301
|
Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P. The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 2006; 7:787-93. [PMID: 16880824 PMCID: PMC1525146 DOI: 10.1038/sj.embor.7400745] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 06/02/2006] [Indexed: 12/19/2022] Open
Abstract
TRPP2 is a member of the transient receptor potential (TRP) superfamily of cation channels, which is mutated in autosomal dominant polycystic kidney disease (ADPKD). TRPP2 is thought to function with polycystin 1-a large integral protein-as part of a multiprotein complex involved in transducing Ca(2+)-dependent information. TRPP2 has been implicated in various biological functions including cell proliferation, sperm fertilization, mating behaviour, mechanosensation and asymmetric gene expression. Although its function as a Ca(2+)-permeable cation channel is well established, its precise role in the plasma membrane, the endoplasmic reticulum and the cilium is controversial. Recent studies suggest that TRPP2 function is highly dependent on the subcellular compartment of expression, and is regulated by many interactions with adaptor proteins. This review summarizes the most pertinent evidence about the properties of TRPP2 channels, focusing on the compartment-specific functions of mammalian TRPP2.
Collapse
Affiliation(s)
- Aurélie Giamarchi
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | - Françoise Padilla
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | - Bertrand Coste
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | - Matthieu Raoux
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | - Marcel Crest
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | - Eric Honoré
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Patrick Delmas
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
- Tel: +00 33 4 91 69 89 70; Fax: 00 33 4 91 69 89 77
| |
Collapse
|
302
|
Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Könecke V, de Vries U, Hammes HP, Gretz N, Witzgall R. A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 2006; 17:2719-30. [PMID: 16943309 DOI: 10.1681/asn.2005090979] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The cloning of the PKD1 and PKD2 genes has led to promising new insight into the mechanisms that are responsible for cyst development in patients with autosomal dominant polycystic kidney disease. Although the dominant pattern of inheritance would argue for haploinsufficiency, a gain of function, or a dominant negative mechanism, there is good evidence that autosomal dominant polycystic kidney disease behaves like a recessive disease on a cellular level (two-hit mechanism of cystogenesis). For testing of whether other pathomechanisms in addition to the two-hit hypothesis can explain cyst formation, two transgenic rat lines that contain a truncated human polycystin-2 cDNA were generated. The protein product lacks almost the entire COOH-terminus and mimics mutations that frequently are found in patients. The transgene-encoded mRNA could be detected in multiple tissues of both transgenic lines, with the highest expression in the kidney. Both lines present with renal cysts that originate predominantly from the proximal tubule; in the tubular epithelial cells, the epitope-tagged mutant protein was detected in the brush border and in primary cilia. Further evidence of the involvement of primary cilia stems from the finding of retinal degeneration in the transgenic rats and from the fact that stably transfected LLC-PK(1) cells that inducibly produced the truncated polycystin-2 protein elaborated shorter cilia. Other experimental approaches, such as a knock-in strategy, will be necessary to validate these results, but this is the first preliminary evidence that cyst formation is due not only to somatic mutations.
Collapse
Affiliation(s)
- Anna Rachel Gallagher
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Olteanu D, Hovater MB, Schwiebert EM. Intraluminal autocrine purinergic signaling within cysts: implications for the progression of diseases that involve encapsulated cyst formation. Am J Physiol Renal Physiol 2006; 292:F11-4. [PMID: 16940560 DOI: 10.1152/ajprenal.00291.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
304
|
LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 2006; 98:68-77. [PMID: 16805797 DOI: 10.1111/j.1471-4159.2006.03842.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taste receptors cells are responsible for detecting a wide variety of chemical stimuli. Several molecules including both G protein coupled receptors and ion channels have been shown to be involved in the detection and transduction of tastants. We report on the expression of two members of the transient receptor potential (TRP) family of ion channels, PKD1L3 and PKD2L1, in taste receptor cells. Both of these channels belong to the larger polycystic kidney disease (PKD or TRPP) subfamily of TRP channels, members of which have been demonstrated to be non-selective cation channels and permeable to both Na(+) and Ca(2+). Pkd1l3 and Pkd2l1 are co-expressed in a select subset of taste receptor cells and therefore may, like other PKD channels, function as a heteromer. We found the taste receptor cells expressing Pkd1l3 and Pkd2l1 to be distinct from those that express components of sweet, bitter and umami signal transduction pathways. These results provide the first evidence for a role of TRPP channels in taste receptor cell function.
Collapse
Affiliation(s)
- Nelson D LopezJimenez
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Rockville, Maryland, USA
| | | | | | | | | | | |
Collapse
|
305
|
Abstract
In individuals with autosomal dominant polycystic kidney disease (ADPKD), renal function deteriorates as the kidneys become replaced by multitudes of fluid-filled cysts. Although the PKD genes were identified a decade ago, the pathway(s) leading from mutation to disease remain the subject of intense investigation. As a result of this work, it has become apparent that the polycystins are multifunctional proteins that, in the broadest sense, appear to be involved in the transduction of a number of environmental cues into appropriate cellular responses. It is likely that the central pathogenetic pathway for cystogenesis stems from de-differentiation of tubular epithelial cells. Available evidence indicates that loss of polycystin activity leads to subtle derangements of cell calcium regulation through several possible pathways. Abnormal cell calcium homeostasis might then lead to altered differentiation in affected cells. The study of the polycystins has revealed some entirely novel insights into fundamental cell biology but these have not yet been satisfactorily integrated into a verified pathogenetic pathway for the development of ADPKD.
Collapse
Affiliation(s)
- Michael Sutters
- Division of Renal Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224, USA.
| |
Collapse
|
306
|
Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 2006; 119:1383-95. [PMID: 16537653 DOI: 10.1242/jcs.02818] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary cilia play a key role in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). The affected proteins, polycystin-1 (PC1) and polycystin-2 (PC2), interact with each other and are expressed in cilia. We found that COOH-terminal truncated PC2 (PC2-L703X), lacking the PC1 interaction region, still traffics to cilia. We examined PC2 expression in several tissues and cells lacking PC1 and found that PC2 is expressed in cilia independently of PC1. We used N-terminal deletion constructs to narrow the domain necessary for cilia trafficking to the first 15 amino acids of PC2 and identified a conserved motif, R6VxP, that is required for cilial localization. The N-terminal 15 amino acids are also sufficient to localize heterologous proteins in cilia. PC2 has endogenous cilia trafficking information and is present in cilia of cells lining cysts that result from mutations in PKD1.
Collapse
Affiliation(s)
- Lin Geng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
307
|
Schieren G, Rumberger B, Klein M, Kreutz C, Wilpert J, Geyer M, Faller D, Timmer J, Quack I, Rump LC, Walz G, Donauer J. Gene profiling of polycystic kidneys. Nephrol Dial Transplant 2006; 21:1816-24. [PMID: 16520345 DOI: 10.1093/ndt/gfl071] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While the genetic basis of autosomal dominant polycystic kidney disease (ADPKD) has been clearly established, the pathogenesis of renal failure in ADPKD remains elusive. Cyst formation originates from proliferating renal tubular epithelial cells that de-differentiate. Fluid secretion with cyst expansion and reactive changes in the extracellular matrix composition combined with increased apoptosis and proliferation rates have been implicated in cystogenesis. METHODS To identify genes that characterize pathogenical changes in ADPKD, we compared the expression profiles of 12 ADPKD kidneys, 13 kidneys with chronic transplant nephropathy and 16 normal kidneys using a 7 k cDNA microarray. RT-PCR and immunohistochemical techniques were used to confirm the microarray data. RESULTS Hierarchical clustering revealed that the gene expression profiles of normal, ADPKD and rejected kidneys were clearly distinct. A total of 87 genes were specifically regulated in ADPKD; 26 of these 87 genes were typical for smooth muscle, suggesting epithelial-to-myofibroblast transition (EMT) as a pathogenetic factor in ADPKD. Immunohistology revealed that smooth muscle actin, a typical marker for myofibroblast transition, and caldesmon were mainly expressed in the interstitium of ADPKD kidneys. In contrast, up-regulated keratin 19 and fibulin-1 were confined to cystic epithelia. CONCLUSION Our results show that the end stage of ADPKD is associated with increased markers of EMT, suggesting that EMT contributes to the progressive loss of renal function in ADPKD.
Collapse
Affiliation(s)
- Gisela Schieren
- Renal Division, Department of Internal Medicine, Ruhr-University Hospital Bochum at Marienhospital Herne, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM. A text-mining analysis of the human phenome. Eur J Hum Genet 2006; 14:535-42. [PMID: 16493445 DOI: 10.1038/sj.ejhg.5201585] [Citation(s) in RCA: 412] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A number of large-scale efforts are underway to define the relationships between genes and proteins in various species. But, few attempts have been made to systematically classify all such relationships at the phenotype level. Also, it is unknown whether such a phenotype map would carry biologically meaningful information. We have used text mining to classify over 5000 human phenotypes contained in the Online Mendelian Inheritance in Man database. We find that similarity between phenotypes reflects biological modules of interacting functionally related genes. These similarities are positively correlated with a number of measures of gene function, including relatedness at the level of protein sequence, protein motifs, functional annotation, and direct protein-protein interaction. Phenotype grouping reflects the modular nature of human disease genetics. Thus, phenotype mapping may be used to predict candidate genes for diseases as well as functional relations between genes and proteins. Such predictions will further improve if a unified system of phenotype descriptors is developed. The phenotype similarity data are accessible through a web interface at http://www.cmbi.ru.nl/MimMiner/.
Collapse
Affiliation(s)
- Marc A van Driel
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
309
|
Hu J, Bae YK, Knobel KM, Barr MM. Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol Biol Cell 2006; 17:2200-11. [PMID: 16481400 PMCID: PMC1446073 DOI: 10.1091/mbc.e05-10-0935] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cilia serve as sensory devices in a diversity of organisms and their defects contribute to many human diseases. In primary cilia of kidney cells, the transient receptor potential polycystin (TRPP) channels polycystin-1 (PC-1) and polycystin-2 (PC-2) act as a mechanosensitive channel, with defects resulting in autosomal dominant polycystic kidney disease. In sensory cilia of Caenorhabditis elegans male-specific neurons, the TRPPs LOV-1 and PKD-2 are required for mating behavior. The mechanisms regulating TRPP ciliary localization and function are largely unknown. We identified the regulatory subunit of the serine-threonine casein kinase II (CK2) as a binding partner of LOV-1 and human PC-1. CK2 and the calcineurin phosphatase TAX-6 modulate male mating behavior and PKD-2 ciliary localization. The phospho-defective mutant PKD-2(S534A) localizes to cilia, whereas a phospho-mimetic PKD-2(S534D) mutant is largely absent from cilia. Calcineurin is required for PKD-2 ciliary localization, but is not essential for ciliary gene expression, ciliogenesis, or localization of cilium structural components. This unanticipated function of calcineurin may be important for regulating ciliary protein localization. A dynamic phosphorylation-dephosphorylation cycle may represent a mechanism for modulating TRPP activity, cellular sensation, and ciliary protein localization.
Collapse
Affiliation(s)
- Jinghua Hu
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
310
|
Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006; 7:125-48. [PMID: 16722803 DOI: 10.1146/annurev.genom.7.080505.115610] [Citation(s) in RCA: 861] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cilia and flagella are ancient, evolutionarily conserved organelles that project from cell surfaces to perform diverse biological roles, including whole-cell locomotion; movement of fluid; chemo-, mechano-, and photosensation; and sexual reproduction. Consistent with their stringent evolutionary conservation, defects in cilia are associated with a range of human diseases, such as primary ciliary dyskinesia, hydrocephalus, polycystic liver and kidney disease, and some forms of retinal degeneration. Recent evidence indicates that ciliary defects can lead to a broader set of developmental and adult phenotypes, with mutations in ciliary proteins now associated with nephronophthisis, Bardet-Biedl syndrome, Alstrom syndrome, and Meckel-Gruber syndrome. The molecular data linking seemingly unrelated clinical entities are beginning to highlight a common theme, where defects in ciliary structure and function can lead to a predictable phenotypic pattern that has potentially predictive and therapeutic value.
Collapse
Affiliation(s)
- Jose L Badano
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
311
|
Owsianik G, D'hoedt D, Voets T, Nilius B. Structure–function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 2006. [DOI: 10.1007/s10254-005-0006-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
312
|
Li X, Luo Y, Starremans PG, McNamara CA, Pei Y, Zhou J. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 2005; 7:1202-12. [PMID: 16311606 DOI: 10.1038/ncb1326] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/14/2005] [Indexed: 01/14/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by progressive cyst formation and ultimate loss of renal function. Increased cell proliferation is a key feature of the disease. Here, we show that the ADPKD protein polycystin-2 (PC2) regulates the cell cycle through direct interaction with Id2, a member of the helix-loop-helix (HLH) protein family that is known to regulate cell proliferation and differentiation. Id2 expression suppresses the induction of a cyclin-dependent kinase inhibitor, p21, by either polycystin-1 (PC1) or PC2. The PC2-Id2 interaction is regulated by PC1-dependent phosphorylation of PC2. Enhanced Id2 nuclear localization is seen in human and mouse cystic kidneys. Inhibition of Id2 expression by RNA interference corrects the hyperproliferative phenotype of PC1 mutant cells. We propose that Id2 has a crucial role in cell-cycle regulation that is mediated by PC1 and PC2.
Collapse
Affiliation(s)
- Xiaogang Li
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
313
|
Allen E, Piontek KB, Garrett-Mayer E, Garcia-Gonzalez M, Gorelick KL, Germino GG. Loss of polycystin-1 or polycystin-2 results in dysregulated apolipoprotein expression in murine tissues via alterations in nuclear hormone receptors. Hum Mol Genet 2005; 15:11-21. [PMID: 16301212 PMCID: PMC1525254 DOI: 10.1093/hmg/ddi421] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations of PKD1 and PKD2. Murine gene targeting studies have shown that these genes play an essential role in development, with homozygous inactivation resulting in embryonic lethality. Recently, Pkd1-/- lethality has been linked to placental insufficiency. In this study, the placenta was used as a model to identify factors involved in these developmental abnormalities. Microarray analysis of Pkd1-/- placentae showed upregulation of a set of apolipoprotein-related genes. These changes were validated and were found to be associated with increased quantities of apolipoproteins in the amniotic fluid. Increased apolipoprotein gene expression was also observed in Pkd2-/-placentae and in cystic kidneys of Pkd1cond/-; Meox2cre/+ mice. Using chromatin immunoprecipitation assays, we determined that the activity of HNF-4alpha, a major regulator of apolipoprotein gene expression, was also increased in these organs. These findings suggest a potential role for dysregulation of nuclear hormone receptors in the pathogenesis of ADPKD.
Collapse
Affiliation(s)
- Erica Allen
- Department of Medicine, Division of Nephrology and
| | | | - Elizabeth Garrett-Mayer
- Department of Oncology, Division of Biostatistics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 9S., Baltimore, MD 21205, USA
| | | | | | - Gregory G. Germino
- Department of Medicine, Division of Nephrology and
- *To whom correspondence should be addressed. Tel: +1 4106140089; Fax: +1 4106145129;
| |
Collapse
|
314
|
Grimm DH, Karihaloo A, Cai Y, Somlo S, Cantley LG, Caplan MJ. Polycystin-2 regulates proliferation and branching morphogenesis in kidney epithelial cells. J Biol Chem 2005; 281:137-44. [PMID: 16278216 DOI: 10.1074/jbc.m507845200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that expand over time and destroy the renal architecture. Loss or mutation of polycystin-1 or polycystin-2, the respective proteins encoded by the ADPKD genes PKD1 and PKD2, is associated with most cases of ADPKD. Thus, the polycystin proteins likely play a role in cell proliferation and morphogenesis. Recent studies indicate that polycystin-1 is involved in these processes, but little is known about the role played by polycystin-2. To address this question, we created a number of related cell lines variable in their expression of polycystin-2. We show that the basal and epidermal growth factor-stimulated rate of cell proliferation is higher in cells that do not express polycystin-2 versus those that do, indicating that polycystin-2 acts as a negative regulator of cell growth. In addition, cells not expressing polycystin-2 exhibit significantly more branching morphogenesis and multicellular tubule formation under basal and hepatocyte growth factor-stimulated conditions than their polycystin-2-expressing counterparts, suggesting that polycystin-2 may also play an important role in the regulation of tubulogenesis. Cells expressing a channel mutant of polycystin-2 proliferated faster than those expressing the wild-type protein, but exhibited blunted tubule formation. Thus, the channel activity of polycystin-2 may be an important component of its regulatory machinery. Finally, we show that polycystin-2 regulation of cell proliferation appears to be dependent on its ability to prevent phosphorylated extracellular-related kinase from entering the nucleus. Our results indicate that polycystin-2 is necessary for the proper growth and differentiation of kidney epithelial cells and suggest a possible mechanism for the cyst formation seen in ADPKD2.
Collapse
Affiliation(s)
- David H Grimm
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
315
|
Lipton J. Mating worms and the cystic kidney: Caenorhabditis elegans as a model for renal disease. Pediatr Nephrol 2005; 20:1531-6. [PMID: 15947985 DOI: 10.1007/s00467-005-1958-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 03/17/2005] [Accepted: 03/22/2005] [Indexed: 01/26/2023]
Abstract
Polycystic kidney disease (PKD) is caused by a group of variably inherited human disorders that are major causes of end-stage renal disease in both children and adults. The genetic culprits responsible for autosomal-dominant PKD (ADPKD), the polycystins, have been identified, yet still little is known about the molecular mechanisms that result in the disease phenotype. Polycystin homologs have been isolated in the model genetic organism Caenorhabditis elegans and, interestingly, play a specific role in C. elegans male mating behavior. Despite the recruitment of the polycystins for divergent functions in worms and humans it appears that the fundamental molecular and genetic interactions of these genes are evolutionarily conserved. In addition, studies in the worm have contributed to an understanding of the emerging role for cilia in the function of the polycystin pathway, expanding a promising frontier in PKD research. C. elegans has also been used to identify a gene family which may have significance for understanding the formation and maintenance of renal tubules.
Collapse
Affiliation(s)
- Jonathan Lipton
- Department of Pediatrics, Children's Hospital at Montefiore, 3415 Bainbridge Avenue, New York, NY 10467, USA.
| |
Collapse
|
316
|
Li Y, Wright JM, Qian F, Germino GG, Guggino WB. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 2005; 280:41298-306. [PMID: 16223735 DOI: 10.1074/jbc.m510082200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant polycystic kidney disease, a common cause of renal failure, arises from mutations in either the PKD1 or the PKD2 gene. The precise function of both PKD gene products polycystins (PCs) 1 and 2 remain controversial. PC2 has been localized to numerous cellular compartments, including the endoplasmic reticulum, plasma membrane, and cilia. It is unclear what pools are the most relevant to its physiological function as a putative Ca2+ channel. We employed a Xenopus oocyte Ca2+ imaging system to directly investigate the role of PC2 in inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling. Cytosolic Ca2+ signals were recorded following UV photolysis of caged IP3 in the absence of extracellular Ca2+. We demonstrated that overexpression of PC2, as well as type I IP3 receptor (IP3R), significantly prolonged the half-decay time (t1/2) of IP3-induced Ca2+ transients. However, overexpressing the disease-associated PC2 mutants, the point mutation D511V, and the C-terminally truncated mutation R742X did not alter the t1/2. In addition, we found that D511V overexpression significantly reduced the amplitude of IP3-induced Ca2+ transients. Interestingly, overexpression of the C terminus of PC2 not only significantly reduced the amplitude but also prolonged the t1/2. Co-immunoprecipitation assays indicated that PC2 physically interacts with IP3R through its C terminus. Taken together, our data suggest that PC2 and IP3R functionally interact and modulate intracellular Ca2+ signaling. Therefore, mutations in either PC1 or PC2 could result in the misregulation of intracellular Ca2+ signaling, which in turn could contribute to the pathology of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Yun Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
317
|
Bisgrove BW, Snarr BS, Emrazian A, Yost HJ. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis. Dev Biol 2005; 287:274-88. [PMID: 16216239 DOI: 10.1016/j.ydbio.2005.08.047] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/23/2005] [Accepted: 08/26/2005] [Indexed: 11/15/2022]
Abstract
Recently, it has become clear that motile cilia play a central role in initiating a left-sided signaling cascade important in establishing the LR axis during mouse and zebrafish embryogenesis. Two genes proposed to be important in this cilia-mediated signaling cascade are polaris and polycystin-2 (pkd2). Polaris is involved in ciliary assembly, while Pkd2 is proposed to function as a Ca(2+)-permeable cation channel. We have cloned zebrafish homologues of polaris and pkd2. Both genes are expressed in dorsal forerunner cells (DFCs) from gastrulation to early somite stages when these cells form a ciliated Kupffer's vesicle (KV). Morpholino-mediated knockdown of Polaris or Pkd2 in zebrafish results in misexpression of left-side-specific genes, including southpaw, lefty1 and lefty2, and randomization of heart and gut looping. By targeting morpholinos to DFCs/KV, we show that polaris and pkd2 are required in DFCs/KV for normal LR development. Polaris morphants have defects in KV cilia, suggesting that the laterality phenotype is due to problems in cilia function per se. We further show that expression of polaris and pkd2 is dependent on the T-box transcription factors no tail and spadetail, respectively, suggesting that these genes have a previously unrecognized role in regulating ciliary structure and function. Our data suggest that the functions of polaris and pkd2 in LR patterning are conserved between zebrafish and mice and that Kupffer's vesicle functions as a ciliated organ of asymmetry.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Huntsman Cancer Institute Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
318
|
Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M. Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 2005; 73:425-32. [PMID: 16316413 DOI: 10.1111/j.1432-0436.2005.00048.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The invariant asymmetric placement of thoracic and abdominal organs in the vertebrates is controlled by the left-asymmetric activity of the Nodal signaling cascade during embryogenesis. In the mouse embryo asymmetric induction of nodal is thought to be dependent on functional monocilia on the ventral node cells and on the Pkd2 gene, which encodes the calcium channel polycystin-2 (PC2). In humans mutations in PKD2 and PKD1 give rise to polycystic kidney disease. The PC1 and PC2 proteins are thought to function as part of a multifactorial complex. Localization of both proteins to the primary renal cilium suggested a function on cilia of the ventral node. Here we investigated Pkd1 knock-out embryos for laterality defects and found wild-type organ morphogenesis and normal expression of nodal and Pitx2. While PC2 localized to nodal cilia, no ciliary localization of PC1 was detected in mouse embryos. This finding was confirmed in an archetypical mammalian blastodisc, the rabbit embryo. Thus, absence of PC1 localization to cilia corresponded with a lack of laterality defects in Pkd1 knock-out embryos. Our results demonstrate a PC1-independent function of PC2 in left-right axis formation, and indirectly support a ciliary role of PC2 in this process.
Collapse
Affiliation(s)
- Christina Karcher
- Institut für Zoologie (220), Universität Hohenheim, Garbenstr. 30, D-70593 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
319
|
Hackmann K, Markoff A, Qian F, Bogdanova N, Germino GG, Pennekamp P, Dworniczak B, Horst J, Gerke V. A splice form of polycystin-2, lacking exon 7, does not interact with polycystin-1. Hum Mol Genet 2005; 14:3249-62. [PMID: 16192288 DOI: 10.1093/hmg/ddi356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polycystin-2 (or polycystic kidney disease gene 2 product, PKD2) and its homologues are calcium-regulated ion channels. Mutations in PKD2 are causative for autosomal dominant polycystic kidney disease. Alternative splicing has been documented for the 'PKD2-like' genes as a naturally occurring event and for PKD2 in pathologic context. Here we studied naturally occurring PKD2/Pkd2 (human/murine) splice forms on the mRNA and protein levels. Systematic scanning of PKD2/Pkd2 cDNAs obtained through RT-PCR from murine tissues and human cell lines revealed alternative splice forms that were sequenced and checked for translation. We identified three major alternative transcripts of PKD2/Pkd2, PKD2/Pkd2Delta6, PKD2/Pkd2Delta7 and PKD2/Pkd2Delta9, and one minor splice form, PKD2/Pkd2Delta12-13, numbered according to deleted exons or parts thereof. A transcript lacking exon 7 (PKD2/Pkd2Delta7) generated significantly altered protein variant. This polycystin-2Delta7 protein appeared stable, when expressed in cell culture and apparently did not interact with polycyctin-1, which should be due to the reversed topology (extracellular) of the interacting C-terminus (intracellular in polycystin-2). Pkd2Delta7 transcript was predominantly expressed in brain and amounted to 3-6.4% of Pkd2 transcripts in the relevant organ. Moreover, both Pkd2 and Pkd2Delta7 were developmentally regulated. Polycystin-2Delta7 adds on to the number of identified polycystin molecules. The predominant expression in brain indicates a function in this organ. The inability to interact with polycystin-1 expands further the PKD1-independent functions of polycystin-2 forms.
Collapse
Affiliation(s)
- Karl Hackmann
- Institut für Humangenetik, Universitätsklinikum Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common human monogenic diseases with an incidence of 1:400 to 1:1000. It is characterized by the progressive development and enlargement of focal cysts in both kidneys, typically resulting in end-stage renal disease (ESRD) by the fifth decade. The cystogenic process is highly complex with a cellular phenotype consistent with "dedifferentiation" (i.e., a high proliferative rate, increased apoptosis, altered protein sorting, changed secretory characteristics, and disorganization of the extracellular matrix). Although cystic renal disease is the major cause of morbidity, the occurrence of nonrenal cysts, most notably in the liver (occasionally resulting in clinically significant polycystic liver disease) and the increased prevalence of other abnormalities including intracranial aneurysms, indicate that ADPKD is a systemic disorder. Following the identification of the first ADPKD gene, PKD1, 10 years ago and PKD2 2 years later, considerable progress has been made in defining the etiology and understanding the pathogenesis of this disorder, knowledge that is now leading to the development of several promising new therapies. The purpose of this review is to summarize our current state of knowledge as to the structure and function of the PKD1 and PKD2 proteins, polycystin-1 and -2, respectively, and explore how mutation at these loci results in the spectrum of changes seen in ADPKD.
Collapse
Affiliation(s)
- Albert C M Ong
- Academic Nephrology Unit, Sheffield Kidney Institute, Division of Clinical Sciences (North), University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
321
|
Lantinga-van Leeuwen IS, Leonhard WN, Dauwerse H, Baelde HJ, van Oost BA, Breuning MH, Peters DJM. Common regulatory elements in the polycystic kidney disease 1 and 2 promoter regions. Eur J Hum Genet 2005; 13:649-59. [PMID: 15770226 DOI: 10.1038/sj.ejhg.5201392] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The PKD1 and PKD2 genes are mutated in patients with autosomal dominant polycystic kidney disease (ADPKD), a systemic disease, with the formation of renal cysts as main clinical feature. The genes are developmentally regulated and aberrant expression of PKD1 or PKD2 leads to cystogenesis. To date, however, the transcription factors regulating expression of these genes have hardly been studied. To identify conserved putative transcription factor-binding sites, we cloned and characterized the 5'-flanking regions of the murine and canine Pkd1 genes and performed a multispecies comparison by including sequences from the human and Fugu rubripes orthologues as well as the Pkd2 promoters from mouse and human. Sequence analysis revealed a variety of conserved putative binding sites for transcription factors and no TATA-box element. Nine elements were conserved in the mammalian Pkd1 promoters: AP2, E2F, E-Box, EGRF, ETS, MINI, MZF1, SP1, and ZBP-89. Interestingly, six of these elements were also found in the mammalian Pkd2 promoters. Deletion studies with the mouse Pkd1 promoter showed that a approximately 280 bp fragment is capable of driving luciferase reporter gene expression, whereas reporter constructs containing larger fragments of the Pkd1 promoter showed a lower activity. Furthermore, mutating a potential E2F-binding site within this 280 bp fragment diminished the reporter construct activity, suggesting a role for E2F in regulating cell cycle-dependent expression of the Pkd1 gene. Our data define a functional promoter region for Pkd1 and imply that E2F, EGRF, Ets, MZF1, Sp1, and ZBP-89 are potential key regulators of PKD1 and PKD2 in mammals.
Collapse
|
322
|
Burtey S, Leclerc C, Nabais E, Munch P, Gohory C, Moreau M, Fontés M. Cloning and expression of the amphibian homologue of the human PKD1 gene. Gene 2005; 357:29-36. [PMID: 15996834 DOI: 10.1016/j.gene.2005.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 04/20/2005] [Accepted: 05/04/2005] [Indexed: 11/16/2022]
Abstract
PKD1 is the gene responsible for autosomal dominant polycystic kidney disease (ADPKD) type 1 in humans. The PKD1 gene product is likely to be a calcium channel regulator. In this paper, we describe the isolation and characterization of the Xenopus homologue of the human PKD1 gene. We isolated and cloned genomic fragments corresponding to the amphibian homologue of PKD1 from a BAC library, and after sequencing the clones, we designed primers for the amplification of the transcript and sequenced 10 kb of ORF. The sequence of the putative protein clearly demonstrated that this gene is the homologue of human PKD1. Analysis of the tissue expression patterns of xPKD1 demonstrated a high level of expression in the kidney. A similar analysis in developing embryos and in an in vitro nephrogenic system suggests that xPKD1 is associated with, and probably involved in, the development of the amphibian pronephros.
Collapse
Affiliation(s)
- S Burtey
- INSERM UMR491, IPHM, Faculté de Médecine de la Timone, 27 Bd. J. Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
323
|
Nilius B, Voets T. TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 2005; 451:1-10. [PMID: 16012814 DOI: 10.1007/s00424-005-1462-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 12/23/2022]
Abstract
The "transient receptor potential" (TRP) family of ion channels comprises more than 50 cation-permeable channels expressed from yeast to man. On the basis of structural homology, the TRP family can be subdivided in to seven main subfamilies: the TRPC ('Canonical') group, the TRPV ('Vanilloid') group, the TRPM ('Melastatin') group, the TRPP ('Polycystin'), the TRPML ('Mucolipin'), the TRPA ('Ankyrin') and the TRPN ('NOMP') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data concerning TRPs in a variety of cell types, tissues and species. This paper briefly reviews the TRP superfamily and the basic properties of its many members as a reader's guide in this Special Issue. Hopefully, a better understanding of TRP channel physiology will provide important insight into the relationship between TRP channel dysfunction and human diseases.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratorium voor Fysiologie, Department of Physiology, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.
| | | |
Collapse
|
324
|
Qian F, Noben-Trauth K. Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch 2005; 451:277-85. [PMID: 15971078 DOI: 10.1007/s00424-005-1469-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 05/01/2005] [Indexed: 01/13/2023]
Abstract
Mucolipins (transient receptor potential mucolipin, TRPML) and polycystin-2 proteins (transient receptor potential polycystin, TRPP) constitute two small families of cation channels with motif and sequence similarities to the transient receptor potential (TRP) class of non-selective cation channels. Genetic defects in TRPML1 and TRPML3 in humans and in animal models cause the accumulation of large vacuoles, leading to a variety of cellular phenotypes including neurological and neurosensory deficiencies. TRPML1 is a Ca(2+)-, K(+)-, and Na(+)-permeable cation channel sensitive to pH changes, and regulates a critical step in the maturation of late endosomes to lysosomes. Mutations of TRPP2 in humans result in autosomal dominant polycystic kidney disease. Molecular studies have demonstrated that TRPP2 and TRPP3 proteins function as Ca(2+)-regulated, non-selective cation channels. During embryogenesis TRPP2 is active in node monocilia and plays a role in the establishment of left-right asymmetry. Recent results have indicated that TRPP2 interacts with polycystin-1 and that their interaction is important for their function as mechanosensitive channels at the primary cilium of renal epithelial cells. The interaction of polycystin family members appears to be conserved and is critical for fertilization and mating behavior. An emerging concept from the studies of the polycystin family is that they function as cation-influx based devices for sensing extracellular signals on ciliated structures. Here we review the function of TRPML1 and TRPP2 as representative members of these families, focusing on the genetics, physiology, and biochemistry.
Collapse
Affiliation(s)
- Feng Qian
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
325
|
Anyatonwu GI, Ehrlich BE. Organic cation permeation through the channel formed by polycystin-2. J Biol Chem 2005; 280:29488-93. [PMID: 15961385 DOI: 10.1074/jbc.m504359200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polycystin-2 (PC2), a member of the transient receptor potential family of ion channels (TRPP2), forms a calcium-permeable cation channel. Mutations in PC2 lead to polycystic kidney disease. From the primary sequence and by analogy with other channels in this family, PC2 is modeled to have six transmembrane domains. However, most of the structural features of PC2, such as how large the channel is and how many subunits make up the pore of the channel, are unknown. In this study, we estimated the pore size of PC2 from the permeation properties of the channel. Organic cations of increasing size were used as current carriers through the PC2 channel after PC2 was incorporated into lipid bilayers. We found that dimethylamine, triethylamine, tetraethylammonium, tetrabutylammonium, tetrapropylammonium, and tetrapentylammonium were permeable through the PC2 channel. The slope conductance of the PC2 channel decreased as the ionic diameter of the organic cation increased. For each organic cation tested, the currents were inhibited by gadolinium and anti-PC2 antibody. Using the dimensions of the largest permeant cation, the minimum pore diameter of the PC2 channel was estimated to be at least 11 A. The large pore size suggests that the primary state of this channel found in vivo is closed to avoid rundown of cation gradients across the plasma membrane and excessive calcium leak from endoplasmic reticulum stores.
Collapse
Affiliation(s)
- Georgia I Anyatonwu
- Pharmacology and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
326
|
Koulen P, Duncan RS, Liu J, Cohen NE, Yannazzo JAS, McClung N, Lockhart CL, Branden M, Buechner M. Polycystin-2 accelerates Ca2+ release from intracellular stores in Caenorhabditis elegans. Cell Calcium 2005; 37:593-601. [PMID: 15862350 DOI: 10.1016/j.ceca.2005.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/07/2005] [Accepted: 03/10/2005] [Indexed: 11/15/2022]
Abstract
Polycystin-2, a member of the TRP family of calcium channels, is encoded by the human PKD2 gene. Mutations in that gene can lead to swelling of nephrons into the fluid-filled cysts of polycystic kidney disease. In addition to expression in tubular epithelial cells, human polycystin-2 is found in muscle and neuronal cells, but its cell biological function has been unclear. A homologue in Caenorhabditis elegans is necessary for male mating behavior. We compared the behavior, calcium signaling mechanisms, and electrophysiology of wild-type and pkd-2 knockout C. elegans. In addition to characterizing PKD-2-mediated aggregation and mating behaviors, we found that polycystin-2 is an intracellular Ca(2+) release channel that is required for the normal pattern of Ca(2+) responses involving IP(3) and ryanodine receptor-mediated Ca(2+) release from intracellular stores. Activity of polycystin-2 creates brief cytosolic Ca(2+) transients with increased amplitude and decreased duration. Polycystin-2, along with the IP(3) and ryanodine receptors, acts as a major calcium-release channel in the endoplasmic reticulum in cells where rapid calcium signaling is required, and polycystin-2 activity is essential in those excitable cells for rapid responses to stimuli.
Collapse
Affiliation(s)
- Peter Koulen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 76107-2699, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Köttgen M, Walz G. Subcellular localization and trafficking of polycystins. Pflugers Arch 2005; 451:286-93. [PMID: 15895248 DOI: 10.1007/s00424-005-1417-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 03/19/2005] [Indexed: 01/05/2023]
Abstract
Polycystin-2 is a member of the transient receptor potential (TRP) family of ion channels that is mutated in autosomal dominant polycystic kidney disease. Although its function as a non-selective cation channel has been demonstrated in several model systems, the precise subcellular localization of polycystin-2 (TRPP2) in tubular epithelial cells has remained controversial. Recent evidence suggests that the subcellular localization of TRPP2 is regulated by multiple protein interactions. This review will summarize our current knowledge about polycystin trafficking and highlight the experimental data that supports a compartment-specific function of 'cystogenic' proteins.
Collapse
Affiliation(s)
- Michael Köttgen
- Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | | |
Collapse
|
328
|
Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch 2005; 449:213-26. [PMID: 15480752 DOI: 10.1007/s00424-004-1314-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels constitute a large and diverse family of channel proteins that are expressed in many tissues and cell types in both vertebrates and invertebrates. While the biophysical features of many of the mammalian TRP channels have been described, relatively little is known about their biological roles. Invertebrate TRPs offer valuable genetic handles for characterizing the functions of these cation channels in vivo. Importantly, studies in model organisms can help to identify fundamental mechanisms involved in normal cellular functions and human disease. In this review, we give an overview of the different TRP channels known in the two most utilized invertebrate models, the nematode Caenorhabditis elegans and the fruit-fly Drosophila melanogaster, and discuss briefly the heuristic impact of these invertebrate channels with respect to TRP function in mammals.
Collapse
Affiliation(s)
- Joris Vriens
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
329
|
Li Q, Montalbetti N, Shen PY, Dai XQ, Cheeseman CI, Karpinski E, Wu G, Cantiello HF, Chen XZ. Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet 2005; 14:1587-603. [PMID: 15843396 DOI: 10.1093/hmg/ddi167] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Polycystin-2 (PC2) is the product of the PKD2 gene, which is mutated in 10-15% patients of autosomal dominant polycystic kidney disease (ADPKD). PC2 is an integral transmembrane protein and acts as a calcium-permeable cation channel. The functional modulation of this channel by other protein partners remains largely unknown. In the present study, using a yeast two-hybrid approach, we discovered that both intracellular N- and C-termini of PC2 associate with alpha-actinins, actin-binding and actin-bundling proteins important in cytoskeleton organization, cell adhesion, proliferation and migration. The PC2-alpha-actinin association was confirmed by in vitro glutathione S-transferase pull-down and dot blot overlay assays. In addition, the in vivo interaction between endogenous PC2 and alpha-actinins was demonstrated by co-immunoprecipitation in human embryonic kidney 293 and Madin-Darby canine kidney (MDCK) cells, rat kidney and heart tissues and human syncytiotrophoblast (hST) apical membrane vesicles. Immunofluorescence experiments showed that PC2 and alpha-actinin were partially co-localized in epithelial MDCK and inner medullary collecting duct cells, NIH 3T3 fibroblasts and hST vesicles. We studied the functional modulation of PC2 by alpha-actinin in a lipid bilayer electrophysiology system using in vitro translated PC2 and found that alpha-actinin substantially stimulated the channel activity of reconstituted PC2. A similar stimulatory effect of alpha-actinin on PC2 was also observed when hST vesicles were reconstituted in lipid bilayer. Thus, physical and functional interactions between PC2 and alpha-actinin may play an important role in abnormal cell adhesion, proliferation and migration observed in ADPKD.
Collapse
Affiliation(s)
- Qiang Li
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Abstract
The intracellular location of polycystin-2 is a hotly debated topic in the field of polycystic kidney disease. Two not necessarily mutually exclusive hypotheses state that polycystin-2 is located in the endoplasmic reticulum or in the plasma membrane, respectively. Although a variety of techniques have been employed to prove one or the other location, no definite consensus has been reached yet. It is generally acknowledged, however, that the COOH-terminus of polycystin-2 contains a retention signal for the endoplasmic reticulum. Another facet has been added to the discussion due to the fact that many genes mutated in patients with cystic kidney diseases, among them PKD2, encode proteins which have been detected in primary cilia. Since there is no evidence that the endoplasmic reticulum extends into the primary cilium, polycystin-2 has to reach the plasma membrane at least in this case. An unbiased approach towards elucidating the physiological location of polycystin-2 would involve the characterization of its intracellular trafficking. Using the COOH-terminus of polycystin-2 in a two-hybrid screen, my group has identified a novel coiled-coil protein which we call PIGEA-14 (polycystin-2 interactor, Golgi- and endoplasmic reticulum-associated protein with a molecular weight of 14 kDa). PIGEA-14 also interacts with GM130, a protein associated with the Golgi matrix, and may therefore represent one important component of the trafficking machinery for polycystin-2.
Collapse
Affiliation(s)
- Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
331
|
Abstract
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to Drosophila TRP. TRP channels play important roles in nonexcitable cells; however, an emerging theme is that many TRP-related proteins are expressed predominantly in the nervous system and function in sensory physiology. The TRP superfamily is divided into seven subfamilies, the first of which is composed of the "classical" TRPs" (TRPC subfamily). Some TRPCs may be store-operated channels, whereas others appear to be activated by production of diacylglycerol or regulated through an exocytotic mechanism. Many members of a second subfamily (TRPV) function in sensory physiology and respond to heat, changes in osmolarity, odorants, and mechanical stimuli. Two members of the TRPM family function in sensory perception and three TRPM proteins are chanzymes, which contain C-terminal enzyme domains. The fourth and fifth subfamilies, TRPN and TRPA, include proteins with many ankyrin repeats. TRPN proteins function in mechanotransduction, whereas TRPA1 is activated by noxious cold and is also required for the auditory response. In addition to these five closely related TRP subfamilies, which comprise the Group 1 TRPs, members of the two Group 2 TRP subfamilies, TRPP and TRPML, are distantly related to the group 1 TRPs. Mutations in the founding members of these latter subfamilies are responsible for human diseases. Each of the TRP subfamilies are represented by members in worms and flies, providing the potential for using genetic approaches to characterize the normal functions and activation mechanisms of these channels.
Collapse
|
332
|
Silberberg M, Charron AJ, Bacallao R, Wandinger-Ness A. Mispolarization of desmosomal proteins and altered intercellular adhesion in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2005; 288:F1153-63. [PMID: 15701820 PMCID: PMC3432402 DOI: 10.1152/ajprenal.00008.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Polycystin-1, the product of the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), has been shown to associate with multiple epithelial cell junctions. Our hypothesis is that polycystin-1 is an important protein for the initial establishment of cell-cell junctions and maturation of the cell and that polycystin-1 localization is dependent on the degree of cell polarization. Using laser-scanning confocal microscopy and two models of cell polarization, polycystin-1 and desmosomes were found to colocalize during the initial establishment of cell-cell contact when junctions were forming. However, colocalization was lost in confluent monolayers. Parallel morphological and biochemical evaluations revealed a profound mispolarization of desmosomal components to both the apical and basolateral domains in primary ADPKD cells and tissue. Studies of the intermediate filament network associated with desmosomes showed that there is a decrease in cytokeratin levels and an abnormal expression of the mesenchymal protein vimentin in the disease. Moreover, we show for the first time that the structural alterations seen in adherens and desmosomal junctions have a functional impact, leaving the ADPKD cells with weakened cell-cell adhesion. In conclusion, in this paper we show that polycystin-1 transiently colocalizes with desmosomes and that desmosomal proteins are mislocalized as a consequence of polycystin-1 mutation.
Collapse
Affiliation(s)
- Melina Silberberg
- Dept of Pathology, University of New Mexico, 2325 Camino de Salud NE, Albuquerque, New Mexico 87131-5301
| | | | - Robert Bacallao
- Dept of Nephrology, University of Indianapolis, Indianapolis, IN 46202
| | - Angela Wandinger-Ness
- Dept of Pathology, University of New Mexico, 2325 Camino de Salud NE, Albuquerque, New Mexico 87131-5301
- To whom correspondence should be addressed: Dept. of Pathology MSC08-4640, 2325 Camino de Salud CRF 225, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-5301, 505-272-1459 (phone), 505-272-4193 (FAX),
| |
Collapse
|
333
|
Darszon A, Nishigaki T, Wood C, Treviño CL, Felix R, Beltrán C. Calcium Channels and Ca2+ Fluctuations in Sperm Physiology. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 243:79-172. [PMID: 15797459 DOI: 10.1016/s0074-7696(05)43002-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generating new life in animals by sexual reproduction depends on adequate communication between mature and competent male and female gametes. Ion channels are instrumental in the dialogue between sperm, its environment, and the egg. The ability of sperm to swim to the egg and fertilize it is modulated by ion permeability changes induced by environmental cues and components of the egg outer layer. Ca(2+) is probably the key messenger in this information exchange. It is therefore not surprising that different Ca(2+)-permeable channels are distinctly localized in these tiny specialized cells. New approaches to measure sperm currents, intracellular Ca(2+), membrane potential, and intracellular pH with fluorescent probes, patch-clamp recordings, sequence information, and heterologous expression are revealing how sperm channels participate in fertilization. Certain sperm ion channels are turning out to be unique, making them attractive targets for contraception and for the discovery of novel signaling complexes.
Collapse
Affiliation(s)
- Alberto Darszon
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico 62210
| | | | | | | | | | | |
Collapse
|
334
|
O'Hagan R, Chalfie M. Mechanosensation in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 69:169-203. [PMID: 16492465 DOI: 10.1016/s0074-7742(05)69006-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Robert O'Hagan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | | |
Collapse
|
335
|
Manzati E, Aguiari G, Banzi M, Manzati M, Selvatici R, Falzarano S, Maestri I, Pinton P, Rizzuto R, del Senno L. The cytoplasmic C-terminus of polycystin-1 increases cell proliferation in kidney epithelial cells through serum-activated and Ca(2+)-dependent pathway(s). Exp Cell Res 2004; 304:391-406. [PMID: 15748886 DOI: 10.1016/j.yexcr.2004.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Revised: 10/09/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Polycystin-1 (PC1) is a large transmembrane protein important in renal differentiation and defective in most cases of autosomal dominant polycystic kidney disease (ADPKD), a common cause of renal failure in adults. Although the genetic basis of ADPKD has been elucidated, molecular and cellular mechanisms responsible for the dysregulation of epithelial cell growth in ADPKD cysts are still not well defined. We approached this issue by investigating the role of the carboxyl cytoplasmic domain of PC1 involved in signal transduction on the control of kidney cell proliferation. Therefore, we generated human HEK293 cells stably expressing the PC1 cytoplasmic tail as a membrane targeted TrkA-PC1 chimeric receptor protein (TrkPC1). We found that TrkPC1 increased cell proliferation through an increase in cytoplasmic Ca2+ levels and activation of PKC alpha, thereby upregulating D1 and D3 cyclin, downregulating p21waf1 and p27kip1 cyclin inhibitors, and thus inducing cell cycle progression from G0/G1 to the S phase. Interestingly, TrkPC1-dependent Ca2+ increase and PKC alpha activation are not constitutive, but require serum factor(s) as parallel component. In agreement with this observation, a significant increase in ERK1/2 phosphorylation was observed. Consistently, inhibitors specifically blocking either PKC alpha or ERK1/2 prevented the TrkPC1-dependent proliferation increase. NGF, the TrkA ligand, blocked this increase. We propose that in kidney epithelial cells the overexpression of PC1 C-terminus upregulates serum-evoked intracellular Ca2+ by counteracting the growth-suppression activity of endogenous PC1 and leading to an increase in cell proliferation.
Collapse
Affiliation(s)
- Elisa Manzati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Luigi Borsari 46, I-44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, Hieseberger T, Igarashi P, Bennett AM, Ibraghimov-Beskrovnaya O, Somlo S, Caplan MJ. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 2004; 114:1433-43. [PMID: 15545994 PMCID: PMC525739 DOI: 10.1172/jci21753] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/17/2004] [Indexed: 12/28/2022] Open
Abstract
Polycystin-1, which is encoded by a gene that is mutated in autosomal dominant polycystic kidney disease (ADPKD), is involved in cell-matrix interactions as well as in ciliary signaling. The precise mechanisms by which it functions, however, remain unclear. Here we find that polycystin-1 undergoes a proteolytic cleavage that releases its C-terminal tail (CTT), which enters the nucleus and initiates signaling processes. The cleavage occurs in vivo in association with alterations in mechanical stimuli. Polycystin-2, the product of the second gene mutated in ADPKD, modulates the signaling properties of the polycystin-1 CTT. These data reveal a novel pathway by which polycystin-1 transmits messages directly to the nucleus.
Collapse
Affiliation(s)
- Veronique Chauvet
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Anyatonwu GI, Ehrlich BE. Calcium signaling and polycystin-2. Biochem Biophys Res Commun 2004; 322:1364-73. [PMID: 15336985 DOI: 10.1016/j.bbrc.2004.08.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Indexed: 12/18/2022]
Abstract
Polycystic kidney disease (PKD) is caused by mutations in two genes, PKD1 and PKD2, which encode for the proteins, polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Although disease-associated mutations have been identified in these two proteins, the sequence of molecular events leading up to clinical symptoms is still unknown. PC1 resides in the plasma membrane and it is thought to function in cell-cell and cell-matrix interactions, whereas PC2 is a calcium (Ca2+) permeable cation channel concentrated in the endoplasmic reticulum. Both proteins localize to the primary cilia where they function as a mechanosensitive receptor complex allowing the entry of Ca2+ into the cell. The downstream signaling pathway involves activation of intracellular Ca2+ release channels, especially the ryanodine receptor (RyR), but subsequent steps are still to be identified. Elucidation of the signaling pathway involved in normal PC1/PC2 function, the functional consequences of PC1/PC2 mutation, and the role of Ca2+ signaling will all help to unravel the molecular mechanisms of cystogenesis in PKD.
Collapse
Affiliation(s)
- Georgia I Anyatonwu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
338
|
Murakami M, Ohba T, Xu F, Shida S, Satoh E, Ono K, Miyoshi I, Watanabe H, Ito H, Iijima T. Genomic organization and functional analysis of murine PKD2L1. J Biol Chem 2004; 280:5626-35. [PMID: 15548533 DOI: 10.1074/jbc.m411496200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in genes that encode polycystins 1 or 2 cause polycystic kidney disease (PKD). Here, we report the genomic organization and functional expression of murine orthologue of human polycystin-2L1 (PKD2L1). The murine PKD2L1 gene comprises 15 exons in chromosome 19C3. Coexpression of PKD2L1 together with polycystin-1 (PKD1) resulted in the expression of PKD2L1 channels on the cell surface, whereas PKD2L1 expressed alone was retained within the endoplasmic reticulum (ER). This suggested that interaction between PKD1 and PKD2L1 is essential for PKD2L1 trafficking and channel formation. Deletion analysis at the cytoplasmic tail of PKD2L1 revealed that the coiled-coil domain was important for trafficking by PKD1. Mutagenesis within two newly identified ER retention signal-like amino acid sequences caused PKD2L1 to be expressed at the cell surface. This indicated that the coiled-coil domain was responsible for retaining PKD2L1 within the ER. Functional analysis of murine PKD2L1 expressed in HEK 293 cells was undertaken using calcium imaging. Coexpression of PKD1 and PKD2L1 resulted in the formation of functional cation channels that were opened by hypo-osmotic stimulation, whereas neither molecule formed functional channels when expressed alone. We conclude that PKD2L1 forms functional cation channels on the plasma membrane by interacting with PKD1. These findings raise the possibility that PKD2L1 represents the third genetic locus that is responsible for PKD.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Abstract
Autosomal dominant polycystic disease is genetically heterogeneous with mutations in two distinct genes predisposing to the combination of renal and liver cysts (AD-PKD1 and AD-PKD2) and mutations in a third gene yielding isolated liver cysts (the polycystic liver disease gene). Transcription and translation of the PKD1 gene produces polycystin-1, an integral membrane protein that may serve as an extracellular receptor. Mutations occur throughout the PKD1 gene, but more severe disease is associated with N-terminal mutations. The PKD2 gene product, polycystin-2, is an integral membrane protein with molecular characteristics of a calcium-permeant cation channel. Mutations occur throughout the PKD2 gene, and severity of disease may vary with site of mutation in PKD2 and the functional consequence on the resultant polycystin-2 protein. Polycystic liver disease is genetically linked to protein kinase C substrate 80K-H (PRKCSH). The PRKCSH gene encodes hepatocystin, a protein that moderates glycosylation and fibroblast growth factor receptor signaling. More prominent in women, hepatic cysts emerge after the onset of puberty and dramatically increase in number and size through the child-bearing years of early and middle adult life. Although liver failure or complications of advanced liver disease are rare, some patients develop massive hepatic cystic disease and become clinically symptomatic. There is no effective medical therapy. Interventional and surgical options include cyst aspiration and sclerosis, open or laparoscopic cyst fenestration, hepatic resection, and liver transplantation.
Collapse
Affiliation(s)
- Gregory T Everson
- Division of Gastroenterology & Hepatology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | |
Collapse
|
340
|
Abstract
Autosomal dominant polycystic disease is genetically heterogeneous with mutations in two distinct genes predisposing to the combination of renal and liver cysts (AD-PKD1 and AD-PKD2) and mutations in a third gene yielding isolated liver cysts (the polycystic liver disease gene). Transcription and translation of the PKD1 gene produces polycystin-1, an integral membrane protein that may serve as an extracellular receptor. Mutations occur throughout the PKD1 gene, but more severe disease is associated with N-terminal mutations. The PKD2 gene product, polycystin-2, is an integral membrane protein with molecular characteristics of a calcium-permeant cation channel. Mutations occur throughout the PKD2 gene, and severity of disease may vary with site of mutation in PKD2 and the functional consequence on the resultant polycystin-2 protein. Polycystic liver disease is genetically linked to protein kinase C substrate 80K-H (PRKCSH). The PRKCSH gene encodes hepatocystin, a protein that moderates glycosylation and fibroblast growth factor receptor signaling. More prominent in women, hepatic cysts emerge after the onset of puberty and dramatically increase in number and size through the child-bearing years of early and middle adult life. Although liver failure or complications of advanced liver disease are rare, some patients develop massive hepatic cystic disease and become clinically symptomatic. There is no effective medical therapy. Interventional and surgical options include cyst aspiration and sclerosis, open or laparoscopic cyst fenestration, hepatic resection, and liver transplantation.
Collapse
Affiliation(s)
- Gregory T Everson
- Division of Gastroenterology & Hepatology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | |
Collapse
|
341
|
Hidaka S, Könecke V, Osten L, Witzgall R. PIGEA-14, a Novel Coiled-coil Protein Affecting the Intracellular Distribution of Polycystin-2. J Biol Chem 2004; 279:35009-16. [PMID: 15194699 DOI: 10.1074/jbc.m314206200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Employing a yeast two-hybrid screen with the COOH terminus of polycystin-2, one of the proteins mutated in patients with polycystic kidney disease, we were able to isolate a novel protein that we call PIGEA-14 (polycystin-2 interactor, Golgi- and endoplasmic reticulum-associated protein with a molecular mass of 14 kDa). Molecular modeling only predicts a coiled-coil motif, but no other functional domains, in PIGEA-14. In a subsequent two-hybrid screen using PIGEA-14 as a bait, we found GM130, a component of the cis-compartment of the Golgi apparatus. Co-expression of the PIGEA-14 and PKD2 cDNAs in LLC-PK(1) and HeLa cells resulted in a redistribution of PIGEA-14 and polycystin-2 to the trans-Golgi network, which suggests that PIGEA-14 plays an important role in regulating the intracellular location of polycystin-2 and possibly other intracellular proteins. Our results also indicate that the intracellular trafficking of polycystin-2 is regulated both at the level of the endo-plasmic reticulum and that of the trans-Golgi network.
Collapse
Affiliation(s)
- Sumi Hidaka
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
342
|
Abstract
Cystic kidney disorders are one of the leading causes of end-stage renal disease. Numerous experimental animal models have been used to understand the disease pathogenesis. Recent advancements in this field have provided a surprising finding: that many of the proteins associated with cystic kidney disease localize to a nearly forgotten organelle, the primary cilium.
Collapse
Affiliation(s)
- Qihong Zhang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
343
|
Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 2004; 279:40419-30. [PMID: 15263001 DOI: 10.1074/jbc.m405079200] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
cAMP can be either mitogenic or anti-mitogenic, depending on the cell type. We demonstrated previously that cAMP inhibited the proliferation of normal renal epithelial cells and stimulated the proliferation of cells derived from the cysts of polycystic kidney disease (PKD) patients. The protein products of the genes causing PKD, polycystin-1 and polycystin-2, are thought to regulate intracellular calcium levels, suggesting that abnormal polycystin function may affect calcium signaling and thus cause a switch to the cAMP growth-stimulated phenotype. To test this hypothesis, we disrupted intracellular calcium mobilization by treating immortalized mouse M-1 collecting duct cells and primary cultures of human kidney epithelial cells with calcium channel blockers and by lowering extracellular calcium with EGTA. Calcium restriction for 3-5 h converted both cell types from a normal cAMP growth-inhibited phenotype to an abnormal cAMP growth-stimulated phenotype, characteristic of PKD. In M-1 cells, we showed that calcium restriction was associated with an elevation in B-Raf protein levels and cAMP-stimulated, Ras-dependent activation of B-Raf and ERK. Moreover, the activity of Akt, a negative regulator of B-Raf, was decreased by calcium restriction. Inhibition of Akt or phosphatidylinositol 3-kinase also allowed cAMP-dependent activation of B-Raf and ERK in normal calcium. These results suggest that calcium restriction causes an inhibition of the phosphatidylinositol 3-kinase/Akt pathway, which relieves the inhibition of B-Raf to allow the cAMP growth-stimulated phenotypic switch. Finally, M-1 cells stably overexpressing an inducible polycystin-1 C-terminal cytosolic tail construct were shown to exhibit a cAMP growth-stimulated phenotype involving B-Raf and ERK activation, which was reversed by the calcium ionophore A23187. We conclude that disruption of calcium mobilization in cells that are normally growth-inhibited by cAMP can derepress the B-Raf/ERK pathway, thus converting these cells to a phenotype that is growth-stimulated by cAMP.
Collapse
Affiliation(s)
- Tamio Yamaguchi
- Department of Biochemistry, the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
344
|
Yuasa T, Takakura A, Denker BM, Venugopal B, Zhou J. Polycystin-1L2 is a novel G-protein-binding protein. Genomics 2004; 84:126-38. [PMID: 15203210 DOI: 10.1016/j.ygeno.2004.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 02/12/2004] [Indexed: 10/26/2022]
Abstract
Mutations in genes encoding polycystin-1 (PC1) and polycystin-2 cause autosomal dominant polycystic kidney disease. The polycystin protein family is composed of Ca2+-permeable pore-forming subunits and receptor-like integral membrane proteins. Here we describe a novel member of the polycystin-1-like subfamily, polycystin-1L2 (PC1L2), encoded by PKD1L2, which has various alternative splicing forms with two translation initiation sites. PC1L2 short form starts in exon 12 of the long form. The longest open reading frame of PKD1L2 short form, determined from human testis cDNA, encodes a 1775-amino-acid protein and 32 exons, whereas the long form is predicted to encode a 2460-residue protein. Both forms have a small receptor for egg jelly domain, a G-protein-coupled receptor proteolytic site, an LH2/PLAT, and 11 putative transmembrane domains, as well as a number of rhodopsin-like G-protein-coupled receptor signatures. RT-PCR analysis shows that the short form, but not the long form, of human PKD1L2 is expressed in the developing and adult heart and kidney. Furthermore, by GST pull-down assay we observed that PC1L2 and polycystin-1L1 are able to bind to specific G-protein subunits. We also show that PC1 C-terminal cytosolic domain binds to Galpha12, Galphas, and Galphai1, while it weakly interacts with Galphai2. Our results indicate that both PC1-like molecules may act as G-protein-coupled receptors.
Collapse
Affiliation(s)
- Takeshi Yuasa
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
345
|
Rundle DR, Gorbsky G, Tsiokas L. PKD2 Interacts and Co-localizes with mDia1 to Mitotic Spindles of Dividing Cells. J Biol Chem 2004; 279:29728-39. [PMID: 15123714 DOI: 10.1074/jbc.m400544200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in pkd2 result in the type 2 form of autosomal dominant polycystic kidney disease, which accounts for approximately 15% of all cases of the disease. PKD2, the protein product of pkd2, belongs to the transient receptor potential superfamily of cation channels, and it can function as a mechanosensitive channel in the primary cilium of kidney cells, an intracellular Ca(2+) release channel in the endoplasmic reticulum, and/or a nonselective cation channel in the plasma membrane. We have identified mDia1/Drf1 (mammalian Diaphanous or Diaphanous-related formin 1 protein) as a PKD2-interacting protein by yeast two-hybrid screen. mDia1 is a member of the RhoA GTPase-binding formin homology protein family that participates in cytoskeletal organization, cytokinesis, and signal transduction. We show that mDia1 and PKD2 interact in native and in transfected cells, and binding is mediated by the cytoplasmic C terminus of PKD2 binding to the mDia1 N terminus. The interaction is more prevalent in dividing cells in which endogenous PKD2 and mDia1 co-localize to the mitotic spindles. RNA interference experiments reveal that endogenous mDia1 knockdown in HeLa cells results in the loss of PKD2 from mitotic spindles and alters intracellular Ca(2+) release. Our results suggest that mDia1 facilitates the movement of PKD2 to a centralized position during cell division and has a positive effect on intracellular Ca(2+) release during mitosis. This may be important to ensure equal segregation of PKD2 to the daughter cell to maintain a necessary level of channel activity. Alternatively, PKD2 channel activity may be important in the cell division process or in cell fate decisions after division.
Collapse
Affiliation(s)
- Dana R Rundle
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
346
|
Babich V, Zeng WZ, Yeh BI, Ibraghimov-Beskrovnaya O, Cai Y, Somlo S, Huang CL. The N-terminal Extracellular Domain Is Required for Polycystin-1-dependent Channel Activity. J Biol Chem 2004; 279:25582-9. [PMID: 15060061 DOI: 10.1074/jbc.m402829200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (PKD) is caused by mutation of polycystin-1 or polycystin-2. Polycystin-2 is a Ca(2+)-permeable cation channel. Polycystin-1 is an integral membrane protein of less defined function. The N-terminal extracellular region of polycystin-1 contains potential motifs for protein and carbohydrate interaction. We now report that expression of polycystin-1 alone in Chinese hamster ovary (CHO) cells and in PKD2-null cells can confer Ca(2+)-permeable non-selective cation currents. Co-expression of a loss-of-function mutant of polycystin-2 in CHO cells does not reduce polycystin-1-dependent channel activity. A polycystin-1 mutant lacking approximately 2900 amino acids of the extracellular region is targeted to the cell surface but does not produce current. Extracellular application of antibodies against the immunoglobulin-like PKD domains reduces polycystin-1-dependent current. These results support the hypothesis that polycystin-1 is a surface membrane receptor that transduces the signal via changes in ionic currents.
Collapse
Affiliation(s)
- Victor Babich
- Division of Nephrology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
347
|
Abstract
Cilia are hair-like structures that protrude from the surface of the cell and are evolutionary well conserved. The characteristic feature of cilia is their motility and, in ciliated epithelia such as the trachea, their principal function is to transport materials along the cell surface. Each epithelial cell has many cilia on its surface. As well as this multiple form of motile cilia seen in the epithelium, there are primary cilia, also known as a monocilium because each cell has only one cilium. These types of cilia are thought to be non-motile because they lack a central pair of microtubules, are anomalous and have no function. However, recent studies have shown that primary cilia are involved in both developmental and pathological processes, including the establishment of left-right asymmetry and polycystic kidney disease. During development, cells in the node rotate their primary cilia to produce an extracellular current that is essential for the determination of left-right asymmetry of the body. In the kidney, primary cilia act as mechanosensors to detect fluid flow. Without such cilia, the kidney develops multiple cysts that eventually destroy kidney function. Furthermore, studies have identified a variety of proteins that are localized in the cilia and their diverse roles in various ciliary functions. These studies suggest the diversity of primary cilia. To elucidate how ciliary proteins interact and perform their functions in primary cilia will help us understand both their function and their diversity.
Collapse
Affiliation(s)
- Takahiko Yokoyama
- Department of Anatomy, Division of Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
348
|
Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z, Onoe T, Mei CL, Qian Q, Geng L, Wiztgall R, Ehrlich BE, Somlo S. Calcium Dependence of Polycystin-2 Channel Activity Is Modulated by Phosphorylation at Ser812. J Biol Chem 2004; 279:19987-95. [PMID: 14742446 DOI: 10.1074/jbc.m312031200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polycystin-2 (PC-2) is a non-selective cation channel that, when mutated, results in autosomal dominant polycystic kidney disease. In an effort to understand the regulation of this channel, we investigated the role of protein phosphorylation in PC-2 function. We demonstrated the direct incorporation of phosphate into PC-2 in cells and tissues and found that this constitutive phosphorylation occurs at Ser(812), a putative casein kinase II (CK2) substrate domain. Ser(812) can be phosphorylated by CK2 in vitro and substitution S812A results in failure to incorporate phosphate in cultured epithelial cells. Non-phosphorylated forms of PC-2 traffic normally in the endoplasmic reticulum and cilial compartments and retain homo- and hetero-multimerization interactions with PC-2 and polycystin-1, respectively. Single-channel studies of PC-2, S812A, and a substitution mutant, T721A, not related to phosphorylation show that PC-2 and S812A function as divalent cation channels with similar current amplitudes across a range of holding potentials; the T721A channel is not functional. Channel open probabilities for PC-2 and S812A show a bell-shaped dependence on cytoplasmic Ca(2+) but there is a shift in this Ca(2+) dependence such that S812A is 10-fold less sensitive to Ca(2+) activation/inactivation than the wild type PC-2 channel. In vivo analysis of PC-2-dependent enhanced intracellular Ca(2+) transients found that S812A resulted in enhanced transient duration and relative amplitude intermediate between control cells and those overexpressing wild type PC-2. Phosphorylation at Ser(812) modulates PC-2 channel activity and factors regulating this phosphorylation are likely to play a role in the pathogenesis of polycystic kidney disease.
Collapse
Affiliation(s)
- Yiqiang Cai
- Department of Internal Medicine, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Zhang MZ, Mai W, Li C, Cho SY, Hao C, Moeckel G, Zhao R, Kim I, Wang J, Xiong H, Wang H, Sato Y, Wu Y, Nakanuma Y, Lilova M, Pei Y, Harris RC, Li S, Coffey RJ, Sun L, Wu D, Chen XZ, Breyer MD, Zhao ZJ, McKanna JA, Wu G. PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci U S A 2004; 101:2311-6. [PMID: 14983006 PMCID: PMC356947 DOI: 10.1073/pnas.0400073101] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene have been shown to cause autosomal recessive polycystic kidney disease (ARPKD), but the cellular functions of the gene product (PKHD1) remain uncharacterized. To illuminate its properties, the spatial and temporal expression patterns of PKHD1 were determined in mouse, rat, and human tissues by using polyclonal Abs and mAbs recognizing various specific regions of the gene product. During embryogenesis, PKHD1 is widely expressed in epithelial derivatives, including neural tubules, gut, pulmonary bronchi, and hepatic cells. In the kidneys of the pck rats, the rat model of which is genetically homologous to human ARPKD, the level of PKHD1 was significantly reduced but not completely absent. In cultured renal cells, the PKHD1 gene product colocalized with polycystin-2, the gene product of autosomal dominant polycystic disease type 2, at the basal bodies of primary cilia. Immunoreactive PKHD1 localized predominantly at the apical domain of polarized epithelial cells, suggesting it may be involved in the tubulogenesis and/or maintenance of duct-lumen architecture. Reduced PKHD1 levels in pck rat kidneys and its colocalization with polycystins may underlie the pathogenic basis for cystogenesis in polycystic kidney diseases.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Watnick TJ, Jin Y, Matunis E, Kernan MJ, Montell C. A flagellar polycystin-2 homolog required for male fertility in Drosophila. Curr Biol 2004; 13:2179-84. [PMID: 14680634 DOI: 10.1016/j.cub.2003.12.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A common inherited cause of renal failure, autosomal dominant polycystic kidney disease results from mutations in either of two genes, PKD1 and PKD2, which encode polycystin-1 and polycystin-2, respectively. Polycystin-2 has distant homology to TRP cation channels and associates directly with polycystin-1. The normal functions of polycystins are poorly understood, although recent studies indicate that they are concentrated in the primary cilia of a variety of cell types. In this report we identified a polycystin-2 homolog in Drosophila melanogaster; this homolog localized to the distal tip of the sperm flagella. A targeted mutation in this gene, almost there (amo), caused nearly complete male sterility. The amo males produced and transferred normal amounts of motile sperm to females, but mutant sperm failed to enter the female sperm storage organs, a prerequisite for fertilization. The finding that Amo functions in sperm flagella supports a common and evolutionarily conserved role for polycystin-2 proteins in both motile and nonmotile axonemal-containing structures.
Collapse
Affiliation(s)
- Terry J Watnick
- Department of Medicine, Division of Nephrology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|