301
|
Hong S, Qian J, Li H, Yang J, Lu Y, Zheng Y, Yi Q. CpG or IFN-α are more potent adjuvants than GM-CSF to promote anti-tumor immunity following idiotype vaccine in multiple myeloma. Cancer Immunol Immunother 2011; 61:561-71. [PMID: 22002243 DOI: 10.1007/s00262-011-1123-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/28/2011] [Indexed: 12/21/2022]
Abstract
Idiotype (Id) protein in combination with GM-CSF has been used as vaccines for immunotherapy of patients with myeloma and B-cell tumors and the results have been disappointing. To search for better immune adjuvants to improve the efficacy of Id-based immunotherapy in myeloma, we evaluated and compared the efficacy of vaccination of Id protein in combination with CpG or IFN-α, or GM-CSF as a control, in the 5TGM1 myeloma mouse model. Our results showed that Id vaccine combined with CpG or IFN-α, but not GM-CSF, not only efficiently protected mice from developing myeloma but also eradicated established myeloma. The therapeutic responses were associated with an induction of strong humoral immune responses including anti-Id antibodies, and cellular immune responses including Id- and myeloma-specific CD8+ cytotoxic T lymphocytes (CTLs), CD4+ type-1 T-helper (Th1) cells and memory T cells in mice receiving Id vaccine combined with CpG or IFN-α. Furthermore, Id vaccine combined with CpG or IFN-α induced Id- and tumor-specific memory immune responses that protected surviving mice from tumor rechallenge. Thus, our study clearly shows that CpG or IFN-α are better immune adjuvants than GM-CSF. This information will be important for improving the strategies of Id-based immunotherapy for patients with myeloma and other B-cell tumors.
Collapse
Affiliation(s)
- Sungyoul Hong
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0903, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
302
|
Cytokine-dependent and cytokine-independent roles for Mcl-1: genetic evidence for multiple mechanisms by which Mcl-1 promotes survival in primary T lymphocytes. Cell Death Dis 2011; 2:e214. [PMID: 21975296 PMCID: PMC3219091 DOI: 10.1038/cddis.2011.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloid cell leukemia sequence-1 (Mcl-1) is a critical anti-apoptotic factor in T lymphocytes. However, in spite of the many pro-apoptotic proteins with proposed binding to Mcl-1, the specific interactions by which Mcl-1 regulates primary T-cell survival under different conditions have not been fully explored. Further, how different trophic cytokines modulate the specific role(s) of Mcl-1 is unknown. Here, we use genetic mouse models to dissect the roles of Mcl-1 in primary T lymphocytes. Using the inducible Mcl-1-floxed estrogen receptor-Cre fusion protein (Mcl-1f/fERCre) deletion system in combination with genetic modification of other B-cell lymphoma 2 (Bcl-2) family members, we show that loss of pro-apoptotic Bcl-2 homologous antagonist/killer (Bak) rescues the survival of Mcl-1-deficient T cells in the presence of IL-7. Without IL-7, the survival of Mcl-1-deficient cells cannot be rescued by loss of Bak, but is partially rescued by overexpression of Bcl-2 or loss of Bcl-2-interacting mediator of cell death (Bim). Thus, Mcl-1 and Bcl-2 have a shared role, the inhibition of Bim, in promoting T-cell survival during cytokine withdrawal. Finally, we show that other common gamma-chain (γc) cytokines differentially modulate the roles of Mcl-1. IL-15 has effects similar to those of IL-7 in memory T cells and naïve CD8+ cells, but not naïve CD4+ cells. However, IL-4 maintains Mcl-1 and Bcl-2 but also upregulates Bim and Bcl-2-associated X protein (Bax), thus altering the cell's dependence on Mcl-1.
Collapse
|
303
|
Yoshizawa K, Nakajima S, Notake T, Miyagawa SI, Hida S, Taki S. IL-15-high-responder developing NK cells bearing Ly49 receptors in IL-15-/- mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:5162-9. [PMID: 21967894 DOI: 10.4049/jimmunol.1101561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mice lacking IL-15, NK cell development is arrested at immature stages, providing an opportunity to investigate the earliest developing NK cells that would respond to IL-15. We show in this study that immature NK cells were present in the spleen as well as bone marrow (BM) and contained IL-15-high-responder cells. Thus, mature NK cells were generated more efficiently from IL-15(-/-) than from control donor cells in radiation BM chimeras, and the rate of IL-15-induced cell division in vitro was higher in NK cells in the spleen and BM from IL-15(-/-) mice than in those from wild-type mice. Phenotypically, NK cells developed in IL-15(-/-) mice up to the minor but discrete CD11b(-)CD27(+)DX5(hi)CD51(dull)CD127(dull)CD122(hi) stage, which contained the majority of Ly49G2(+) and D(+) NK cells both in the spleen and BM. Even among wild-type splenic NK cells, IL-15-induced proliferation was most prominent in CD11b(-)DX5(hi) cells. Notably, IL-15-mediated preferential expansion (but not conversion from Ly49(-) cells) of Ly49(+) NK cells was observed in vitro only for NK cells in the spleen. These observations indicated the uneven distribution of NK cells of different developing stages with variable IL-15 responsiveness in these lymphoid organs. Immature NK cells in the spleen may contribute, as auxiliaries to those in BM, to the mature NK cell compartment through IL-15-driven extramarrow expansion under steady-state or inflammatory conditions.
Collapse
Affiliation(s)
- Katsumi Yoshizawa
- Department of Immunology and Infectious Diseases, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
304
|
Alonso-Arias R, Moro-García MA, Vidal-Castiñeira JR, Solano-Jaurrieta JJ, Suárez-García FM, Coto E, López-Larrea C. IL-15 preferentially enhances functional properties and antigen-specific responses of CD4+CD28(null) compared to CD4+CD28+ T cells. Aging Cell 2011; 10:844-52. [PMID: 21635686 DOI: 10.1111/j.1474-9726.2011.00725.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the most prominent changes during T-cell aging in humans is the accumulation of CD28(null) T cells, mainly CD8+ and also CD4+ T cells. Enhancing the functional properties of these cells may be important as they provide an antigen-specific defense against chronic infections. Recent studies have shown that IL-15 does in fact play an appreciable role in CD4 memory T cells under physiological conditions. We found that treatment with IL-15 increased the frequency of elderly CD4+CD28(null) T cells by the preferential proliferation of these cells compared to CD4+CD28+ T cells. IL-15 induced an activated phenotype in CD4+CD28(null) T cells. Although the surface expression of IL-15R α-chain was not increased, the transcription factor STAT-5 was preferentially activated. IL-15 augmented the cytotoxic properties of CD4+CD28(null) T cells by increasing both the mRNA transcription and storage of granzyme B and perforin for the cytolytic effector functions. Moreover, pretreatment of CD4+CD28(null) T cells with IL-15 displayed a synergistic effect on the IFN-γ production in CMV-specific responses, which was not observed in CD4+CD28+ T cells. IL-15 could play a role enhancing the effector response of CD4+CD28(null) T cells against their specific chronic antigens.
Collapse
Affiliation(s)
- Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias, C ⁄ Julián Clavería s ⁄ n,Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
305
|
E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc Natl Acad Sci U S A 2011; 108:16741-6. [PMID: 21930933 DOI: 10.1073/pnas.1107200108] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The salivary glands are important effector sites for IgA-mediated humoral immunity to protect oral surfaces. Within murine submandibular glands (SMG), we identified a memory CD8 T-cell population that exhibited a unique cell-surface phenotype distinct from memory CD8 T cells in spleen but similar to memory T cells resident in the intraepithelial lymphocyte compartment of the intestinal mucosa. In mice immune to lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus(VSV), virus-specific memory CD8 T cells with this unusual phenotype were present in SMG at remarkably high frequencies. LCMV-specific memory CD8 T cells in SMG showed potent functional activities in vivo, including cytokine-induced bystander proliferation, antigen-triggered IFNγ production, and viral clearance. Adoptive transfer experiments further revealed that the capacity to accumulate in SMG decreased during CD8 T-cell differentiation and that SMG CD8 T cells were poorly replenished from the circulation, indicating that they were tissue-resident. Moreover, they preferentially relocalized within their tissue of origin after adoptive transfer and antigen rechallenge, thus revealing an imprinted differentiation status. Accumulation of memory CD8 T cells within SMG did not require local antigen presentation but was promoted by the epithelial differentiation molecule E-cadherin intrinsically expressed by these CD8 T cells. This finding extends the epithelial-restricted function of E-cadherin to an impact on lymphocyte accumulation within epithelial tissues.
Collapse
|
306
|
Olurinde MO, Shen CH, Drake A, Bai A, Chen J. Persistence of tumor-infiltrating CD8 T cells is tumor-dependent but antigen-independent. Cell Mol Immunol 2011; 8:415-23. [PMID: 21666707 PMCID: PMC3381361 DOI: 10.1038/cmi.2011.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
How tumor-infiltrating lymphocytes (TILs) that are tumor-specific but functionally tolerant persist in the antigen-expressing tumor tissue is largely unknown. We have previously developed a modified TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model where prostate cancer cells express the T-cell epitope SIYRYYGL (SIY) recognized by CD8 T cells expressing the 2C T-cell receptor (TCR) (referred to as TRP-SIY mice). In TRP-SIY mice, activated 2C T cells rapidly become tolerant following infiltration into the prostate tumor. In this study, we show that tolerant 2C T cells persist in the prostate tumor of TRP-SIY mice by proliferating slowly in a tumor-dependent, but antigen-, interleukin (IL)-7- and IL-15-independent manner. We also show that disappearance of 2C T cells from the lymphoid organs of TRP-SIY mice are due to antigen-induced T-cell contraction rather than altered trafficking or generalized T-cell depletion in the mice. Finally, we show that clonal T cells unreactive to SIY are equally capable of persisting in the prostate tumor. These findings suggest that while functional tolerance of TILs is induced by antigen, persistence of tolerant TILs in the tumor tissue is mediated by a novel mechanism: slow proliferation independent of antigen and homeostatic cytokines. These results also allow CD8 T-cell survival in the tumor environment to be compared with T-cell survival in chronic infection.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Flow Cytometry
- Humans
- Immune Tolerance
- Influenza A Virus, H1N1 Subtype
- Interleukin-15/immunology
- Interleukin-7/immunology
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Prostate/immunology
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Real-Time Polymerase Chain Reaction
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transduction, Genetic
Collapse
|
307
|
Abstract
Natural killer (NK) cells are bone marrow–derived granular lymphocytes that have a key role in immune defense against viral and bacterial infections and malignancies. NK cells are traditionally defined as cells of the innate immune response because they lack RAG recombinase–dependent clonal antigen receptors. However, evidence suggests that specific subsets of mouse NK cells can nevertheless develop long-lived and highly specific memory to a variety of antigens. Here we review published evidence of NK cell–mediated, RAG-independent adaptive immunity. We also compare and contrast candidate mechanisms for mammalian NK cell memory and antigen recognition with other examples of RAG-independent pathways that generate antigen receptor diversity in non-mammalian species and discuss NK cell memory in the context of lymphocyte evolution.
Collapse
Affiliation(s)
- Silke Paust
- Harvard Medical School, Department of Pathology, Boston, Massachusetts, USA
| | | |
Collapse
|
308
|
Bjornsdottir US, Holgate ST, Reddy PS, Hill AA, McKee CM, Csimma CI, Weaver AA, Legault HM, Small CG, Ramsey RC, Ellis DK, Burke CM, Thompson PJ, Howarth PH, Wardlaw AJ, Bardin PG, Bernstein DI, Irving LB, Chupp GL, Bensch GW, Bensch GW, Stahlman JE, Karetzky M, Baker JW, Miller RL, Goodman BH, Raible DG, Goldman SJ, Miller DK, Ryan JL, Dorner AJ, Immermann FW, O'Toole M. Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood. PLoS One 2011; 6:e21902. [PMID: 21779351 PMCID: PMC3136489 DOI: 10.1371/journal.pone.0021902] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/14/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Asthma exacerbations remain a major unmet clinical need. The difficulty in obtaining airway tissue and bronchoalveolar lavage samples during exacerbations has greatly hampered study of naturally occurring exacerbations. This study was conducted to determine if mRNA profiling of peripheral blood mononuclear cells (PBMCs) could provide information on the systemic molecular pathways involved during asthma exacerbations. METHODOLOGY/PRINCIPAL FINDINGS Over the course of one year, gene expression levels during stable asthma, exacerbation, and two weeks after an exacerbation were compared using oligonucleotide arrays. For each of 118 subjects who experienced at least one asthma exacerbation, the gene expression patterns in a sample of peripheral blood mononuclear cells collected during an exacerbation episode were compared to patterns observed in multiple samples from the same subject collected during quiescent asthma. Analysis of covariance identified genes whose levels of expression changed during exacerbations and returned to quiescent levels by two weeks. Heterogeneity among visits in expression profiles was examined using K-means clustering. Three distinct exacerbation-associated gene expression signatures were identified. One signature indicated that, even among patients without symptoms of respiratory infection, genes of innate immunity were activated. Antigen-independent T cell activation mediated by IL15 was also indicated by this signature. A second signature revealed strong evidence of lymphocyte activation through antigen receptors and subsequent downstream events of adaptive immunity. The number of genes identified in the third signature was too few to draw conclusions on the mechanisms driving those exacerbations. CONCLUSIONS/SIGNIFICANCE This study has shown that analysis of PBMCs reveals systemic changes accompanying asthma exacerbation and has laid the foundation for future comparative studies using PBMCs.
Collapse
Affiliation(s)
- Unnur S. Bjornsdottir
- Department of Allergy/Clinical Immunology, University of Iceland, Reykjavík, Iceland
| | - Stephen T. Holgate
- University of Southampton, Southampton, United Kingdom
- * E-mail: (MOT); (STH)
| | | | - Andrew A. Hill
- Pfizer, Cambridge, Massachusetts, United States of America
| | | | | | - Amy A. Weaver
- Pfizer, Cambridge, Massachusetts, United States of America
| | - Holly M. Legault
- Wyeth Research, Cambridge, Massachusetts, United Sates of America
| | - Clayton G. Small
- Wyeth Research, Cambridge, Massachusetts, United Sates of America
| | | | - Debra K. Ellis
- Wyeth Research, Cambridge, Massachusetts, United Sates of America
| | | | - Philip J. Thompson
- Lung Institute of WA and Centre for Asthma, Allergy & Respiratory Research, University of Western Australia, Crawley, Australia
| | | | | | | | - David I. Bernstein
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Geoffrey L. Chupp
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George W. Bensch
- Bensch Clinical Research, Stockton, California, United States of America
| | - Gregory W. Bensch
- Bensch Clinical Research, Stockton, California, United States of America
| | - Jon E. Stahlman
- Allergy and Asthma Center, Conyers, Georgia, United States of America
| | - Monroe Karetzky
- Newark Beth Israel Medical Center, Newark, New Jersey, United States of America
| | - James W. Baker
- Baker Allergy, Asthma and Dermatology, Lake Oswego, Oregon, United States of America
| | - Rachel L. Miller
- Columbia University Medical Center, New York, New York, United States of America
| | - Brad H. Goodman
- Coastal Allergy and Asthma, Savannah, Georgia, United States of America
| | | | | | | | - John L. Ryan
- Wyeth Research, Cambridge, Massachusetts, United Sates of America
| | - Andrew J. Dorner
- Wyeth Research, Cambridge, Massachusetts, United Sates of America
| | | | - Margot O'Toole
- Pfizer, Cambridge, Massachusetts, United States of America
- * E-mail: (MOT); (STH)
| |
Collapse
|
309
|
Matsumoto K, Kikuchi E, Horinaga M, Takeda T, Miyajima A, Nakagawa K, Oya M. Intravesical interleukin-15 gene therapy in an orthotopic bladder cancer model. Hum Gene Ther 2011; 22:1423-32. [PMID: 21554107 DOI: 10.1089/hum.2011.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interleukin-15 (IL-15) is known to stimulate the proliferation of CD8(+) T-cells and natural killer cells, and also to help to maintain memory CD8(+) T cells, suggesting that it may be of value in cytokine treatment of bladder cancer. In this experiment, we tested the efficiency of intravesical liposomal IL-15 gene delivery and its antitumor effect in a mouse orthotopic bladder cancer model. We established an orthotopic bladder cancer model by implanting 5×10(5) MBT-2 cells into female C3H/HeN mice through the urethra. The mice received repeated intravesical gene delivery injected with liposome-mediated plasmids (5 μg) transurethrally. On day 23, the bladder weights in the group receiving medium alone, the beta-galactosidase gene delivery control group, and the IL-15 gene therapy group were 196±36 mg, 201±35 mg, and 96±29 mg, respectively (p<0.05), demonstrating the antitumor effect of intravesical IL-15 gene therapy in this model. In the bladders treated with IL-15 gene plasmid instillation, histological analysis revealed that many inflammatory cells were induced around the tumors. Immunohistochemical analysis confirmed that there was predominant infiltration of CD8(+) T cells around the tumor nest. After the intravesical IL-15 gene therapy, the growth of rechallenged subcutaneous MBT-2 cells in surviving mice was inhibited again via tumor-specific cytotoxic T lymphocytes, although newly implanted FM3A cells in the same mice were not rejected. The present findings indicate that IL-15 gene therapy may be a promising new adjuvant therapy for bladder cancer.
Collapse
Affiliation(s)
- Kazuhiro Matsumoto
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
310
|
Herndler-Brandstetter D, Landgraf K, Jenewein B, Tzankov A, Brunauer R, Brunner S, Parson W, Kloss F, Gassner R, Lepperdinger G, Grubeck-Loebenstein B. Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:6965-71. [PMID: 21562158 DOI: 10.4049/jimmunol.1100243] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, a key role in memory T cell homing and survival has been attributed to the bone marrow (BM) in mice. In the human BM, the repertoire, function, and survival niches of CD4(+) and CD8(+) T cells have not yet been elucidated. In this study, we demonstrate that CD4(+) and CD8(+) effector memory T cells accumulate in the human BM and are in a heightened activation state as revealed by CD69 expression. BM-resident memory T cells produce more IFN-γ and are frequently polyfunctional. Immunofluorescence analysis revealed that CD4(+) and CD8(+) T cells are in the immediate vicinity of IL-15-producing BM cells, suggesting a close interaction between these two cell types and a regulatory role of IL-15 on T cells. Accordingly, IL-15 induced an identical pattern of CD69 expression in peripheral blood CD4(+) and CD8(+) T cell subsets. Moreover, the IL-15-inducible molecules Bcl-x(L), MIP-1α, MIP-1β, and CCR5 were upregulated in the human BM. In summary, our results indicate that the human BM microenvironment, in particular IL-15-producing cells, is important for the maintenance of a polyfunctional memory CD4(+) and CD8(+) T cell pool.
Collapse
|
311
|
Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 2011; 17:2619-27. [PMID: 21372217 DOI: 10.1158/1078-0432.ccr-10-1114] [Citation(s) in RCA: 370] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type I interferons (IFN-I) are well-known inducers of tumor cell apoptosis and antiangiogenesis via signaling through a common receptor interferon alpha receptor (IFNAR). IFNAR induces the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) pathway in most cells, along with other biochemical pathways that may differentially operate, depending on the responding cell subset, and jointly control a large collection of genes. IFNs-I were found to systemically activate natural killer (NK) cell activity. Recently, mouse experiments have shown that IFNs-I directly activate other cells of the immune system, such as antigen-presenting dendritic cells (DC) and CD4 and CD8 T cells. Signaling through the IFNAR in T cells is critical for the acquisition of effector functions. Cross-talk between IFNAR and the pathways turned on by other surface lymphocyte receptors has been described. Importantly, IFNs-I also increase antigen presentation of the tumor cells to be recognized by T lymphocytes. These IFN-driven immunostimulatory pathways offer opportunities to devise combinatorial immunotherapy strategies.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
312
|
Hirahara K, Kano Y, Mitsuyama Y, Takahashi R, Kimishima M, Shiohara T. Differences in immunological alterations and underlying viral infections in two well-defined severe drug eruptions. Clin Exp Dermatol 2011; 35:863-8. [PMID: 20456395 DOI: 10.1111/j.1365-2230.2010.03820.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Similar drugs (e.g. anticonvulsants) have been implicated in the development of two distinct forms of severe cutaneous drug reactions, Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and drug-induced hypersensitivity syndrome (DIHS)/drug rash with eosinophilia and systemic symptoms (DRESS). AIM To investigate immunological alterations and underlying viral infections that could contribute to the variability in the clinical presentations of these diseases. METHODS We retrospectively analysed clinical variables, serum immunoglobulin levels, numbers of circulating white blood cells, lymphocytes and their subsets, serum levels of several cytokines, and underlying viral infections in both drug reactions, using samples obtained at onset from 9 patients with SJS/TEN and 19 patients with DIHS/DRESS. RESULTS There were significant differences between the two drug eruptions in the duration of drug intake before onset, the levels of IgG, IgA and IgM, the numbers of circulating white blood cell, lymphocyte, CD3+ T cell and CD8+ T cells, the serum levels of interferon-γ, and the titres of anti-herpes simplex virus IgG at onset. CONCLUSIONS The difference in the pattern of immune responses shaped in part by previous and underlying viral infections at the time of drug exposure could cause a marked deviation in the pathological phenotype of severe drug eruptions. Elucidating these host factors may provide a basis for therapeutic approaches in patients with severe drug reactions.
Collapse
Affiliation(s)
- K Hirahara
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
313
|
Cush SS, Flaño E. KLRG1+NKG2A+ CD8 T cells mediate protection and participate in memory responses during γ-herpesvirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4051-8. [PMID: 21346231 PMCID: PMC3153874 DOI: 10.4049/jimmunol.1003122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Functional CD8 T cell effector and memory responses are generated and maintained during murine γ-herpesvirus 68 (γHV68) persistent infection despite continuous presentation of viral lytic Ags. However, the identity of the CD8 T cell subpopulations that mediate effective recall responses and that can participate in the generation of protective memory to a γ-herpesvirus infection remains unknown. During γHV68 persistence, ∼75% of γHV68-specific CD8 T cells coexpress the NK receptors killer cell lectin-like receptor G1 (KLRG1) and NKG2A. In this study, we take advantage of this unique phenotype to analyze the capacity of CD8 T cells expressing or not expressing KLRG1 and NKG2A to mediate effector and memory responses. Our results show that γHV68-specific KLRG1(+)NKG2A(+) CD8 T cells have an effector memory phenotype as well as characteristics of polyfunctional effector cells such us IFN-γ and TNF-α production, killing capacity, and are more efficient at protecting against a γHV68 challenge than their NKG2A(-)KLRG1(-) counterparts. Nevertheless, γHV68-specific NKG2A(+)KLRG1(+) CD8 T cells express IL-7 and IL-15 receptors, can survive long-term without cognate Ag, and subsequently mount a protective response during antigenic recall. These results highlight the plasticity of the immune system to generate protective effector and proliferative memory responses during virus persistence from a pool of KLRG1(+)NKG2A(+) effector memory CD8 T cells.
Collapse
Affiliation(s)
- Stephanie S. Cush
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Emilio Flaño
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
- The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
314
|
|
315
|
Ramanathan S, Dubois S, Chen XL, Leblanc C, Ohashi PS, Ilangumaran S. Exposure to IL-15 and IL-21 enables autoreactive CD8 T cells to respond to weak antigens and cause disease in a mouse model of autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2011; 186:5131-41. [PMID: 21430227 DOI: 10.4049/jimmunol.1001221] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoreactive CD8(+) T lymphocytes play a key role in the pathogenesis of several autoimmune diseases. It is not yet well understood how autoreactive CD8(+) T cells, which express TCRs with low reactivity toward self-Ags, gain the ability to respond to autoantigens to cause disease. Previously, we have shown that prior stimulation of CD8(+) T cells with synergistic combinations of cytokines produced by the innate immune response, such as IL-21 and IL-15, induces Ag-independent proliferation. Such "cytokine-primed" CD8 T cells displayed increased responsiveness to limiting quantities of the cognate Ag. In this paper, we report that prior stimulation with IL-15 and IL-21 also enables CD8(+) T cells to respond to weakly agonistic TCR ligands, resulting in proliferation, cytokine secretion, and cytolytic activity. Using a transgenic mouse model of autoimmune diabetes, we show that cytokine-primed autoreactive CD8(+) T cells induce disease following stimulation by weak TCR ligands, but their diabetogenic potential is dependent on continuous availability of IL-15 in vivo. These findings suggest that inflammatory cytokines could facilitate the triggering of autoreactive CD8(+) T cells by weak autoantigens, and this mechanism may have important implications for autoimmune diseases associated with microbial infections and chronic inflammation.
Collapse
Affiliation(s)
- Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| | | | | | | | | | | |
Collapse
|
316
|
Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood 2011; 117:4787-95. [PMID: 21385847 DOI: 10.1182/blood-2010-10-311456] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IL-15 uses the heterotrimeric receptor IL-2/IL-15Rβ and the γ chain shared with IL-2 and the cytokine-specific IL-15Rα. Although IL-15 shares actions with IL-2 that include activation of natural killer (NK) and CD8 T cells, IL-15 is not associated with capillary leak syndrome, activation-induced cell death, or with a major effect on the number of functional regulatory T cells. To prepare for human trials to determine whether IL-15 is superior to IL-2 in cancer therapy, recombinant human IL-15 (rhIL-15) was produced under current good manufacturing practices. A safety study in rhesus macaques was performed in 4 groups of 6 animals each that received vehicle diluent control or rhIL-15 at 10, 20, or 50 μg/kg/d IV for 12 days. The major toxicity was grade 3/4 transient neutropenia. Bone marrow examinations demonstrated increased marrow cellularity, including cells of the neutrophil series. Furthermore, neutrophils were observed in sinusoids of enlarged livers and spleens, suggesting that IL-15 mediated neutrophil redistribution from the circulation to tissues. The observation that IL-15 administration was associated with increased numbers of circulating NK and CD8 central and effector-memory T cells, in conjunction with efficacy studies in murine tumor models, supports the use of multiple daily infusions of rhIL-15 in patients with metastatic malignancies.
Collapse
|
317
|
Pydi SS, Bandaru AR, Venkatasubramanian S, Jonnalagada S, Valluri VL. Vaccine for tuberculosis: Up-regulation of IL-15 by Ag85A and not by ESAT-6. Tuberculosis (Edinb) 2011; 91:136-9. [DOI: 10.1016/j.tube.2010.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/23/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
|
318
|
Novy P, Huang X, Leonard WJ, Yang Y. Intrinsic IL-21 signaling is critical for CD8 T cell survival and memory formation in response to vaccinia viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2729-38. [PMID: 21257966 PMCID: PMC3059504 DOI: 10.4049/jimmunol.1003009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4 T cell help plays an important role in promoting CD8 T cell immunity to pathogens. In models of infection with vaccinia virus (VV) and Listeria monocytogenes, CD4 T cell help is critical for the survival of activated CD8 T cells during both the primary and memory recall responses. Still unclear, however, is how CD4 T cell help promotes CD8 T cell survival. In this study, we first showed that CD4 T cell help for the CD8 T cell response to VV infection was mediated by IL-21, a cytokine produced predominantly by activated CD4 T cells, and that direct action of IL-21 on CD8 T cells was critical for the VV-specific CD8 T cell response in vivo. We next demonstrated that this intrinsic IL-21 signaling was essential for the survival of activated CD8 T cells and the generation of long-lived memory cells. We further revealed that IL-21 promoted CD8 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 pathways and subsequent upregulation of the prosurvival molecules Bcl-2 and Bcl-x(L). These results identify a critical role for intrinsic IL-21 signaling in CD8 T cell responses to an acute viral infection in vivo and may help design effective vaccine strategies.
Collapse
Affiliation(s)
- Patricia Novy
- Department of Immunology, Duke University Medical Center, Box 103005, Durham, NC 27710
| | - Xiaopei Huang
- Department of Medicine, Duke University Medical Center, Box 103005, Durham, NC 27710
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Yiping Yang
- Department of Medicine, Duke University Medical Center, Box 103005, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Box 103005, Durham, NC 27710
| |
Collapse
|
319
|
Libri V, Azevedo RI, Jackson SE, Di Mitri D, Lachmann R, Fuhrmann S, Vukmanovic-Stejic M, Yong K, Battistini L, Kern F, Soares MVD, Akbar AN. Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+CD45RA+CD27+ T cells: the potential involvement of interleukin-7 in this process. Immunology 2011; 132:326-39. [PMID: 21214539 PMCID: PMC3044899 DOI: 10.1111/j.1365-2567.2010.03386.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 01/23/2023] Open
Abstract
The relative roles that ageing and lifelong cytomegalovirus (CMV) infection have in shaping naive and memory CD4+ T-cell repertoires in healthy older people is unclear. Using multiple linear regression analysis we found that age itself is a stronger predictor than CMV seropositivity for the decrease in CD45RA+ CD27+ CD4+ T cells over time. In contrast, the increase in CD45RA⁻ CD27⁻ and CD45RA+ CD27⁻ CD4+ T cells is almost exclusively the result of CMV seropositivity, with age alone having no significant effect. Furthermore, the majority of the CD45RA⁻ CD27⁻ and CD45RA+ CD27⁻ CD4+ T cells in CMV-seropositive donors are specific for this virus. CD45RA+ CD27⁻ CD4+ T cells have significantly reduced CD28, interleukin-7 receptor α (IL-7Rα) and Bcl-2 expression, Akt (ser473) phosphorylation and reduced ability to survive after T-cell receptor activation compared with the other T-cell subsets in the same donors. Despite this, the CD45RA+ CD27⁻ subset is as multifunctional as the CD45RA⁻ D27+ and CD45RA⁻ CD27⁻ CD4+ T-cell subsets, indicating that they are not an exhausted population. In addition, CD45RA+ CD27⁻ CD4+ T cells have cytotoxic potential as they express high levels of granzyme B and perforin. CD4+ memory T cells re-expressing CD45RA can be generated from the CD45RA⁻ CD27+ population by the addition of IL-7 and during this process these cells down-regulated expression of IL-7R and Bcl-2 and so resemble their counterparts in vivo. Finally we showed that the proportion of CD45RA+ CD27⁻ CD4+ T cells of multiple specificities was significantly higher in the bone marrow than the blood of the same individuals, suggesting that this may be a site where these cells are generated.
Collapse
Affiliation(s)
- Valentina Libri
- Division of Infection and Immunity, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Culshaw S, McInnes IB, Liew FY. What can the periodontal community learn from the pathophysiology of rheumatoid arthritis? J Clin Periodontol 2011; 38 Suppl 11:106-13. [PMID: 21323707 DOI: 10.1111/j.1600-051x.2010.01669.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM The aim of this paper is to provide a narrative review of the aetiopathogeneis and treatments of rheumatoid arthritis (RA), focusing on aspects that may share commonality with periodontitis. RESULTS A myriad of cell types, cytokines and pathways have been investigated in both periodontitis and RA. Chronic inflammatory diseases, including RA, psoriatic arthritis, ankylosing spondylitis and periodontitis are likely to share pathogenic mechanisms of inflammation-mediated solid tissue destruction. The aetiopathogenesis of these diseases has been extensively researched over the last several decades and advances in understanding have revolutionized arthritis therapeutics. CONCLUSION The rational, targeted inhibition of mediators in RA has provided clinically useful therapeutics and shed light on mechanisms underpinning disease pathogenesis. RA should be considered a prototypic disease revealing how understanding disease pathogenesis may transform therapeutic options and patient outcomes.
Collapse
Affiliation(s)
- Shauna Culshaw
- Glasgow Dental Hospital and School, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
321
|
Ontiveros F, Wilson EB, Livingstone AM. Type I interferon supports primary CD8+ T-cell responses to peptide-pulsed dendritic cells in the absence of CD4+ T-cell help. Immunology 2011; 132:549-58. [PMID: 21255009 DOI: 10.1111/j.1365-2567.2010.03400.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
CD8(+) T-cell responses to non-pathogen, cell-associated antigens such as minor alloantigens or peptide-pulsed dendritic cells (DC) are usually strongly dependent on help from CD4(+) T cells. However, some studies have described help-independent primary CD8(+) T-cell responses to cell-associated antigens, using immunization strategies likely to trigger natural killer (NK) cell activation and inflammatory cytokine production. We asked whether NK cell activation by MHC I-deficient cells, or administration of inflammatory cytokines, could support CD4(+) T-cell help-independent primary responses to peptide-pulsed DC. Injection of MHC I-deficient cells cross-primed CD8(+) T-cell responses to the protein antigen ovalbumin (OVA) and the male antigen HY, but did not stimulate CD8(+) T-cell responses in CD4-depleted mice; hence NK cell stimulation by MHC I-deficient cells did not replace CD4(+) T-cell help in our experiments. Dendritic cells cultured with tumour necrosis factor-α (TNF-α) or type I interferon-α (IFN-α) also failed to prime CD8(+) T-cell responses in the absence of help. Injection of TNF-α increased lymph node cellularity, but did not generate help-independent CD8(+) T-cell responses. In contrast, CD4-depleted mice injected with IFN-α made substantial primary CD8(+) T-cell responses to peptide-pulsed DC. Mice deficient for the type I IFN receptor (IFNR1) made CD8(+) T-cell responses to IFNR1-deficient, peptide-pulsed DC; hence IFN-α does not appear to be a downstream mediator of CD4(+) T-cell help. We suggest that primary CD8(+) T-cell responses will become help-independent whenever endogenous IFN-α secretion is stimulated by tissue damage, infection, or autoimmune disease.
Collapse
Affiliation(s)
- Fernando Ontiveros
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642-8609, USA
| | | | | |
Collapse
|
322
|
Näslund TI, Kostic L, Nordström EK, Chen M, Liljeström P. Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines. Virol J 2011; 8:36. [PMID: 21261958 PMCID: PMC3038947 DOI: 10.1186/1743-422x-8-36] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Alphaviral replicon-based vectors induce potent immune responses both when given as viral particles (VREP) or as DNA (DREP). It has been suggested that the strong immune stimulatory effect induced by these types of vectors is mediated by induction of danger signals and activation of innate signalling pathways due to the replicase activity. To investigate the innate signalling pathways involved, mice deficient in either toll-like receptors or downstream innate signalling molecules were immunized with DREP or VREP. Results We show that the induction of a CD8+ T cell response did not require functional TLR3 or MyD88 signalling. However, IRF3, converging several innate signalling pathways and important for generation of pro-inflammatory cytokines and type I IFNs, was needed for obtaining a robust primary immune response. Interestingly, type I interferon (IFN), induced by most innate signalling pathways, had a suppressing effect on both the primary and memory T cell responses after DREP and VREP immunization. Conclusions We show that alphaviral replicon-based vectors activate multiple innate signalling pathways, which both activate and restrict the induced immune response. These results further show that there is a delicate balance in the strength of innate signalling and induction of adaptive immune responses that should be taken into consideration when innate signalling molecules, such as type I IFNs, are used as vaccine adjuvant.
Collapse
Affiliation(s)
- Tanja I Näslund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels Väg 16, 17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
323
|
Alpha interferon administration during structured interruptions of combination antiretroviral therapy in patients with chronic HIV-1 infection: INTERVAC ANRS 105 trial. AIDS 2011; 25:115-8. [PMID: 20962614 DOI: 10.1097/qad.0b013e328340a1e7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interferon-α administration during structured treatment interruptions (STIs) was studied in a phase III trial. We randomized 168 chronically infected HIV undetectable under combined antiretroviral therapy patients to have three STIs with or without α-interferon. The number of patients who had to resume treatment during post-STI follow-up was not significantly different between the two arms. Patients with a low CD4 nadir and a high baseline HIV-DNA had a higher risk of treatment resumption in the interferon arm.
Collapse
|
324
|
Verbist KC, Cole CJ, Field MB, Klonowski KD. A role for IL-15 in the migration of effector CD8 T cells to the lung airways following influenza infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:174-82. [PMID: 21098221 PMCID: PMC3050553 DOI: 10.4049/jimmunol.1002613] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cytokines generated locally in response to infection play an important role in CD8 T cell trafficking, survival, and effector function, rendering these signals prime candidates for immune intervention. In this paper, we show that localized increases in the homeostatic cytokine IL-15 induced by influenza infection is responsible for the migration of CD8 effector T cells to the site of infection. Moreover, intranasal delivery of IL-15-IL-15Rα soluble complexes (IL-15c) specifically restores the frequency of effector T cells lost in the lung airways of IL-15-deficient animals after influenza infection. Exogenous IL-15c quantitatively augments the respiratory CD8 T cell response, and continued administration of IL-15c throughout the contraction phase of the anti-influenza CD8 T cell response magnifies the resultant CD8 T cell memory generated in situ. This treatment extends the ability of these cells to protect against heterologous infection, immunity that typically depreciates over time. Overall, our studies describe what to our knowledge is a new function for IL-15 in attracting effector CD8 T cells to the lung airways and suggest that adjuvanting IL-15 could be used to prolong anti-influenza CD8 T cell responses at mucosal surfaces to facilitate pathogen elimination.
Collapse
Affiliation(s)
- Katherine C Verbist
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
325
|
Ni J, Galani IE, Cerwenka A, Schirrmacher V, Fournier P. Antitumor vaccination by Newcastle Disease Virus Hemagglutinin-Neuraminidase plasmid DNA application: changes in tumor microenvironment and activation of innate anti-tumor immunity. Vaccine 2010; 29:1185-93. [PMID: 21172381 DOI: 10.1016/j.vaccine.2010.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/29/2010] [Accepted: 12/02/2010] [Indexed: 12/29/2022]
Abstract
A plasmid encoding the Hemagglutinin-Neuraminidase (HN) protein of Newcastle Disease Virus (pHN) was tested for its capacity to stimulate innate anti-tumor activity in tumor-bearing mice. We observed that application of the pHN plasmid at the ear pinna site (i.e.) of mice induces higher levels of systemic interferon-α and reduced tumor growth in the prophylactic mammary carcinoma DA3 tumor model in comparison to application of a control plasmid not encoding the HN protein. Analysis of the tumor microenvironment revealed a significant increase in NK cell infiltration and decrease in infiltration of CD11b(+)Gr-1(high) myeloid cells bearing the myeloid-derived suppressor cell (MDSC) phenotype after vaccination with the pHN DNA compared to a control DNA. Finally, innate immunity and partially type I IFN responses were proved important for the reduction of s.c. RMA-S tumor growth after pHN vaccination, as shown with the use of RAG2(-/-) and RAG2(-/-)IFNAR1(-/-) mice. These data demonstrate that triggering innate immunity by pHN application at the ear pinna of mice modulates the immune cell compartment in the tumor microenvironment and reduces tumor growth. This highlights thus the potential adjuvant activity of the HN gene in tumor therapy.
Collapse
Affiliation(s)
- Jing Ni
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
326
|
Wiehagen KR, Corbo E, Schmidt M, Shin H, Wherry EJ, Maltzman JS. Loss of tonic T-cell receptor signals alters the generation but not the persistence of CD8+ memory T cells. Blood 2010; 116:5560-70. [PMID: 20884806 PMCID: PMC3031404 DOI: 10.1182/blood-2010-06-292458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/23/2010] [Indexed: 11/20/2022] Open
Abstract
The requirements for tonic T-cell receptor (TCR) signaling in CD8(+) memory T-cell generation and homeostasis are poorly defined. The SRC homology 2 (SH2)-domain-containing leukocyte protein of 76 kDa (SLP-76) is critical for proximal TCR-generated signaling. We used temporally mediated deletion of SLP-76 to interrupt tonic and activating TCR signals after clearance of the lymphocytic choriomeningitis virus (LCMV). SLP-76-dependent signals are required during the contraction phase of the immune response for the normal generation of CD8 memory precursor cells. Conversely, LCMV-specific memory CD8 T cells generated in the presence of SLP-76 and then acutely deprived of TCR-mediated signals persist in vivo in normal numbers for more than 40 weeks. Tonic TCR signals are not required for the transition of the memory pool toward a central memory phenotype, but the absence of SLP-76 during memory homeostasis substantially alters the kinetics. Our data are consistent with a model in which tonic TCR signals are required at multiple stages of differentiation, but are dispensable for memory CD8 T-cell persistence.
Collapse
Affiliation(s)
- Karla R Wiehagen
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
327
|
Yu P, Steel JC, Zhang M, Morris JC, Waldmann TA. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res 2010; 16:6019-28. [PMID: 20924130 PMCID: PMC3005104 DOI: 10.1158/1078-0432.ccr-10-1966] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Interleukin 15 (IL-15) is a promising cytokine for immunotherapy of cancer due to its ability to stimulate the immunity of natural killer, B, and T cells. Its effectiveness, however, may be limited by inhibitory checkpoints and pathways that can attenuate immune responses. Finding strategies to abrogate these negative regulators and enhance the efficacy of IL-15 is a critical challenge. EXPERIMENTAL DESIGN In a preclinical study, we evaluated IL-15 combined with antibodies to block the negative immune regulators cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death ligand 1 (PD-L1) in a metastatic murine CT26 colon carcinoma model. RESULTS IL-15 treatment resulted in a significant prolongation of survival in mice with metastatic tumor. Administration of IL-15, however, also increased expression of PD-1 on the surface of CD8(+) T cells including CD8(+)CD44(high) memory phenotype T cells. Moreover, IL-15 also increased the secretion of the immunosuppressive cytokine, IL-10. Combining IL-15 with anti-PD-L1 and anti-CTLA-4 (multiple immune checkpoint blockade) exhibited greater CTL killing and IFNγ secretion. Moreover, this combination resulted in a significant reduction in surface expression of PD-1 on CD8(+) T cells, a decrease in IL-10 secretion, and led to significantly longer survival of tumor-bearing animals compared with mice treated with IL-15 alone or combined singularly with anti-PD-L1 or anti-CTLA-4. CONCLUSIONS Combining the immune stimulatory properties of IL-15 with the simultaneous removal of 2 critical immune system inhibitory checkpoints, we showed enhancement of immune responses leading to increased antitumor activity.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/pharmacology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CTLA-4 Antigen
- Carcinoma/drug therapy
- Carcinoma/immunology
- Carcinoma/mortality
- Carcinoma/pathology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/mortality
- Colonic Neoplasms/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Drug Synergism
- Female
- Immune Tolerance/drug effects
- Immune Tolerance/immunology
- Immunotherapy/methods
- Interleukin-15/therapeutic use
- Mice
- Mice, Inbred BALB C
- Models, Biological
- Neoplasm Metastasis
- Programmed Cell Death 1 Receptor
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Ping Yu
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jason C. Steel
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Meili Zhang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
- Laboratory Animal Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, 21702, USA
| | - John C. Morris
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
328
|
IL-15 aggravates atherosclerotic lesion development in LDL receptor deficient mice. Vaccine 2010; 29:976-83. [PMID: 21115056 DOI: 10.1016/j.vaccine.2010.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/05/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Interleukin 15 (IL-15) is a pro-inflammatory cytokine involved in inflammatory diseases and IL-15 is expressed in atherosclerotic plaques. METHODS To establish the role of IL-15 in atherosclerosis we studied the effect of IL-15 on atherosclerosis associated cells in vitro and in vivo by neutralizing IL-15 using a DNA vaccination strategy. RESULTS Upon feeding a Western type diet LDLr(-/-) mice do express higher levels of IL-15 within the spleen and the number of IL-15 expressing cells among blood leukocytes and spleen cells is increased. Addition of IL-15 to macrophages induces the expression TNF-α and CCL-2. After the mice were vaccinated against IL-15, we observe a reduction in plaque size of 75% plaque. Unexpectedly, the relative number of macrophages within the plaque was 2-fold higher in IL-15 vaccinated mice than in control mice. Vaccination against IL-15 leads to an increased cytotoxicity against IL-15 overexpressing target cells, resulting in a reduction in IL-15 expressing cells and macrophages in blood and spleen and a decreased CD4/CD8 ratio. CONCLUSION Hypercholesterolemia leads to upregulation of IL-15 within spleen and blood. DNA vaccination against IL-15 does markedly reduces atherosclerotic lesion size, but does not promote lesion stability.
Collapse
|
329
|
Jung YW, Rutishauser RL, Joshi NS, Haberman AM, Kaech SM. Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5315-25. [PMID: 20921525 PMCID: PMC4267692 DOI: 10.4049/jimmunol.1001948] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is unclear where within tissues subsets of effector and memory CD8 T cells persist during viral infection and whether their localization affects function and long-term survival. Following lymphocytic choriomeningitis virus infection, we found most killer cell lectin-like receptor G1 (KLRG1)(lo)IL-7R(hi) effector and memory cells, which are long-lived and high proliferative capacity, in the T cell zone of the spleen. In contrast, KLRG1(hi)IL-7R(lo) cells, which appear terminally differentiated and have shorter life spans, were exclusively localized to the red pulp. KLRG1(lo)IL-7R(hi) T cells homed to the T cell zone using pertussis toxin-sensitive chemokine receptors and appeared to contact gp38(+) stromal cells, which produce the chemokines CCL19 and CCL21 and the T cell survival cytokine IL-7. The transcription factors T-bet and B lymphocyte-induced maturation protein-1 controlled effector CD8 T cell splenic migration. Effector CD8 T cells overexpressing T-bet homed to the red pulp, whereas those lacking B lymphocyte-induced maturation protein-1 homed to the T cell zone. Upon memory formation, CD62L(+) memory T cells were predominantly found in the T cell zone, whereas CD62L(-) cells were found in the red pulp. Thus, effector and memory CD8 T cell subset localization within tissues is linked to their differentiation states, and this may identify anatomical niches that regulate their longevity and homeostasis.
Collapse
Affiliation(s)
- Yong Woo Jung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Rachel L. Rutishauser
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Ann M. Haberman
- Department of Lab Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
330
|
Suwannasaen D, Romphruk A, Leelayuwat C, Lertmemongkolchai G. Bystander T cells in human immune responses to dengue antigens. BMC Immunol 2010; 11:47. [PMID: 20854672 PMCID: PMC2949776 DOI: 10.1186/1471-2172-11-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 09/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies of T cell activation in dengue infection have focused on restriction of specific T cell receptors (TCRs) and classical MHC molecules. However, bystander T cell activation, which is TCR independent, occurs via cytokines in other viral infections, both in vitro and in vivo, and enables T cells to bypass certain control checkpoints. Moreover, clinical and pathological evidence has pointed to cytokines as the mediators of dengue disease severity. Therefore, we investigated bystander T cell induction by dengue viral antigen. RESULTS Whole blood samples from 55 Thai schoolchildren aged 13-14 years were assayed for in vitro interferon-gamma (IFN-γ) induction in response to inactivated dengue serotype 2 antigen (Den2). The contribution of TCR-dependent and independent pathways was tested by treatment with cyclosporin A (CsA), which inhibits TCR-dependent activation of T cells. ELISA results revealed that approximately 72% of IFN-γ production occurred via the TCR-dependent pathway. The major IFN-γ sources were natural killer (NK) (mean ± SE = 55.2 ± 3.3), CD4+T (24.5 ± 3.3) and CD8+T cells (17.9 ± 1.5), respectively, as demonstrated by four-color flow cytometry. Interestingly, in addition to these cells, we found CsA-resistant IFN-γ producing T cells (CD4+T = 26.9 ± 3.6% and CD8+T = 20.3 ± 2.1%) implying the existence of activated bystander T cells in response to dengue antigen in vitro. These bystander CD4+ and CD8+T cells had similar kinetics to NK cells, appeared after 12 h and were inhibited by anti-IL-12 neutralization indicating cytokine involvement. CONCLUSIONS This study described immune cell profiles and highlighted bystander T cell activation in response to dengue viral antigens of healthy people in an endemic area. Further studies on bystander T cell activation in dengue viral infection may reveal the immune mechanisms that protect or enhance pathogenesis of secondary dengue infection.
Collapse
Affiliation(s)
- Duangchan Suwannasaen
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | |
Collapse
|
331
|
Mattei F, Schiavoni G, Tough DF. Regulation of immune cell homeostasis by type I interferons. Cytokine Growth Factor Rev 2010; 21:227-36. [DOI: 10.1016/j.cytogfr.2010.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/29/2010] [Accepted: 05/07/2010] [Indexed: 12/16/2022]
|
332
|
Marshall HD, Prince AL, Berg LJ, Welsh RM. IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1419-28. [PMID: 20592282 PMCID: PMC3232037 DOI: 10.4049/jimmunol.1001140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonvirus-specific bystander CD8 T cells bathe in an inflammatory environment during viral infections. To determine whether bystander CD8 T cells are affected by these environments, we examined P14, HY, and OT-I TCR transgenic CD8 T cells sensitized in vivo by IFN-alphabeta-inducing viral infections or by polyinosinic:polycytidylic acid. These sensitized cells rapidly exerted effector functions, such as IFN-gamma production and degranulation, on contact with their high-affinity cognate Ag. Sensitization required self-MHC I and indirect effects of IFN-alphabeta, which together upregulated the T-box transcription factor Eomesodermin, potentially enabling the T cells to rapidly transcribe CTL effector genes and behave like memory cells rather than naive T cells. IL-12, IL-15, IL-18, and IFN-gamma were not individually required for sensitization to produce IFN-gamma, but IL-15 was required for upregulation of granzyme B. These experiments indicate that naive CD8 T cells receive signals from self-MHC and IFN-alphabeta and that, by this process, CD8 T cell responses to viral infection can undergo distinct differentiation pathways, depending on the timing of Ag encounter during the virus-induced IFN response.
Collapse
Affiliation(s)
- Heather D. Marshall
- Department of Pathology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Amanda L. Prince
- Department of Pathology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Leslie J. Berg
- Department of Pathology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Raymond M. Welsh
- Department of Pathology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
333
|
Westwood JA, Berry LJ, Wang LX, Duong CP, Pegram HJ, Darcy PK, Kershaw MH. Enhancing adoptive immunotherapy of cancer. Expert Opin Biol Ther 2010; 10:531-45. [PMID: 20132063 DOI: 10.1517/14712591003610622] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Conventional therapies, including surgery, chemotherapy and radiotherapy have contributed much to cancer treatment. However, these treatment modalities fail in a large proportion of patients, and there is a great need for effective alternate therapies. Adoptive immunotherapy can be effective against some cancers that have failed all other treatment options, even when disease burdens are massive. AREAS COVERED IN THIS REVIEW This review gives a brief introduction of the historical origins of adoptive immunotherapy and then provides details of strategies for increasing the potency of cell transfer. Approaches for enhancing adoptive immunotherapy include: selecting the right type of cell; providing cytokine support; preconditioning patients and tuning the tumor microenvironment. The review also provides insights into the safety, feasibility and costs of this form of therapy. WHAT THE READER WILL GAIN This article will give the reader an appreciation of the potential of adoptive immunotherapy, as well as an understanding of some limitations and current approaches for optimizing the effectiveness of this approach. TAKE HOME MESSAGE With recent developments in knowledge of the interactions between the immune system and tumors, the field of adoptive immunotherapy is now poised to make dramatic contributions to cancer therapy.
Collapse
Affiliation(s)
- Jennifer A Westwood
- Peter MacCallum Cancer Centre, Cancer Immunology Research Program, St. Andrews Place, Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | |
Collapse
|
334
|
Goff WL, Bastos RG, Brown WC, Johnson WC, Schneider DA. The bovine spleen: interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections. Vet Immunol Immunopathol 2010; 138:1-14. [PMID: 20692048 DOI: 10.1016/j.vetimm.2010.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/17/2022]
Abstract
Over the past several years, innate immunity has been recognized as having an important role as a front-line defense mechanism and as an integral part of the adaptive immune response. Innate immunity in cattle exposed to hemoparasites is spleen-dependent and age-related. In this review, we discuss general aspects of innate immunity and the cells involved in this aspect of the response to infection. We also provide examples of specific splenic regulatory and effector mechanisms involved in the response to Babesia bovis, an important tick-borne hemoparasitic disease of cattle. Evidence for the regulatory and effector role of bovine splenic monocytes and DC both in directing a type-1 response through interaction with splenic NK cells and γδT-cells will be presented.
Collapse
Affiliation(s)
- W L Goff
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF/WSU, Pullman, WA 99164-6630, USA
| | | | | | | | | |
Collapse
|
335
|
Frasca L, Stonier SW, Overwijk WW, Schluns KS. Differential mechanisms of memory CD8 T cell maintenance by individual myeloid cell types. J Leukoc Biol 2010; 88:69-78. [PMID: 20354106 PMCID: PMC2892527 DOI: 10.1189/jlb.1209816] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/02/2010] [Accepted: 03/05/2010] [Indexed: 12/29/2022] Open
Abstract
This study tested the hypothesis that individual myeloid subsets have a differential ability to maintain memory CD8 T cells via IL-15. Although DCs support IL-15-mediated homeostasis of memory CD8 T cells in vivo, whether various DC subsets and other myeloid cells similarly mediate homeostasis is unknown. Therefore, we studied the ability of different myeloid cells to maintain memory CD8 T cells in vitro. Using an in vitro cocoulture system that recapitulated known roles of DCs and IL-15 on memory CD8 T cells, all in vitro-derived or ex vivo-isolated DCs maintained CD8 T cells better than rIL-15 alone, and FLT-3L-DCs are the most efficient compared with GM-DCs, BM-derived macrophages, or freshly isolated DCs. Although FLT-3L-DCs were the least effective at inducing CD8 T cell proliferation, FLT-3L-DCs promoted better CD8 T cell survival and increased Bcl-2 and MCL-2 expression in CD8 T cells. T cell maintenance correlated only partially with DC expression of IL-15Ralpha and IL-15, suggesting that DCs provided additional support signals. Indeed, in the absence of IL-15 signals, CD70/CD27 further supported CD8 T cell maintenance. IFN-alpha enhanced CD70 expression by DCs, resulting in increased proliferation of CD8 T cells. Overall, this study supports our hypothesis by demonstrating that specific DC subtypes had a greater capacity to support memory CD8 T cell maintenance and did so through different mechanisms. Furthermore, this study shows that IL-15 trans-presentation can work in conjunction with other signals, such as CD70/CD27 interactions, to mediate CD8 T cell homeostasis efficiently.
Collapse
Affiliation(s)
- Loredana Frasca
- Department of Immunology, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
336
|
Abstract
Natural killer (NK) cells respond rapidly to transformed, stressed, or virally infected cells and provide a first-line immune defense against pathogen invasion and cancer. Thought to involve short-lived effector cells that are armed for battle, NK cells were not previously known to contribute in recall responses to pathogen re-encounter. Here, we highlight recent discoveries demonstrating that NK cells are not limited to driving primary immune responses to foreign antigen but can mount secondary responses contributing to immune memory. We also further characterize the phenotype and function of long-lived memory NK cells generated during viral infection.
Collapse
Affiliation(s)
- Joseph C. Sun
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Joshua N. Beilke
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
337
|
Abstract
Immunological memory is a cardinal feature of adaptive immunity. We are now beginning to elucidate the mechanisms that govern the formation of memory T cells and their ability to acquire longevity, survive the effector-to-memory transition, and mature into multipotent, functional memory T cells that self-renew. Here, we discuss the recent findings in this area and highlight extrinsic and intrinsic factors that regulate the cellular fate of activated CD8+ T cells.
Collapse
Affiliation(s)
- Weiguo Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
338
|
Nakayama Y, Plisch EH, Sullivan J, Thomas C, Czuprynski CJ, Williams BRG, Suresh M. Role of PKR and Type I IFNs in viral control during primary and secondary infection. PLoS Pathog 2010; 6:e1000966. [PMID: 20585572 PMCID: PMC2891951 DOI: 10.1371/journal.ppat.1000966] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 05/25/2010] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the IFN-inducible dsRNA activated protein kinase, PKR. Here, we have investigated the role of PKR and Type I IFNs in regulating viral clearance and CD8+ T cell response during primary and secondary viral infections. Our studies demonstrate differential requirement for PKR, in viral control versus elicitation of CD8+ T cell responses during primary infection of mice with lymphocytic choriomeningitis virus (LCMV). PKR-deficient mice mounted potent CD8+ T cell responses, but failed to effectively control LCMV. The compromised LCMV control in the absence of PKR was multifactorial, and linked to less effective CD8+ T cell-mediated viral suppression, enhanced viral replication in cells, and lower steady state expression levels of IFN-responsive genes. Moreover, we show that despite normal expansion of memory CD8+ T cells and differentiation into effectors during a secondary response, effective clearance of LCMV but not vaccinia virus required PKR activity in infected cells. In the absence of Type I IFN signaling, secondary effector CD8+ T cells were ineffective in controlling both LCMV and vaccinia virus replication in vivo. These findings provide insight into cellular pathways of Type I IFN actions, and highlight the under-appreciated importance of innate immune mechanisms of viral control during secondary infections, despite the accelerated responses of memory CD8+ T cells. Additionally, the results presented here have furthered our understanding of the immune correlates of anti-viral protective immunity, which have implications in the rational design of vaccines.
Collapse
Affiliation(s)
- Yumi Nakayama
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin H. Plisch
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeremy Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chester Thomas
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bryan R. G. Williams
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - M. Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
339
|
Dai H, Wan N, Zhang S, Moore Y, Wan F, Dai Z. Cutting edge: programmed death-1 defines CD8+CD122+ T cells as regulatory versus memory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:803-7. [PMID: 20548035 DOI: 10.4049/jimmunol.1000661] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent convincing data have shown that naturally occurring CD8(+)CD122(+) T cells are also regulatory T cells. Paradoxically, CD8(+)CD122(+) T cells have been well described as memory T cells. Given their critical role in tolerance versus long-term immunity, it is important to reconcile this profound dichotomy. In this study, we reported that CD8(+)CD122(+) T cells contain both programmed death-1 (PD-1)(-) and PD-1(+) populations. It was CD8(+)CD122(+)PD-1(+) T cells, but not their PD-1(-) counterparts, that suppressed T cell responses in vitro and in vivo. This suppression was largely dependent on their production of IL-10. Moreover, the costimulatory signaling of both CD28 and PD-1 is required for their optimal IL-10 production. In contrast, Ag-specific CD8(+)CD122(+)PD-1(-) T cells were bona fide memory T cells. Thus, CD8(+)CD122(+) T cells can be either regulatory T or memory T cells, depending on their PD-1 expression and Ag specificity. This study reconciles previously contradictory findings and has important implications for tolerance induction.
Collapse
Affiliation(s)
- Hehua Dai
- Division of Immunology and Microbiology, University of Texas Health Science Center, Tyler, TX 75708, USA
| | | | | | | | | | | |
Collapse
|
340
|
Pouw N, Treffers-Westerlaken E, Kraan J, Wittink F, ten Hagen T, Verweij J, Debets R. Combination of IL-21 and IL-15 enhances tumour-specific cytotoxicity and cytokine production of TCR-transduced primary T cells. Cancer Immunol Immunother 2010; 59:921-31. [PMID: 20101507 PMCID: PMC11030877 DOI: 10.1007/s00262-010-0818-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 01/06/2010] [Indexed: 12/22/2022]
Abstract
IL-21, and to a lesser extent IL-15, inhibits differentiation of antigen-primed CD8 T cells and promotes their homeostasis and anti-tumour activity. Here, we investigated molecular mechanisms behind tumour-specific responses of primary murine T lymphocytes engineered to express a TCR directed against human gp100/HLA-A2 following short-term exposure to IL-15 and/or IL-21. We demonstrated that IL-15 + IL-21, and to a lesser extent IL-21, enhanced antigen-specific T-cell cytotoxicity, which was related to enhanced expression of granzymes A and B, and perforin 1. Furthermore, IL-15 + IL-21 synergistically enhanced release levels and kinetics of T-cell IFNgamma and IL-2, but not IL-10. Enhanced secretion of IFNgamma was accompanied by increased gene expression and cytosolic protein content, and was restricted to effector memory T cells. To summarize, we show that IL-15 + IL-21 improves antigen-specific responses of TCR-transduced effector T cells at multiple levels, which provides a rationale to treat T cells with a combination of these cytokines prior to their use in adoptive TCR gene therapy.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Drug Synergism
- Granzymes/biosynthesis
- Granzymes/genetics
- HLA-A2 Antigen/immunology
- Humans
- Immunologic Memory
- Immunotherapy, Adoptive
- Interleukin-15/pharmacology
- Interleukins/pharmacology
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Melanoma/therapy
- Membrane Glycoproteins/immunology
- Mice
- Perforin/biosynthesis
- Perforin/genetics
- Protein Engineering
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Transduction, Genetic
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Nadine Pouw
- Laboratory of Experimental Tumour Immunology, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
341
|
Di Genova G, Savelyeva N, Suchacki A, Thirdborough SM, Stevenson FK. Bystander stimulation of activated CD4+ T cells of unrelated specificity following a booster vaccination with tetanus toxoid. Eur J Immunol 2010; 40:976-85. [PMID: 20104490 DOI: 10.1002/eji.200940017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antigen-specific CD4(+) T cells are central to natural and vaccine-induced immunity. An ongoing antigen-specific T-cell response can, however, influence surrounding T cells with unrelated antigen specificities. We previously observed this bystander effect in healthy human subjects following recall vaccination with tetanus toxoid (TT). Since this interplay could be important for maintenance of memory, we have moved to a mouse model for further analysis. We investigated whether boosting memory CD4(+) T cells against TT in vivo would influence injected CD4(+) TCR transgenic T cells (OT-II) specific for an unrelated OVA peptide. If OT-II cells were pre-activated with OVA peptide in vitro, these cells showed a bystander proliferative response during the ongoing parallel TT-specific response. Bystander proliferation was dependent on boosting of the TT-specific memory response in the recipients, with no effect in naive mice. Bystander stimulation was also proportional to the strength of the TT-specific memory T-cell response. T cells activated in vitro displayed functional receptors for IL-2 and IL-7, suggesting these as potential mediators. This crosstalk between a stimulated CD4(+) memory T-cell response and CD4(+) T cells activated by an unrelated antigen could be important in human subjects continually buffeted by environmental antigens.
Collapse
Affiliation(s)
- Gianfranco Di Genova
- Cancer Sciences Division, University of Southampton School of Medicine, Southampton, UK.
| | | | | | | | | |
Collapse
|
342
|
Abstract
Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag-specific T-cell response, has been best described for CD8(+) T cells. In the CD8(+) compartment, the release of IFN and IFN-inducers leads to the production of IL-15, which mediates the proliferation of CD8(+) T cells, notably memory-phenotype CD8(+) T cells. CD4(+) T cells also undergo bystander activation, however, the signals inducing this Ag-nonspecific stimulation of CD4(+) T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common gamma-chain cytokines including IL-2 might be involved in bystander activation of CD4(+) T cells.
Collapse
Affiliation(s)
- Onur Boyman
- Division of Immunology and Allergy, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
343
|
Hand TW, Kaech SM. Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Immunol Res 2010; 45:46-61. [PMID: 18629449 DOI: 10.1007/s12026-008-8027-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following infection or vaccination T cells expand exponentially and differentiate into effector T cells in order to control infection and coordinate the multiple effector arms of the immune system. Soon after this expansion, the majority of antigen-specific T cells die to reattain homeostasis and a small pool of memory T cells forms to provide long-term immunity to subsequent re-infection. Our understanding of how this process is controlled has improved considerably over the recent years, but many questions remain outstanding. This review focuses on the recent advancements in this area with an emphasis on how the contraction of activated T cells is coordinately regulated by a combination of factors extrinsic and intrinsic to the activated T cells.
Collapse
Affiliation(s)
- Timothy W Hand
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar St., TACS641B, P.O. Box 208011, New Haven, CT 06520, USA
| | | |
Collapse
|
344
|
MacLeod MKL, Kappler JW, Marrack P. Memory CD4 T cells: generation, reactivation and re-assignment. Immunology 2010; 130:10-5. [PMID: 20331469 PMCID: PMC2855788 DOI: 10.1111/j.1365-2567.2010.03260.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/21/2022] Open
Abstract
Immunological memory is one of the features that define the adaptive immune response: by generating specific memory cells after infection or vaccination, the host provides itself with a set of cells and molecules that can prevent future infections and disease. Despite the obvious importance of memory cells, memory CD4 T cells are incompletely understood. Here we discuss recent progress in understanding which activated T cells surmount the barrier to enter into the memory pool and, once generated, what signals are important for memory cell survival. There is still, however, little understanding of how (or even whether) memory CD4 T cells are useful once they have been created; a surprising thought considering the critical role CD4 T cells play in all adaptive primary immune responses. In light of this, we will discuss how CD4 T memory T cells respond to reactivation in vivo and whether they are malleable to a re-assignment of their effector response.
Collapse
|
345
|
Safety, Tolerability, and Immunogenicity of Interferons. Pharmaceuticals (Basel) 2010; 3:1162-1186. [PMID: 27713294 PMCID: PMC4034027 DOI: 10.3390/ph3041162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/03/2010] [Accepted: 04/12/2010] [Indexed: 02/08/2023] Open
Abstract
Interferons (IFNs) are class II cytokines that are key components of the innate immune response to virus infection. Three IFN sub-families, type I, II, and III IFNs have been identified in man, Recombinant analogues of type I IFNs, in particular IFNα2 and IFNβ1, have found wide application for the treatment of chronic viral hepatitis and remitting relapsing multiple sclerosis respectively. Type II IFN, or IFN gamma, is used principally for the treatment of chronic granulomatous disease, while the recently discovered type III IFNs, also known as IFN lambda or IL-28/29, are currently being evaluated for the treatment of chronic viral hepatitis. IFNs are in general well tolerated and the most common adverse events observed with IFNα or IFNβ therapy are “flu-like” symptoms such as fever, headache, chills, and myalgia. Prolonged treatment is associated with more serious adverse events including leucopenia, thrombocytopenia, increased hepatic transaminases, and neuropsychiatric effects. Type I IFNs bind to high-affinity cell surface receptors, composed of two transmembrane polypeptides IFNAR1 and IFNAR2, resulting in activation of the Janus kinases Jak1 and Tyk2, phosphorylation and activation of the latent cytoplasmic signal transducers and activators of transcription (STAT1) and STAT2, formation of a transcription complex together with IRF9, and activation of a specific set of genes that encode the effector molecules responsible for mediating the biological activities of type I IFNs. Systemic administration of type I IFN results in activation of IFN receptors present on essentially all types of nucleated cells, including neurons and hematopoietic stem cells, in addition to target cells. This may well explain the wide spectrum of IFN associated toxicities. Recent reports suggest that certain polymorphisms in type I IFN signaling molecules are associated with IFN-induced neutropenia and thrombocytopenia in patients with chronic hepatitis C. IFNγ binds to a cell-surface receptor composed of two transmembrane polypeptides IFGR1 and IFGR2 resulting in activation of the Janus kinases Jak1 and Jak2, phosphorylation of STAT1, formation of STAT1 homodimers, and activation of a specific set of genes that encode the effector molecules responsible for mediating its biological activity. In common with type I IFNs, IFNγ receptors are ubiquitous and a number of the genes activated by IFNγ are also activated by type I IFNs that may well account for a spectrum of toxicities similar to that associated with type I IFNs including “flu-like” symptoms, neutropenia, thrombocytopenia, and increased hepatic transaminases. Although type III IFNs share the major components of the signal transduction pathway and activate a similar set of IFN-stimulated genes (ISGs) as type I IFNs, distribution of the IFNλ receptor is restricted to certain cell types suggesting that IFNλ therapy may be associated with a reduced spectrum of toxicities relative to type I or type II IFNs. Repeated administration of recombinant IFNs can cause in a break in immune tolerance to self-antigens in some patients resulting in the production of neutralizing antibodies (NABs) to the recombinant protein homologue. Appearance of NABs is associated with reduced pharmacokinetics, pharmacodynamics, and a reduced clinical response. The lack of cross-neutralization of IFNβ by anti-IFNα NABs and vice versa, undoubtedly accounts for the apparent lack of toxicity associated with the presence of anti-IFN NABs with the exception of relatively mild infusion/injection reactions.
Collapse
|
346
|
Wang Y, Seidl T, Whittall T, Babaahmady K, Lehner T. Stress-activated dendritic cells interact with CD4+ T cells to elicit homeostatic memory. Eur J Immunol 2010; 40:1628-38. [DOI: 10.1002/eji.200940251] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
347
|
Simula MP, Cannizzaro R, Canzonieri V, Pavan A, Maiero S, Toffoli G, De Re V. PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med 2010; 16:199-209. [PMID: 20454521 DOI: 10.2119/molmed.2009.00173] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 03/02/2010] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated disorder triggered by the ingestion of wheat gliadin and related proteins in genetically predisposed individuals. To find a proteomic CD diagnostic signature and to gain a better understanding of pathogenetic mechanisms associated with CD, we analyzed the intestinal mucosa proteome alterations using two dimensional difference gel electrophoresis (2D-DIGE) coupled with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF ms) of CD patients with varying degrees of histological abnormalities defined by Marsh criteria and controls. Our results clearly evidenced the presence of two groups of patients: Group A, including controls and Marsh 0-I CD patients; and Group B, consisting of CD subjects with grade II-III Oberhuber-Marsh classification. Differentially expressed proteins were involved mainly in lipid, protein and sugar metabolism. Interestingly, in Group B, several downregulated proteins (FABP1, FABP2, APOC3, HMGCS2, ACADM and PEPCK) were implicated directly in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Moreover, Group B patients presented a deregulation of some proteins involved in apoptosis/survival pathways: phosphatidylethanolamine-binding protein 1 (PEBP1), Ras-related nuclear protein (Ran) and peroxiredoxin 4 (PRDX4). PEBP1 downregulation and RAN and PRDX4 upregulation were associated with more severe tissue damage. Likewise, IgMs were found strongly upregulated in Group B. In conclusion, our results indicate that a downregulation of proteins involved in PPAR signaling and the modulation of several cancer-related proteins are associated with the highest CD histological score according to Oberhuber-Marsh classification.
Collapse
Affiliation(s)
- Maria Paola Simula
- Experimental and Clinical Pharmacology Unit, CRO Centro diRiferimento Oncologico, IRCCS National Cancer Institute, AVIANO (PN), Italy
| | | | | | | | | | | | | |
Collapse
|
348
|
Abstract
Pneumocystis jirovecii is the opportunistic fungal organism that causes Pneumocystis pneumonia (PCP) in humans. Similar to other opportunistic pathogens, Pneumocystis causes disease in individuals who are immunocompromised, particularly those infected with HIV. PCP remains the most common opportunistic infection in patients with AIDS. Incidence has decreased greatly with the advent of HAART. However, an increase in the non-HIV immunocompromised population, noncompliance with current treatments, emergence of drug-resistant strains and rise in HIV(+) cases in developing countries makes Pneumocystis a pathogen of continued interest and a public health threat. A great deal of research interest has addressed therapeutic interventions to boost waning immunity in the host to prevent or treat PCP. This article focuses on research conducted during the previous 5 years regarding the host immune response to Pneumocystis, including innate, cell-mediated and humoral immunity, and associated immunotherapies tested against PCP.
Collapse
Affiliation(s)
- Michelle N Kelly
- Section of Pulmonary/Critical Care Medicine, LSU Health Sciences Center, Medical Education Building 3205, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
349
|
Albanesi C, Scarponi C, Bosisio D, Sozzani S, Girolomoni G. Immune functions and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity 2010; 43:215-9. [DOI: 10.3109/08916930903510906] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
350
|
Bere A, Denny L, Hanekom W, Burgers WA, Passmore JAS. Comparison of polyclonal expansion methods to improve the recovery of cervical cytobrush-derived T cells from the female genital tract of HIV-infected women. J Immunol Methods 2010; 354:68-79. [PMID: 20149794 PMCID: PMC2854893 DOI: 10.1016/j.jim.2010.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/02/2022]
Abstract
Cervical cytobrushing is a useful and non-invasive method for obtaining mucosal mononuclear cells from the female genital tract, but yields few cells. The aim of this study was to compare in vitro expansion protocols (anti-CD3, anti-CD3/CD28 or Dynal anti-CD3/CD28 beads) and cytokine combinations (IL-2, IL-7 and IL-15) to improve cervical T cell yields and viability. Eighteen HIV-infected women were included in this study to compare methods for polyclonal expansion of T cells from the female genital tract and blood. Comparison of T cell yields, viability and maturational status (by differential staining with CD45RO, CCR7 and CD27) was determined following 7 days of in vitro expansion. Anti-CD3 and IL-2 resulted in a 4.5-fold (range 3.7–5.3) expansion of cervical CD3+ T cells in 7 days compared to day 0. Inclusion of anti-CD28 or addition of IL-7 and IL-15 to this combination did not improve expansion. Culturing cells with Dynal beads (1:1) and IL-2, IL-7 and IL-15 gave rise to the highest yields after 7 days in both blood (7.1-fold) and cervix (5.6-fold). While expansion with anti-CD3 led to the accumulation of effector memory T cells (CD45RO+CCR7−CD27−), expansion with Dynabeads selected for accumulation of central memory T cells (CD45RO+CCR7+CD27+). We conclude that in vitro expansion with Dynabeads (1:1) in the presence of IL-2, IL-7 and IL-15 resulted in the greatest increase in viable T cells from both blood and cytobrush. Irrespective of the expansion method used, the T cell memory profile was altered following expansion.
Collapse
Affiliation(s)
- Alfred Bere
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | | | | | |
Collapse
|