK-STAT, and NF-κB signatures. Mutational analysis revealed frequent somatic gene mutations in SOCS1, IL4R, ITPKB, and STAT6, as well as CD83 and BIRC3, with the latter genes significantly more frequently affected than in GCB DLBCL or bf-PMBL. Our data establish nm-PMBLsig+ lymphomas as a group within DLBCL with distinct phenotypic and genetic features. These findings may have implications for gene expression- and mutation-based subtyping of aggressive B-cell lymphomas and related targeted therapies.
Collapse
|
284
|
Zhang W, Yao J, Zhong M, Zhang Y, Guo X, Wang HY. A Brief Overview and Update on Major Molecular Genomic Alterations in Solid, Bone and Soft Tissue Tumors, Hematopoietic As Well As Lymphoid Malignancies. Arch Pathol Lab Med 2021; 145:1358-1366. [PMID: 34270703 DOI: 10.5858/arpa.2021-0077-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Recent advances in comprehensive genomic profiling by next-generation sequencing have uncovered the genomic alterations at the molecular level for many types of tumors; as such, numerous small specific molecules that target these alterations have been developed and widely used in the management of these cancers. OBJECTIVE.— To provide a concise molecular genomic update in solid, bone and soft tissue tumors, hematopoietic as well as lymphoid malignancies; discuss its clinical applications; and familiarize practicing pathologists with the emerging cancer biomarkers and their diagnostic utilities. DATA SOURCES.— This review is based on the National Comprehensive Cancer Network guidelines and peer-reviewed English literature. CONCLUSIONS.— Tumor-specific biomarkers and molecular/genomic alterations, including pan-cancer markers, have been significantly expanded in the past decade thanks to large-scale high-throughput technologies and will continue to emerge in the future. These biomarkers can be of great value in diagnosis, prognosis, and/or targeted therapy/treatment. Familiarization with these emerging and ever-changing tumor biomarkers will undoubtedly aid pathologists in making accurate and state-of-the-art diagnoses and enable them to be more actively involved in the care of cancer patients.
Collapse
Affiliation(s)
- Wei Zhang
- From the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison (W. Zhang).,W. Zhang and Yao are co-first authors.,W. Zhang and H.-Y. Wang are co-senior authors and supervised this manuscript equally
| | - Jinjuan Yao
- The Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York (Yao).,W. Zhang and Yao are co-first authors
| | - Minghao Zhong
- The Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Zhong)
| | - Yaxia Zhang
- The Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York (Y. Zhang).,The Department of Pathology and Laboratory Medicine, Weill Cornell College of Medicine, New York, New York (Y. Zhang)
| | - Xiaoling Guo
- The Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (Guo)
| | - Huan-You Wang
- The Department of Pathology, University of California San Diego, La Jolla (Wang).,W. Zhang and H.-Y. Wang are co-senior authors and supervised this manuscript equally
| |
Collapse
|
285
|
Zhao Y, Yang J, Liu J, Cai Y, Han Y, Hu S, Ren S, Zhou X, Wang X. Inhibition of Polo-like kinase 4 induces mitotic defects and DNA damage in diffuse large B-cell lymphoma. Cell Death Dis 2021; 12:640. [PMID: 34162828 PMCID: PMC8222327 DOI: 10.1038/s41419-021-03919-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Polo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, has recently been shown to play key roles in tumorigenesis. Blocking PLK4 expression by interference or targeted drugs exhibits attractive potential in improving the efficacy of chemotherapy. Nevertheless, the role of PLK4 in diffuse large B-cell lymphoma (DLBCL) is still undefined. In this study, we discover that PLK4 is a potential target for the treatment of DLBCL, and demonstrate the efficacy of a PLK4 inhibitor when used in combination with doxorubicin. Pharmaceutical inhibition of PLK4 with CFI-400945 inhibited DLBCL cell proliferation and induced apoptotic cell death. The anti-tumor effects were accompanied by mitotic defects, including polyploidy and cytokinesis failure. Activation of p53 and Hippo/YAP tumor suppressor signaling pathway was identified as the potential mechanisms driving CFI-400945 activity. Moreover, CFI-400945 treatment resulted in activation of DNA damage response. Combining CFI-400945 with doxorubicin markedly delayed tumor progression in DLBCL xenografts. Finally, PLK4 was increased in primary DLBCL tissues and cell lines. High levels of PLK4 expression were associated with poor survival in the patients receiving CHOP-based treatment, implicating PLK4 as a predictive biomarker of DLBCL chemosensitivity. These results provide the therapeutic potential of CFI-400945 both as monotherapy or in combination with doxorubicin for the treatment of DLBCL.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Damage
- Doxorubicin/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Indazoles/pharmacology
- Indoles/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, SCID
- Mitosis/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Juan Yang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Shuai Ren
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
286
|
Wienand K, Chapuy B. Molecular classification of aggressive lymphomas-past, present, future. Hematol Oncol 2021; 39 Suppl 1:24-30. [PMID: 34105819 DOI: 10.1002/hon.2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Aggressive large B-cell lymphomas (LBCLs) represent a frequent but clinically and molecularly heterogeneous group of tumors. Technological advances over the last decades prompted the development of different classification schemas to either sharpen diagnoses, dissect molecular heterogeneity, predict outcome, or identify rational treatment targets. Despite increased diagnostic precision and a noticeably improved molecular understanding of these lymphomas, clinical perspectives of patients largely remain unchanged. Recently, finished comprehensive genomic studies discovered genetically defined LBCL subtypes that predict outcome, provide insight into lymphomagenesis, and suggest rational therapies with the hope of generating patient-tailored treatments with increased perspective for patients in greatest need. Current and future efforts integrate multiomics studies and/or leverage single-cell technologies and will provide us with an even more fine-grained picture of LBCL biology. Here, we highlight examples of how high-throughput technologies aided in a better molecular understanding of LBCLs and provide examples of how to select rationally designed targeted treatment approaches that might personalize LBCL treatment and eventually improve patients' perspective in the near future.
Collapse
Affiliation(s)
- Kirsty Wienand
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
287
|
Wang H, Shao R, Liu W, Tang H, Lu Y. Identification of a prognostic metabolic gene signature in diffuse large B-cell lymphoma. J Cell Mol Med 2021; 25:7066-7077. [PMID: 34128320 PMCID: PMC8278125 DOI: 10.1111/jcmm.16720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically diverse disease. Given the numerous genetic mutations and variations associated with it, a prognostic gene signature that can be related to the overall survival (OS) is a clinical implication. We used the mRNA expression profiles and clinicopathological data of patients with DLBCL from the Gene Expression Omnibus (GEO) database to identify a metabolism-related gene signature. Using LASSO regression analysis, a novel 13-metabolic gene signature was identified to evaluate prognosis. The information gathered was used to construct the nomogram model to improve risk stratification and quantify risk factors for individual patients. We performed gene set enrichment analysis to identify the enriched signalling axes to further understand the underlying biological pathways. The receiver operating characteristic (ROC) curve revealed a satisfactory performance in the training cohorts. The model also showed clinical benefit when compared to the standard prognostic factors (P < .05) in validation cohorts. This study aimed to combine metabolic dysregulation with clinical features of patients with DLBCL to generate a prognostic model that might not only indicate the value of the metabolic microenvironment for prognostic stratification but also improve the decision-making during individual therapy.
Collapse
Affiliation(s)
- Huizhong Wang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruonan Shao
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenjian Liu
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hailin Tang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yue Lu
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
288
|
Bram Ednersson S, Stern M, Fagman H, Nilsson-Ehle H, Hasselblom S, Thorsell A, Andersson PO. Proteomic analysis in diffuse large B-cell lymphoma identifies dysregulated tumor microenvironment proteins in non-GCB/ABC subtype patients. Leuk Lymphoma 2021; 62:2360-2373. [PMID: 34114929 DOI: 10.1080/10428194.2021.1913147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The complexity of the activated B-cell like (ABC) diffuse large B-cell lymphoma (DLBCL) subtype is probably not only explained by genetic alterations and methods to measure global protein expression could bring new knowledge regarding the pathophysiology. We used quantitative proteomics to analyze the global protein expression of formalin-fixed paraffin-embedded (FFPE) tumor tissues from 202 DLBCL patients. We identified 6430 proteins and 498 were significantly regulated between the germinal center B-cell like (GCB) and non-GCB groups. A number of proteins previously not described to be upregulated in non-GCB or ABC DLBCL was found, e.g. CD64, CD85A, guanylate-binding protein 1 (GBP1), interferon-induced proteins with tetratricopeptide repeat (IFIT)2, and mixed lineage kinase domain-like protein (MLKL) and immunohistochemical staining showed higher expression of GBP1 and MLKL. A cluster analysis revealed that the most prominent cluster contained proteins involved in the tumor microenvironment and regulation of the immune system. Our data suggest that the therapeutic focus should be expanded toward the tumor microenvironment in non-GCB/ABC subtype patients.
Collapse
Affiliation(s)
- Susanne Bram Ednersson
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mimmie Stern
- Department of Medicine, Section of Hematology, South Älvsborg Hospital, Borås, Sweden.,Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Herman Nilsson-Ehle
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sverker Hasselblom
- Department of Research, Development & Education, Region Halland, Halmstad, Sweden
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Medicine, Section of Hematology, South Älvsborg Hospital, Borås, Sweden.,Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
289
|
An Overview on Diffuse Large B-Cell Lymphoma Models: Towards a Functional Genomics Approach. Cancers (Basel) 2021; 13:cancers13122893. [PMID: 34207773 PMCID: PMC8226720 DOI: 10.3390/cancers13122893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Lymphoma research is a paradigm of integrating basic and applied research within the fields of molecular marker-based diagnosis and therapy. In recent years, major advances in next-generation sequencing have substantially improved the understanding of the genomics underlying diffuse large B-cell lymphoma (DLBCL), the most frequent type of B-cell lymphoma. This review addresses the various approaches that have helped unveil the biology and intricate alterations in this pathology, from cell lines to more sophisticated last-generation experimental models, such as organoids. We also provide an overview of the most recent findings in the field, their potential relevance for designing targeted therapies and the corresponding applicability to personalized medicine. Abstract Lymphoma research is a paradigm of the integration of basic and clinical research within the fields of diagnosis and therapy. Clinical, phenotypic, and genetic data are currently used to predict which patients could benefit from standard treatment. However, alternative therapies for patients at higher risk from refractoriness or relapse are usually empirically proposed, based on trial and error, without considering the genetic complexity of aggressive B-cell lymphomas. This is primarily due to the intricate mosaic of genetic and epigenetic alterations in lymphomas, which are an obstacle to the prediction of which drug will work for any given patient. Matching a patient’s genes to drug sensitivity by directly testing live tissues comprises the “precision medicine” concept. However, in the case of lymphomas, this concept should be expanded beyond genomics, eventually providing better treatment options for patients in need of alternative therapeutic approaches. We provide an overview of the most recent findings in diffuse large B-cell lymphomas genomics, from the classic functional models used to study tumor biology and the response to experimental treatments using cell lines and mouse models, to the most recent approaches with spheroid/organoid models. We also discuss their potential relevance and applicability to daily clinical practice.
Collapse
|
290
|
Chen H, He Y, Pan T, Zeng R, Li Y, Chen S, Li Y, Xiao L, Zhou H. Ferroptosis-Related Gene Signature: A New Method for Personalized Risk Assessment in Patients with Diffuse Large B-Cell Lymphoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:609-619. [PMID: 34079336 PMCID: PMC8165657 DOI: 10.2147/pgpm.s309846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022]
Abstract
Purpose Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease, which makes prognostic prediction challenging. The rapid development of research on ferroptosis provides the possibility of its use in prognosis in cancer patients. The aim of the current investigation was to perform a systematic study of ferroptosis and DLBCL prognosis to identify prognostic biomarkers in DLBCL. Materials and Methods A total of 884 DLBCL patients from the Gene Expression Omnibus database were included in this study and were divided into a training set and a validation set. Univariate Cox regression analysis was used to investigate relationships between gene expression and prognostic values. Ferroptosis-related genes associated with overall survival in the training set were then extracted, and the least absolute shrinkage and selection operator Cox regression model was used to establish an eight-gene signature, comprising ZEB1, PSAT1, NGB, NFE2L2, LAMP2, HIF1A, FH, and CXCL2. Results The signature exhibited significant independent prognostic value in both the training set and the validation set. It also exhibited strong prognostic value in subgroup analysis. A nomogram integrating the eight-gene signature and components of the International Prognostic Index facilitated reliable prognostic prediction. Conclusion A novel and reliable ferroptosis-related gene signature that can effectively classify DLBCL patients into high-risk and low-risk groups in terms of survival rate was developed. It could be used for prognostic prediction in DLBCL patients. Targeting ferroptosis may be a therapeutic alternative in DLBCL.
Collapse
Affiliation(s)
- Huan Chen
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yizi He
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Pan
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ruolan Zeng
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yajun Li
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Siwei Chen
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Yufeng Li
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Zhou
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
291
|
Papageorgiou SG, Thomopoulos TP, Katagas I, Bouchla A, Pappa V. Prognostic molecular biomarkers in diffuse large B-cell lymphoma in the rituximab era and their therapeutic implications. Ther Adv Hematol 2021; 12:20406207211013987. [PMID: 34104369 PMCID: PMC8150462 DOI: 10.1177/20406207211013987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents a group of tumors characterized by substantial heterogeneity in terms of their pathological and biological features, a causal factor of their varied clinical outcome. This variation has persisted despite the implementation of rituximab in treatment regimens over the last 20 years. In this context, prognostic biomarkers are of great importance in order to identify high-risk patients that might benefit from treatment intensification or the introduction of novel therapeutic agents. Herein, we review current knowledge on specific immunohistochemical or genetic biomarkers that might be useful in clinical practice. Gene-expression profiling is a tool of special consideration in this effort, as it has enriched our understanding of DLBCL biology and has allowed for the classification of DLBCL by cell-of-origin as well as by more elaborate molecular signatures based on distinct gene-expression profiles. These subgroups might outperform individual biomarkers in terms of prognostication; however, their use in clinical practice is still limited. Moreover, the underappreciated role of the tumor microenvironment in DLBCL prognosis is discussed in terms of prognostic gene-expression signatures, as well as in terms of individual biomarkers of prognostic significance. Finally, the efficacy of novel therapeutic agents for the treatment of DLBCL patients are discussed and an evidence-based therapeutic approach by specific genetic subgroup is suggested.
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital ‘Attikon’, 1 Rimini Street, Haidari, Athens 12462, Greece
| | - Thomas P. Thomopoulos
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Ioannis Katagas
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Vassiliki Pappa
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| |
Collapse
|
292
|
SGK1 mutations in DLBCL generate hyperstable protein neoisoforms that promote AKT independence. Blood 2021; 138:959-964. [PMID: 33988691 DOI: 10.1182/blood.2020010432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Serum and Glucocorticoid-regulated Kinase-1 (SGK1) is one of the most frequently mutated genes in Diffuse Large B Cell Lymphoma (DLBCL). However, little is known about its function or the consequence of its mutation. The frequent finding of truncating mutations has led to the widespread assumption that these represent loss-of-function variants and accordingly, that SGK1 must act as a tumour suppressor. Here we show that instead, the most common SGK1 mutations lead to production of aberrantly spliced mRNA neoisoforms in which translation is initiated from downstream methionines. The resulting N-terminal truncated protein isoforms show increased expression due to the exclusion of an N-terminal degradation domain. However, they retain a functional kinase domain, the over-expression of which renders cells resistant to AKT inhibition in part due to increased phosphorylation of GSK3B. These findings challenge the prevailing assumption that SGK1 is a tumour suppressor gene in DLBCL and provide the impetus to explore further the pharmacological inhibition of SGK1 as a therapeutic strategy for DLBCL.
Collapse
|
293
|
Abstract
Diffuse large B-cell lymphomas (DLBCL)s, the most common type of Non-Hodgkin’s Lymphoma, constitute a heterogeneous group of disorders including different disease sites, strikingly diverse molecular features and a profound variability in the clinical behavior. Molecular studies and clinical trials have partially revealed the underlying causes for this variability and have made possible the recognition of some molecular variants susceptible of specific therapeutic approaches. The main histogenetic groups include the germinal center, activated B cells, thymic B cells and terminally differentiated B cells, a basic scheme where the large majority of DLBCL cases can be ascribed. The nodal/extranodal origin, specific mutational changes and microenvironment peculiarities provide additional layers of complexity. Here, we summarize the status of the knowledge and make some specific proposals for addressing the future development of targeted therapy for DLBC cases.
Collapse
|
294
|
Molecular background delineates outcome of double protein expressor diffuse large B-cell lymphoma. Blood Adv 2021; 4:3742-3753. [PMID: 32780847 DOI: 10.1182/bloodadvances.2020001727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023] Open
Abstract
Concomitant deregulation of MYC and BCL2 comprises clinically significant, yet poorly characterized biological high-risk feature in diffuse large B-cell lymphoma (DLBCL). To interrogate these lymphomas, we analyzed translocations and protein expression of BCL2, BCL6, and MYC; correlated the findings with comprehensive mutational, transcriptomic, and clinical data in 181 patients with primary DLBCL; and validated the key findings in independent data sets. Structural variations of BCL2 were subtype-specific and specifically increased BCL2 expression. Molecular dissection of MYC deregulation revealed associations with other lymphoma drivers, including loss of TP53, and distinctive gene expression profiles. Double protein expression (DPE) arose from heterogeneous molecular backgrounds that exhibited subtype-dependent patterns. In the germinal center B-cell (GCB) DLBCL, concurrent alterations of MYC and BCL2 loci gave rise to the majority of DPE DLBCLs, whereas among the activated B-cell (ABC) DLBCLs, concurrent alterations were infrequent. Clinically, DPE DLBCL defined a prognostic entity, which was independent of the International Prognostic Index (IPI) and cell of origin, and together with the loss of TP53 had a synergistic dismal impact on survival. In the DPE DLBCL, the loss of TP53 was associated with a chemorefractory disease, whereas among the other DLBCLs, no correlation with survival was seen. Importantly, BCL6 translocations identified non-GCB lymphomas with favorable BN2/C1-like survival independent of IPI and concurrent DPE status. Taken together, our findings define molecular characteristics of the DPE in DLBCL, and recognize clinically feasible predictors of outcome. Given the emerging taxonomical significance of BCL2, BCL6, MYC, and TP53, our findings provide further depth and validation to the genomic classification of DLBCL.
Collapse
|
295
|
Small S, Barnea Slonim L, Williams C, Karmali R. B Cell Lymphomas of the GI Tract. Curr Gastroenterol Rep 2021; 23:9. [PMID: 33963950 DOI: 10.1007/s11894-021-00811-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE OF THE REVIEW Primary GI lymphomas of B cell origin are a diverse group of lymphomas. In this article, we provide an overview of the diagnosis, pathologic and molecular features, and management of these varied lymphomas. RECENT FINDINGS The most common primary GI lymphomas are diffuse large B cell lymphoma (DLBCL) and marginal zone lymphomas (MZL), but follicular lymphomas (FL), mantle cell lymphomas (MCL), post-transplant lymphoproliferative disorders (PTLD), and Burkitt lymphoma of the GI tract also occur. Many features of these lymphomas are similar to their nodal counterparts, but certain clinical and biological aspects are unique. Diagnostic and treatment strategies for these lymphomas continue to evolve over time. There are ongoing discoveries about the unique pathophysiology, molecular characteristics, and complications of primary B cell GI lymphomas that are already leading to improvements in management of this histologically diverse set of lymphomas.
Collapse
Affiliation(s)
- Sara Small
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | | | - Corinne Williams
- Robert H. Lurie Comprehensive Cancer Center, 675 N. St. Clair St.Fl 21 Ste. 100, Chicago, IL, 60611, USA
| | - Reem Karmali
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, 675 N. St. Clair St.Fl 21 Ste. 100, Chicago, IL, 60611, USA.
| |
Collapse
|
296
|
Wang C, Gong Y, Jiang Q, Liang X, Chen R. Epstein-Barr virus positive diffuse large B-cell lymphoma transformed into angioimmunoblastic T-cell lymphoma after treatment. Clin Case Rep 2021; 9:e04083. [PMID: 34084501 PMCID: PMC8142414 DOI: 10.1002/ccr3.4083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/06/2021] [Accepted: 03/13/2021] [Indexed: 11/11/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is the subtype of mature T-cell non-Hodgkin lymphoma. Compared with diffuse large B-cell lymphoma (DLBCL), AITL patients are frequently accompanied with Epstein-Barr virus (EBV) infection. To date, there is no report on the subsequent development of AITL in patients with EBV-positive DLBCL. We performed a rare case of EBV-positive AITL developing one year after initial diagnosis of EBV-positive DLBCL. The patient showed poor response to the chemotherapy regimen, and poor survival.
Collapse
Affiliation(s)
- Chaoyu Wang
- Department of Hematology‐OncologyChongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | - Yi Gong
- Department of Hematology‐OncologyChongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | - Qingming Jiang
- Department of PathologyChongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | - Xiping Liang
- Department of Hematology‐OncologyChongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | - Rui Chen
- Department of PathologyChongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
297
|
Davis AR, Stone SL, Oran AR, Sussman RT, Bhattacharyya S, Morrissette JJD, Bagg A. Targeted massively parallel sequencing of mature lymphoid neoplasms: assessment of empirical application and diagnostic utility in routine clinical practice. Mod Pathol 2021; 34:904-921. [PMID: 33311649 DOI: 10.1038/s41379-020-00720-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Massively parallel sequencing (MPS) has become a viable diagnostic tool to interrogate genetic profiles of numerous tumors but has yet to be routinely adopted in the setting of lymphoma. Here, we report the empirical application of a targeted 40-gene panel developed for use in mature lymphoid neoplasms (MLNs) and report our experience on over 500 cases submitted for MPS during the first year of its clinical use. MPS was applied to both fresh and fixed specimens. The most frequent diagnoses were diffuse large B-cell lymphoma (116), chronic lymphocytic leukemia/small lymphocytic lymphoma (60), marginal zone lymphoma (52), and follicular lymphoma (43), followed by a spectrum of mature T-cell neoplasms (40). Of 534 cases submitted, 471 generated reportable results in MLNs, with disease-associated variants (DAVs) detected in 241 cases (51.2%). The most frequent DAVs affected TP53 (30%), CREBBP (14%), MYD88 (14%), TNFRSF14 (10%), TNFAIP3 (10%), B2M (7%), and NOTCH2 (7%). The bulk of our findings confirm what is reported in the scientific literature. While a substantial majority of mutations did not directly impact diagnosis, MPS results were utilized to either change, refine, or facilitate the final diagnosis in ~10.8% of cases with DAVs and 5.5% of cases overall. In addition, we identified preanalytic variables that significantly affect assay performance highlighting items for specimen triage. We demonstrate the technical viability and utility of the judicious use of a targeted MPS panel that may help to establish general guidelines for specimen selection and diagnostic application in MLNs in routine clinical practice.
Collapse
Affiliation(s)
- Adam R Davis
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sara L Stone
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda R Oran
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robyn T Sussman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
298
|
Abstract
Next generation sequencing (NGS) technology has revealed the heterogeneity of diffuse large B-cell lymphoma (DLBCL) from a mutation perspective. Accordingly, the conventional cell of origin-based classification of DLBCL has changed to a mutation-based classification. Mutation analysis delineates that B-cell receptor pathway activation, EZH2 mutation, and NOTCH mutations are distinctive drivers of DLBCL. Moreover, the combination of RNA expression data and DNA mutation results suggests similarity between DLBCL subtypes and other non-Hodgkin lymphomas. NGS-based dissection of DLBCL would be the cornerstone for precision treatment in this heterogeneous disease in the near future.
Collapse
Affiliation(s)
- Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
299
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
300
|
Genome-wide CRISPR screens reveal synthetic lethal interaction between CREBBP and EP300 in diffuse large B-cell lymphoma. Cell Death Dis 2021; 12:419. [PMID: 33911074 PMCID: PMC8080727 DOI: 10.1038/s41419-021-03695-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoid malignancy and a highly heterogeneous disease. In this study, we performed whole-genome and transcriptome sequencing, and a genome-wide CRISPR-Cas9-knockout screen to study an activated B-cell-like DLBCL cell line (RC-K8). We identified a distinct pattern of genetic essentialities in RC-K8, including a dependency on CREBBP and MDM2. The dependency on CREBBP is associated with a balanced translocation involving EP300, which results in a truncated form of the protein that lacks the critical histone acetyltransferase (HAT) domain. The synthetic lethal interaction between CREBBP and EP300 genes, two frequently mutated epigenetic modulators in B-cell lymphoma, was further validated in the previously published CRISPR-Cas9 screens and inhibitor assays. Our study suggests that integration of the unbiased functional screen results with genomic and transcriptomic data can identify both common and unique druggable vulnerabilities in DLBCL and histone acetyltransferases inhibition could be a therapeutic option for CREBBP or EP300 mutated cases.
Collapse
|