301
|
Brey CW, Nelder MP, Hailemariam T, Gaugler R, Hashmi S. Krüppel-like family of transcription factors: an emerging new frontier in fat biology. Int J Biol Sci 2009; 5:622-36. [PMID: 19841733 PMCID: PMC2757581 DOI: 10.7150/ijbs.5.622] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022] Open
Abstract
In mammals, adipose tissue stores energy in the form of fat. The ability to regulate fat storage is essential for the growth, development and reproduction of most animals, thus any abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular diseases, diabetes, and obesity. In recent years significant effort has been applied to understand basic mechanism of fat accumulation in mammalian system. Work in mouse has shown that the family of Krüppel-like factors (KLFs), a conserved and important class of transcription factors, regulates adipocyte differentiation in mammals. However, how fat storage is coordinated in response to positive and negative feedback signals is still poorly understood. To address mechanisms underlying fat storage we have studied two Caenorhabditis elegans KLFs and demonstrate that both worm klfs are key regulators of fat metabolism in C. elegans. These results provide the first in vivo evidence supporting essential regulatory roles for KLFs in fat metabolism in C. elegans and shed light on the human counterpart in disease-gene association. This finding allows us to pursue a more comprehensive approach to understand fat biology and provides an opportunity to learn about the cascade of events that regulate KLF activation, repression and interaction with other factors in exerting its biological function at an organismal level. In this review, we provide an overview of the most current information on the key regulatory components in fat biology, synthesize the diverse literature, pose new questions, and propose a new model organism for understanding fat biology using KLFs as the central theme.
Collapse
Affiliation(s)
- Christopher W Brey
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
302
|
Hajduskova M, Jindra M, Herman MA, Asahina M. The nuclear receptor NHR-25 cooperates with the Wnt/beta-catenin asymmetry pathway to control differentiation of the T seam cell in C. elegans. J Cell Sci 2009; 122:3051-60. [PMID: 19654209 DOI: 10.1242/jcs.052373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Asymmetric cell divisions produce new cell types during animal development. Studies in Caenorhabditis elegans have identified major signal-transduction pathways that determine the polarity of cell divisions. How these relatively few conserved pathways interact and what modulates them to ensure the diversity of multiple tissue types is an open question. The Wnt/beta-catenin asymmetry pathway governs polarity of the epidermal T seam cell in the C. elegans tail. Here, we show that the asymmetry of T-seam-cell division and morphogenesis of the male sensory rays require NHR-25, an evolutionarily conserved nuclear receptor. NHR-25 ensures the neural fate of the T-seam-cell descendants in cooperation with the Wnt/beta-catenin asymmetry pathway. Loss of NHR-25 enhances the impact of mutated nuclear effectors of this pathway, POP-1 (TCF) and SYS-1 (beta-catenin), on T-seam-cell polarity, whereas it suppresses the effect of the same mutations on asymmetric division of the somatic gonad precursor cells. Therefore, NHR-25 can either synergize with or antagonize the Wnt/beta-catenin asymmetry pathway depending on the tissue context. Our findings define NHR-25 as a versatile modulator of Wnt/beta-catenin-dependent cell-fate decisions.
Collapse
Affiliation(s)
- Martina Hajduskova
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
303
|
Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO J 2009; 28:2437-48. [PMID: 19609300 DOI: 10.1038/emboj.2009.194] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/17/2009] [Indexed: 01/02/2023] Open
Abstract
Animals assess food availability in their environment by sensory perception and respond to the absence of food by changing hormone and neurotransmitter signals. However, it is largely unknown how the absence of food is perceived at the level of functional neurocircuitry. In Caenorhabditis elegans, octopamine is released from the RIC neurons in the absence of food and activates the cyclic AMP response element binding protein in the cholinergic SIA neurons. In contrast, dopamine is released from dopaminergic neurons only in the presence of food. Here, we show that dopamine suppresses octopamine signalling through two D2-like dopamine receptors and the G protein Gi/o. The D2-like receptors work in both the octopaminergic neurons and the octopamine-responding SIA neurons, suggesting that dopamine suppresses octopamine release as well as octopamine-mediated downstream signalling. Our results show that C. elegans detects the absence of food by using a small neural circuit composed of three neuron types in which octopaminergic signalling is activated by the cessation of dopamine signalling.
Collapse
|
304
|
Donohoe DR, Jarvis RA, Weeks K, Aamodt EJ, Dwyer DS. Behavioral adaptation in C. elegans produced by antipsychotic drugs requires serotonin and is associated with calcium signaling and calcineurin inhibition. Neurosci Res 2009; 64:280-9. [PMID: 19447297 PMCID: PMC2692945 DOI: 10.1016/j.neures.2009.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/09/2009] [Accepted: 03/26/2009] [Indexed: 11/18/2022]
Abstract
Chronic administration of antipsychotic drugs produces adaptive responses at the cellular and molecular levels that may be responsible for both the main therapeutic effects and rebound psychosis, which is often observed upon discontinuation of these drugs. Here we show that some antipsychotic drugs produce significant functional changes in serotonergic neurons that directly impact feeding behavior in the model organism, Caenorhabditis elegans. In particular, antipsychotic drugs acutely suppress pharyngeal pumping, which is regulated by serotonin from the NSM neurons. By contrast, withdrawal from food and drug is accompanied by a striking recovery and overshoot in the rate of pharyngeal pumping. This rebound response is absent or diminished in mutant strains that lack tryptophan hydroxylase (TPH-1) or the serotonin receptors SER-7 and SER-1, and is blocked by serotonin antagonists, which implicates serotonergic mechanisms in this adaptive response. Consistent with this, continuous drug exposure stimulates an increase in serotonin and the number of varicosities along the NSM processes. Cyclosporin A and calcineurin mutant strains mimic the effects of the antipsychotic drugs and reveal a potential role for the calmodulin-calcineurin signaling pathway in the response of serotonergic neurons. Similar molecular and cellular changes may contribute to the long-term adaptive response to antipsychotic drugs in patients.
Collapse
Affiliation(s)
- Dallas R. Donohoe
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Raymond A. Jarvis
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kathrine Weeks
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Eric J. Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
305
|
Whittaker AJ, Sternberg PW. Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior. BMC Biol 2009; 7:33. [PMID: 19545405 PMCID: PMC2715377 DOI: 10.1186/1741-7007-7-33] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To survive and reproduce, animals must be able to modify their motor behavior in response to changes in the environment. We studied a complex behavior of Caenorhabditis elegans, male mating behavior, which provided a model for understanding motor behaviors at the genetic, molecular as well as circuit level. C. elegans male mating behavior consists of a series of six sub-steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. The male tail contains most of the sensory structures required for mating, in addition to the copulatory structures, and thus to carry out the steps of mating behavior, the male must keep his tail in contact with the hermaphrodite. However, because the hermaphrodite does not play an active role in mating and continues moving, the male must modify his tail posture to maintain contact. We provide a better understanding of the molecular and neuro-muscular pathways that regulate male tail posture during mating. RESULTS Genetic and laser ablation analysis, in conjunction with behavioral assays were used to determine neurotransmitters, receptors, neurons and muscles required for the regulation of male tail posture. We showed that proper male tail posture is maintained by the coordinated activity of opposing muscle groups that curl the tail ventrally and dorsally. Specifically, acetylcholine regulates both ventral and dorsal curling of the male tail, partially through anthelmintic levamisole-sensitive, nicotinic receptor subunits. Male-specific muscles are required for acetylcholine-driven ventral curling of the male tail but dorsal curling requires the dorsal body wall muscles shared by males and hermaphrodites. Gamma-aminobutyric acid activity is required for both dorsal and ventral acetylcholine-induced curling of the male tail and an inhibitory gamma-aminobutyric acid receptor, UNC-49, prevents over-curling of the male tail during mating, suggesting that cross-inhibition of muscle groups helps maintain proper tail posture. CONCLUSION Our results demonstrated that coordination of opposing sex-specific and core muscle groups, through the activity of multiple neurotransmitters, is required for regulation of male tail posture during mating. We have provided a simple model for regulation of male tail posture that provides a foundation for studies of how genes, molecular pathways, and neural circuits contribute to sensory regulation of this motor behavior.
Collapse
Affiliation(s)
- Allyson J Whittaker
- Division of Biology/Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
306
|
Brown MK, Luo Y. Bilobalide modulates serotonin-controlled behaviors in the nematode Caenorhabditis elegans. BMC Neurosci 2009; 10:62. [PMID: 19545409 PMCID: PMC2714043 DOI: 10.1186/1471-2202-10-62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/22/2009] [Indexed: 11/16/2022] Open
Abstract
Background Dysfunctions in the serotonergic system have been implicated in several neurological disorders such as depression. Elderly individuals who have been diagnosed with clinical depression show elevated cases of neurodegenerative diseases. This has led to suggestions that modulating the serotonin (5-HT) system could provide an alternative method to current therapies for alleviating these pathologies. The neuroprotective effects of bilobalide in vitro have been documented. We aim to determine whether bilobalide affects the 5-HT system in the nematode C. elegans. The wild type worms, as well as well-characterized 5-HT mutants, were fed with bilobalide in a range of concentrations, and several 5-HT controlled behaviors were tested. Results We observed that bilobalide significantly inhibited 5-HT-controlled egg-laying behavior in a dose-dependent manner, which was blocked in the 5-HT receptor mutants (ser-4, mod-1), but not in the 5-HT transporter (mod-5) or synthesis (tph-1) mutants. Bilobalide also potentiated a 5-HT-controlled, experience-dependent locomotory behavior, termed the enhanced slowing response in the wild type animals. However, this effect was fully blocked in 5-HT receptor mod-1 and dopamine defective cat-2 mutants, but only partially blocked in ser-4 mutants. We also demonstrated that acetylcholine transmission was inhibited in a transgenic C. elegans strain that constitutively expresses Aβ, and bilobalide did not significantly affect this inhibition. Conclusion These results suggest that bilobalide may modulate specific 5-HT receptor subtypes, which involves interplay with dopamine transmission. Additional studies for the function of bilobalide in neurotransmitter systems could aid in our understanding of its neuroprotective properties.
Collapse
Affiliation(s)
- Marishka K Brown
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
| | | |
Collapse
|
307
|
Srivastava N, Clark DA, Samuel ADT. Temporal analysis of stochastic turning behavior of swimming C. elegans. J Neurophysiol 2009; 102:1172-9. [PMID: 19535479 DOI: 10.1152/jn.90952.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caenorhabditis elegans exhibits spontaneous motility in isotropic environments, characterized by periods of forward movements punctuated at random by turning movements. Here, we study the statistics of turning movements-deep Omega-shaped bends-exhibited by swimming worms. We show that the durations of intervals between successive Omega-turns are uncorrelated with one another and are effectively selected from a probability distribution resembling the sum of two exponentials. The worm initially exhibits frequent Omega-turns on being placed in liquid, and the mean rate of Omega-turns lessens over time. The statistics of Omega-turns is consistent with a phenomenological model involving two behavioral states governed by Poisson kinetics: a "slow" state generates Omega-turns with a low probability per unit time; a "fast" state generates Omega-turns with a high probability per unit time; and the worm randomly transitions between these slow and fast states. Our findings suggest that the statistics of spontaneous Omega-turns exhibited by swimming worms may be described using a small number of parameters, consistent with a two-state phenomenological model for the mechanisms that spontaneously generate Omega-turns.
Collapse
Affiliation(s)
- Nikhil Srivastava
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
308
|
Ward A, Walker VJ, Feng Z, Xu XZS. Cocaine modulates locomotion behavior in C. elegans. PLoS One 2009; 4:e5946. [PMID: 19536276 PMCID: PMC2691951 DOI: 10.1371/journal.pone.0005946] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022] Open
Abstract
Cocaine, a potent addictive substance, is an inhibitor of monoamine transporters, including DAT (dopamine transporter), SERT (serotonin transporter) and NET (norepinephrine transporter). Cocaine administration induces complex behavioral alterations in mammals, but the underlying mechanisms are not well understood. Here, we tested the effect of cocaine on C. elegans behavior. We show for the first time that acute cocaine treatment evokes changes in C. elegans locomotor activity. Interestingly, the neurotransmitter serotonin, rather than dopamine, is required for cocaine response in C. elegans. The C. elegans SERT MOD-5 is essential for the effect of cocaine, consistent with the role of cocaine in targeting monoamine transporters. We further show that the behavioral response to cocaine is primarily mediated by the ionotropic serotonin receptor MOD-1. Thus, cocaine modulates locomotion behavior in C. elegans primarily by impinging on its serotoninergic system.
Collapse
Affiliation(s)
- Alex Ward
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vyvyca J. Walker
- Program in Biomedical Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhaoyang Feng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - X. Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Biomedical Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
309
|
HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000486. [PMID: 19461873 PMCID: PMC2676694 DOI: 10.1371/journal.pgen.1000486] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/20/2009] [Indexed: 01/15/2023] Open
Abstract
Dietary restriction (DR) extends lifespan in various species and also slows the onset of age-related diseases. Previous studies from flies and yeast have demonstrated that the target of rapamycin (TOR) pathway is essential for longevity phenotypes resulting from DR. TOR is a conserved protein kinase that regulates growth and metabolism in response to nutrients and growth factors. While some of the downstream targets of TOR have been implicated in regulating lifespan, it is still unclear whether additional targets of this pathway also modulate lifespan. It has been shown that the hypoxia inducible factor-1 (HIF-1) is one of the targets of the TOR pathway in mammalian cells. HIF-1 is a transcription factor complex that plays key roles in oxygen homeostasis, tumor formation, glucose metabolism, cell survival, and inflammatory response. Here, we describe a novel role for HIF-1 in modulating lifespan extension by DR in Caenorhabditis elegans. We find that HIF-1 deficiency results in extended lifespan, which overlaps with that by inhibition of the RSKS-1/S6 kinase, a key component of the TOR pathway. Using a modified DR method based on variation of bacterial food concentrations on solid agar plates, we find that HIF-1 modulates longevity in a nutrient-dependent manner. The hif-1 loss-of-function mutant extends lifespan under rich nutrient conditions but fails to show lifespan extension under DR. Conversely, a mutation in egl-9, which increases HIF-1 activity, diminishes the lifespan extension under DR. This deficiency is rescued by tissue-specific expression of egl-9 in specific neurons and muscles. Increased lifespan by hif-1 or DR is dependent on the endoplasmic reticulum (ER) stress regulator inositol-requiring protein-1 (IRE-1) and is associated with lower levels of ER stress. Therefore, our results demonstrate a tissue-specific role for HIF-1 in the lifespan extension by DR involving the IRE-1 ER stress pathway. Dietary restriction (DR) is one of the most robust environmental manipulations that extend lifespan in various species. DR has also been shown to slow the onset of a number of age-related diseases. Studies in model organisms like C. elegans can be used to uncover biological mechanisms that determine the beneficial effects of DR. Previous studies suggest that the nutrient-sensing target of rapamycin (TOR) pathway is required for DR-mediated lifespan extension. However, the downstream mechanisms by which TOR modulates lifespan remain unclear. In mammalian cells, TOR and the downstream S6 kinase (S6K) activate expression of the hypoxia-inducible factor-1 (HIF-1), which is frequently up-regulated in various tumors. Using C. elegans as a model system, we characterized novel functions of HIF-1 in aging. We find that inhibition of HIF-1 extends lifespan under rich nutrient conditions, whereas enhanced levels of HIF-1 only allow partial lifespan extension by DR. We also demonstrated that increased lifespan by hif-1 or DR depends on the endoplasmic reticulum (ER) stress regulator inositol-requiring protein-1 (IRE-1) and is associated with lower levels of ER stress, which is caused by overloading of misfolded/unfolded proteins to ER. Thus, our results support the idea that HIF-1–mediated changes in protein homeostasis play a key role in the lifespan extension by DR.
Collapse
|
310
|
Anyanful A, Easley KA, Benian GM, Kalman D. Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli by activating genes that regulate lifespan and innate immunity. Cell Host Microbe 2009; 5:450-62. [PMID: 19454349 PMCID: PMC2992947 DOI: 10.1016/j.chom.2009.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/18/2008] [Accepted: 04/06/2009] [Indexed: 01/15/2023]
Abstract
Caenorhabditis elegans exhibits avoidance behavior when presented with diverse bacterial pathogens. We hypothesized that exposure to pathogens might not only cause worms to move away but also simultaneously activate pathways that promote resistance to the pathogen. We show that brief exposure to virulent or avirulent strains of the bacterial pathogen enteropathogenic E. coli (EPEC) "immunizes"C. elegans to survive a subsequent exposure that would otherwise prove lethal, a phenomenon we refer to as "conditioning." Conditioning requires dopaminergic neurons; the p38 MAP kinase pathway, which regulates innate immunity; and the insulin/IGFR pathway, which regulates lifespan. Our findings suggest that the molecular pathways that control innate immunity and lifespan may be regulated or "conditioned" by exposure to pathogens to allow survival in noxious environments.
Collapse
Affiliation(s)
- Akwasi Anyanful
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, Georgia, USA 30322
| | - Kirk A. Easley
- Department of Biostatistics, Emory University, Atlanta, Georgia, USA 30322
| | - Guy M. Benian
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, Georgia, USA 30322
| | - Daniel Kalman
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, Georgia, USA 30322
| |
Collapse
|
311
|
Jones KT, Ashrafi K. Caenorhabditis elegans as an emerging model for studying the basic biology of obesity. Dis Model Mech 2009; 2:224-9. [PMID: 19407330 PMCID: PMC2675801 DOI: 10.1242/dmm.001933] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The health problem of obesity and its related disorders highlights the need for understanding the components and pathways that regulate lipid metabolism. Because energy balance is maintained by a complex regulatory network, the use of a powerful genetic model like C. elegans can complement studies on mammalian physiology by offering new opportunities to identify genes and dissect complicated regulatory circuits. Many of the components that are central to governing human metabolism are conserved in the worm. Although the study of lipid metabolism in C. elegans is still relatively young, much progress has already been made in tracing out genetic pathways that regulate fat storage and in developing assays to explore different aspects of metabolic regulation and food sensation. This model system holds great promise for helping tease apart the complicated network of genes that maintain a proper energy balance.
Collapse
Affiliation(s)
- Kevin T. Jones
- Department of Physiology and Diabetes Center, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Kaveh Ashrafi
- Department of Physiology and Diabetes Center, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| |
Collapse
|
312
|
Sallinen V, Sundvik M, Reenilä I, Peitsaro N, Khrustalyov D, Anichtchik O, Toleikyte G, Kaslin J, Panula P. Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem 2009; 109:403-15. [DOI: 10.1111/j.1471-4159.2009.05986.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
313
|
Moussaif M, Sze JY. Intraflagellar transport/Hedgehog-related signaling components couple sensory cilium morphology and serotonin biosynthesis in Caenorhabditis elegans. J Neurosci 2009; 29:4065-75. [PMID: 19339602 PMCID: PMC2710879 DOI: 10.1523/jneurosci.0044-09.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 01/21/2023] Open
Abstract
Intraflagellar transport in cilia has been proposed as a crucial mediator of Hedgehog signal transduction during embryonic pattern formation in both vertebrates and invertebrates. Here, we show that the Hh receptor Patched-related factor DAF-6 and intraflagellar transport modulate serotonin production in Caenorhabditis elegans animals, by remodeling the architecture of dendritic cilia of a pair of ADF serotonergic chemosensory neurons. Wild-type animals under aversive environment drastically reduce DAF-6 expression in glia-like cells surrounding the cilia of chemosensory neurons, resulting in cilium structural remodeling and upregulation of the serotonin-biosynthesis enzyme tryptophan hydroxylase tph-1 in the ADF neurons. These cellular and molecular modifications are reversed when the environment improves. Mutants of daf-6 or intraflagellar transport constitutively upregulate tph-1 expression. Epistasis analyses indicate that DAF-6/intraflagellar transport and the OCR-2/OSM-9 TRPV channel act in concert, regulating two layers of activation of tph-1 in the ADF neurons. The TRPV signaling turns on tph-1 expression under favorable and aversive conditions, whereas inactivation of DAF-6 by stress results in further upregulation of tph-1 independently of OCR-2/OSM-9 activity. Behavioral analyses suggest that serotonin facilitates larval animals resuming development when the environment improves. Our study revealed the cilium structure of serotonergic neurons as a trigger of regulated serotonin production, and demonstrated that a Hedgehog-related signaling component is dynamically regulated by environment and underscores neuroplasticity of serotonergic neurons in C. elegans under stress and stress recovery.
Collapse
Affiliation(s)
- Mustapha Moussaif
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
314
|
Cohen M, Reale V, Olofsson B, Knights A, Evans P, de Bono M. Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. Cell Metab 2009; 9:375-85. [PMID: 19356718 DOI: 10.1016/j.cmet.2009.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/26/2008] [Accepted: 02/11/2009] [Indexed: 01/26/2023]
Abstract
Animals modify food-seeking behavior and metabolism according to perceived food availability. Here we show that, in the roundworm C. elegans, release of neuropeptides from interneurons that are directly postsynaptic to olfactory, gustatory, and thermosensory neurons coordinately regulates behavior and metabolism. Animals lacking these neuropeptides, encoded by the flp-18 gene, are defective in chemosensation and foraging, accumulate excess fat, and exhibit reduced oxygen consumption. Two G protein-coupled receptors of the NPY/RFamide family, NPR-4 and NPR-5, are activated by FLP-18 peptides in vitro and exhibit mutant phenotypes that recapitulate those of flp-18 mutants. Our data suggest that sensory input can coordinately regulate behavior and metabolism via NPY/RFamide-like receptors. They suggest that peptidergic feedback from interneurons regulates sensory neuron activity, and that at least some of this communication occurs extrasynaptically. Extrasynaptic neuropeptide signaling may greatly increase the computational capacity of neural circuits.
Collapse
Affiliation(s)
- Merav Cohen
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | | | |
Collapse
|
315
|
Alexander M, Chan KKM, Byrne AB, Selman G, Lee T, Ono J, Wong E, Puckrin R, Dixon SJ, Roy PJ. An UNC-40 pathway directs postsynaptic membrane extension in Caenorhabditis elegans. Development 2009; 136:911-22. [PMID: 19211675 DOI: 10.1242/dev.030759] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The postsynaptic membrane of the embryonic neuromuscular junction undergoes a dramatic expansion during later development to facilitate the depolarization of larger muscles. In C. elegans, the postsynaptic membrane resides at the termini of plasma membrane extensions called muscle arms. Membrane extension to the motor axons during larval development doubles the number of muscle arms, making them a tractable model to investigate both postsynaptic membrane expansion and guided membrane extension. To identify genes required for muscle arm extension, we performed a forward screen for mutants with fewer muscle arms. We isolated 23 mutations in 14 genes, including unc-40/Dcc, which encodes a transmembrane receptor that guides the migration of cells and extending axons in response to the secreted UNC-6/Netrin spatial cue. We discovered that UNC-40 is enriched at muscle arm termini and functions cell-autonomously to direct arm extension to the motor axons. Surprisingly, UNC-6 is dispensable for muscle arm extension, suggesting that UNC-40 relies on other spatial cues to direct arm extension. We provide the first evidence that the guanine-nucleotide exchange factor UNC-73/Trio, members of the WAVE actin-polymerization complex, and a homolog of the focal adhesion complex can function downstream of UNC-40 to direct membrane extension. Our work is the first to define a pathway for directed muscle membrane extension and illustrates that axon guidance components can play key roles in postsynaptic membrane expansion.
Collapse
Affiliation(s)
- Mariam Alexander
- Department of Molecular Genetics, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Kleemann GA, Murphy CT. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol 2009; 299:51-7. [PMID: 19059305 DOI: 10.1016/j.mce.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 10/13/2008] [Accepted: 10/30/2008] [Indexed: 01/29/2023]
Abstract
In recent years, there has been significant growth in our understanding of the regulation of longevity. The most notable change is the identification and detailed description of a number of molecular pathways modulating the rate of aging. A good portion of this new data has come from studies using the genetic model organism Caenorhabditis elegans. In this review, we provide an overview of physiological systems that are involved in the modulation of aging in C. elegans, then discuss the known endocrine signaling systems that are likely to couple these systems together. Finally, we present a working model describing how aging may be regulated as a coordinated system, communicating through endocrine signals.
Collapse
Affiliation(s)
- G A Kleemann
- Lewis-Sigler Institute for Integrative Genomics and Dept. of Molecular Biology, Princeton University, 148 Carl Icahn Lab, Washington Road, Princeton, NJ 08544, United States
| | | |
Collapse
|
317
|
Toivonen JM, Partridge L. Endocrine regulation of aging and reproduction in Drosophila. Mol Cell Endocrinol 2009; 299:39-50. [PMID: 18682271 DOI: 10.1016/j.mce.2008.07.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/10/2008] [Accepted: 07/03/2008] [Indexed: 12/19/2022]
Abstract
Hormonal signals can modulate lifespan and reproductive capacity across the animal kingdom. The use of model organisms such as worms, flies and mice has been fundamentally important for aging research in the discovery of genetic alterations that can extend healthy lifespan. The effects of mutations in the insulin and insulin-like growth factor-like signaling (IIS) pathways are evolutionarily conserved in that they can increase lifespan in all three animal models. Additionally, steroids and other lipophilic signaling molecules modulate lifespan in diverse organisms. Here we shall review how major hormonal pathways in the fruit fly Drosophila melanogaster interact to influence reproductive capacity and aging.
Collapse
Affiliation(s)
- Janne M Toivonen
- Institute of Healthy Aging, UCL Research Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
318
|
Zubenko GS, Jones ML, Estevez AO, Hughes HB, Estevez M. Identification of a CREB-dependent serotonergic pathway and neuronal circuit regulating foraging behavior in Caenorhabditis elegans: a useful model for mental disorders and their treatments? Am J Med Genet B Neuropsychiatr Genet 2009; 150B:12-23. [PMID: 19035344 PMCID: PMC3234207 DOI: 10.1002/ajmg.b.30891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cAMP-response element binding protein (CREB)-mediated cell signaling pathway is conserved through evolution and participates in a broad range of complex behaviors of divergent species including man. This study describes the integration of genetic, pharmacologic, and anatomic methods to elucidate a serotonergic signaling pathway by which the CREB homolog CRH-1 controls foraging rate (FR) in the model organism Caenorhabditis elegans, along with the complete neuronal circuit through which this pathway operates. In the anterior afferent arm of the circuit, CRH-1 controls FR by regulating the expression of tph-1, the sole structural gene for tryptophan hydroxylase, in serotonergic sensory (ADF) neurons whose post-synaptic effects are mediated through 5HT(2)-like SER-1 receptors. The posterior afferent limb of the circuit includes an interneuron (RIH) that does not express tph-1 and whose serotonergic phenotype is dependent on the contribution of this neurotransmitter from another source, probably the ADF neurons. The postsynaptic effects of the RIH interneuron are mediated through 5HT(1)-like SER-4 receptors. This model has potential utility for the study of clinical disorders and experimental therapeutics. Furthermore, the discovery of serotonergic neurons that depend on other sources for their neurotransmitter phenotype could provide a mechanism for rapidly altering the number and distribution of serotonergic pathways in developing and adult nervous systems, providing a dimension of functional complexity that has been previously unrecognized.
Collapse
Affiliation(s)
- George S Zubenko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
319
|
Hapiak VM, Hobson RJ, Hughes L, Smith K, Harris G, Condon C, Komuniecki P, Komuniecki RW. Dual excitatory and inhibitory serotonergic inputs modulate egg laying in Caenorhabditis elegans. Genetics 2009; 181:153-63. [PMID: 19001289 PMCID: PMC2621164 DOI: 10.1534/genetics.108.096891] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/05/2008] [Indexed: 01/30/2023] Open
Abstract
Serotonin (5-HT) regulates key processes in both vertebrates and invertebrates. Previously, four 5-HT receptors that contributed to the 5-HT modulation of egg laying were identified in Caenorhabditis elegans. Therefore, to assess potential receptor interactions, we generated animals containing combinations of null alleles for each receptor, especially animals expressing only individual 5-HT receptors. 5-HT-stimulated egg laying and egg retention correlated well with different combinations of predicted excitatory and inhibitory serotonergic inputs. For example, 5-HT did not stimulate egg laying in ser-1, ser-7, or ser-7 ser-1 null animals, and ser-7 ser-1 animals retained more eggs than wild-type animals. In contrast, 5-HT-stimulated egg laying in ser-4;mod-1 animals was greater than in wild-type animals, and ser-4;mod-1 animals retained fewer eggs than wild-type animals. Surprisingly, ser-4;mod-1;ser-7 ser-1 animals retained the same number of eggs as wild-type animals and exhibited significant 5-HT-stimulated egg laying that was dependent on a previously uncharacterized receptor, SER-5. 5-HT-stimulated egg laying was absent in ser-5;ser-4;mod-1;ser-7 ser-1 animals, and these animals retained more eggs than either wild-type or ser-4;mod-1;ser-7 ser-1 animals. The 5-HT sensitivity of egg laying could be restored by ser-5 muscle expression. Together, these results highlight the dual excitatory/inhibitory serotonergic inputs that combine to modulate egg laying.
Collapse
Affiliation(s)
- Vera M Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390, USA
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Tsui D, van der Kooy D. Serotonin mediates a learned increase in attraction to high concentrations of benzaldehyde in aged C. elegans. Learn Mem 2008; 15:844-55. [PMID: 18984566 DOI: 10.1101/lm.1188208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We utilized olfactory-mediated chemotaxis in Caenorhabditis elegans to examine the effect of aging on information processing and animal behavior. Wild-type (N2) young adults (day 4) initially approach and eventually avoid a point source of benzaldehyde. Aged adult animals (day 7) showed a stronger initial approach and a delayed avoidance to benzaldehyde compared with young adults. This delayed avoidance is due to an increased attraction rather than a decreased avoidance to benzaldehyde because (1) aged odr-3 mutants that are defective in odor attraction showed no delayed benzaldehyde avoidance, and (2) the delay in avoidance was also observed with another attractant diacetyl, but not the repellent octanol. Interestingly, the stronger expression of attractive behavior was only observed at benzaldehyde concentrations of 1% or higher. When worms were grown on nonbacterial growth media instead of Escherichia coli, thus removing the contingency between odors released from the food and the food itself, the increase in attraction to benzaldehyde disappeared. The increased attraction recovered after reinitiating the odor-food contingency by returning animals to E. coli food or supplementing axenic media with benzaldehyde. Moreover, serotonin-deficient mutants showed a deficit in the age-enhanced attraction. These results suggest that the increased attraction to benzaldehyde in aged worms is (1) serotonin mediated, (2) specific to high concentration of odorants, and (3) dependent on a learned association of odor metabolites with the presence of food. We propose that associative learning may selectively modify pathways at or downstream from a low-affinity olfactory receptor.
Collapse
Affiliation(s)
- David Tsui
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
321
|
Hukema RK, Rademakers S, Jansen G. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learn Mem 2008; 15:829-36. [PMID: 18984564 DOI: 10.1101/lm.994408] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While naïve Caenorhabditis elegans individuals are attracted to 0.1-200 mM NaCl, they become strongly repelled by these NaCl concentrations after prolonged exposure to 100 mM NaCl. We call this behavior gustatory plasticity. Here, we show that C. elegans displays avoidance of low NaCl concentrations only when pre-exposure to NaCl is combined with a negative stimulus, e.g., a repellent, or in the absence of food. By testing serotonin and/or dopamine signaling mutants and rescue by exogenously supplying these neurotransmitters, we found that serotonin and dopamine play a role during the plasticity response, while serotonin is also required during development. In addition, we also show that glutamate plays an important role in the response to NaCl, both in chemoattraction to NaCl and in gustatory plasticity. Thus, C. elegans can associate NaCl with negative stimuli using dopaminergic, serotonergic, and glutamatergic neurotransmission. Finally, we show that prolonged starvation enhances gustatory plasticity and can induce avoidance of NaCl in most gustatory plasticity mutants tested. Only mutation of the glutamate-gated Cl(-) channel gene avr-15 affected starvation-enhanced gustatory plasticity. These results suggest that starvation induces avoidance of NaCl largely independent of the normal gustatory plasticity mechanism.
Collapse
Affiliation(s)
- Renate K Hukema
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
322
|
Pilon M. Fishing lines, time-delayed guideposts, and other tricks used by developing pharyngeal neurons in Caenorhabditis elegans. Dev Dyn 2008; 237:2073-80. [PMID: 18651660 DOI: 10.1002/dvdy.21636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The 20 neurons that innervate the Caenorhabditis elegans pharynx form a simple nervous system that develops and operates in near complete isolation from the rest of the worm body and, therefore, offers a manageable degree of complexity for developmental genetics studies. This review discusses the progress that has been made in determining the mechanisms by which 4 of the 20 pharyngeal neurons develop, and emphasizes surprising processes that add to the classic growth cone guidance model which is usually thought to explain how most axons establish their trajectories.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Cell Molecular Biology, University of Göteborg, Göteborg, Sweden.
| |
Collapse
|
323
|
Smit RB, Schnabel R, Gaudet J. The HLH-6 transcription factor regulates C. elegans pharyngeal gland development and function. PLoS Genet 2008; 4:e1000222. [PMID: 18927627 PMCID: PMC2563036 DOI: 10.1371/journal.pgen.1000222] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/11/2008] [Indexed: 12/22/2022] Open
Abstract
The Caenorhabditis elegans pharynx (or foregut) functions as a pump that draws in food (bacteria) from the environment. While the “organ identity factor” PHA-4 is critical for formation of the C. elegans pharynx as a whole, little is known about the specification of distinct cell types within the pharynx. Here, we use a combination of bioinformatics, molecular biology, and genetics to identify a helix-loop-helix transcription factor (HLH-6) as a critical regulator of pharyngeal gland development. HLH-6 is required for expression of a number of gland-specific genes, acting through a discrete cis-regulatory element named PGM1 (Pharyngeal Gland Motif 1). hlh-6 mutants exhibit a frequent loss of a subset of glands, while the remaining glands have impaired activity, indicating a role for hlh-6 in both gland development and function. Interestingly, hlh-6 mutants are also feeding defective, ascribing a biological function for the glands. Pharyngeal pumping in hlh-6 mutants is normal, but hlh-6 mutants lack expression of a class of mucin-related proteins that are normally secreted by pharyngeal glands and line the pharyngeal cuticle. An interesting possibility is that one function of pharyngeal glands is to secrete a pharyngeal lining that ensures efficient transport of food along the pharyngeal lumen. To make an organ, cells must be instructed to be part of a common structure yet must also be assigned specific roles or identities within that structure. For example, the stomach contains a variety of different kinds of cells, including muscles, nerves, and glands. This same complexity is seen even in relatively simple organs, like the pharynx (foregut) of the nematode C. elegans. The pharynx is a neuromuscular organ that pumps in food (bacteria) from the environment. This organ is relatively simple (containing only 80 cells) yet contains five distinct kinds of cells. How these different cells are specified is unclear but likely involves combinations of developmental regulators known as transcription factors. Here, we examine one cell type, the pharyngeal glands, and identify a key regulator of their development, the transcription factor HLH-6. Interestingly, HLH-6 is closely related to a mammalian transcription factor, Sgn1, which is involved in development of mammalian salivary glands, suggesting that C. elegans pharyngeal glands are evolutionarily related to mammalian salivary glands. A further connection is that the pharyngeal glands of C. elegans appear to be required for efficient feeding, possibly by secreting mucin-like proteins that ensure the smooth passage of food along the digestive tract.
Collapse
Affiliation(s)
- Ryan B. Smit
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeb Gaudet
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
324
|
Zhang M, Chung SH, Fang-Yen C, Craig C, Kerr RA, Suzuki H, Samuel ADT, Mazur E, Schafer WR. A self-regulating feed-forward circuit controlling C. elegans egg-laying behavior. Curr Biol 2008; 18:1445-55. [PMID: 18818084 PMCID: PMC2621019 DOI: 10.1016/j.cub.2008.08.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Egg laying in Caenorhabditis elegans has been well studied at the genetic and behavioral levels. However, the neural basis of egg-laying behavior is still not well understood; in particular, the roles of specific neurons and the functional nature of the synaptic connections in the egg-laying circuit remain uncharacterized. RESULTS We have used in vivo neuroimaging and laser surgery to address these questions in intact, behaving animals. We have found that the HSN neurons play a central role in driving egg-laying behavior through direct excitation of the vulval muscles and VC motor neurons. The VC neurons play a dual role in the egg-laying circuit, exciting the vulval muscles while feedback-inhibiting the HSNs. Interestingly, the HSNs are active in the absence of synaptic input, suggesting that egg laying may be controlled through modulation of autonomous HSN activity. Indeed, body touch appears to inhibit egg laying, in part by interfering with HSN calcium oscillations. CONCLUSIONS The egg-laying motor circuit comprises a simple three-component system combining feed-forward excitation and feedback inhibition. This microcircuit motif is common in the C. elegans nervous system, as well as in the mammalian cortex; thus, understanding its functional properties in C. elegans may provide insight into its computational role in more complex brains.
Collapse
Affiliation(s)
- Mi Zhang
- San Diego State University and University of California, San Diego Joint Doctoral Program, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Elle IC, Olsen LC, Mosbech MB, Rødkær SV, Pultz D, Boelt SG, Fredens J, Sørensen P, Færgeman NJ. C. elegans: A Model for Understanding Lipid Accumulation. Lipid Insights 2008. [DOI: 10.4137/lpi.s1057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Regulation and coordination of lipid metabolism involve complex interactions between the feeding regulatory centres in the nervous system and the regulated uptake, intracellular transport, storage, and utilization of stored lipids. As energy is essential to all cellular processes, it is thought that complex networks have evolved to ensure survival by maintaining adequate energy reservoirs. However, in times of nutrient abundance and imbalance, improper regulation and coordination of these networks can lead to obesity and other metabolic diseases and syndromes. Obesity genes must be considered as molecular components of such networks which function at an organismal level to orchestrate energy intake and expenditure. Thus, the functions of obesity genes must be understood within the context of these networks in intact animals. Since the majority of genes required for lipid homeostasis are evolutionarily conserved, much information can be obtained relevant to complex organisms by studying simple eukaryotes like C. elegans. Its genetic tractability makes C. elegans a highly attractive platform for identifying lipid regulatory pathways, drugs, and their molecular targets which ultimately will help us to understand the origin of metabolic diseases such as obesity and diabetes. Here we briefly present some central aspects of lipid accumulation in C. elegans and discuss its merits as a platform for identification and development of novel bioactive compounds regulating lipid storage.
Collapse
Affiliation(s)
- Ida C. Elle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Louise C.B. Olsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Mai-Britt Mosbech
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Steven V. Rødkær
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Dennis Pultz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sanne G. Boelt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Julius Fredens
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Pernille Sørensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
326
|
Ringstad N, Horvitz HR. FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nat Neurosci 2008; 11:1168-76. [PMID: 18806786 PMCID: PMC2963311 DOI: 10.1038/nn.2186] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/17/2008] [Indexed: 11/09/2022]
Abstract
Egg-laying behavior of the Caenorhabditis elegans hermaphrodite is regulated by G protein signaling pathways. Here we show that the egg laying-defective mutant egl-6(n592) carries an activating mutation in a G protein-coupled receptor that inhibits C. elegans egg-laying motor neurons in a G(o)-dependent manner. Ligands for EGL-6 are Phe-Met-Arg-Phe-NH(2) (FMRFamide)-related peptides encoded by the genes flp-10 and flp-17. flp-10 is expressed in both neurons and non-neuronal cells. The major source of flp-17 peptides is a pair of presumptive sensory neurons, the BAG neurons. Genetic analysis of the egl-6 pathway revealed that the EGL-6 neuropeptide signaling pathway functions redundantly with acetylcholine to inhibit egg-laying. The retention of embryos in the uterus of the C. elegans hermaphrodite is therefore under the control of a presumptive sensory system and is inhibited by the convergence of signals from neuropeptides and the small-molecule neurotransmitter acetylcholine.
Collapse
Affiliation(s)
- Niels Ringstad
- Howard Hughes Medical Institute, McGovern Institute for Brain Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
327
|
Donohoe DR, Phan T, Weeks K, Aamodt EJ, Dwyer DS. Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel. J Neurosci Res 2008; 86:2553-63. [PMID: 18438926 DOI: 10.1002/jnr.21684] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Antipsychotic drugs produce acute behavioral effects through antagonism of dopamine and serotonin receptors, and long-term adaptive responses that are not well understood. The goal of the study presented here was to use Caenorhabditis elegans to investigate the molecular mechanism or mechanisms that contribute to adaptive responses produced by antipsychotic drugs. First-generation antipsychotics, trifluoperazine and fluphenazine, and second-generation drugs, clozapine and olanzapine, increased the expression of tryptophan hydroxylase-1::green fluorescent protein (TPH-1::GFP) and serotonin in the ADF neurons of C. elegans. This response was absent or diminished in mutant strains lacking the transient receptor potential vanilloid channel (TRPV; osm-9) or calcium/calmodulin-dependent protein kinase II (CaMKII; unc-43). The role of calcium signaling was further implicated by the finding that a selective antagonist of calmodulin and a calcineurin inhibitor also enhanced TPH-1::GFP expression. The ADF neurons modulate foraging behavior (turns/reversals off food) through serotonin production. We found that short-term exposure to the antipsychotic drugs altered the frequency of turns/reversals off food. This response was mediated through dopamine and serotonin receptors and was abolished in serotonin-deficient mutants (tph-1) and strains lacking the SER-1 and MOD-1 serotonin receptors. Consistent with the increase in serotonin in the ADF neurons induced by the drugs, drug withdrawal after 24-hr treatment was accompanied by a rebound in the number of turns/reversals, which demonstrates behavioral adaptation in serotonergic systems. Characterization of the cellular, molecular, and behavioral adaptations to continuous exposure to antipsychotic drugs may provide insight into the long-term clinical effects of these medications.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
328
|
Perez CL, Van Gilst MR. A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metab 2008; 8:266-74. [PMID: 18762027 DOI: 10.1016/j.cmet.2008.08.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/25/2008] [Accepted: 08/12/2008] [Indexed: 12/18/2022]
Abstract
Although studies in C. elegans have identified numerous genes involved in fat storage, the next step is to determine how these factors actually affect in vivo lipid metabolism. We have developed a (13)C isotope assay to quantify the contribution of dietary fat absorption and de novo synthesis to fat storage and membrane lipid production in C. elegans, establishing the means by which worms obtain and process fatty acids. We applied this method to characterize how insulin signaling affects lipid physiology. Several long-lived mutations in the insulin receptor gene daf-2 resulted in significantly higher levels of synthesized fats in triglycerides and phospholipids. This elevation of fat synthesis was completely dependent upon daf-16/FoxO. Other long-lived alleles of daf-2 did not increase fat synthesis, however, suggesting that site-specific mutations in the insulin receptor can differentially influence longevity and metabolism, and that elevated lipid synthesis is not required for the longevity of daf-2 mutants.
Collapse
Affiliation(s)
- Carissa L Perez
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
329
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
330
|
Abstract
Years of research have identified a highly conserved mechanism required for apoptotic cell killing. How certain cells are specified to die is not well understood. With a rich history in programmed cell death research, the nematode C. elegans offers an excellent animal model with which to study cell death specification events. Developing hermaphrodites have 131 invariant cell death events that can be studied with single cell resolution. Recent genetic studies have begun to identify diverse sets of factors required for the proper specification of individual cell death events. The limited findings thus far suggest that cell death specification is controlled through transcriptional regulation of at least two members of the core cell death pathway, egl-1 and ced-3. However, it remains unclear if additional modes of cell death specification exist. Here we briefly summarize current findings in the field of C. elegans cell death specification and consider those questions that remain to be answered.
Collapse
Affiliation(s)
- Erin Peden
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Darrell J. Killian
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
331
|
Greer ER, Perez CL, Van Gilst MR, Lee BH, Ashrafi K. Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 2008; 8:118-31. [PMID: 18680713 PMCID: PMC2556218 DOI: 10.1016/j.cmet.2008.06.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/17/2008] [Accepted: 06/06/2008] [Indexed: 12/28/2022]
Abstract
A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-beta ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans. We show that daf-7 signaling regulates fat metabolism and feeding behavior through a compact neural circuit that allows for integration of multiple inputs and the flexibility for differential regulation of outputs. In daf-7 mutants, perception of depleting food resources causes fat accumulation despite reduced feeding rate. This fat accumulation is mediated, in part, through neural metabotropic glutamate signaling and upregulation of peripheral endogenous biosynthetic pathways that direct energetic resources into fat reservoirs. Thus, neural perception of adverse environmental conditions can promote fat accumulation without a concomitant increase in feeding rate.
Collapse
Affiliation(s)
- Elisabeth R. Greer
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| | - Carissa L. Perez
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | - Marc R. Van Gilst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Brian H. Lee
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| | - Kaveh Ashrafi
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| |
Collapse
|
332
|
Johnston J, Iser WB, Chow DK, Goldberg IG, Wolkow CA. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues. PLoS One 2008; 3:e2821. [PMID: 18665238 PMCID: PMC2483734 DOI: 10.1371/journal.pone.0002821] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/06/2008] [Indexed: 11/18/2022] Open
Abstract
Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.
Collapse
Affiliation(s)
- Josiah Johnston
- Laboratory of Genetics, NIA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Wendy B. Iser
- Laboratory of Neurosciences, NIA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - David K. Chow
- Laboratory of Neurosciences, NIA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ilya G. Goldberg
- Laboratory of Genetics, NIA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Catherine A. Wolkow
- Laboratory of Neurosciences, NIA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
333
|
Abstract
Neuroendocrine signaling pathways play a central role in modulating animal body size in response to environmental signals. Little is known, however, regarding how these neuroendocrine circuits are controlled. An important advance in this area is reported in this issue of Genes & Development by Kaplan and colleagues (pp. 1877-1893), who show that serotonergic neurons regulate the growth of peripheral tissues in Drosophila through the insulin/IGF pathway.
Collapse
Affiliation(s)
- Anne-Françoise Ruaud
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
334
|
Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP. A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 2008; 22:1877-93. [PMID: 18628395 PMCID: PMC2492735 DOI: 10.1101/gad.1670508] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 05/23/2008] [Indexed: 11/24/2022]
Abstract
Growth and body size are regulated by the CNS, integrating the genetic developmental program with assessments of an animal's current energy state and environmental conditions. CNS decisions are transmitted to all cells of the animal by insulin/insulin-like signals. The molecular biology of the CNS growth control system has remained, for the most part, elusive. Here we identify NS3, a Drosophila nucleostemin family GTPase, as a powerful regulator of body size. ns3 mutants reach <60% of normal size and have fewer and smaller cells, but exhibit normal body proportions. NS3 does not act cell-autonomously, but instead acts at a distance to control growth. Rescue experiments were performed by expressing wild-type ns3 in many different cells of ns3 mutants. Restoring NS3 to only 106 serotonergic neurons rescued global growth defects. These neurons are closely apposed with those of insulin-producing neurons, suggesting possible communication between the two neuronal systems. In the brains of ns3 mutants, excess serotonin and insulin accumulate, while peripheral insulin pathway activation is low. Peripheral insulin pathway activation rescues the growth defects of ns3 mutants. The findings suggest that NS3 acts in serotonergic neurons to regulate insulin signaling and thus exert global growth control.
Collapse
Affiliation(s)
- Daniel D. Kaplan
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, 94305, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Gregor Zimmermann
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Kaye Suyama
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Matthew P. Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, 94305, USA
| |
Collapse
|
335
|
Murakami H, Bessinger K, Hellmann J, Murakami S. Manipulation of serotonin signal suppresses early phase of behavioral aging in Caenorhabditis elegans. Neurobiol Aging 2008; 29:1093-100. [PMID: 17336425 DOI: 10.1016/j.neurobiolaging.2007.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/08/2006] [Accepted: 01/23/2007] [Indexed: 11/29/2022]
Abstract
Aging is associated with progressive changes in behavioral functions, in part caused by muscle frailty, called sarcopenia. However, it was not clear whether certain neurotransmitters are directly involved in behavioral aging. Here we investigated aging of locomotion behaviors with an associative learning property, called basal and enhanced slowing response in Caenorhabditis elegans. Basal slowing response is a modest slowdown in response to food, while enhanced slowing response is a greater slowdown response when animals experience starvation. The behaviors are mediated by dopamine and serotonin, respectively. During aging, basal slowing response was increased, resulting in a diminished difference between the two slowing responses. The behavioral change occurred during early phase of aging prior to the timing when sarcopenia was observed in previous studies. Interestingly, expression of a serotonin biosynthesis marker, tph-1Colon, two colonsGFP, was increased in old animals. Serotonin receptor antagonists and deletion mutants of their target receptor genes (ser-1 and ser-4) partially suppressed age-related changes in locomotion behaviors. Thus, manipulating serotonin signal at receptor levels suppresses early phase of locomotion aging.
Collapse
Affiliation(s)
- Hana Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 580 S Preston Street, BaxterII, RM102, Louisville, KY 40202, United States
| | | | | | | |
Collapse
|
336
|
Zhang Y. Neuronal mechanisms of Caenorhabditis elegans and pathogenic bacteria interactions. Curr Opin Microbiol 2008; 11:257-61. [PMID: 18555738 DOI: 10.1016/j.mib.2008.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/22/2008] [Indexed: 02/05/2023]
Abstract
Individuals interact with environment through different neuronal functions, such as olfaction and mechanosensation; experience shapes these physiological functions. It is not well understood how an individual senses and processes multiple cues of natural stimuli in the environment and how experience modulates these physiological mechanisms. Recent molecular genetics and behavioral studies on the interactions of the genetic model organism Caenorhabditis elegans with pathogenic bacteria have provided insights on the molecular and cellular mechanisms underlying these regulatory processes.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge MA 02138, United States.
| |
Collapse
|
337
|
Doonan R, Hatzold J, Raut S, Conradt B, Alfonso A. HLH-3 is a C. elegans Achaete/Scute protein required for differentiation of the hermaphrodite-specific motor neurons. Mech Dev 2008; 125:883-93. [PMID: 18586090 DOI: 10.1016/j.mod.2008.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/28/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
Basic helix-loop-helix (bHLH) proteins of the Achaete/Scute (Ac/Sc) family are required for neurogenesis in both Drosophila and vertebrates. These transcription factors are commonly referred to as 'proneural' factors, as they promote neural fate in many contexts. Although Ac/Sc proteins have been studied in Hydra, jellyfish, many insects, and several vertebrates, the role of these proteins in Caenorhabditis elegans neurogenesis is relatively uncharacterized. The C. elegans genome consists of three Ac/Sc genes, previously identified as hlh-3, hlh-6, and hlh-14. Here, we characterize the role of hlh-3 in nervous system development. Although hlh-3 appears to be expressed in all neural precursors, we find that hlh-3 null mutants have a mostly functional nervous system. However, these mutants are egg-laying defective, resulting from a block in differentiation of the HSN motor neurons. Detectable HSNs have misdirected axon projection, which appears to result from a lack of netrin signaling within the HSNs. Thus, our findings suggest a novel link between Ac/Sc bHLH proteins and the expression of genes required for proper interpretation of axon guidance cues. Lastly, based on sequence identity, expression pattern, and a role in neural differentiation, hlh-3 is most likely an ortholog of Drosophila asense.
Collapse
Affiliation(s)
- Ryan Doonan
- Department of Biology, University College London, London, England WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
338
|
Srinivasan S, Sadegh L, Elle IC, Christensen AGL, Faergeman NJ, Ashrafi K. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab 2008; 7:533-44. [PMID: 18522834 PMCID: PMC2495008 DOI: 10.1016/j.cmet.2008.04.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 02/12/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat regulation. Serotonergic fat regulation is dependent on a neurally expressed channel and a G protein-coupled receptor that initiate signaling cascades that ultimately promote lipid breakdown at peripheral sites of fat storage. In turn, intermediates of lipid metabolism generated in the periphery modulate feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses of the nervous system to the perception of nutrient availability.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Physiology and UCSF Diabetes Center, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517, USA
| | - Leila Sadegh
- Department of Physiology and UCSF Diabetes Center, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517, USA
| | - Ida C. Elle
- Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230, University of Southern Denmark, Odense M, Denmark
| | - Anne G. L. Christensen
- Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230, University of Southern Denmark, Odense M, Denmark
| | - Nils J. Faergeman
- Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230, University of Southern Denmark, Odense M, Denmark
| | - Kaveh Ashrafi
- Department of Physiology and UCSF Diabetes Center, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517, USA
| |
Collapse
|
339
|
Janssen T, Meelkop E, Lindemans M, Verstraelen K, Husson SJ, Temmerman L, Nachman RJ, Schoofs L. Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. Endocrinology 2008; 149:2826-39. [PMID: 18339709 DOI: 10.1210/en.2007-1772] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Members of the cholecystokinin (CCK)/gastrin family of peptides, including the arthropod sulfakinins, and their cognate receptors, play an important role in the regulation of feeding behavior and energy homeostasis. Despite many efforts after the discovery of CCK/gastrin immunoreactivity in nematodes 23 yr ago, the identity of these nematode CCK/gastrin-related peptides has remained a mystery ever since. The Caenorhabditis elegans genome contains two genes with high identity to the mammalian CCK receptors and their invertebrate counterparts, the sulfakinin receptors. By using the potential C. elegans CCK receptors as a fishing hook, we have isolated and identified two CCK-like neuropeptides encoded by neuropeptide-like protein-12 (nlp-12) as the endogenous ligands of these receptors. The neuropeptide-like protein-12 peptides have a very limited neuronal expression pattern, seem to occur in vivo in the unsulfated form, and react specifically with a human CCK-8 antibody. Both receptors and ligands share a high degree of structural similarity with their vertebrate and arthropod counterparts, and also display similar biological activities with respect to digestive enzyme secretion and fat storage. Our data indicate that the gastrin-CCK signaling system was already well established before the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Tom Janssen
- Functional Genomics and Proteomics Unit, Department of Biology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
340
|
Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2008; 105:7321-6. [PMID: 18477695 DOI: 10.1073/pnas.0802164105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid behavioral responses to oxygen are generated by specialized sensory neurons that sense hypoxia and hyperoxia. On a slower time scale, many cells respond to oxygen through the activity of the hypoxia-inducible transcription factor HIF-1. Here, we show that in the nematode Caenorhabditis elegans, prolonged growth in hypoxia alters the neuronal circuit for oxygen preference by activating the hif-1 pathway. Activation of hif-1 by hypoxia or by mutations in its negative regulator egl-9/prolyl hydroxylase shifts behavioral oxygen preferences to lower concentrations and eliminates a regulatory input from food. At a neuronal level, hif-1 activation transforms a distributed, regulated neuronal network for oxygen preference into a smaller, fixed network that is constitutively active. The hif-1 pathway acts both in neurons and in gonadal endocrine cells to regulate oxygen preference. These results suggest that physiological detection of hypoxia by multiple tissues provides adaptive information to neuronal circuits to modify behavior.
Collapse
|
341
|
Calvo AC, Pey AL, Ying M, Loer CM, Martinez A. Anabolic function of phenylalanine hydroxylase in Caenorhabditis elegans. FASEB J 2008; 22:3046-58. [PMID: 18460651 DOI: 10.1096/fj.08-108522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In humans, liver phenylalanine hydroxylase (PAH) has an established catabolic function, and mutations in PAH cause phenylketonuria, a genetic disease characterized by neurological damage, if not treated. To obtain novel evolutionary insights and information on molecular mechanisms operating in phenylketonuria, we investigated PAH in the nematode Caenorhabditis elegans (cePAH), where the enzyme is coded by the pah-1 gene, expressed in the hypodermis. CePAH presents similar molecular and kinetic properties to human PAH [S(0.5)(L-Phe) approximately 150 microM; K(m) for tetrahydrobiopterin (BH(4)) approximately 35 microM and comparable V(max)], but cePAH is devoid of positive cooperativity for L-Phe, an important regulatory mechanism of mammalian PAH that protects the nervous system from excess L-Phe. Pah-1 knockout worms show no obvious neurological defects, but in combination with a second cuticle synthesis mutation, they display serious cuticle abnormalities. We found that pah-1 knockouts lack a yellow-orange pigment in the cuticle, identified as melanin by spectroscopic techniques, and which is detected in C. elegans for the first time. Pah-1 mutants show stimulation of superoxide dismutase activity, suggesting that cuticle melanin functions as oxygen radical scavenger. Our results uncover both an important anabolic function of PAH and the change in regulation of the enzyme along evolution.
Collapse
Affiliation(s)
- Ana C Calvo
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
342
|
Donohoe DR, Weeks K, Aamodt EJ, Dwyer DS. Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans. Int J Dev Neurosci 2008; 26:371-80. [PMID: 18282677 PMCID: PMC2600964 DOI: 10.1016/j.ijdevneu.2007.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 01/07/2008] [Accepted: 08/21/2007] [Indexed: 02/05/2023] Open
Abstract
Antipsychotic drugs are increasingly being prescribed for children and adolescents, and are used in pregnant women without a clear demonstration of safety in these populations. Global effects of these drugs on neurodevelopment (e.g., decreased brain size) have been reported in rats, but detailed knowledge about neuronal effects and mechanisms of action are lacking. Here we report on the evaluation of a comprehensive panel of antipsychotic drugs in a model organism (Caenorhabditis elegans) that is widely used to study neuronal development. Specifically, we examined the effects of the drugs on neuronal migration and axonal outgrowth in mechanosensory neurons visualized with green fluorescent protein expressed from the mec-3 promoter. Clozapine, fluphenazine, and haloperidol produced deficits in the development and migration of ALM neurons and axonal outgrowth in PLM neurons. The defects included failure of neuroblasts to migrate to the proper location, and excessive growth of axons past their normal termination point, together with abnormal morphological features of the processes. Although the antipsychotic drugs are potent antagonists of dopamine and serotonin receptors, the neurodevelopmental deficits were not rescued by co-incubation with serotonin or the dopaminergic agonist, quinpirole. Other antipsychotic drugs, risperidone, aripiprazole, quetiapine, trifluoperazine and olanzapine, also produced modest, but detectable, effects on neuronal development. This is the first report that antipsychotic drugs interfere with neuronal migration and axonal outgrowth in a developing nervous system.
Collapse
Affiliation(s)
- Dallas R. Donohoe
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | - Kathrine Weeks
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | - Eric J. Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| |
Collapse
|
343
|
Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 2008; 9:309-16. [PMID: 18409080 DOI: 10.1007/s10522-008-9139-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
Though the lifespan extension mechanism is partly understood from C. elegans to mice, a viable pharmacological intervention is not yet feasible. Here, we report that reserpine largely known as an antipsychotic-antihypertensive drug, can extend C. elegans lifespan. Chronic reserpine treatment from embryo stage or young adults extends the C. elegans lifespan robustly at 25 degrees C. Most importantly, the reserpine treated long lived worms are active (locomotion and pharyngeal pumping) for a long time thereby conferring high quality throughout life. Reserpine mediated lifespan extension is independent of the daf-16 pathway and partly requires serotonin. Reserpine treatment makes the worms highly thermotolerant. Thus, in addition to its known function, reserpine is able to provide stress tolerance and lifespan extension in C. elegans.
Collapse
|
344
|
Axäng C, Rauthan M, Hall DH, Pilon M. Developmental genetics of the C. elegans pharyngeal neurons NSML and NSMR. BMC DEVELOPMENTAL BIOLOGY 2008; 8:38. [PMID: 18400083 PMCID: PMC2375884 DOI: 10.1186/1471-213x-8-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/09/2008] [Indexed: 01/02/2023]
Abstract
BACKGROUND We are interested in understanding how the twenty neurons of the C. elegans pharynx develop in an intricate yet reproducible way within the narrow confines of the embryonic pharyngeal primordium. To complement an earlier study of the pharyngeal M2 motorneurons, we have now examined the effect of almost forty mutations on the morphology of a bilateral pair of pharyngeal neurosecretory-motor neurons, the NSMs. RESULTS A careful description of the NSM morphology led to the discovery of a third, hitherto unreported process originating from the NSM cell body and that is likely to play a proprioceptive function. We found that the three NSM processes are differently sensitive to mutations. The major dorsal branch was most sensitive to mutations that affect growth cone guidance and function (e.g. unc-6, unc-34, unc-73), while the major sub-ventral branch was more sensitive to mutations that affect components of the extracellular matrix (e.g. sdn-1). Of the tested mutations, only unc-101, which affects an adaptin, caused the loss of the newly described thin minor process. The major processes developed synaptic branches post-embryonically, and these exhibited activity-dependent plasticity. CONCLUSION By studying the effects of nearly forty different mutations we have learned that the different NSM processes require different genes for their proper guidance and use both growth cone dependent and growth cone independent mechanisms for establishing their proper trajectories. The two major NSM processes develop in a growth cone dependent manner, although the sub-ventral process relies more on substrate adhesion. The minor process also uses growth cones but uniquely develops using a mechanism that depends on the clathrin adaptor molecule UNC-101. Together with the guidance of the M2 neuron, this is the second case of a pharyngeal neuron establishing one of its processes using an unexpected mechanism.
Collapse
Affiliation(s)
- Claes Axäng
- Dept, Cell and Molecular Biology, Göteborg University, Box 462, S-405 30, Sweden.
| | | | | | | |
Collapse
|
345
|
Regulation of serotonin biosynthesis by the G proteins Galphao and Galphaq controls serotonin signaling in Caenorhabditis elegans. Genetics 2008; 178:157-69. [PMID: 18202365 DOI: 10.1534/genetics.107.079780] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To analyze mechanisms that modulate serotonin signaling, we investigated how Caenorhabditis elegans regulates the function of serotonergic motor neurons that stimulate egg-laying behavior. Egg laying is inhibited by the G protein Galphao and activated by the G protein Galphaq. We found that Galphao and Galphaq act directly in the serotonergic HSN motor neurons to control egg laying. There, the G proteins had opposing effects on transcription of the tryptophan hydroxylase gene tph-1, which encodes the rate-limiting enzyme for serotonin biosynthesis. Antiserotonin staining confirmed that Galphao and Galphaq antagonistically affect serotonin levels. Altering tph-1 gene dosage showed that small changes in tph-1 expression were sufficient to affect egg-laying behavior. Epistasis experiments showed that signaling through the G proteins has additional tph-1-independent effects. Our results indicate that (1) serotonin signaling is regulated by modulating serotonin biosynthesis and (2) Galphao and Galphaq act in the same neurons to have opposing effects on behavior, in part, by antagonistically regulating transcription of specific genes. Galphao and Galphaq have opposing effects on many behaviors in addition to egg laying and may generally act, as they do in the egg-laying system, to integrate multiple signals and consequently set levels of transcription of genes that affect neurotransmitter release.
Collapse
|
346
|
Honda Y, Tanaka M, Honda S. Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Exp Gerontol 2008; 43:520-9. [PMID: 18406553 DOI: 10.1016/j.exger.2008.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 02/24/2008] [Accepted: 02/28/2008] [Indexed: 12/30/2022]
Abstract
In Caenorhabditis elegans, the downregulation of insulin-like signaling induces lifespan extension (Age) and the constitutive formation of dauer larvae (Daf-c). This also causes resistance to oxidative stress (Oxr) and other stress stimuli and enhances the expression of many stress-defense-related enzymes such as Mn superoxide dismutase (SOD) that functions to remove reactive oxygen species in mitochondria. To elucidate the roles of the two isoforms of MnSOD, SOD-2 and SOD-3, in the Age, Daf-c and Oxr phenotypes, we investigated the effects of a gene knockout of MnSODs on them in the daf-2 (insulin-like receptor) mutants that lower insulin-like signaling. In our current report, we demonstrate that double deletions of two MnSOD genes induce oxidative-stress sensitivity and thus ablate Oxr, but do not abolish Age in the daf-2 mutant background. This indicates that Oxr is not the underlying cause of Age and that oxidative stress is not necessarily a limiting factor for longevity. Interestingly, deletions in the sod-2 and sod-3 genes suppressed and stimulated, respectively, both Age and Daf-c. In addition, the sod-2/sod-3 double deletions stimulated these phenotypes in a similar manner to the sod-3 deletion, suggesting that the regulatory pathway consists of two MnSOD isoforms. Furthermore, hyperoxic and hypoxic conditions affected Daf-c in the MnSOD-deleted daf-2 mutants. We thus conclude that the MnSOD systems in C. elegans fine-tune the insulin-like-signaling based regulation of both longevity and dauer formation by acting not as antioxidants but as physiological-redox-signaling modulators.
Collapse
Affiliation(s)
- Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku, Tokyo 173-0015, Japan
| | | | | |
Collapse
|
347
|
An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 2007; 450:553-6. [PMID: 18033297 DOI: 10.1038/nature05991] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/11/2007] [Indexed: 12/27/2022]
Abstract
The mechanisms that determine the lifespan of an organism are still largely a mystery. One goal of ageing research is to find drugs that would increase lifespan and vitality when given to an adult animal. To this end, we tested 88,000 chemicals for the ability to extend the lifespan of adult Caenorhabditis elegans nematodes. Here we report that a drug used as an antidepressant in humans increases C. elegans lifespan. In humans, this drug blocks neural signalling by the neurotransmitter serotonin. In C. elegans, the effect of the drug on lifespan is reduced or eradicated by mutations that affect serotonin synthesis, serotonin re-uptake at synapses, or either of two G-protein-coupled receptors: one that recognizes serotonin and the other that detects another neurotransmitter, octopamine. In vitro studies show that the drug acts as an antagonist at both receptors. Testing of the drug on dietary-restricted animals or animals with mutations that affect lifespan indicates that its effect on lifespan involves mechanisms associated with lifespan extension by dietary restriction. These studies indicate that lifespan can be extended by blocking certain types of neurotransmission implicated in food sensing in the adult animal, possibly leading to a state of perceived, although not real, starvation.
Collapse
|
348
|
Peden E, Kimberly E, Gengyo-Ando K, Mitani S, Xue D. Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes Dev 2007; 21:3195-207. [PMID: 18056429 PMCID: PMC2081983 DOI: 10.1101/gad.1607807] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 10/12/2007] [Indexed: 11/24/2022]
Abstract
Apoptosis is essential for proper development and tissue homeostasis in metazoans. It plays a critical role in generating sexual dimorphism by eliminating structures that are not needed in a specific sex. The molecular mechanisms that regulate sexually dimorphic apoptosis are poorly understood. Here we report the identification of the ceh-30 gene as a key regulator of sex-specific apoptosis in Caenorhabditis elegans. Loss-of-function mutations in ceh-30 cause the ectopic death of male-specific CEM neurons. ceh-30 encodes a BarH homeodomain protein that acts downstream from the terminal sex determination gene tra-1, but upstream of, or in parallel to, the cell-death-initiating gene egl-1 to protect CEM neurons from undergoing apoptosis in males. The second intron of the ceh-30 gene contains two adjacent cis-elements that are binding sites for TRA-1A and a POU-type homeodomain protein UNC-86 and acts as a sensor to regulate proper specification of the CEM cell fate. Surprisingly, the N terminus of CEH-30 but not its homeodomain is critical for CEH-30's cell death inhibitory activity in CEMs and contains a conserved eh1/FIL domain that is important for the recruitment of the general transcriptional repressor UNC-37/Groucho. Our study suggests that ceh-30 defines a critical checkpoint that integrates the sex determination signal TRA-1 and the cell fate determination and survival signal UNC-86 to control the sex-specific activation of the cell death program in CEMs through the general transcription repressor UNC-37.
Collapse
Affiliation(s)
- Erin Peden
- Department of Molecular, Cellular and Developmental Biology University of Colorado, Boulder, Colorado 80309, USA
| | - Elizabeth Kimberly
- Department of Molecular, Cellular and Developmental Biology University of Colorado, Boulder, Colorado 80309, USA
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women’s Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, 162-8666, Japan
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
349
|
Dietary Restriction Enhances Kainate-Induced Increase in NCAM While Blocking the Glial Activation in Adult Rat Brain. Neurochem Res 2007; 33:1178-88. [DOI: 10.1007/s11064-007-9503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 09/06/2007] [Indexed: 01/10/2023]
|
350
|
Nisbet AJ, Redmond DL, Matthews JB, Watkins C, Yaga R, Jones JT, Nath M, Knox DP. Stage-specific gene expression in Teladorsagia circumcincta (Nematoda: Strongylida) infective larvae and early parasitic stages. Int J Parasitol 2007; 38:829-38. [PMID: 18062971 DOI: 10.1016/j.ijpara.2007.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Suppression subtractive hybridisation was used to enrich genes expressed in a stage-specific manner in infective, exsheathed L3s (xL3) versus early L4s of the ovine nematode, Teladorsagia circumcincta prior to gene expression profiling by microarray. The 769 cDNA sequences obtained from the xL3-enriched library contained 361 unique sequences, with 292 expressed sequence tags (ESTs) being represented once ("singletons") and 69 sequences which were represented more than once (overlapping and non-overlapping "contigs"). The L4-enriched EST dataset contained 472 unique sequences, with 314 singletons and 158 contigs. Of these 833 sequences, 85% of the xL3 sequences and 86% of the L4 sequences exhibited homology to known genes or ESTs derived from other species of nematode. Quantitative differential expression (P<0.05) was demonstrated for 563 (68%) of the ESTs by microarray. Within the L3-specific dataset, more than 30% of the transcripts represented the enzyme, guanosine-5'-triphosphate (GTP)-cyclohydrolase, which is the first and rate-limiting enzyme of the tetrahydrobiopterin synthesis pathway and may be involved in critical elements of larval development. In L4s, proteolytic enzymes were highly up-regulated, as were collagens and a number of previously characterised secretory proteins, reflecting the rapid growth of these larvae in abomasal glands. Nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDJB databases under accession numbers AM 743198-AM 744942.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.
| | | | | | | | | | | | | | | |
Collapse
|