251
|
Wang S, Lu Y, Yin MX, Wang C, Wu W, Li J, Wu W, Ge L, Hu L, Zhao Y, Zhang L. Importin α1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal. J Biol Chem 2016; 291:7926-37. [PMID: 26887950 DOI: 10.1074/jbc.m115.700823] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 01/13/2023] Open
Abstract
The Hippo signaling pathway controls organ size by orchestrating cell proliferation and apoptosis. When the Hippo pathway was inactivated, the transcriptional co-activator Yorkie translocates into the nucleus and forms a complex with transcription factor Scalloped to promote the expression of Hippo pathway target genes. Therefore, the nuclear translocation of Yorkie is a critical step in Hippo signaling. Here, we provide evidence that the N-terminal 1-55 amino acids of Yorkie, especially Arg-15, were essential for its nuclear localization. By mass spectrometry and biochemical analyses, we found that Importin α1 can directly interact with the Yorkie N terminus and drive Yorkie into the nucleus. Further experiments show that the upstream component Hippo can inhibit Importin α1-mediated Yorkie nuclear import. Taken together, we identified a potential nuclear localization signal at the N-terminal end of Yorkie as well as a critical role for Importin α1 in Yorkie nuclear import.
Collapse
Affiliation(s)
- Shimin Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Yi Lu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Meng-Xin Yin
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Chao Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Wei Wu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Jinhui Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Ling Ge
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Lianxin Hu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
252
|
Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila. Cell 2016; 164:406-419. [PMID: 26824654 PMCID: PMC4733248 DOI: 10.1016/j.cell.2015.12.029] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 10/18/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings.
Collapse
Affiliation(s)
- Bo Liu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng Yin
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jianzhong Yu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neal Silverman
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
253
|
Iwasa H, Jiang X, Hata Y. RASSF6; the Putative Tumor Suppressor of the RASSF Family. Cancers (Basel) 2015; 7:2415-26. [PMID: 26690221 PMCID: PMC4695899 DOI: 10.3390/cancers7040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
Humans have 10 genes that belong to the Ras association (RA) domain family (RASSF). Among them, RASSF7 to RASSF10 have the RA domain in the N-terminal region and are called the N-RASSF proteins. In contradistinction to them, RASSF1 to RASSF6 are referred to as the C-RASSF proteins. The C-RASSF proteins have the RA domain in the middle region and the Salvador/RASSF/Hippo domain in the C-terminal region. RASSF6 additionally harbors the PSD-95/Discs large/ZO-1 (PDZ)-binding motif. Expression of RASSF6 is epigenetically suppressed in human cancers and is generally regarded as a tumor suppressor. RASSF6 induces caspase-dependent and -independent apoptosis. RASSF6 interacts with mammalian Ste20-like kinases (homologs of Drosophila Hippo) and cross-talks with the Hippo pathway. RASSF6 binds MDM2 and regulates p53 expression. The interactions with Ras and Modulator of apoptosis 1 (MOAP1) are also suggested by heterologous protein-protein interaction experiments. RASSF6 regulates apoptosis and cell cycle through these protein-protein interactions, and is implicated in the NF-κB and JNK signaling pathways. We summarize our current knowledge about RASSF6 and discuss what common and different properties RASSF6 and the other C-RASSF proteins have.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Xinliang Jiang
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
254
|
Li S, Cho YS, Yue T, Ip YT, Jiang J. Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Discov 2015; 1:15038. [PMID: 27462435 PMCID: PMC4860773 DOI: 10.1038/celldisc.2015.38] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 01/26/2023] Open
Abstract
The Hippo (Hpo) tumor suppressor pathway is an evolutionarily conserved signaling pathway that controls tissue growth and organ size in species ranging from Drosophila to human, and its malfunction has been implicated in many types of human cancer. In this study, we conducted a kinome screen and identified Happyhour (Hppy)/MAP4K3 as a novel player in the Hpo pathway. Our biochemical study showed that Hppy binds and phosphorylates Wts. Our genetic experiments suggest that Hppy acts in parallel and partial redundantly with Misshapen (Msn)/MAP4K4 to regulate Yki nuclear localization and Hpo target gene expression in Drosophila wing imaginal discs. Furthermore, we showed that cytoskeleton stress restricts Yki nuclear localization through Hppy and Msn when Hpo activity is compromised, thus providing an explanation for the Wts-dependent but Hpo-independent regulation of Yki in certain contexts. Our study has unraveled an additional layer of complexity in the Hpo signaling pathway and laid down a foundation for exploring how different upstream regulators feed into the core Hpo pathway.
Collapse
Affiliation(s)
- Shuangxi Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA
| | - Yong Suk Cho
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA
| | - Tao Yue
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Center for the genetics and Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School , Worcester, MA, USA
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallars, TX, USA
| |
Collapse
|
255
|
Hariharan IK. Organ Size Control: Lessons from Drosophila. Dev Cell 2015; 34:255-65. [PMID: 26267393 DOI: 10.1016/j.devcel.2015.07.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 12/23/2022]
Abstract
Of fundamental interest to biologists is how organs achieve a reproducible size during development. Studies of the developing Drosophila wing have provided many key insights that will help give a conceptual understanding of the process beyond the fly. In the wing, there is evidence for both "top-down" mechanisms, in which signals emanating from small subsets of cells direct global proliferation, and "bottom-up" mechanisms, in which the final size is an emergent property of local cell-cell interactions. Mechanical forces also appear to have an important role along with the Hippo pathway, which may integrate multiple types of inputs to regulate the extent of growth.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
256
|
Keder A, Rives-Quinto N, Aerne BL, Franco M, Tapon N, Carmena A. The hippo pathway core cassette regulates asymmetric cell division. Curr Biol 2015; 25:2739-2750. [PMID: 26592338 DOI: 10.1016/j.cub.2015.08.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022]
Abstract
Asymmetric cell division (ACD) is a crucial process during development, homeostasis, and cancer. Stem and progenitor cells divide asymmetrically, giving rise to two daughter cells, one of which retains the parent cell self-renewal capacity, while the other is committed to differentiation. Any imbalance in this process can induce overgrowth or even a cancer-like state. Here, we show that core components of the Hippo signaling pathway, an evolutionarily conserved organ growth regulator, modulate ACD in Drosophila. Hippo pathway inactivation disrupts the asymmetric localization of ACD regulators, leading to aberrant mitotic spindle orientation and defects in the generation of unequal-sized daughter cells. The Hippo pathway downstream kinase Warts, LATS1-2 in mammals, associates with the ACD modulators Inscuteable and Bazooka in vivo and phosphorylates Canoe, the ortholog of Afadin/AF-6, in vitro. Moreover, phosphosite mutant Canoe protein fails to form apical crescents in dividing neuroblasts in vivo, and the lack of Canoe phosphorylation by Warts leads to failures of Discs Large apical localization in metaphase neuroblasts. Given the relevance of ACD in stem cells during tissue homeostasis, and the well-documented role of the Hippo pathway as a tumor suppressor, these results represent a potential route for perturbations in the Hippo signaling to induce tumorigenesis via aberrant stem cell divisions.
Collapse
Affiliation(s)
- Alyona Keder
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Noemí Rives-Quinto
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Birgit L Aerne
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Nicolas Tapon
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
257
|
Ashraf A, Pervaiz S. Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions. Int J Biochem Cell Biol 2015; 69:20-8. [PMID: 26456518 DOI: 10.1016/j.biocel.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 12/17/2022]
Abstract
Meticulous and precise control of organ size is undoubtedly one of the most pivotal processes in mammalian development and regeneration along with cell differentiation, morphogenesis and programmed cell death. These processes are strictly regulated by complex and highly coordinated mechanisms to maintain a steady growth state. There are a number of extrinsic and intrinsic factors that dictate the total number and/or size of cells by influencing growth, proliferation, differentiation and cell death. Multiple pathways, such as those involved in promoting organ size and others that restrict disproportionate tissue growth act simultaneously to maintain cellular and tissue homeostasis. Aberrations at any level in these organ size-regulating processes can lead to various pathological states with cancers being the most formidable one (Yin and Zhang, 2011). Extensive research in the realm of growth control has led to the identification of the Hippo-signaling pathway as a critical network in modulating tissue growth via its effect on multiple signaling pathways and through intricate crosstalk with proteins that regulate cell polarity, adhesion and cell-cell interactions (Zhao et al., 2011b). The Hippo pathway controls cell number and organ size by transducing signals from the plasma membrane to the nucleus to regulate the expression of genes involved in cell fate determination (Shi et al., 2015). In this review, we summarize the recent discoveries concerning Hippo pathway, its diversiform regulation in mammals as well as its implications in cancers, and highlight the possible role of oxidative stress in Hippo pathway regulation.
Collapse
Affiliation(s)
- Asma Ashraf
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin University, Perth, Australia.
| |
Collapse
|
258
|
Chen J, Harris RC. Interaction of the EGF Receptor and the Hippo Pathway in the Diabetic Kidney. J Am Soc Nephrol 2015; 27:1689-700. [PMID: 26453611 DOI: 10.1681/asn.2015040415] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/27/2015] [Indexed: 12/30/2022] Open
Abstract
Activation of the EGF receptor (EGFR) or the Hippo signaling pathway can control cell proliferation, apoptosis, and differentiation, and the dysregulation of these pathways can contribute to tumorigenesis. Previous studies showed that activation of EGFR signaling in renal epithelial cells can exacerbate diabetic kidney injury. Moreover, EGFR has been implicated in regulating the Hippo signaling pathway in Drosophila; thus, we examined this potential interaction in mammalian diabetic kidney disease. Yes-associated protein (YAP) is a transcriptional regulator regulated by the Hippo signaling pathway. We found YAP protein expression and phosphorylation were upregulated in diabetic mouse renal proximal tubule epithelial cells, which were inhibited in diabetic proximal tubule EGFR-knockout mice (EGFR(ptKO)) or administration of an EGFR tyrosine kinase inhibitor erlotinib. Furthermore, activation of an EGFR-PI3K-Akt-CREB signaling pathway mediated YAP gene expression and YAP nuclear translocation and interaction with the TEA domain (TEAD) transcription factor complex, which led to upregulated expression of two TEAD-dependent genes, the connective tissue growth factor and amphiregulin genes. In a renal proximal tubule cell line, either pharmacologic or genetic inhibition of EGFR, Akt, or CREB blunted YAP expression in response to high-glucose treatment. Additionally, knocking down YAP expression by specific siRNA inhibited cell proliferation in response to high glucose or exogenous EGF. Therefore, these results link the Hippo pathway to EGFR-mediated renal epithelial injury in diabetes.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee; and Department of Medicine and
| | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee; and Department of Medicine and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
259
|
Gailite I, Aerne BL, Tapon N. Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proc Natl Acad Sci U S A 2015; 112:E5169-78. [PMID: 26324895 PMCID: PMC4577147 DOI: 10.1073/pnas.1505512112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo (Hpo) pathway is a highly conserved tumor suppressor network that restricts developmental tissue growth and regulates stem cell proliferation and differentiation. At the heart of the Hpo pathway is the progrowth transcriptional coactivator Yorkie [Yki-Yes-activated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) in mammals]. Yki activity is restricted through phosphorylation by the Hpo/Warts core kinase cascade, but increasing evidence indicates that core kinase-independent modes of regulation also play an important role. Here, we examine Yki regulation in the Drosophila larval central nervous system and uncover a Hpo/Warts-independent function for the tumor suppressor kinase liver kinase B1 (LKB1) and its downstream effector, the energy sensor AMP-activated protein kinase (AMPK), in repressing Yki activity in the central brain/ventral nerve cord. Although the Hpo/Warts core cascade restrains Yki in the optic lobe, it is dispensable for Yki target gene repression in the late larval central brain/ventral nerve cord. Thus, we demonstrate a dramatically different wiring of Hpo signaling in neighboring cell populations of distinct developmental origins in the central nervous system.
Collapse
Affiliation(s)
- Ieva Gailite
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| |
Collapse
|
260
|
Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D. Identification of Happyhour/MAP4K as Alternative Hpo/Mst-like Kinases in the Hippo Kinase Cascade. Dev Cell 2015; 34:642-55. [PMID: 26364751 PMCID: PMC4589524 DOI: 10.1016/j.devcel.2015.08.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/14/2015] [Accepted: 08/20/2015] [Indexed: 10/25/2022]
Abstract
In Drosophila and mammals, the canonical Hippo kinase cascade is mediated by Hpo/Mst acting through the intermediary kinase Wts/Lats to phosphorylate the transcriptional coactivator Yki/YAP/TAZ. Despite recent reports linking Yki/YAP/TAZ activity to the actin cytoskeleton, the underlying mechanisms are poorly understood and/or controversial. Using Drosophila imaginal discs as an in vivo model, we show that Wts, but not Hpo, is genetically indispensable for cytoskeleton-mediated subcellular localization of Yki. Through a systematic screen, we identify the Ste-20 kinase Happyhour (Hppy) and its mammalian counterpart MAP4K1/2/3/5 as an alternative kinase that phosphorylates the hydrophobic motif of Wts/Lats in a similar manner as Hpo/Mst. Consistent with their redundant function as activating kinases of Wts/Lats, combined loss of Hpo/Mst and Hppy/MAP4K abolishes cytoskeleton-mediated regulation of Yki/YAP subcellular localization, as well as YAP cytoplasmic translocation induced by contact inhibition. These Hpo/Mst-like kinases provide an expanded view of the Hippo kinase cascade in development and physiology.
Collapse
Affiliation(s)
- Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wei Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Liu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hua Deng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eliza Uster
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
261
|
Deel MD, Li JJ, Crose LES, Linardic CM. A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas. Front Oncol 2015; 5:190. [PMID: 26389076 PMCID: PMC4557106 DOI: 10.3389/fonc.2015.00190] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected to proteins in developmental cascades and in the tissue microenvironment. This network governs the downstream Hippo transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs, as well as other transcription factors responsible for cellular proliferation, self-renewal, differentiation, and survival. Surprisingly, there are few oncogenic mutations within the core components of the Hippo pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic signaling from other pathways, or serve as co-activators for classical oncogenes. Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal structural changes to morphogenic signals and conveys a mesenchymal phenotype. While much of Hippo biology has been described in epithelial cell systems, it is clear that dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. This review will summarize the known molecular alterations within the Hippo pathway in sarcomas and highlight how several pharmacologic compounds have shown activity in modulating Hippo components, providing proof-of-principle that Hippo signaling may be harnessed for therapeutic application in sarcomas.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Jenny J Li
- Duke University School of Medicine , Durham, NC , USA
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA ; Department of Pharmacology and Cancer Biology, Duke University School of Medicine , Durham, NC , USA
| |
Collapse
|
262
|
Meng F, Feng W, Xin H, Tian Z, Zhang Y, Zhang L. 14-3-3 Proteins interact with FRMD6 and regulate its subcellular localization in breast cancer cells. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
263
|
The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Rev Mol Med 2015; 17:e14. [PMID: 26136233 DOI: 10.1017/erm.2015.12] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hippo signalling is emerging as a tumour suppressor pathway whose function is regulated by an intricate network of intracellular and extracellular cues. Defects in the signal cascade lead to the activation of the Hippo transducers TAZ and YAP. Compelling preclinical evidence showed that TAZ/YAP are often aberrantly engaged in breast cancer (BC), where their hyperactivation culminates into a variety of tumour-promoting functions such as epithelial-to-mesenchymal transition, cancer stem cell generation and therapeutic resistance. Having acquired a more thorough understanding in the biology of TAZ/YAP, and the molecular outputs they elicit, has prompted a first wave of exploratory, clinically-focused analyses aimed at providing initial hints on the prognostic/predictive significance of their expression. In this review, we discuss oncogenic activities linked with TAZ/YAP in BC, and we propose clinical strategies for investigating their role as biomarkers in the clinical setting. Finally, we address the therapeutic potential of TAZ/YAP targeting and the modalities that, in our opinion, should be pursued in order to further study the biological and clinical consequences of their inhibition.
Collapse
|
264
|
Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4. PLoS One 2015; 10:e0131113. [PMID: 26125558 PMCID: PMC4488328 DOI: 10.1371/journal.pone.0131113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/28/2015] [Indexed: 01/13/2023] Open
Abstract
Signalling through the Hippo (Hpo) pathway involves a kinase cascade, which leads to the phosphorylation and inactivation of the pro-growth transcriptional co-activator Yorkie (Yki). Despite the identification of a large number of pathway members and modulators, our understanding of the molecular events that lead to activation of Hpo and the downstream kinase Warts (Wts) remain incomplete. Recently, targeted degradation of several Hpo pathway components has been demonstrated as a means of regulating pathway activity. In particular, the stability of scaffold protein Salvador (Sav), which is believed to promote Hpo/Wts association, is crucially dependent on its binding partner Hpo. In a cell-based RNAi screen for ubiquitin regulators involved in Sav stability, we identify the HECT domain protein Herc4 (HECT and RLD domain containing E3 ligase) as a Sav E3 ligase. Herc4 expression promotes Sav ubiquitylation and degradation, while Herc4 depletion stabilises Sav. Interestingly, Hpo reduces Sav/Herc4 interaction in a kinase-dependent manner. This suggests the existence of a positive feedback loop, where Hpo stabilises its own positive regulator by antagonising Herc4-mediated degradation of Sav.
Collapse
|
265
|
Dong L, Li J, Huang H, Yin MX, Xu J, Li P, Lu Y, Wu W, Yang H, Zhao Y, Zhang L. Growth suppressor lingerer regulates bantam microRNA to restrict organ size. J Mol Cell Biol 2015; 7:415-28. [PMID: 26117838 DOI: 10.1093/jmcb/mjv045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/27/2015] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily conserved Hippo signaling pathway plays an important role in organ size control by regulating cell proliferation and apoptosis. Here, we identify Lingerer (Lig) as a growth suppressor using RNAi modifying screen in Drosophila melanogaster. Loss of lig increases organ size and upregulates bantam (ban) and the expression of the Hippo pathway target genes, while overexpression of lig results in diminished ban expression and organ size reduction. We demonstrate that Lig C-terminal exhibits dominant-negative function on growth and ban expression, and thus plays an important role in organ size control and ban regulation. In addition, we provide evidence that both Yki and Mad are essential for Lig-induced ban expression. We also show that Lig regulates the expression of the Hippo pathway target genes partially via Yorkie. Moreover, we find that Lig physically interacts with and requires Salvador to restrict cell growth. Taken together, we demonstrate that Lig functions as a critical growth suppressor to control organ size via ban and Hippo signaling.
Collapse
Affiliation(s)
- Liang Dong
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinhui Li
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongling Huang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peixue Li
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hang Yang
- Department of Biochemistry and Molecular Biology, USC Health Science Campus, Los Angeles, CA 90033, USA
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
266
|
Abstract
The heart is the first organ formed during mammalian development. A properly sized and functional heart is vital throughout the entire lifespan. Loss of cardiomyocytes because of injury or diseases leads to heart failure, which is a major cause of human morbidity and mortality. Unfortunately, regenerative potential of the adult heart is limited. The Hippo pathway is a recently identified signaling cascade that plays an evolutionarily conserved role in organ size control by inhibiting cell proliferation, promoting apoptosis, regulating fates of stem/progenitor cells, and in some circumstances, limiting cell size. Interestingly, research indicates a key role of this pathway in regulation of cardiomyocyte proliferation and heart size. Inactivation of the Hippo pathway or activation of its downstream effector, the Yes-associated protein transcription coactivator, improves cardiac regeneration. Several known upstream signals of the Hippo pathway such as mechanical stress, G-protein-coupled receptor signaling, and oxidative stress are known to play critical roles in cardiac physiology. In addition, Yes-associated protein has been shown to regulate cardiomyocyte fate through multiple transcriptional mechanisms. In this review, we summarize and discuss current findings on the roles and mechanisms of the Hippo pathway in heart development, injury, and regeneration.
Collapse
Affiliation(s)
- Qi Zhou
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Li Li
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Bin Zhao
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| | - Kun-Liang Guan
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| |
Collapse
|
267
|
Wittkorn E, Sarkar A, Garcia K, Kango-Singh M, Singh A. The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the Drosophila eye. Development 2015; 142:2002-13. [PMID: 25977365 DOI: 10.1242/dev.117358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/16/2015] [Indexed: 01/22/2023]
Abstract
The evolutionarily conserved Hippo signaling pathway is known to regulate cell proliferation and maintain tissue homeostasis during development. We found that activation of Yorkie (Yki), the effector of the Hippo signaling pathway, causes separable effects on growth and differentiation of the Drosophila eye. We present evidence supporting a role for Yki in suppressing eye fate by downregulation of the core retinal determination genes. Other upstream regulators of the Hippo pathway mediate this effect of Yki on retinal differentiation. Here, we show that, in the developing eye, Yki can prevent retinal differentiation by blocking morphogenetic furrow (MF) progression and R8 specification. The inhibition of MF progression is due to ectopic induction of Wingless (Wg) signaling and Homothorax (Hth), the negative regulators of eye development. Modulating Wg signaling can modify Yki-mediated suppression of eye fate. Furthermore, ectopic Hth induction due to Yki activation in the eye is dependent on Wg. Last, using Cut (Ct), a marker for the antennal fate, we show that suppression of eye fate by hyperactivation of yki does not change the cell fate (from eye to antenna-specific fate). In summary, we provide the genetic mechanism by which yki plays a role in cell fate specification and differentiation - a novel aspect of Yki function that is emerging from multiple model organisms.
Collapse
Affiliation(s)
- Erika Wittkorn
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Kristine Garcia
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA Premedical Program, University of Dayton, Dayton, OH 45469, USA Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA Premedical Program, University of Dayton, Dayton, OH 45469, USA Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
268
|
Tanas MR, Ma S, Jadaan FO, Ng CKY, Weigelt B, Reis-Filho JS, Rubin BP. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene 2015; 35:929-38. [PMID: 25961935 DOI: 10.1038/onc.2015.148] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/22/2015] [Accepted: 04/03/2015] [Indexed: 12/28/2022]
Abstract
The WWTR1 (protein is known as TAZ)-CAMTA1 (WC) fusion gene defines epithelioid hemangioendothelioma, a malignant vascular cancer. TAZ (transcriptional coactivator with PDZ binding motif) is a transcriptional coactivator and end effector of the Hippo tumor suppressor pathway. It is inhibited by phosphorylation by the Hippo kinases LATS1 and LATS2. Such phosphorylation causes cytoplasmic localization, 14-3-3 protein binding and the phorphorylation of a terminal phosphodegron promotes ubiquitin-dependent degradation (the phosphorylation of the different motifs has several effects). CAMTA1 is a putative tumor suppressive transcription factor. Here we demonstrate that TAZ-CAMTA1 (TC) fusion results in its nuclear localization and constitutive activation. Consequently, cells expressing TC display a TAZ-like transcriptional program that causes resistance to anoikis and oncogenic transformation. Our findings elucidate the mechanistic basis of TC oncogenic properties, highlight that TC is an important model to understand how the Hippo pathway can be inhibited in cancer, and provide approaches for targeting this chimeric protein.
Collapse
Affiliation(s)
- M R Tanas
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Robert J. Tomsich Pathology Institute, Lerner Research Institute, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - S Ma
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - F O Jadaan
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - C K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B P Rubin
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Robert J. Tomsich Pathology Institute, Lerner Research Institute, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
269
|
Lorthongpanich C, Issaragrisil S. Emerging Role of the Hippo Signaling Pathway in Position Sensing and Lineage Specification in Mammalian Preimplantation Embryos. Biol Reprod 2015; 92:143. [PMID: 25947059 DOI: 10.1095/biolreprod.114.127803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/29/2015] [Indexed: 12/29/2022] Open
Abstract
In preimplantation mouse embryos, the first lineage differentiation takes place in the 8- to 16-cell-stage embryo and results in formation of the trophectoderm (TE) and inner cell mass (ICM), which will give rise to the trophoblast of the placenta and the embryo proper, respectively. Although, it is widely accepted that positioning of a cell within the embryo influences lineage differentiation, the mechanism underlying differential lineage differentiation and how it involves cell position are largely unknown. Interestingly, novel cues from the Hippo pathway have been recently demonstrated in the preimplantation mouse embryo. Unlike the mechanisms reported from epithelium-cultured cells, the Hippo pathway was found to be responsible for translating positional information to lineage specification through a position-sensing mechanism. Disruption of Hippo pathway-component genes in early embryos results in failure of lineage specification and failure of postimplantation development. In this review, we discuss the unique role of the Hippo signaling pathway in early embryo development and its role in lineage specification. Understanding the activity and regulation of the Hippo pathway may offer new insights into other areas of developmental biology that evolve from understanding of this cell-fate specification in the early embryonic cell.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
270
|
Deng H, Wang W, Yu J, Zheng Y, Qing Y, Pan D. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. eLife 2015; 4:e06567. [PMID: 25826608 PMCID: PMC4412106 DOI: 10.7554/elife.06567] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway controls tissue growth through a core kinase cascade that impinges on the transcription of growth-regulatory genes. Understanding how this pathway is regulated in development remains a major challenge. Recent studies suggested that Hippo signaling can be modulated by cytoskeletal tension through a Rok-myosin II pathway. How cytoskeletal tension is regulated or its relationship to the other known upstream regulators of the Hippo pathway remains poorly defined. In this study, we identify spectrin, a contractile protein at the cytoskeleton-membrane interface, as an upstream regulator of the Hippo signaling pathway. We show that, in contrast to canonical upstream regulators such as Crumbs, Kibra, Expanded, and Merlin, spectrin regulates Hippo signaling in a distinct way by modulating cortical actomyosin activity through non-muscle myosin II. These results uncover an essential mediator of Hippo signaling by cytoskeleton tension, providing a new entry point to dissecting how mechanical signals regulate Hippo signaling in living tissues. DOI:http://dx.doi.org/10.7554/eLife.06567.001 Organs including the liver, eyes, and lungs are made up of millions of cells, and how these organs stop growing once they reach their final size has fascinated scientists for decades. The cells in developing organs must communicate with each other and respond appropriately to the signals that they receive from other cells. This requires so-called “signaling pathways”. One such pathway that involves a protein called Hippo is known to control when cells should grow and divide and when they should stop. If this pathway does not work correctly, it can cause too many cells to be formed, which may result in cancer. The Hippo signaling pathway can also be regulated by an extensive network of protein filaments found within cells, called the cytoskeleton. This network can exert forces on the cells, which can have a major impact on cell growth. However, the mechanism behind the interaction between the cytoskeleton and the Hippo signaling pathway is poorly understood. Now, Deng et al. have engineered fruit flies in which the expression of individual genes had been artificially reduced, and looked for flies that had enlarged wings. Three genes identified in these experiments encode different subunits of a large spring-like protein, called spectrin, which is part of the cytoskeleton. This suggests that normally spectrin limits wing size. Furthermore, spectrin was also found to control the size of other organs in the fruit flies, such as the eyes and ovaries. In all of these organs, the Hippo signaling pathway failed to work properly in the absence of spectrin. Deng et al. then further explored the relationship between spectrin and Hippo signaling and found that cells without spectrin show abnormally high levels of tension in their cytoskeleton. When flies that lacked spectrin were engineered to reduce this tension, these flies developed normal sized organs. These findings reveal the importance of cytoskeleton tension in controlling tissue growth, and provide a new entry point to understand how normal tissues grow to their characteristic size and how such process goes awry in cancer. DOI:http://dx.doi.org/10.7554/eLife.06567.002
Collapse
Affiliation(s)
- Hua Deng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Wei Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jianzhong Yu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yun Qing
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
271
|
Gokhale RH, Shingleton AW. Size control: the developmental physiology of body and organ size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:335-56. [PMID: 25808999 DOI: 10.1002/wdev.181] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/08/2015] [Accepted: 01/29/2015] [Indexed: 01/04/2023]
Abstract
The developmental regulation of final body and organ size is fundamental to generating a functional and correctly proportioned adult. Research over the last two decades has identified a long list of genes and signaling pathways that, when perturbed, influence final body size. However, body and organ size are ultimately a characteristic of the whole organism, and how these myriad genes and pathways function within a physiological context to control size remains largely unknown. In this review, we first describe the major size-regulatory signaling pathways: the Insulin/IGF-, RAS/RAF/MAPK-, TOR-, Hippo-, and JNK-signaling pathways. We then explore what is known of how these pathways regulate five major aspects of size regulation: growth rate, growth duration, target size, negative growth and growth coordination. While this review is by no means exhaustive, our goal is to provide a conceptual framework for integrating the mechanisms of size control at a molecular-genetic level with the mechanisms of size control at a physiological level.
Collapse
Affiliation(s)
- Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, Lake Forest, IL, USA.,Department of Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
272
|
YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene 2015; 34:6040-54. [PMID: 25798835 PMCID: PMC4580488 DOI: 10.1038/onc.2015.52] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
Mechanisms underlying ovarian cancer initiation and progression are unclear. Herein, we report that the Yes-associated protein (YAP), a major effector of the Hippo tumor suppressor pathway, interacts with ERBB signaling pathways to regulate the initiation and progression of ovarian cancer. Immunohistochemistry studies indicate that YAP expression is associated with poor clinical outcomes in patients. Overexpression or constitutive activation of YAP leads to transformation and tumorigenesis in human ovarian surface epithelial cells, and promotes growth of cancer cells in vivo and in vitro. YAP induces the expression of epidermal growth factor (EGF) receptors (EGFR, ERBB3) and production of EGF-like ligands (HBEGF, NRG1 and NRG2). HBEGF or NRG1, in turn, activates YAP and stimulates cancer cell growth. Knockdown of ERBB3 or HBEGF eliminates YAP effects on cell growth and transformation, whereas knockdown of YAP abrogates NRG1- and HBEGF-stimulated cell proliferation. Collectively, our study demonstrates the existence of HBEGF & NRGs/ERBBs/YAP/HBEGF & NRGs autocrine loop that controls ovarian cell tumorigenesis and cancer progression.
Collapse
|
273
|
Xu B, Sun D, Wang Z, Weng H, Wu D, Zhang X, Zhou Y, Hu W. Expression of LATS family proteins in ovarian tumors and its significance. Hum Pathol 2015; 46:858-67. [PMID: 25841306 DOI: 10.1016/j.humpath.2015.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer is composed of a diverse group of tumors that can be derived from the fallopian tube, endometrium, or ovary. In this study, we explored the expression levels of LATS family members in ovarian tumors using normal ovaries, fallopian tubes, and endometrium as controls. Immunohistochemistry studies of LATS1, LATS2, Pax8, and calretinin were performed on normal ovary, fallopian tube, normal endometrium, and ovarian tumor sections. Statistical analyses were conducted using the χ(2) test, Fisher exact test, or Kruskal-Wallis H test. Patient survival was analyzed using the Kaplan-Meier method. LATS1 was expressed in normal ovarian epithelia, endometrium, and fallopian tubes, whereas LATS2 expression was observed in the normal fallopian tubes and endometrium. High expressions of LATS1 and LATS2 in serous cystadenomas gradually decreased in borderline cystadenomas and carcinomas, respectively. However, an opposite expression pattern was observed in mucinous tumors. Low expressions of LATS1 and LATS2 were also detected in clear cell carcinoma. Both LATS1 and LATS2 expression levels significantly correlated with recurrence and stage; LATS1 levels were also related with tumor grades in serous carcinoma. However, univariate and multivariate Cox regression analyses revealed that high expression of LATS1 was associated with better prognosis in patients with serous carcinoma. Both LATS1 and LATS2 were not related with the clinical variables in mucinous and clear cell carcinoma. LATS1 expression levels might be a valuable survival indicator in ovarian serous carcinoma.
Collapse
Affiliation(s)
- Bing Xu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Duoxiang Sun
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Zhihua Wang
- Department of Pathology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Haiyan Weng
- Department of Pathology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Dabao Wu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Xuefen Zhang
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
| | - Weiping Hu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
| |
Collapse
|
274
|
Yeung B, Yu J, Yang X. Roles of the Hippo pathway in lung development and tumorigenesis. Int J Cancer 2015; 138:533-9. [PMID: 25644176 DOI: 10.1002/ijc.29457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Lung cancer is the most commonly diagnosed cancer and accounts for one fifth of all cancer deaths worldwide. Although significant progress has been made toward our understanding of the causes of lung cancer, the 5-year survival is still lower than 15%. Therefore, there is an urgent need for novel lung cancer biomarkers and drug targets. The Hippo signaling pathway is an emerging signaling pathway that regulates various biological processes. Recently, increasing evidence suggests that the Hippo pathway may play important roles in not only lung development but also lung tumorigenesis. In this review article, we will summarize the most recent advances and predict future directions on this new cancer research field.
Collapse
Affiliation(s)
- Benjamin Yeung
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jihang Yu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
275
|
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China 200032
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| | - Steven W. Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
276
|
Abstract
The Hippo and c-Jun N-terminal kinase (JNK) pathway both regulate growth and contribute to tumorigenesis when dysregulated. Whereas the Hippo pathway acts via the transcription coactivator Yki/YAP to regulate target gene expression, JNK signaling, triggered by various modulators including Rho GTPases, activates the transcription factors Jun and Fos. Here, we show that impaired Hippo signaling induces JNK activation through Rho1. Blocking Rho1-JNK signaling suppresses Yki-induced overgrowth in the wing disk, whereas ectopic Rho1 expression promotes tissue growth when apoptosis is prohibited. Furthermore, Yki directly regulates Rho1 transcription via the transcription factor Sd. Thus, our results have identified a novel molecular link between the Hippo and JNK pathways and implicated the essential role of the JNK pathway in Hippo signaling-related tumorigenesis.
Collapse
|
277
|
Pefani DE, O'Neill E. Safeguarding genome stability: RASSF1A tumor suppressor regulates BRCA2 at stalled forks. Cell Cycle 2015; 14:1624-30. [PMID: 25927241 PMCID: PMC4613848 DOI: 10.1080/15384101.2015.1035845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 12/27/2022] Open
Abstract
While it has been widely established that defective fork restart after exposure to stress results in increased genomic instability, the importance of fork protection during stalling for safeguarding genomic integrity has recently been fully appreciated. BRCA2, Breast tumor suppressor, has dual functionality promoting not only DNA repair but also preventing DNA lesions at stalled forks. In response to replication stress, BRCA2 recruits RAD51 onto nascent DNA at stalled forks, protecting nascent DNA from nucleolitic cleavage. Phosphorylation of the BRCA2 C-terminal RAD51 binding site by CDK2 promotes RAD51 filament disassembly, leading to nucleolitic cleavage of newly synthesized DNA and compromised fork integrity. Recently we uncovered how the core Hippo pathway components RASSF1A, MST2 and LATS1 regulate CDK2 activity towards BRCA2, in response to fork stalling. In complex with LATS1, CDK2 exhibits reduced kinase activity which results in low levels of pBRCA2-S3291 and stable RAD51 filaments protecting nascent DNA from MRE11 cleavage. In the absence of the RASSF1A/MST2/LATS1/CDK2 pathway increased resection of newly synthesized DNA leads to chromosomal instability and malignant transformation. This function of RASSF1A in stalled replication fork protection adds to the role of RASSF1A as a tumor suppressor and builds up evidence for RASSF1A status and its prognostic and predictive value in cancer.
Collapse
Affiliation(s)
| | - Eric O'Neill
- CRUK/MRC Oxford Institute; Department of Oncology; University of Oxford; Oxford, UK
| |
Collapse
|
278
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
279
|
Shi Z, Jiao S, Zhou Z. Structural dissection of Hippo signaling. Acta Biochim Biophys Sin (Shanghai) 2015; 47:29-38. [PMID: 25476203 DOI: 10.1093/abbs/gmu107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway controls cell number and organ size by restricting cell proliferation and promoting apoptosis, and thus is a key regulator in development and homeostasis. Dysfunction of the Hippo pathway correlates with many pathological conditions, especially cancer. Hippo signaling also plays important roles in tissue regeneration and stem cell biology. Therefore, the Hippo pathway is recognized as a crucial target for cancer therapy and regeneration medicine. To date, structures of several key components in Hippo signaling have been determined. In this review, we summarize current available structural studies of the Hippo pathway, which may help to improve our understanding of its regulatory mechanisms, as well as to facilitate further functional studies and potential therapeutic interventions.
Collapse
|
280
|
Insulin- and warts-dependent regulation of tracheal plasticity modulates systemic larval growth during hypoxia in Drosophila melanogaster. PLoS One 2014; 9:e115297. [PMID: 25541690 PMCID: PMC4277339 DOI: 10.1371/journal.pone.0115297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/22/2014] [Indexed: 01/07/2023] Open
Abstract
Adaptation to dynamic environmental cues during organismal development requires coordination of tissue growth with available resources. More specifically, the effects of oxygen availability on body size have been well-documented, but the mechanisms through which hypoxia restricts systemic growth have not been fully elucidated. Here, we characterize the larval growth and metabolic defects in Drosophila that result from hypoxia. Hypoxic conditions reduced fat body opacity and increased lipid droplet accumulation in this tissue, without eliciting lipid aggregation in hepatocyte-like cells called oenocytes. Additionally, hypoxia increased the retention of Dilp2 in the insulin-producing cells of the larval brain, associated with a reduction of insulin signaling in peripheral tissues. Overexpression of the wildtype form of the insulin receptor ubiquitously and in the larval trachea rendered larvae resistant to hypoxia-induced growth restriction. Furthermore, Warts downregulation in the trachea was similar to increased insulin receptor signaling during oxygen deprivation, which both rescued hypoxia-induced growth restriction, inhibition of tracheal molting, and developmental delay. Insulin signaling and loss of Warts function increased tracheal growth and augmented tracheal plasticity under hypoxic conditions, enhancing oxygen delivery during periods of oxygen deprivation. Our findings demonstrate a mechanism that coordinates oxygen availability with systemic growth in which hypoxia-induced reduction of insulin receptor signaling decreases plasticity of the larval trachea that is required for the maintenance of systemic growth during times of limiting oxygen availability.
Collapse
|
281
|
Sidorov R, Kucerova L, Kiss I, Zurovec M. Mutation in the Drosophila melanogaster adenosine receptor gene selectively decreases the mosaic hyperplastic epithelial outgrowth rates in wts or dco heterozygous flies. Purinergic Signal 2014; 11:95-105. [PMID: 25528157 DOI: 10.1007/s11302-014-9435-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022] Open
Abstract
Adenosine (Ado) is a ubiquitous metabolite that plays a prominent role as a paracrine homeostatic signal of metabolic imbalance within tissues. It quickly responds to various stress stimuli by adjusting energy metabolism and influencing cell growth and survival. Ado is also released by dead or dying cells and is present at significant concentrations in solid tumors. Ado signaling is mediated by Ado receptors (AdoR) and proteins modulating its concentration, including nucleoside transporters and Ado deaminases. We examined the impact of genetic manipulations of three Drosophila genes involved in Ado signaling on the incidence of somatic mosaic clones formed by the loss of heterozygosity (LOH) of tumor suppressor and marker genes. We show here that genetic manipulations with the AdoR, equilibrative nucleoside transporter 2 (Ent2), and Ado deaminase growth factor-A (Adgf-A) cause dramatic changes in the frequency of hyperplastic outgrowth clones formed by LOH of the warts (wts) tumor suppressor, while they have almost no effect on control yellow (y) clones. In addition, the effect of AdoR is dose-sensitive and its overexpression leads to the increase in wts hyperplastic epithelial outgrowth rates. Consistently, the frequency of mosaic hyperplastic outgrowth clones generated by the LOH of another tumor suppressor, discs overgrown (dco), belonging to the wts signaling pathway is also dependent on AdoR. Our results provide interesting insight into the maintenance of tissue homeostasis at a cellular level.
Collapse
Affiliation(s)
- Roman Sidorov
- Biology centre AS CR, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
282
|
Manderfield LJ, Engleka KA, Aghajanian H, Gupta M, Yang S, Li L, Baggs JE, Hogenesch JB, Olson EN, Epstein JA. Pax3 and hippo signaling coordinate melanocyte gene expression in neural crest. Cell Rep 2014; 9:1885-1895. [PMID: 25466249 PMCID: PMC4267159 DOI: 10.1016/j.celrep.2014.10.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
Loss of Pax3, a developmentally regulated transcription factor expressed in premigratory neural crest, results in severe developmental defects and embryonic lethality. Although Pax3 mutations produce profound phenotypes, the intrinsic transcriptional activation exhibited by Pax3 is surprisingly modest. We postulated the existence of transcriptional coactivators that function with Pax3 to mediate developmental functions. A high-throughput screen identified the Hippo effector proteins Taz and Yap65 as Pax3 coactivators. Synergistic coactivation of target genes by Pax3-Taz/Yap65 requires DNA binding by Pax3, is Tead independent, and is regulated by Hippo kinases Mst1 and Lats2. In vivo, Pax3 and Yap65 colocalize in the nucleus of neural crest progenitors in the dorsal neural tube. Neural crest deletion of Taz and Yap65 results in embryo-lethal neural crest defects and decreased expression of the Pax3 target gene, Mitf. These results suggest that Pax3 activity is regulated by the Hippo pathway and that Pax factors are Hippo effectors.
Collapse
Affiliation(s)
- Lauren J Manderfield
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt A Engleka
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mudit Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Yang
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie E Baggs
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
283
|
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 2014; 94:1287-312. [PMID: 25287865 DOI: 10.1152/physrev.00005.2014] [Citation(s) in RCA: 1294] [Impact Index Per Article: 117.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulators YAP and TAZ are the focus of intense interest given their remarkable biological properties in development, tissue homeostasis and cancer. YAP and TAZ activity is key for the growth of whole organs, for amplification of tissue-specific progenitor cells during tissue renewal and regeneration, and for cell proliferation. In tumors, YAP/TAZ can reprogram cancer cells into cancer stem cells and incite tumor initiation, progression and metastasis. As such, YAP/TAZ are appealing therapeutic targets in cancer and regenerative medicine. Just like the function of YAP/TAZ offers a molecular entry point into the mysteries of tissue biology, their regulation by upstream cues is equally captivating. YAP/TAZ are well known for being the effectors of the Hippo signaling cascade, and mouse mutants in Hippo pathway components display remarkable phenotypes of organ overgrowth, enhanced stem cell content and reduced cellular differentiation. YAP/TAZ are primary sensors of the cell's physical nature, as defined by cell structure, shape and polarity. YAP/TAZ activation also reflects the cell "social" behavior, including cell adhesion and the mechanical signals that the cell receives from tissue architecture and surrounding extracellular matrix (ECM). At the same time, YAP/TAZ entertain relationships with morphogenetic signals, such as Wnt growth factors, and are also regulated by Rho, GPCRs and mevalonate metabolism. YAP/TAZ thus appear at the centerpiece of a signaling nexus by which cells take control of their behavior according to their own shape, spatial location and growth factor context.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | | |
Collapse
|
284
|
Del Re DP. The hippo signaling pathway: implications for heart regeneration and disease. Clin Transl Med 2014; 3:27. [PMID: 26932373 PMCID: PMC4884045 DOI: 10.1186/s40169-014-0027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
Control of cell number and organ size is critical for appropriate development and tissue homeostasis. Studies in both Drosophila and mammals have established the Hippo signaling pathway as an important modulator of organ size and tumorigenesis. Upon activation, this kinase cascade modulates gene expression through the phosphorylation and inhibition of transcription co-activators that are involved in cell proliferation, differentiation, growth and apoptosis. Hippo signaling serves to limit organ size and suppress malignancies, and has been implicated in tissue regeneration following injury. These outcomes highlight the important role that Hippo signaling plays in regulating both physiologic and pathologic processes. In this review, an overview of the signaling pathway will be discussed as well as recent work that has investigated its role in cardiac development, regeneration and disease.
Collapse
Affiliation(s)
- Dominic P Del Re
- Cardiovascular Research Institute and Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Newark, 07103, NJ, USA.
| |
Collapse
|
285
|
The Hippo pathway as a target of the Drosophila DRE/DREF transcriptional regulatory pathway. Sci Rep 2014; 4:7196. [PMID: 25424907 PMCID: PMC4244634 DOI: 10.1038/srep07196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023] Open
Abstract
The DRE/DREF transcriptional regulatory system has been demonstrated to activate a wide variety of genes with various functions. In Drosophila, the Hippo pathway is known to suppress cell proliferation by inducing apoptosis and cell cycle arrest through inactivation of Yorkie, a transcription co-activator. In the present study, we found that half dose reduction of the hippo (hpo) gene induces ectopic DNA synthesis in eye discs that is suppressed by overexpression of DREF. Half reduction of the hpo gene dose reduced apoptosis in DREF-overexpressing flies. Consistent with these observations, overexpression of DREF increased the levels of hpo and phosphorylated Yorkie in eye discs. Interestingly, the diap1-lacZ reporter was seen to be significantly decreased by overexpression of DREF. Luciferase reporter assays in cultured S2 cells revealed that one of two DREs identified in the hpo gene promoter region was responsible for promoter activity in S2 cells. Furthermore, endogenous hpo mRNA was reduced in DREF knockdown S2 cells, and chromatin immnunoprecipitation assays with anti-DREF antibodies proved that DREF binds specifically to the hpo gene promoter region containing DREs in vivo. Together, these results indicate that the DRE/DREF pathway is required for transcriptional activation of the hpo gene to positively control Hippo pathways.
Collapse
|
286
|
Milton CC, Grusche FA, Degoutin JL, Yu E, Dai Q, Lai EC, Harvey KF. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster. Curr Biol 2014; 24:2673-80. [PMID: 25454587 PMCID: PMC4269548 DOI: 10.1016/j.cub.2014.10.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/26/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
The Salvador-Warts-Hippo (Hippo) pathway is an evolutionarily conserved regulator of organ growth and cell fate. It performs these functions in epithelial and neural tissues of both insects and mammals, as well as in mammalian organs such as the liver and heart. Despite rapid advances in Hippo pathway research, a definitive role for this pathway in hematopoiesis has remained enigmatic. The hematopoietic compartments of Drosophila melanogaster and mammals possess several conserved features. D. melanogaster possess three types of hematopoietic cells that most closely resemble mammalian myeloid cells: plasmatocytes (macrophage-like cells), crystal cells (involved in wound healing), and lamellocytes (which encapsulate parasites). The proteins that control differentiation of these cells also control important blood lineage decisions in mammals. Here, we define the Hippo pathway as a key mediator of hematopoiesis by showing that it controls differentiation and proliferation of the two major types of D. melanogaster blood cells, plasmatocytes and crystal cells. In animals lacking the downstream Hippo pathway kinase Warts, lymph gland cells overproliferated, differentiated prematurely, and often adopted a mixed lineage fate. The Hippo pathway regulated crystal cell numbers by both cell-autonomous and non-cell-autonomous mechanisms. Yorkie and its partner transcription factor Scalloped were found to regulate transcription of the Runx family transcription factor Lozenge, which is a key regulator of crystal cell fate. Further, Yorkie or Scalloped hyperactivation induced ectopic crystal cells in a non-cell-autonomous and Notch-pathway-dependent fashion.
Collapse
Affiliation(s)
- Claire C Milton
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Felix A Grusche
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joffrey L Degoutin
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eefang Yu
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Qi Dai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Kieran F Harvey
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
287
|
Yao F, Liu H, Li Z, Zhong C, Fang W. Down-regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells. Tumour Biol 2014; 36:2049-57. [DOI: 10.1007/s13277-014-2812-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022] Open
|
288
|
Kwon HJ, Waghmare I, Verghese S, Singh A, Singh A, Kango-Singh M. Drosophila C-terminal Src kinase regulates growth via the Hippo signaling pathway. Dev Biol 2014; 397:67-76. [PMID: 25446534 DOI: 10.1016/j.ydbio.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/15/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
The Hippo signaling pathway is involved in regulating tissue size by inhibiting cell proliferation and promoting apoptosis. Aberrant Hippo pathway function is often detected in human cancers and correlates with poor prognosis. The Drosophila C-terminal Src kinase (d-Csk) is a genetic modifier of warts (wts), a tumor-suppressor gene in the Hippo pathway, and interacts with the Src oncogene. Reduction in d-Csk expression and the consequent activation of Src are frequently seen in several cancers including hepatocellular and colorectal tumors. Previous studies show that d-Csk regulates cell proliferation and tissue size during development. Given the similarity in the loss-of-function phenotypes of d-Csk and wts, we have investigated the interactions of d-Csk with the Hippo pathway. Here we present multiple lines of evidence suggesting that d-Csk regulates growth via the Hippo signaling pathway. We show that loss of dCsk caused increased Yki activity, and our genetic epistasis places dCsk downstream of Dachs. Furthermore, dCsk requires Yki for its growth regulatory functions, suggesting that dCsk is another upstream member of the network of genes that interact to regulate Wts and its effector Yki in the Hippo signaling pathway.
Collapse
Affiliation(s)
- Hailey J Kwon
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | | | - Shilpi Verghese
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Aditi Singh
- Centerville High School, Centerville, OH 45459, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; Center for Tissue Regeneration and Engineering at Dayton, Dayton, OH 45469, USA; Premedical Programs, University of Dayton, Dayton, OH 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; Center for Tissue Regeneration and Engineering at Dayton, Dayton, OH 45469, USA; Premedical Programs, University of Dayton, Dayton, OH 45469, USA.
| |
Collapse
|
289
|
Li X, Wang W, Chen J. From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry. Proteomics 2014; 15:188-202. [PMID: 25137225 DOI: 10.1002/pmic.201400147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
Signal transductions are the basis of biological activities in all living organisms. Studying the signaling pathways, especially under physiological conditions, has become one of the most important facets of modern biological research. During the last decade, MS has been used extensively in biological research and is proven to be effective in addressing important biological questions. Here, we review the current progress in the understanding of signaling networks using MS approaches. We will focus on studies of protein-protein interactions that use affinity purification followed by MS approach. We discuss obstacles to affinity purification, data processing, functional validation, and identification of transient interactions and provide potential solutions for pathway-specific proteomics analysis, which we hope one day will lead to a comprehensive understanding of signaling networks in humans.
Collapse
Affiliation(s)
- Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
290
|
Hu L, Huang H, Li J, Yin MX, Lu Y, Wu W, Zeng R, Jiang J, Zhao Y, Zhang L. Drosophila casein kinase 2 (CK2) promotes warts protein to suppress Yorkie protein activity for growth control. J Biol Chem 2014; 289:33598-607. [PMID: 25320084 DOI: 10.1074/jbc.m114.580456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Drosophila Hippo signaling regulates Wts activity to phosphorylate and inhibit Yki in order to control tissue growth. CK2 is widely expressed and involved in a variety of signaling pathways. In this study we report that Drosophila CK2 promotes Wts activity to phosphorylate and inhibit Yki activity, which is independent of Hpo-induced Wts promotion. In vivo, CK2 overexpression suppresses hpo mutant-induced expanded (Ex) up-regulation and overgrowth phenotype, whereas it cannot affect wts mutant. Consistent with this, knockdown of CK2 up-regulates Hpo pathway target expression. We also found that Drosophila CK2 is essential for tissue growth as a cell death inhibitor as knockdown of CK2 in the developing disc induces severe growth defects as well as caspase3 signals. Taken together, our results uncover a dual role of CK2; although its major role is promoting cell survive, it may potentially be a growth inhibitor as well.
Collapse
Affiliation(s)
- Lianxin Hu
- From the State Key Laboratory of Cell Biology and
| | | | - Jinhui Li
- From the State Key Laboratory of Cell Biology and
| | - Meng-Xin Yin
- From the State Key Laboratory of Cell Biology and
| | - Yi Lu
- From the State Key Laboratory of Cell Biology and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology and
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yue-Yang Road, Shanghai 200031, China and
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology and
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology and
| |
Collapse
|
291
|
Tate G, Kishimoto K, Mitsuya T. Biallelic alterations of the large tumor suppressor 1 (LATS1) gene in infiltrative, but not superficial, basal cell carcinomas in a Japanese patient with nevoid basal cell carcinoma syndrome. Med Mol Morphol 2014; 48:177-82. [PMID: 25119020 DOI: 10.1007/s00795-014-0086-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/18/2014] [Indexed: 12/30/2022]
Abstract
The present study was conducted to address the molecular pathogenesis underlying the progression of basal cell carcinoma (BCC) in a nevoid basal cell carcinoma syndrome (NBCCS) patient. We analyzed infiltrative BCCs that invaded the subcutaneous tissue of the scalp and penetrated the skull in a 61-year-old Japanese female. Whole-exome sequencing validated by Sanger sequencing was applied to assess the subcutaneously infiltrative BCCs. Differences in genetic alterations between the superficial and infiltrative BCCs were also examined. Of particular note, the infiltrative BCCs showed a nonsense mutation, c.943C>T, resulting in p.Q315X in the large tumor suppressor 1 (LATS1) gene, as well as the loss of the wild-type allele of LATS1 (6q25.1), thus indicating that the LATS1 gene was biallelically disrupted. In contrast, no alterations in the LATS1 gene were observed in the superficial BCCs. Additionally, a loss of heterozygosity analysis revealed that the distal region of chromosome 6q where LATS1 locates was deleted in a heterozygous manner. The present results imply that the biallelic disruption of LATS1 is a progressive factor of the infiltrative BCCs observed in this NBCCS patient and suggest that the Hippo pathway is a potential therapeutic target in cases of infiltrative BCC.
Collapse
Affiliation(s)
- Genshu Tate
- Department of Pathology, Showa University Fujigaoka Hospital, Yokohama, 227-8501, Japan. .,Department of Pathology, Showa University, Hatanodai 1-5-8, Shinagawa-Ku, Tokyo, 142-8555, Japan.
| | - Koji Kishimoto
- Department of Pathology, Showa University Fujigaoka Hospital, Yokohama, 227-8501, Japan
| | - Toshiyuki Mitsuya
- Department of Pathology, Showa University Fujigaoka Hospital, Yokohama, 227-8501, Japan.,Department of Pathology, Kokusai-Shinzen Hospital, Yokohama, 245-0006, Japan
| |
Collapse
|
292
|
Mi W, Lin Q, Childress C, Sudol M, Robishaw J, Berlot CH, Shabahang M, Yang W. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 2014; 34:3095-106. [PMID: 25109332 DOI: 10.1038/onc.2014.251] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/09/2014] [Accepted: 06/15/2014] [Indexed: 12/17/2022]
Abstract
Protein geranylgeranylation (GGylation) is an important biochemical process for many cellular signaling molecules. Previous studies have shown that GGylation is essential for cell survival in many types of cancer. However, the molecular mechanism mediating the cell survival effect remains elusive. In this report, we show that the Hippo pathway mediates GGylation-dependent cell proliferation and migration in breast cancer cells. Blockade of GGylation enhanced phosphorylation of Mst1/2 and Lats1, and inhibited YAP and TAZ activity and the Hippo-YAP/TAZ pathway-dependent transcription. The effect of GGylation blockade on inhibition of breast cancer cell proliferation and migration is dependent on the Hippo-YAP/TAZ signaling, in which YAP appears to regulate cell proliferation and TAZ to regulate cell migration. Furthermore, GGylation-dependent cell proliferation is correlated with the activity of YAP/TAZ in breast cancer cells. Finally, Gγ and RhoA are the GGylated proteins that may transduce GGylation signals to the Hippo-YAP/TAZ pathway. Taken together, our studies have demonstrated that the Hippo-YAP/TAZ pathway is essential for GGylation-dependent cancer cell proliferation and migration.
Collapse
Affiliation(s)
- W Mi
- Weis Center for Research, Danville, PA, USA
| | - Q Lin
- 1] Weis Center for Research, Danville, PA, USA [2] School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | | | - M Sudol
- 1] Weis Center for Research, Danville, PA, USA [2] Department of Medicine, Mount Sinai Medical School, New York, NY, USA
| | - J Robishaw
- Weis Center for Research, Danville, PA, USA
| | - C H Berlot
- Weis Center for Research, Danville, PA, USA
| | - M Shabahang
- Department of General Surgery, Geisinger Clinic, Danville, PA, USA
| | - W Yang
- Weis Center for Research, Danville, PA, USA
| |
Collapse
|
293
|
Ma Y, Yang Y, Wang F, Wei Q, Qin H. Hippo-YAP signaling pathway: A new paradigm for cancer therapy. Int J Cancer 2014; 137:2275-86. [PMID: 25042563 DOI: 10.1002/ijc.29073] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/02/2014] [Indexed: 01/11/2023]
Abstract
In the past decades, the Hippo signaling pathway has been delineated and shown to play multiple roles in the control of organ size in both Drosophila and mammals. In mammals, the Hippo pathway is a kinase cascade leading from Mst1/2 to YAP and its paralog TAZ. Several studies have demonstrated that YAP/TAZ is a candidate oncogene and that other members of the Hippo pathway are tumor suppressive genes. The dysregulation of the Hippo pathway has been observed in a variety of cancers. This review chronicles the recent progress in elucidating the function of Hippo signaling in tumorigenesis and provide a rich source of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yanlei Ma
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Yongzhi Yang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Feng Wang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Huanlong Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
294
|
Wilson KE, Li YW, Yang N, Shen H, Orillion AR, Zhang J. PTPN14 forms a complex with Kibra and LATS1 proteins and negatively regulates the YAP oncogenic function. J Biol Chem 2014; 289:23693-700. [PMID: 25023289 DOI: 10.1074/jbc.m113.534701] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to epithelial-to-mesenchymal transition and malignant transformation. Therefore, it is of great importance to decipher the mechanisms underlying the regulations of YAP/TAZ at various levels. Here we report that non-receptor tyrosine phosphatase 14 (PTPN14) interacts with the Kibra protein. The interaction between PTPN14 and Kibra is through the PPXY domain of PTPN14 and WW domain of Kibra. PTPN14 and Kibra can induce the LATS1 activation independently and cooperatively. Interestingly, activation of LATS1 by PTPN14 is dependent on the C terminus of PTPN14 and independent of the upstream mammalian STE20-like kinase (MST) proteins. Furthermore, we demonstrate that PTPN14 increases the LAST1 protein stability. Last, overexpression of Kibra rescues the increased cell migration and aberrant three-dimensional morphogenesis induced by knockdown of PTPN14, and this rescue is mediated through the activation of the upstream LATS1 kinase and subsequent cytoplasmic sequestration of YAP. In summary, our results indicate a potential regulatory role of PTPN14 in the Hippo pathway and demonstrate another layer of regulation in the YAP oncogenic function.
Collapse
Affiliation(s)
| | | | - Nuo Yang
- From the Departments of Cancer Genetics and
| | - He Shen
- From the Departments of Cancer Genetics and
| | | | | |
Collapse
|
295
|
Ejsmont RK, Hassan BA. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics. Genes (Basel) 2014; 5:385-414. [PMID: 24827974 PMCID: PMC4094939 DOI: 10.3390/genes5020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 12/30/2022] Open
Abstract
For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research.
Collapse
Affiliation(s)
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium.
| |
Collapse
|
296
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
297
|
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res 2014; 13:571-81. [PMID: 24881775 DOI: 10.1016/j.scr.2014.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022] Open
Abstract
The adult mammalian heart exhibits limited regenerative capacity after myocardial injury, a shortcoming that is responsible for the current lack of definitive treatments for heart failure. A search for approaches that might enhance adult heart regeneration has led to interest in the Hippo/Yap signaling pathway, a recently discovered signaling pathway that regulates cell proliferation and organ growth. Here we provide a brief overview of the Hippo/Yap pathway and its known roles in the developing and adult heart. We discuss the implications of Hippo/Yap signaling for regulation of cardiomyocyte death and regeneration.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Department of Cardiology, Children's Hospital Boston, USA
| | - William T Pu
- Department of Cardiology, Children's Hospital Boston, USA; Harvard Stem Cell Institute, Harvard University, USA.
| |
Collapse
|
298
|
Lin XY, Zhang XP, Wu JH, Qiu XS, Wang EH. Expression of LATS1 contributes to good prognosis and can negatively regulate YAP oncoprotein in non-small-cell lung cancer. Tumour Biol 2014; 35:6435-43. [PMID: 24682895 DOI: 10.1007/s13277-014-1826-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022] Open
Abstract
Large tumor suppressor (LATS) is a Ser/Thr kinase originally isolated from Drosophila. Recent studies demonstrate that LATS is an important member of the Hippo pathway which can regulate organ size and cell proliferation. However, little is known about the expression and clinical significance of LATS in lung cancer. In this study, we aimed to assess the clinical significance and biological functions of LATS1 in non-small-cell lung cancer (NSCLC). We investigated the expression of LATS1 in 136 cases of NSCLC tissue and 30 cases of normal lung tissue by immunohistochemical staining. The results confirmed that LATS1 expression was higher in normal lung tissues, but significantly lower in NSCLC tissues. Moreover, the expression of LATS1 in NSCLC was significantly correlated with p-TNM stage (p = 0.038) and lymph node metastasis (p = 0.014). Importantly, the loss of LATS1 expression was associated with short overall survival. Further study in NSCLC cell lines in which LATS1 was either overexpressed or depleted confirmed that LATS1 markedly inhibited cell proliferation and invasion and could regulate the nuclear location of yes-associated protein (YAP). These results indicate that LATS1 may play an important role in NSCLC, and may serve as a novel therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Xu-Yong Lin
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | | | | | | | | |
Collapse
|
299
|
Ikmi A, Gaertner B, Seidel C, Srivastava M, Zeitlinger J, Gibson MC. Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program. Mol Biol Evol 2014; 31:1375-90. [PMID: 24509725 PMCID: PMC4032125 DOI: 10.1093/molbev/msu071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling.
Collapse
Affiliation(s)
- Aissam Ikmi
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MODepartment of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MODepartment of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
300
|
Hao J, Zhang Y, Jing D, Li Y, Li J, Zhao Z. Role of Hippo signaling in cancer stem cells. J Cell Physiol 2014; 229:266-70. [PMID: 24037831 DOI: 10.1002/jcp.24455] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023]
Abstract
Cancer stem cells (CSCs) have been proposed and evidenced as the initiator of tumor formation and the seeds of metastases. Thereby, the molecular mechanisms regarding modulation of CSCs have been widely explored, aimed to improve treatment for cancer patients. Recent progress has highlighted the effects of Hippo signaling in tumorigenesis and cancer development, including its crucial role in CSC regulation. Although the kernel Hippo signaling cascade has been well studied, its upstream inputs and downstream transcriptional regulation still remain elusive. In this review, we summarize the current understanding of the mechanism and regulatory function of Hippo signaling in CSCs, with emphasis on its possible roles in regulation of CSC self-renewal, differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Jin Hao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|