301
|
Milicevic K, Rankovic B, Andjus PR, Bataveljic D, Milovanovic D. Emerging Roles for Phase Separation of RNA-Binding Proteins in Cellular Pathology of ALS. Front Cell Dev Biol 2022; 10:840256. [PMID: 35372329 PMCID: PMC8965147 DOI: 10.3389/fcell.2022.840256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a major principle for the mesoscale organization of proteins, RNAs, and membrane-bound organelles into biomolecular condensates. These condensates allow for rapid cellular responses to changes in metabolic activities and signaling. Nowhere is this regulation more important than in neurons and glia, where cellular physiology occurs simultaneously on a range of time- and length-scales. In a number of neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), misregulation of biomolecular condensates leads to the formation of insoluble aggregates-a pathological hallmark of both sporadic and familial ALS. Here, we summarize how the emerging knowledge about the LLPS of ALS-related proteins corroborates with their aggregation. Understanding the mechanisms that lead to protein aggregation in ALS and how cells respond to these aggregates promises to open new directions for drug development.
Collapse
Affiliation(s)
- Katarina Milicevic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Branislava Rankovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Danijela Bataveljic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
302
|
Sproviero D, Gagliardi S, Zucca S, Arigoni M, Giannini M, Garofalo M, Fantini V, Pansarasa O, Avenali M, Ramusino MC, Diamanti L, Minafra B, Perini G, Zangaglia R, Costa A, Ceroni M, Calogero RA, Cereda C. Extracellular Vesicles Derived From Plasma of Patients With Neurodegenerative Disease Have Common Transcriptomic Profiling. Front Aging Neurosci 2022; 14:785741. [PMID: 35250537 PMCID: PMC8889100 DOI: 10.3389/fnagi.2022.785741] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives There is a lack of effective biomarkers for neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia. Extracellular vesicle (EV) RNA cargo can have an interesting potential as a non-invasive biomarker for NDs. However, the knowledge about the abundance of EV-mRNAs and their contribution to neurodegeneration is not clear. Methods Large and small EVs (LEVs and SEVs) were isolated from plasma of patients and healthy volunteers (control, CTR) by differential centrifugation and filtration, and RNA was extracted. Whole transcriptome was carried out using next generation sequencing (NGS). Results Coding RNA (i.e., mRNA) but not long non-coding RNAs (lncRNAs) in SEVs and LEVs of patients with ALS could be distinguished from healthy CTRs and from other NDs using the principal component analysis (PCA). Some mRNAs were found in commonly deregulated between SEVs of patients with ALS and frontotemporal dementia (FTD), and they were classified in mRNA processing and splicing pathways. In LEVs, instead, one mRNA and one antisense RNA (i.e., MAP3K7CL and AP003068.3) were found to be in common among ALS, FTD, and PD. No deregulated mRNAs were found in EVs of patients with AD. Conclusion Different RNA regulation occurs in LEVs and SEVs of NDs. mRNAs and lncRNAs are present in plasma-derived EVs of NDs, and there are common and specific transcripts that characterize LEVs and SEVs from the NDs considered in this study.
Collapse
Affiliation(s)
- Daisy Sproviero
- Genomic and Post-genomic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Genomic and Post-genomic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
- *Correspondence: Stella Gagliardi
| | - Susanna Zucca
- Genomic and Post-genomic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
- EnGenome SRL, Pavia, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomics Unit, University of Turin, Turin, Italy
| | - Marta Giannini
- Genomic and Post-genomic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Maria Garofalo
- Genomic and Post-genomic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
- Department of Biology and Biotechnology (“L. Spallanzani”), University of Pavia, Pavia, Italy
| | - Valentina Fantini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Laboratory of Neurobiology and Neurogenetic, Golgi-Cenci Foundation, Milan, Italy
| | - Orietta Pansarasa
- Genomic and Post-genomic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Cotta Ramusino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Luca Diamanti
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (SRCCS) Mondino Foundation, Pavia, Italy
| | - Brigida Minafra
- Parkinson Disease and Movement Disorders Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Giulia Perini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Roberta Zangaglia
- Parkinson Disease and Movement Disorders Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Mauro Ceroni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomics Unit, University of Turin, Turin, Italy
| | - Cristina Cereda
- Genomic and Post-genomic Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| |
Collapse
|
303
|
Yoshida S, Hasegawa T. Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochem Int 2022; 155:105307. [PMID: 35181393 DOI: 10.1016/j.neuint.2022.105307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are hitherto classified based on their core clinical features, the anatomical distribution of neurodegeneration, and the cell populations mainly affected. On the other hand, the wealth of neuropathological, genetic, molecular and biochemical studies have identified the existence of distinct insoluble protein aggregates in the affected brain regions. These findings have spread the use of a collective term, proteinopathy, for neurodegenerative disorders with particular type of structurally altered protein accumulation. Particularly, a recent breakthrough in this field came with the discovery that these protein aggregates can transfer from one cell to another, thereby converting normal proteins to potentially toxic, misfolded species in a prion-like manner. In this review, we focus specifically on the molecular and cellular basis that underlies the seeding activity and transcellular spreading phenomenon of neurodegeneration-related protein aggregates, and discuss how these events contribute to the disease progression.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan; Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan.
| |
Collapse
|
304
|
Nicolas G, Sévigny M, Lecoquierre F, Marguet F, Deschênes A, del Pelaez MC, Feuillette S, Audebrand A, Lecourtois M, Rousseau S, Richard AC, Cassinari K, Deramecourt V, Duyckaerts C, Boland A, Deleuze JF, Meyer V, Clarimon Echavarria J, Gelpi E, Akiyama H, Hasegawa M, Kawakami I, Wong TH, Van Rooij JGJ, Van Swieten JC, Campion D, Dutchak PA, Wallon D, Lavoie-Cardinal F, Laquerrière A, Rovelet-Lecrux A, Sephton CF. A postzygotic de novo NCDN mutation identified in a sporadic FTLD patient results in neurochondrin haploinsufficiency and altered FUS granule dynamics. Acta Neuropathol Commun 2022; 10:20. [PMID: 35151370 PMCID: PMC8841087 DOI: 10.1186/s40478-022-01314-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease. The goal of this study was to identify genetic variants contributing to FTLD-FET and to investigate their effects on FUS pathology. We performed whole-exome sequencing on a 50-year-old FTLD patient with ubiquitin and FUS-positive neuronal inclusions and unaffected parents, and identified a de novo postzygotic nonsense variant in the NCDN gene encoding Neurochondrin (NCDN), NM_014284.3:c.1206G > A, p.(Trp402*). The variant was associated with a ~ 31% reduction in full-length protein levels in the patient’s brain, suggesting that this mutation leads to NCDN haploinsufficiency. We examined the effects of NCDN haploinsufficiency on FUS and found that depleting primary cortical neurons of NCDN causes a reduction in the total number of FUS-positive cytoplasmic granules. Moreover, we found that these granules were significantly larger and more highly enriched with FUS. We then examined the effects of a loss of FUS function on NCDN in neurons and found that depleting cells of FUS leads to a decrease in NCDN protein and mRNA levels. Our study identifies the NCDN protein as a likely contributor of FTLD-FET pathophysiology. Moreover, we provide evidence for a negative feedback loop of toxicity between NCDN and FUS, where loss of NCDN alters FUS cytoplasmic dynamics, which in turn has an impact on NCDN expression.
Collapse
|
305
|
Arkov AL. Looking at the Pretty "Phase" of Membraneless Organelles: A View From Drosophila Glia. Front Cell Dev Biol 2022; 10:801953. [PMID: 35198559 PMCID: PMC8859445 DOI: 10.3389/fcell.2022.801953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Membraneless granules assemble in different cell types and cellular loci and are the focus of intense research due to their fundamental importance for cellular organization. These dynamic organelles are commonly assembled from RNA and protein components and exhibit soft matter characteristics of molecular condensates currently characterized with biophysical approaches and super-resolution microscopy imaging. In addition, research on the molecular mechanisms of the RNA-protein granules assembly provided insights into the formation of abnormal granules and molecular aggregates, which takes place during many neurodegenerative disorders including Parkinson's diseases (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). While these disorders are associated with formation of abnormal granules, membraneless organelles are normally assembled in neurons and contribute to translational control and affect stability of neuronal RNAs. More recently, a new subtype of membraneless granules was identified in Drosophila glia (glial granules). Interestingly, glial granules were found to contain proteins which are the principal components of the membraneless granules in germ cells (germ granules), indicating some similarity in the functional assembly of these structures in glia and germline. This mini review highlights recent research on glial granules in the context of other membraneless organelles, including their assembly mechanisms and potential functions in the nervous system.
Collapse
Affiliation(s)
- Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
306
|
Aizawa H, Teramoto S, Hideyama T, Kato H, Terashi H, Suzuki Y, Kimura T, Kwak S. Nuclear pore destruction and loss of nuclear TDP-43 in FUS mutation-related amyotrophic lateral sclerosis motor neurons. J Neurol Sci 2022; 436:120187. [DOI: 10.1016/j.jns.2022.120187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
|
307
|
Chatterjee S, Kan Y, Brzezinski M, Koynov K, Regy RM, Murthy AC, Burke KA, Michels JJ, Mittal J, Fawzi NL, Parekh SH. Reversible Kinetic Trapping of FUS Biomolecular Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104247. [PMID: 34862761 PMCID: PMC8811844 DOI: 10.1002/advs.202104247] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 05/13/2023]
Abstract
Formation of membrane-less organelles by self-assembly of disordered proteins can be triggered by external stimuli such as pH, salt, or temperature. These organelles, called biomolecular condensates, have traditionally been classified as liquids, gels, or solids with limited subclasses. Here, the authors show that a thermal trigger can lead to formation of at least two distinct liquid condensed phases of the fused in sarcoma low complexity (FUS LC) domain. Forming FUS LC condensates directly at low temperature leads to formation of metastable, kinetically trapped condensates that show arrested coalescence, escape from which to untrapped condensates can be achieved via thermal annealing. Using experimental and computational approaches, the authors find that molecular structure of interfacial FUS LC in kinetically trapped condensates is distinct (more β-sheet like) compared to untrapped FUS LC condensates. Moreover, molecular motion within kinetically trapped condensates is substantially slower compared to that in untrapped condensates thereby demonstrating two unique liquid FUS condensates. Controlling condensate thermodynamic state, stability, and structure with a simple thermal switch may contribute to pathological protein aggregate stability and provides a facile method to trigger condensate mixing for biotechnology applications.
Collapse
Affiliation(s)
- Sayantan Chatterjee
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Yelena Kan
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- LUT School of Engineering ScienceLUT UniversityYliopistonkatu 34Lappeenranta53850Finland
| | - Mateusz Brzezinski
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Roshan Mammen Regy
- Artie McFerrin Department of Chemical EngineeringTexas A&M University200 Jack E. Brown Engineering BuildingCollege StationTX77843USA
| | - Anastasia C. Murthy
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Kathleen A. Burke
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Jasper J. Michels
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical EngineeringTexas A&M University200 Jack E. Brown Engineering BuildingCollege StationTX77843USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Sapun H. Parekh
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
308
|
TDP-43 is a ubiquitylation substrate of the SCFcyclin F complex. Neurobiol Dis 2022; 167:105673. [DOI: 10.1016/j.nbd.2022.105673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
|
309
|
Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells. Proc Natl Acad Sci U S A 2022; 119:2101117119. [PMID: 35078932 PMCID: PMC8812688 DOI: 10.1073/pnas.2101117119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Genetic mutations fuel organismal evolution but can also cause disease. As proteins are the cell’s workhorses, the ways in which mutations can disrupt their structure, stability, function, and interactions have been studied extensively. However, proteins evolve and function in a cellular context, and our ability to relate changes in protein sequence to cell-level phenotypes remains limited. In particular, the molecular mechanism underlying most disease-associated mutations is unknown. Here, we show that mutations changing a protein’s surface chemistry can dramatically impact its supramolecular self-assembly and localization in the cell. These results highlight the complex nature of genotype–phenotype relationships with a simple system. Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes has not yet been mapped to a sequence space. To map this relationship, we employed two homo-oligomeric protein complexes in which the internal symmetry exacerbates the impact of mutations. We mutagenized three surface residues of each complex and monitored the mutations’ effect on localization and assembly phenotypes in yeast cells. While surface mutations are classically viewed as benign, our analysis of several hundred mutants revealed they often trigger three main phenotypes in these proteins: nuclear localization, the formation of puncta, and fibers. Strikingly, more than 50% of random mutants induced one of these phenotypes in both complexes. Analyzing the mutant’s sequences showed that surface stickiness and net charge are two key physicochemical properties associated with these changes. In one complex, more than 60% of mutants self-assembled into fibers. Such a high frequency is explained by negative design: charged residues shield the complex from self-interacting with copies of itself, and the sole removal of the charges induces its supramolecular self-assembly. A subsequent analysis of several other complexes targeted with alanine mutations suggested that such negative design is common. These results highlight that minimal perturbations in protein surfaces’ physicochemical properties can frequently drive assembly and localization changes in a cellular context.
Collapse
|
310
|
Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, Jafar-Nejad P, Shneider NA. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med 2022; 28:104-116. [PMID: 35075293 PMCID: PMC8799464 DOI: 10.1038/s41591-021-01615-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/05/2021] [Indexed: 11/09/2022]
Abstract
Fused in sarcoma (FUS) is an RNA-binding protein that is genetically and pathologically associated with rare and aggressive forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To explore the mechanisms by which mutant FUS causes neurodegeneration in ALS-FTD, we generated a series of FUS knock-in mouse lines that express the equivalent of ALS-associated mutant FUSP525L and FUSΔEX14 protein. In FUS mutant mice, we show progressive, age-dependent motor neuron loss as a consequence of a dose-dependent gain of toxic function, associated with the insolubility of FUS and related RNA-binding proteins. In this disease-relevant mouse model of ALS-FUS, we show that ION363, a non-allele-specific FUS antisense oligonucleotide, efficiently silences Fus and reduces postnatal levels of FUS protein in the brain and spinal cord, delaying motor neuron degeneration. In a patient with ALS with a FUSP525L mutation, we provide preliminary evidence that repeated intrathecal infusions of ION363 lower wild-type and mutant FUS levels in the central nervous system, resulting in a marked reduction in the burden of FUS aggregates that are a pathological hallmark of disease. In mouse genetic and human clinical studies, we provide evidence in support of FUS silencing as a therapeutic strategy in FUS-dependent ALS and FTD.
Collapse
Affiliation(s)
- Vladislav A Korobeynikov
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alexander K Lyashchenko
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Beatriz Blanco-Redondo
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA.,Rudolf-Schönheimer Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | | | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA. .,Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY, USA.
| |
Collapse
|
311
|
Kovacs GG, Ghetti B, Goedert M. Classification of Diseases with Accumulation of Tau Protein. Neuropathol Appl Neurobiol 2022; 48:e12792. [PMID: 35064600 PMCID: PMC9352145 DOI: 10.1111/nan.12792] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana, USA
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| |
Collapse
|
312
|
Lee J, An S, Lee SJ, Kang JS. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. Cells 2022; 11:364. [PMID: 35159176 PMCID: PMC8834056 DOI: 10.3390/cells11030364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases (NMDs) are characterized by progressive loss of muscle mass and strength that leads to impaired body movement. It not only severely diminishes the quality of life of the patients, but also subjects them to increased risk of secondary medical conditions such as fall-induced injuries and various chronic diseases. However, no effective treatment is currently available to prevent or reverse the disease progression. Protein arginine methyltransferases (PRMTs) are emerging as a potential therapeutic target for diverse diseases, such as cancer and cardiovascular diseases. Their expression levels are altered in the patients and molecular mechanisms underlying the association between PRMTs and the diseases are being investigated. PRMTs have been shown to regulate development, homeostasis, and regeneration of both muscle and neurons, and their association to NMDs are emerging as well. Through inhibition of PRMT activities, a few studies have reported suppression of cytotoxic phenotypes observed in NMDs. Here, we review our current understanding of PRMTs' involvement in the pathophysiology of NMDs and potential therapeutic strategies targeting PRMTs to address the unmet medical need.
Collapse
Affiliation(s)
- Jinwoo Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Subin An
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang-Jin Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
313
|
Nel M, Mahungu AC, Monnakgotla N, Botha GR, Mulder NJ, Wu G, Rampersaud E, van Blitterswijk M, Wuu J, Cooley A, Myers J, Rademakers R, Taylor JP, Benatar M, Heckmann JM. Revealing the Mutational Spectrum in Southern Africans With Amyotrophic Lateral Sclerosis. Neurol Genet 2022; 8:e654. [PMID: 35047667 PMCID: PMC8756565 DOI: 10.1212/nxg.0000000000000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022]
Abstract
Background and Objectives To perform the first screen of 44 amyotrophic lateral sclerosis (ALS) genes in a cohort of African genetic ancestry individuals with ALS using whole-genome sequencing (WGS) data. Methods One hundred three consecutive cases with probable/definite ALS (using the revised El Escorial criteria), and self-categorized as African genetic ancestry, underwent WGS using various Illumina platforms. As population controls, 238 samples from various African WGS data sets were included. Our analysis was restricted to 44 ALS genes, which were curated for rare sequence variants and classified according to the American College of Medical Genetics guidelines as likely benign, uncertain significance, likely pathogenic, or pathogenic variants. Results Thirteen percent of 103 ALS cases harbored pathogenic variants; 5 different SOD1 variants (N87S, G94D, I114T, L145S, and L145F) in 5 individuals (5%, 1 familial case), pathogenic C9orf72 repeat expansions in 7 individuals (7%, 1 familial case) and a likely pathogenic ANXA11 (G38R) variant in 1 individual. Thirty individuals (29%) harbored ≥1 variant of uncertain significance; 10 of these variants had limited pathogenic evidence, although this was insufficient to permit confident classification as pathogenic. Discussion Our findings show that known ALS genes can be expected to identify a genetic cause of disease in >11% of sporadic ALS cases of African genetic ancestry. Similar to European cohorts, the 2 most frequent genes harboring pathogenic variants in this population group are C9orf72 and SOD1.
Collapse
Affiliation(s)
- Melissa Nel
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Amokelani C Mahungu
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Nomakhosazana Monnakgotla
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Gerrit R Botha
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Nicola J Mulder
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Gang Wu
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Evadnie Rampersaud
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Marka van Blitterswijk
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Joanne Wuu
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Anne Cooley
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Jason Myers
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Rosa Rademakers
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - J Paul Taylor
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Michael Benatar
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Jeannine M Heckmann
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
314
|
Notaro A, Messina A, La Bella V. A Deletion of the Nuclear Localization Signal Domain in the Fus Protein Induces Stable Post-stress Cytoplasmic Inclusions in SH-SY5Y Cells. Front Neurosci 2022; 15:759659. [PMID: 35002600 PMCID: PMC8733393 DOI: 10.3389/fnins.2021.759659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mutations in Fused-in-Sarcoma (FUS) gene involving the nuclear localization signal (NLS) domain lead to juvenile-onset Amyotrophic Lateral Sclerosis (ALS). The mutant protein mislocalizes to the cytoplasm, incorporating it into Stress Granules (SG). Whether SGs are the first step to the formation of stable FUS-containing aggregates is still unclear. In this work, we used acute and chronic stress paradigms to study the SG dynamics in a human SH-SY5Y neuroblastoma cell line carrying a deletion of the NLS domain of the FUS protein (homozygous: ΔNLS–/–; heterozygous: ΔNLS+/–). Wild-type (WT) cells served as controls. We evaluated the subcellular localization of the mutant protein through immunoblot and immunofluorescence, in basal conditions and after acute stress and chronic stress with sodium arsenite (NaAsO2). Cells were monitored for up to 24 h after rescue. FUS was expressed in both nucleus and cytoplasm in the ΔNLS+/– cells, whereas it was primarily cytoplasmic in the ΔNLS–/–. Acute NaAsO2 exposure induced SGs: at rescue,>90% of ΔNLS cells showed abundant FUS-containing if compared to less than 5% of the WT cells. The proportion of FUS-positive SGs remained 15–20% at 24 h in mutant cells. Cycloheximide did not abolish the long-lasting SGs in mutant cells. Chronic exposure to NaAsO2 did not induce significant SGs formation. A wealth of research has demonstrated that ALS-associated FUS mutations at the C-terminus facilitate the incorporation of the mutant protein into SGs. We have shown here that mutant FUS-containing SGs tend to fail to dissolve after stress, facilitating a liquid-to-solid phase transition. The FUS-containing inclusions seen in the dying motor neurons might therefore directly derive from SGs. This might represent an attractive target for future innovative therapies.
Collapse
Affiliation(s)
- Antonietta Notaro
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advances Diagnostics, University of Palermo, Palermo, Italy
| | - Antonella Messina
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advances Diagnostics, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advances Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
315
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
316
|
Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
Affiliation(s)
| | | | - Vladimir A. Vigont
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (D.A.G.); (E.V.K.)
| |
Collapse
|
317
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
318
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
319
|
Tanaka M, Homma K, Soejima A. Histopathological changes of the spinal cord and motor neuron dynamics in SOD1 Tg mice. J Toxicol Pathol 2022; 35:129-133. [PMID: 35221507 PMCID: PMC8828614 DOI: 10.1293/tox.2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
We analyzed the histopathological changes and the number of motor neurons (MNs) in the
lumbar spinal cord of Cu/Zn superoxide dismutase transgenic (SOD1G93ATg) mice,
which are frequently used as a disease model of amyotrophic lateral sclerosis (ALS). In
SOD1G93ATg mice, hyaline inclusions and foamy vacuoles in the neuronal cell
body were observed at 7 weeks of age before neurologic symptoms, and large vacuoles,
spheroid formation, and nerve cell aggregation became prominent after 13 weeks of age. The
number of healthy MNs was 28.7 to 37.1 cells/animal in wild-type mice and 9.3 to 13.6
cells/animal in transgenic (Tg) mice. Furthermore, the number of MNs, including
degenerative neurons, in Tg mice was 27.3–36.1 cells/animal at 18 weeks of age and
17.8–19.6 cells/animal at 21 weeks of age. The present results provide useful information
for the development of drugs in ALS treatment.
Collapse
Affiliation(s)
- Masaharu Tanaka
- Research Unit/Neuroscience, Sohyaku. Innovation Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi 227-0033, Japan
| | - Kengo Homma
- Research Unit/Neuroscience, Sohyaku. Innovation Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi 227-0033, Japan
| | - Aki Soejima
- Research Unit/Neuroscience, Sohyaku. Innovation Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi 227-0033, Japan
| |
Collapse
|
320
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
321
|
Nedelsky NB, Taylor JP. Pathological phase transitions in ALS-FTD impair dynamic RNA-protein granules. RNA (NEW YORK, N.Y.) 2022; 28:97-113. [PMID: 34706979 PMCID: PMC8675280 DOI: 10.1261/rna.079001.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
322
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
323
|
Hutten S, Dormann D. Hormone-Inducible Transport Reporter Assay to Study Nuclear Import Defects in Neurodegenerative Diseases. Methods Mol Biol 2022; 2502:81-90. [PMID: 35412232 DOI: 10.1007/978-1-0716-2337-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the recent years, defective nuclear import has emerged as an important pathomechanism of neurodegenerative diseases, particularly in amyotrophic lateral sclerosis (ALS). Here, specific nuclear RNA binding proteins (RBPs) mislocalize and aggregate in the cytoplasm of neurons and glial cells in degenerating brain regions. Bona fide transport assays that measure nuclear import in a quantitative manner allow one to distinguish whether disease-linked RBP mutations that cause cytosolic RBP mislocalization directly result in reduced nuclear import or cause increased cytoplasmic localization of the RBP through other mechanisms. Here we describe the quantitative analysis of nuclear import rates of RBPs using a hormone-inducible system by live cell imaging.
Collapse
Affiliation(s)
- Saskia Hutten
- Johannes Gutenberg Universität Mainz, Institute of Molecular Physiology, Mainz, Germany.
| | - Dorothee Dormann
- Johannes Gutenberg Universität Mainz, Institute of Molecular Physiology, Mainz, Germany.
- Institute of Molecular Biology (IMB) Mainz, Mainz, Germany.
| |
Collapse
|
324
|
Rosow L, Lomen-Hoerth C. Treatment and Management of Adult Motor Neuron Diseases. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
325
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
326
|
Charif SE, Vassallu MF, Salvañal L, Igaz LM. Protein synthesis modulation as a therapeutic approach for amyotrophic lateral sclerosis and frontotemporal dementia. Neural Regen Res 2021; 17:1423-1430. [PMID: 34916412 PMCID: PMC8771112 DOI: 10.4103/1673-5374.330593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein response) represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis (also known as proteostasis). This is even more important in neurons, as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age. Several neurodegenerative pathologies such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct, unbalanced protein overload. In amyotrophic lateral sclerosis and frontotemporal dementia, the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa (TDP-43). TDP-43 is an RNA binding protein that participates in RNA metabolism, among other functions. Dysregulation of TDP-43 (e.g. aggregation and mislocalization) can dramatically affect neurons, and this has been linked to disease development. Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum. These variants can be causative of degeneration onset and progression. Most neurodegenerative diseases (including amyotrophic lateral sclerosis and frontotemporal dementia) have no cure at the moment; however, modulating translation has recently emerged as an attractive approach that can be performed at several steps (i.e. regulating activation of initiation and elongation factors, inhibiting unfolded protein response activation or inducing chaperone expression and activity). This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis. We strive to highlight the importance of research on drugs that, not only restore protein imbalance without compromising translational activity of cells, but are also as safe as possible for the patients.
Collapse
Affiliation(s)
- Santiago E Charif
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - M Florencia Vassallu
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - Lara Salvañal
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| |
Collapse
|
327
|
Kumar R, Haider S. Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neurosci Rep 2021; 12:25-44. [PMID: 34918006 PMCID: PMC8669318 DOI: 10.1016/j.ibneur.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease, progressive nature characterizes by loss of both upper and lower motor neuron functions. One of the major challenge is to understand the mechanism of ALS multifactorial nature. We aimed to explore some key genes related to ALS through bioinformatics methods for its therapeutic intervention. Here, we applied a systems biology approach involving experimentally validated 148 ALS-associated proteins and construct ALS protein-protein interaction network (ALS-PPIN). The network was further statistically analysed and identified bottleneck-hubs. The network is also subjected to identify modules which could have similar functions. The interaction between the modules and bottleneck-hubs provides the functional regulatory role of the ALS mechanism. The ALS-PPIN demonstrated a hierarchical scale-free nature. We identified 17 bottleneck-hubs, in which CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in ALS-PPIN. CDC5L was found to control highly cluster modules and play a vital role in the stability of the overall network followed by SNW1, TP53, SOD1, and VCP. HSPA5 and HSPA8 acting as a common connector for CDC5L and TP53 bottleneck-hubs. The functional and disease association analysis showed ALS has a strong correlation with mRNA processing, protein deubiquitination, and neoplasms, nervous system, immune system disease classes. In the future, biochemical investigation of the observed bottleneck-hubs and their interacting partners could provide a further understanding of their role in the pathophysiology of ALS. Amyotrophic Lateral Sclerosis protein-protein interaction network (ALS-PPIN) followed a hierarchical scale-free nature. We identified 17 bottleneck-hubs in the ALS-PPIN. Among bottleneck-hubs we found CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in the ALS-PPIN. CDC5L is the effective communicator with all five modules in the ALS-PPIN and followed by SNW1 and TP53. Modules are highly associated with various disease classes like neoplasms, nervous systems and others.
Collapse
Key Words
- ALS
- ALS, Amyotrophic Lateral Sclerosis
- ALS-PPIN
- ALS-PPIN, Amyotrophic Lateral Sclerosis Protein-Protein Interaction Network
- ALSoD, Amyotrophic Lateral Sclerosis online database
- BC, Betweenness centrality
- Bn-H, Bottleneck-hub
- Bottleneck-hubs
- CDC5L
- CDC5L, Cell division cycle5-likeprotein
- FUS, Fused in sarcoma
- MCODE, Molecular Complex Detection
- MND, Motor neuron disease
- SMA, Spinal muscular atrophy
- SMN, Survival of motor neuron
- SNW1
- SNW1, SNW domain-containing protein 1
- SOD1
- SOD1, Superoxide dismutase
- TP53
- TP53, Tumor protein p53
- VCP
- VCP, Valosin containing protein
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| |
Collapse
|
328
|
Devoy A, Price G, De Giorgio F, Bunton-Stasyshyn R, Thompson D, Gasco S, Allan A, Codner GF, Nair RR, Tibbit C, McLeod R, Ali Z, Noda J, Marrero-Gagliardi A, Brito-Armas JM, Williams C, Öztürk MM, Simon M, O'Neill E, Bryce-Smith S, Harrison J, Atkins G, Corrochano S, Stewart M, Gilthorpe JD, Teboul L, Acevedo-Arozena A, Fisher EM, Cunningham TJ. Generation and analysis of innovative genomically humanized knockin SOD1, TARDBP (TDP-43), and FUS mouse models. iScience 2021; 24:103463. [PMID: 34988393 PMCID: PMC8710557 DOI: 10.1016/j.isci.2021.103463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) is a fatal neurodegenerative disorder, and continued innovation is needed for improved understanding and for developing therapeutics. We have created next-generation genomically humanized knockin mouse models, by replacing the mouse genomic region of Sod1, Tardbp (TDP-43), and Fus, with their human orthologs, preserving human protein biochemistry and splicing with exons and introns intact. We establish a new standard of large knockin allele quality control, demonstrating the utility of indirect capture for enrichment of a genomic region of interest followed by Oxford Nanopore sequencing. Extensive analysis shows that homozygous humanized animals only express human protein at endogenous levels. Characterization of humanized FUS animals showed that they are phenotypically normal throughout their lifespan. These humanized strains are vital for preclinical assessment of interventions and serve as templates for the addition of coding or non-coding human ALS/FTD mutations to dissect disease pathomechanisms, in a physiological context.
Collapse
Affiliation(s)
- Anny Devoy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Georgia Price
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Francesca De Giorgio
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Rosie Bunton-Stasyshyn
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - David Thompson
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Samanta Gasco
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Alasdair Allan
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gemma F. Codner
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Remya R. Nair
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Charlotte Tibbit
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Ross McLeod
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Zeinab Ali
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Judith Noda
- Research Unit, Hospital Universitario de Canarias; ITB-ULL and CIBERNED, 38320 La Laguna, Spain
| | | | - José M. Brito-Armas
- Research Unit, Hospital Universitario de Canarias; ITB-ULL and CIBERNED, 38320 La Laguna, Spain
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Muhammet M. Öztürk
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michelle Simon
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Edward O'Neill
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sam Bryce-Smith
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jackie Harrison
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gemma Atkins
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | | | - Michelle Stewart
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | | | - Lydia Teboul
- UK MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Abraham Acevedo-Arozena
- Research Unit, Hospital Universitario de Canarias; ITB-ULL and CIBERNED, 38320 La Laguna, Spain
| | - Elizabeth M.C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
329
|
An H, Litscher G, Watanabe N, Wei W, Hashimoto T, Iwatsubo T, Buchman VL, Shelkovnikova TA. ALS-linked cytoplasmic FUS assemblies are compositionally different from physiological stress granules and sequester hnRNPA3, a novel modifier of FUS toxicity. Neurobiol Dis 2021; 162:105585. [PMID: 34915152 PMCID: PMC8799889 DOI: 10.1016/j.nbd.2021.105585] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Formation of cytoplasmic RNA-protein structures called stress granules (SGs) is a highly conserved cellular response to stress. Abnormal metabolism of SGs may contribute to the pathogenesis of (neuro)degenerative diseases such as amyotrophic lateral sclerosis (ALS). Many SG proteins are affected by mutations causative of these conditions, including fused in sarcoma (FUS). Mutant FUS variants have high affinity to SGs and also spontaneously form de novo cytoplasmic RNA granules. Mutant FUS-containing assemblies (mFAs), often called “pathological SGs”, are proposed to play a role in ALS-FUS pathogenesis. However, structural differences between mFAs and physiological SGs remain largely unknown therefore it is unclear whether mFAs can functionally substitute for SGs and how they affect cellular stress responses. Here we used affinity purification to isolate mFAs and physiological SGs and compare their protein composition. We found that proteins within mFAs form significantly more physical interactions than those in SGs however mFAs fail to recruit many factors involved in signal transduction. Furthermore, we found that proteasome subunits and certain nucleocytoplasmic transport factors are depleted from mFAs, whereas translation elongation, mRNA surveillance and splicing factors as well as mitochondrial proteins are enriched in mFAs, as compared to SGs. Validation experiments for a mFA-specific protein, hnRNPA3, confirmed its RNA-dependent interaction with FUS and its sequestration into FUS inclusions in cultured cells and in a FUS transgenic mouse model. Silencing of the Drosophila hnRNPA3 ortholog was deleterious and potentiated human FUS toxicity in the retina of transgenic flies. In conclusion, we show that SG-like structures formed by mutant FUS are structurally distinct from SGs, prone to persistence, likely cannot functionally replace SGs, and affect a spectrum of cellular pathways in stressed cells. Results of our study support a pathogenic role for cytoplasmic FUS assemblies in ALS-FUS. Proteomes of stress granules and mutant FUS assemblies (mFAs) were compared. mFAs are depleted of signal transduction proteins and disassembly factors. mFAs sequester translation and splicing factors and mitochondrial proteins hnRNPA3 protein in sequestered into FUS inclusions in cells and in transgenic mice Silencing of the Drosophila hnRNPA3 ortholog enhances human FUS toxicity in flies.
Collapse
Affiliation(s)
- Haiyan An
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Gioana Litscher
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | | | - Wenbin Wei
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | | | | | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom; Belgorod State National Research University, Belgorod 308015, Russian Federation
| | | |
Collapse
|
330
|
D'Ambra E, Santini T, Vitiello E, D'Uva S, Silenzi V, Morlando M, Bozzoni I. Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS. iScience 2021; 24:103504. [PMID: 34934923 DOI: 10.1016/j.isci.2021.103504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/12/2021] [Accepted: 11/21/2021] [Indexed: 12/17/2022] Open
Abstract
CircRNAs belong to a family of RNA molecules which are conserved in evolution, have tissue-specific expression, and are abundant in neuronal cells. Here, we define several features of circ-Hdgfrp3 and describe interesting alterations occurring in motor neurons (MNs) carrying ALS-associated FUS mutations. Through a highly sensitive in situ approach we describe that circ-Hdgfrp3 traffics along neurites, while upon oxidative stress it is retained in the perinuclear region. While in wild-type stressed MNs, circ-Hdgfrp3 localizes in stress granules (SGs), in MNs carrying mutant FUS, a higher proportion of circ-Hdgfrp3 was trapped into cytoplasmic aggregates. Upon stress removal, circ-Hdgfrp3 was easily freed from SGs whereas it was less efficiently released from FUS-aggregates. We found that the human circ-Hdgfrp3 counterpart was also similarly associated to mutant FUS-aggregates in stressed neuronal cells. Overall, the alteration of circ-Hdgfrp3 trafficking adds a further layer of complexity to the role of FUS-aggregates in ALS disease.
Collapse
Affiliation(s)
- Eleonora D'Ambra
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Erika Vitiello
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Human Technology@ Istituto Italiano di Tecnologia, Genova, Italy
| | - Sara D'Uva
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Valentina Silenzi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Perugia, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
- Center for Human Technology@ Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
331
|
Capelluto DGS, Conde CB, Tumbarello DA, van den Bogaart G. Editorial: Signaling Proteins for Endosomal and Lysosomal Function. Front Cell Dev Biol 2021; 9:821719. [PMID: 34977050 PMCID: PMC8717997 DOI: 10.3389/fcell.2021.821719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Daniel G. S. Capelluto,
| | - Cecilia B. Conde
- Medical Research Institute Mercedes and Martín Ferreyra (INIMEC-CONICET-UNC), Córdoba, Argentina
| | | | - Geert van den Bogaart
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| |
Collapse
|
332
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
333
|
Hartung T, Rhein M, Kalmbach N, Thau-Habermann N, Naujock M, Müschen L, Frieling H, Sterneckert J, Hermann A, Wegner F, Petri S. Methylation and Expression of Mutant FUS in Motor Neurons Differentiated From Induced Pluripotent Stem Cells From ALS Patients. Front Cell Dev Biol 2021; 9:774751. [PMID: 34869374 PMCID: PMC8640347 DOI: 10.3389/fcell.2021.774751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease leading to degeneration of motor neurons (MNs). Epigenetic modification of gene expression is increasingly recognized as potential disease mechanism. In the present study we generated motor neurons from induced pluripotent stem cells from ALS patients carrying a mutation in the fused in sarcoma gene (FUS) and analyzed expression and promoter methylation of the FUS gene and expression of DNA methyltransferases (DNMTs) compared to healthy control cell lines. While mutant FUS neural progenitor cells (NPCs) did not show a difference in FUS and DNMT expression compared to healthy controls, differentiated mutant FUS motor neurons showed significantly lower FUS expression, higher DNMT expression and higher methylation of the proximal FUS gene promoter. Immunofluorescence revealed perceived proximity of cytoplasmic FUS aggregates in ALS MNs together with 5-methylcytosin (5-mC). Targeting disturbed methylation in ALS may therefore restore transcriptional alterations and represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- T Hartung
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M Rhein
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - N Kalmbach
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - N Thau-Habermann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - M Naujock
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Evotec International GmbH, Göttingen, Germany
| | - L Müschen
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - H Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - J Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - A Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - F Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - S Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
334
|
Diaz-Garcia S, Ko VI, Vazquez-Sanchez S, Chia R, Arogundade OA, Rodriguez MJ, Traynor BJ, Cleveland D, Ravits J. Nuclear depletion of RNA-binding protein ELAVL3 (HuC) in sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathol 2021; 142:985-1001. [PMID: 34618203 PMCID: PMC8568872 DOI: 10.1007/s00401-021-02374-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive fatal neurodegenerative disease caused by loss of motor neurons and characterized neuropathologically in almost all cases by nuclear depletion and cytoplasmic aggregation of TDP-43, a nuclear RNA-binding protein (RBP). We identified ELAVL3 as one of the most downregulated genes in our transcriptome profiles of laser captured microdissection of motor neurons from sporadic ALS nervous systems and the most dysregulated of all RBPs. Neuropathological characterizations showed ELAVL3 nuclear depletion in a great percentage of remnant motor neurons, sometimes accompanied by cytoplasmic accumulations. These abnormalities were common in sporadic cases with and without intermediate expansions in ATXN2 and familial cases carrying mutations in C9orf72 and SOD1. Depletion of ELAVL3 occurred at both the RNA and protein levels and a short protein isoform was identified, but it is not related to a TDP-43-dependent cryptic exon in intron 3. Strikingly, ELAVL3 abnormalities were more frequent than TDP-43 abnormalities and occurred in motor neurons still with normal nuclear TDP-43 present, but all neurons with abnormal TDP-43 also had abnormal ELAVL3. In a neuron-like cell culture model using SH-SY5Y cells, ELAVL3 mislocalization occurred weeks before TDP-43 abnormalities were seen. We interrogated genetic databases, but did not identify association of ELAVL3 genetic structure with ALS. Taken together, these findings suggest that ELAVL3 is an important RBP in ALS pathogenesis acquired early and the neuropathological data suggest that it is involved by loss of function rather than cytoplasmic toxicity.
Collapse
Affiliation(s)
- Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| | - Vivian I. Ko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| | - Sonia Vazquez-Sanchez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0670 USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA USA
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707 USA
| | | | - Maria J. Rodriguez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| | - Bryan J. Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707 USA
| | - Don Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0670 USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA USA
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| |
Collapse
|
335
|
Riku Y, Yoshida M, Tamura T, Kamijo M, Yasui K, Kameyama T, Katsuno M, Sobue G, Iwasaki Y. Unexpected postmortem diagnoses in cases of clinically diagnosed amyotrophic lateral sclerosis. Neuropathology 2021; 41:457-467. [PMID: 34783101 DOI: 10.1111/neup.12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 01/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that is clinically and pathologically characterized by impairment of the upper and lower motor neurons. The clinical diagnosis of ALS is not always straightforward because of the lack of specific biomarkers and clinical heterogeneity. This review presents the clinical and pathological findings of four autopsied cases that had been diagnosed with ALS before death. These cases had demonstrated definite and progressive motor neuron signs and symptoms, whereas postmortem assessment revealed miscellaneous disorders, including fungal infection, paraneoplastic syndrome, and amyloidosis. Importantly, nonmotor neuron signs and symptoms, including seizures, extra-pyramidal signs, ocular movement disorders, sensory disturbance, and dysautonomia, had also been documented during the disease course of the cases in the present study. The ALS-unlike symptoms were indicative of the "true" diagnosis in each case when those symptoms were isolated from motor neuron signs/symptoms.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Takuya Tamura
- Department of Neurology, Higashi Nagoya National Hospital, Nagoya, Japan
| | - Mikiko Kamijo
- Department of Neurology, Chubu Rosai Hospital, Nagoya, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | | | | | - Gen Sobue
- Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
336
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
337
|
Vanneste J, Van Den Bosch L. The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:12175. [PMID: 34830069 PMCID: PMC8620263 DOI: 10.3390/ijms222212175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.
Collapse
Affiliation(s)
- Joni Vanneste
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| |
Collapse
|
338
|
Trnka F, Hoffmann C, Wang H, Sansevrino R, Rankovic B, Rost BR, Schmitz D, Schmidt HB, Milovanovic D. Aberrant Phase Separation of FUS Leads to Lysosome Sequestering and Acidification. Front Cell Dev Biol 2021; 9:716919. [PMID: 34746121 PMCID: PMC8569517 DOI: 10.3389/fcell.2021.716919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to the death of upper and lower motor neurons. While most cases of ALS are sporadic, some of the familial forms of the disease are caused by mutations in the gene encoding for the RNA-binding protein FUS. Under physiological conditions, FUS readily phase separates into liquid-like droplets in vivo and in vitro. ALS-associated mutations interfere with this process and often result in solid-like aggregates rather than fluid condensates. Yet, whether cells recognize and triage aberrant condensates remains poorly understood, posing a major barrier to the development of novel ALS treatments. Using a combination of ALS-associated FUS mutations, optogenetic manipulation of FUS condensation, chemically induced stress, and pH-sensitive reporters of organelle acidity, we systematically characterized the cause-effect relationship between the material state of FUS condensates and the sequestering of lysosomes. From our data, we can derive three conclusions. First, regardless of whether we use wild-type or mutant FUS, expression levels (i.e., high concentrations) play a dominant role in determining the fraction of cells having soluble or aggregated FUS. Second, chemically induced FUS aggregates recruit LAMP1-positive structures. Third, mature, acidic lysosomes accumulate only at FUS aggregates but not at liquid-condensates. Together, our data suggest that lysosome-degradation machinery actively distinguishes between fluid and solid condensates. Unraveling these aberrant interactions and testing strategies to manipulate the autophagosome-lysosome axis provides valuable clues for disease intervention.
Collapse
Affiliation(s)
- Franziska Trnka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Han Wang
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Branislava Rankovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Benjamin R Rost
- Laboratory of Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Dietmar Schmitz
- Laboratory of Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - H Broder Schmidt
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA, United States
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
339
|
Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics 2021; 219:iyab145. [PMID: 34740247 PMCID: PMC8570788 DOI: 10.1093/genetics/iyab145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Many circular RNAs (circRNAs) are differentially expressed in different tissues or cell types, suggestive of specific factors that regulate their biogenesis. Here, taking advantage of available mutation strains of RNA-binding proteins (RBPs) in Caenorhabditis elegans, I performed a screening of circRNA regulation in 13 conserved RBPs. Among them, loss of FUST-1, the homolog of Fused in Sarcoma (FUS), caused downregulation of multiple circRNAs. By rescue experiments, I confirmed FUST-1 as a circRNA regulator. Through RNA sequencing using circRNA-enriched samples, circRNAs targets regulated by FUST-1 were identified globally, with hundreds of them significantly altered. Furthermore, I showed that FUST-1 regulates circRNA formation with only small to little effect on the cognate linear mRNAs. When recognizing circRNA pre-mRNAs, FUST-1 can affect both exon-skipping and circRNA in the same genes. Moreover, I identified an autoregulation loop in fust-1, where FUST-1, isoform a (FUST-1A) promotes the skipping of exon 5 of its own pre-mRNA, which produces FUST-1, isoform b (FUST-1B) with different N-terminal sequences. FUST-1A is the functional isoform in circRNA regulation. Although FUST-1B has the same functional domains as FUST-1A, it cannot regulate either exon-skipping or circRNA formation. This study provided an in vivo investigation of circRNA regulation, which will be helpful to understand the mechanisms that govern circRNA formation.
Collapse
Affiliation(s)
- Dong Cao
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
340
|
Rossi S, Cozzolino M. Dysfunction of RNA/RNA-Binding Proteins in ALS Astrocytes and Microglia. Cells 2021; 10:cells10113005. [PMID: 34831228 PMCID: PMC8616248 DOI: 10.3390/cells10113005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic Lateral Sclerosis is a neurological disease that primarily affects motor neurons in the cortex, brainstem, and spinal cord. The process that leads to motor neuron degeneration is strongly influenced by non-motor neuronal events that occur in a variety of cell types. Among these, neuroinflammatory processes mediated by activated astrocytes and microglia play a relevant role. In recent years, it has become clear that dysregulation of essential steps of RNA metabolism, as a consequence of alterations in RNA-binding proteins (RBPs), is a central event in the degeneration of motor neurons. Yet, a causal link between dysfunctional RNA metabolism and the neuroinflammatory processes mediated by astrocytes and microglia in ALS has been poorly defined. In this review, we will discuss the available evidence showing that RBPs and associated RNA processing are affected in ALS astrocytes and microglia, and the possible mechanisms involved in these events.
Collapse
|
341
|
Ito D. Promise of Nucleic Acid Therapeutics for Amyotrophic Lateral Sclerosis. Ann Neurol 2021; 91:13-20. [PMID: 34704267 DOI: 10.1002/ana.26259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Nucleic acid therapeutics have been attracting attention as novel drug discovery modalities for intractable diseases, including amyotrophic lateral sclerosis. This review provides an overview of the current status and prospects of antisense oligonucleotide treatment for amyotrophic lateral sclerosis. Recently, the results of a phase I/II study using the antisense oligonucleotides Tofersen to treat familial amyotrophic lateral sclerosis with superoxide dismutase 1 mutation have been reported. Intrathecal Tofersen administration resulted in a 36% reduction in superoxide dismutase 1 level in the cerebrospinal fluid. Another report described 2 patients with mutant superoxide dismutase 1 treated with an adeno-associated virus encoding a microRNA targeting superoxide dismutase 1. The first patient, who possessed the fast progressive mutant A5V, received a single intrathecal infusion. Although the patient died of respiratory arrest 16 months after treatment, autopsy findings showed a reduction of >90% in superoxide dismutase 1 level in the spinal cord. Clinical trials on antisense oligonucleotide therapies targeting other major amyotrophic lateral sclerosis-causative genes, fused in sarcoma and chromosome 9 open reading frame 72, are ongoing. To attenuate the pathology of TDP-43, strategies targeting regulators of TDP-43 (ataxin 2) and proteins downstream of TDP-43 (stathmin 2) by antisense oligonucleotides are being developed. The advent of nucleic acid therapeutics has enabled to specifically attack the molecules in the amyotrophic lateral sclerosis pathological cascade, expanding the options for therapeutic targets. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
342
|
The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores. Proc Natl Acad Sci U S A 2021; 118:2114412118. [PMID: 34654750 PMCID: PMC8545455 DOI: 10.1073/pnas.2114412118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/24/2022] Open
Abstract
Single amino acid changes causative of neurologic disease often map to the cross-β forming regions of low-complexity (LC) domains. All such mutations studied to date lead to enhanced avidity of cross-β interactions. The LC domain of the fused in sarcoma (FUS) RNA binding protein contains three different regions that are capable of forming labile cross-β interactions. Here we describe the perplexing effect of amyotrophic lateral sclerosis (ALS)-causing mutations localized to the LC domain of FUS to substantially weaken its ability to form one of its three cross-β interactions. An understanding of how these mutations abet uncontrolled polymerization of the FUS LC domain may represent an important clue as to how LC domains achieve their proper biological function. The low-complexity (LC) domain of the fused in sarcoma (FUS) RNA binding protein self-associates in a manner causing phase separation from an aqueous environment. Incubation of the FUS LC domain under physiologically normal conditions of salt and pH leads to rapid formation of liquid-like droplets that mature into a gel-like state. Both examples of phase separation have enabled reductionist biochemical assays allowing discovery of an N-terminal region of 57 residues that assembles into a labile, cross-β structure. Here we provide evidence of a nonoverlapping, C-terminal region of the FUS LC domain that also forms specific cross-β interactions. We propose that biologic function of the FUS LC domain may operate via the mutually exclusive use of these N- and C-terminal cross-β cores. Neurodegenerative disease–causing mutations in the FUS LC domain are shown to imbalance the two cross-β cores, offering an unanticipated concept of LC domain function and dysfunction.
Collapse
|
343
|
Lenard AJ, Hutten S, Zhou Q, Usluer S, Zhang F, Bourgeois BMR, Dormann D, Madl T. Phosphorylation Regulates CIRBP Arginine Methylation, Transportin-1 Binding and Liquid-Liquid Phase Separation. Front Mol Biosci 2021; 8:689687. [PMID: 34738012 PMCID: PMC8562343 DOI: 10.3389/fmolb.2021.689687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications.
Collapse
Affiliation(s)
- Aneta J. Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Saskia Hutten
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
| | - Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin M. R. Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
344
|
Ting HC, Yang HI, Harn HJ, Chiu IM, Su HL, Li X, Chen MF, Ho TJ, Liu CA, Tsai YJ, Chiou TW, Lin SZ, Chang CY. Coactivation of GSK3β and IGF-1 Attenuates Amyotrophic Lateral Sclerosis Nerve Fiber Cytopathies in SOD1 Mutant Patient-Derived Motor Neurons. Cells 2021; 10:cells10102773. [PMID: 34685754 PMCID: PMC8535155 DOI: 10.3390/cells10102773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients’ MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS (SOD1G85R and SOD1D90A), two SOD1 mutant corrected (SOD1G85G and SOD1D90D), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata, showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy.
Collapse
Affiliation(s)
- Hsiao-Chien Ting
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (H.-C.T.); (H.-I.Y.); (H.-J.H.); (C.-A.L.); (Y.-J.T.)
| | - Hui-I Yang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (H.-C.T.); (H.-I.Y.); (H.-J.H.); (C.-A.L.); (Y.-J.T.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (H.-C.T.); (H.-I.Y.); (H.-J.H.); (C.-A.L.); (Y.-J.T.)
- Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien 97002, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Xiang Li
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA;
| | - Mei-Fang Chen
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan;
| | - Tsung-Jung Ho
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (H.-C.T.); (H.-I.Y.); (H.-J.H.); (C.-A.L.); (Y.-J.T.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan;
- Neuroscience Center, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| | - Yung-Jen Tsai
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (H.-C.T.); (H.-I.Y.); (H.-J.H.); (C.-A.L.); (Y.-J.T.)
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien 97441, Taiwan;
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (H.-C.T.); (H.-I.Y.); (H.-J.H.); (C.-A.L.); (Y.-J.T.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Correspondence: (S.-Z.L.); (C.-Y.C.); Tel.: +886-3-856-1825 (ext. 13201) (S.-Z.L.); +886-3-856-1825 (ext. 12106) (C.-Y.C.)
| | - Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (H.-C.T.); (H.-I.Y.); (H.-J.H.); (C.-A.L.); (Y.-J.T.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan;
- Neuroscience Center, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Correspondence: (S.-Z.L.); (C.-Y.C.); Tel.: +886-3-856-1825 (ext. 13201) (S.-Z.L.); +886-3-856-1825 (ext. 12106) (C.-Y.C.)
| |
Collapse
|
345
|
Ishiguro A, Lu J, Ozawa D, Nagai Y, Ishihama A. ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-liquid phase separation and liquid-to-solid transition. J Biol Chem 2021; 297:101284. [PMID: 34624313 PMCID: PMC8567205 DOI: 10.1016/j.jbc.2021.101284] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the accumulation of protein aggregates in motor neurons. Recent discoveries of genetic mutations in ALS patients promoted research into the complex molecular mechanisms underlying ALS. FUS (fused in sarcoma) is a representative ALS-linked RNA-binding protein (RBP) that specifically recognizes G-quadruplex (G4)-DNA/RNAs. However, the effects of ALS-linked FUS mutations on the G4-RNA-binding activity and the phase behavior have never been investigated. Using the purified full-length FUS, we analyzed the molecular mechanisms of multidomain structures consisting of multiple functional modules that bind to G4. Here we succeeded to observe the liquid–liquid phase separation (LLPS) of FUS condensate formation and subsequent liquid-to-solid transition (LST) leading to the formation of FUS aggregates. This process was markedly promoted through FUS interaction with G4-RNA. To further investigate, we selected a total of eight representative ALS-linked FUS mutants within multidomain structures and purified these proteins. The regulation of G4-RNA-dependent LLPS and LST pathways was lost for all ALS-linked FUS mutants defective in G4-RNA recognition tested, supporting the essential role of G4-RNA in this process. Noteworthy, the P525L mutation that causes juvenile ALS exhibited the largest effect on both G4-RNA binding and FUS aggregation. The findings described herein could provide a clue to the hitherto undefined connection between protein aggregation and dysfunction of RBPs in the complex pathway of ALS pathogenesis.
Collapse
Affiliation(s)
- Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.
| | - Jun Lu
- Medical Examination Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Daisaku Ozawa
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
346
|
Iacoangeli A, Fogh I, Selvackadunco S, Topp SD, Shatunov A, van Rheenen W, Al-Khleifat A, Opie-Martin S, Ratti A, Calvo A, Van Damme P, Robberecht W, Chio A, Dobson RJ, Hardiman O, Shaw CE, van den Berg LH, Andersen PM, Smith BN, Silani V, Veldink JH, Breen G, Troakes C, Al-Chalabi A, Jones AR. SCFD1 expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed. Brain Commun 2021; 3:fcab236. [PMID: 34708205 PMCID: PMC8545614 DOI: 10.1093/braincomms/fcab236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
Evidence indicates that common variants found in genome-wide association studies increase risk of disease through gene regulation via expression Quantitative Trait Loci. Using multiple genome-wide methods, we examined if Single Nucleotide Polymorphisms increase risk of Amyotrophic Lateral Sclerosis through expression Quantitative Trait Loci, and whether expression Quantitative Trait Loci expression is consistent across people who had Amyotrophic Lateral Sclerosis and those who did not. In combining public expression Quantitative Trait Loci data with Amyotrophic Lateral Sclerosis genome-wide association studies, we used Summary-data-based Mendelian Randomization to confirm that SCFD1 was the only gene that was genome-wide significant in mediating Amyotrophic Lateral Sclerosis risk via expression Quantitative Trait Loci (Summary-data-based Mendelian Randomization beta = 0.20, standard error = 0.04, P-value = 4.29 × 10-6). Using post-mortem motor cortex, we tested whether expression Quantitative Trait Loci showed significant differences in expression between Amyotrophic Lateral Sclerosis (n = 76) and controls (n = 25), genome-wide. Of 20 757 genes analysed, the two most significant expression Quantitative Trait Loci to show differential in expression between Amyotrophic Lateral Sclerosis and controls involve two known Amyotrophic Lateral Sclerosis genes (SCFD1 and VCP). Cis-acting SCFD1 expression Quantitative Trait Loci downstream of the gene showed significant differences in expression between Amyotrophic Lateral Sclerosis and controls (top expression Quantitative Trait Loci beta = 0.34, standard error = 0.063, P-value = 4.54 × 10-7). These SCFD1 expression Quantitative Trait Loci also significantly modified Amyotrophic Lateral Sclerosis survival (number of samples = 4265, hazard ratio = 1.11, 95% confidence interval = 1.05-1.17, P-value = 2.06 × 10-4) and act as an Amyotrophic Lateral Sclerosis trans-expression Quantitative Trait Loci hotspot for a wider network of genes enriched for SCFD1 function and Amyotrophic Lateral Sclerosis pathways. Using gene-set analyses, we found the genes that correlate with this trans-expression Quantitative Trait Loci hotspot significantly increase risk of Amyotrophic Lateral Sclerosis (beta = 0.247, standard deviation = 0.017, P = 0.001) and schizophrenia (beta = 0.263, standard deviation = 0.008, P-value = 1.18 × 10-5), a disease that genetically correlates with Amyotrophic Lateral Sclerosis. In summary, SCFD1 expression Quantitative Trait Loci are a major factor in Amyotrophic Lateral Sclerosis, not only influencing disease risk but are differentially expressed in post-mortem Amyotrophic Lateral Sclerosis. SCFD1 expression Quantitative Trait Loci show distinct expression profiles in Amyotrophic Lateral Sclerosis that correlate with a wider network of genes that also confer risk of the disease and modify the disease's duration.
Collapse
Affiliation(s)
- Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Isabella Fogh
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Sashika Selvackadunco
- MRC London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon D Topp
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ahmad Al-Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Sarah Opie-Martin
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Antonia Ratti
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Andrea Calvo
- Department of Neuroscience 'Rita Levi Montalcini', ALS Centre, University of Turin, Torino, Italy
- Neuroscience Institute of Torino (NIT), University of Torino, Torino, Piemonte, Italy
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory of Neurobiology, VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Wim Robberecht
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Adriano Chio
- Department of Neuroscience 'Rita Levi Montalcini', ALS Centre, University of Turin, Torino, Italy
- Neuroscience Institute of Torino (NIT), University of Torino, Torino, Piemonte, Italy
| | - Richard J Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, University of Dublin Trinity College, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin 9, Ireland
| | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Bradley N Smith
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Claire Troakes
- MRC London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Ashley R Jones
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| |
Collapse
|
347
|
Choi HJ, Lee JY, Cha SJ, Han YJ, Yoon JH, Kim HJ, Kim K. FUS-induced neurotoxicity is prevented by inhibiting GSK-3β in a drosophila model of amyotrophic lateral sclerosis. Hum Mol Genet 2021; 31:850-862. [PMID: 34605896 DOI: 10.1093/hmg/ddab290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS)-linked mutations in fused in sarcoma (FUS) lead to the formation of cytoplasmic aggregates in neurons. They are believed play a critical role in the pathogenesis of FUS-associated ALS. Therefore, the clearance and degradation of cytoplasmic FUS aggregates in neurons may be considered a therapeutic strategy for ALS. However, the molecular pathogenic mechanisms behind FUS-associated ALS remain poorly understood. Here, we report GSK-3β as a potential modulator of FUS-induced toxicity. We demonstrated that RNAi-mediated knockdown of Drosophila ortholog Shaggy in FUS-expressing flies suppresses defective phenotypes, including retinal degeneration, motor defects, motor neuron degeneration, and mitochondrial dysfunction. Furthermore, we found that cytoplasmic FUS aggregates were significantly reduced by Shaggy knockdown. In addition, we found that the levels of FUS proteins were significantly reduced by co-overexpression of Slimb, a F-box protein, in FUS-expressing flies, indicating that Slimb is critical for the suppressive effect of Shaggy/GSK-3β inhibition on FUS-induced toxicity in Drosophila. These findings revealed a novel mechanism of neuronal protective effect through SCFSlimb-mediated FUS degradation via GSK-3β inhibition, and provided in vivo evidence of the potential for modulating FUS-induced ALS progression using GSK-3β inhibitors.
Collapse
Affiliation(s)
- Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea.,Department of Integrated Biomedical Sciences, Soonchunhyang University, Cheonan 31151, Korea
| | - Ji Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Sun Joo Cha
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Yeo Jeong Han
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea.,Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Ja Hoon Yoon
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea.,Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
348
|
Bonet LFS, Loureiro JP, Pereira GRC, Da Silva ANR, De Mesquita JF. Molecular dynamics and protein frustration analysis of human fused in Sarcoma protein variants in Amyotrophic Lateral Sclerosis type 6: An In Silico approach. PLoS One 2021; 16:e0258061. [PMID: 34587215 PMCID: PMC8480726 DOI: 10.1371/journal.pone.0258061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disorder. The disease is characterized by degeneration of upper and lower motor neurons, leading to death usually within five years after the onset of symptoms. While most cases are sporadic, 5%-10% of cases can be associated with familial inheritance, including ALS type 6, which is associated with mutations in the Fused in Sarcoma (FUS) gene. This work aimed to evaluate how the most frequent ALS-related mutations in FUS, R521C, R521H, and P525L affect the protein structure and function. We used prediction algorithms to analyze the effects of the non-synonymous single nucleotide polymorphisms and performed evolutionary conservation analysis, protein frustration analysis, and molecular dynamics simulations. Most of the prediction algorithms classified the three mutations as deleterious. All three mutations were predicted to reduce protein stability, especially the mutation R521C, which was also predicted to increase chaperone binding tendency. The protein frustration analysis showed an increase in frustration in the interactions involving the mutated residue 521C. Evolutionary conservation analysis showed that residues 521 and 525 of human FUS are highly conserved sites. The molecular dynamics results indicate that protein stability could be compromised in all three mutations. They also affected the exposed surface area and protein compactness. The analyzed mutations also displayed high flexibility in most residues in all variants, most notably in the interaction site with the nuclear import protein of FUS.
Collapse
Affiliation(s)
- L. F. S. Bonet
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. P. Loureiro
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G. R. C. Pereira
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. N. R. Da Silva
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. F. De Mesquita
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
349
|
Genetic analysis in Chinese patients with familial or young-onset amyotrophic lateral sclerosis. Neurol Sci 2021; 43:2579-2587. [PMID: 34564799 DOI: 10.1007/s10072-021-05634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of our study was to investigate the genetic characteristics in patients with familial or young-onset amyotrophic lateral sclerosis (ALS) in a Chinese center. METHODS Patients with familial or young-onset (age of onset < 45 years old) ALS were reviewed. The clinical data was collected. Whole-exome sequencing was performed to identify the disease-associated variants. Single-nucleotide variants and small insertions/deletions were further predicted with silico tools and compared to the Single Nucleotide Polymorphism Database, Exome Aggregation Consortium, and the 1000 Genomes Project. The evolutionary conservations were estimated, and the structures of proteins were constructed by Swiss-Model server. Immunohistochemistry was used to confirm the misfolded SOD1 protein. RESULTS Three familial ALS and 5 young-onset ALS were enrolled. Genetic analysis identified related variants of SOD1 (4/6, 66.7%), FUS (1/6, 16.7%), and NEK1 (1/6, 16.7%) in 6 patients. Three of them were familial probands (3/3, 100%), and the others were sporadic young-onset patients (3/5, 60%). NEK1 c.290G > A mutation (NM_012224.2 exon4) in a patient with familial ALS and SOD1 c.362A > G mutation (NM_000454 exon5) in a young-onset ALS patient were novel. The novel mutations were predicted to be deleterious, affected evolutionarily highly conserved amino acid residue and the formation of hydrogen bonds between the mutated site and its surrounding amino acid residues. Misfolded SOD1 protein was identified in patient with SOD1 c.362A > G mutation. CONCLUSIONS Two novel mutations were detected in our patients. Patients with familial or young-onset ALS often carried related gene mutations, and genetic sequencing should be thus routinely performed.
Collapse
|
350
|
Laneve P, Tollis P, Caffarelli E. RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. Int J Mol Sci 2021; 22:10285. [PMID: 34638636 PMCID: PMC8508793 DOI: 10.3390/ijms221910285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways underpinning biological processes are affected by the events governing the RNA life cycle, ranging from transcription to degradation. The deregulation of these processes contributes to the onset and progression of human diseases. In recent decades, considerable efforts have been devoted to the characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression, ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms underlying neural functions, and are crucially implicated in the development of neuronal pathologies, among which are neurodegenerative diseases. This review aims to explore the link between ncRNA dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology, which is often regarded as an RNA disease. We also discuss the potential role that these transcripts may play as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Paolo Tollis
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|