351
|
Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol 2019; 7:352. [PMID: 31828066 PMCID: PMC6890555 DOI: 10.3389/fbioe.2019.00352] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective regeneration of bone defects often presents significant challenges, particularly in patients with decreased tissue regeneration capacity due to extensive trauma, disease, and/or advanced age. A number of studies have focused on enhancing bone regeneration by applying mesenchymal stromal cells (MSCs) or MSC-based bone tissue engineering strategies. However, translation of these approaches from basic research findings to clinical use has been hampered by the limited understanding of MSC therapeutic actions and complexities, as well as costs related to the manufacturing, regulatory approval, and clinical use of living cells and engineered tissues. More recently, a shift from the view of MSCs directly contributing to tissue regeneration toward appreciating MSCs as "cell factories" that secrete a variety of bioactive molecules and extracellular vesicles with trophic and immunomodulatory activities has steered research into new MSC-based, "cell-free" therapeutic modalities. The current review recapitulates recent developments, challenges, and future perspectives of these various MSC-based bone tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Spinal Cord Injury & Tissue Regeneration Center Salzburg, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
352
|
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, Mirzaei H, Hamblin MR. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019; 10:340. [PMID: 31753036 PMCID: PMC6873475 DOI: 10.1186/s13287-019-1445-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Degenerative disorders of joints, especially osteoarthritis (OA), result in persistent pain and disability and high costs to society. Nevertheless, the molecular mechanisms of OA have not yet been fully explained. OA is characterized by destruction of cartilage and loss of extracellular matrix (ECM). It is generally agreed that there is an association between pro-inflammatory cytokines and the development of OA. There is increased expression of matrix metalloproteinase (MMP) and “a disintegrin and metalloproteinase with thrombospondin motifs” (ADAMTS). Mesenchymal stem cells (MSCs) have been explored as a new treatment for OA during the last decade. It has been suggested that paracrine secretion of trophic factors, in which exosomes have a crucial role, contributes to the mechanism of MSC-based treatment of OA. The paracrine secretion of exosomes may play a role in the repair of joint tissue as well as MSC-based treatments for other disorders. Exosomes isolated from various stem cells may contribute to tissue regeneration in the heart, limbs, skin, and other tissues. Recent studies have indicated that exosomes (or similar particles) derived from MSCs may suppress OA development. Herein, for first time, we summarize the recent findings of studies on various exosomes derived from MSCs and their effectiveness in the treatment of OA. Moreover, we highlight the likely mechanisms of actions of exosomes in OA.
Collapse
Affiliation(s)
- Elaheh Mianehsaz
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rezaee
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
353
|
Chen W, Cai J, Sun Y, Chen J, Chen S. [Research progress in treatment of knee osteoarthritis by paracrine effect of stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1446-1451. [PMID: 31650764 PMCID: PMC8337460 DOI: 10.7507/1002-1892.201903074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/25/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To review the advances in utilizing paracrine effect of stem cells in knee osteoarthritis (OA) treatment. METHODS The researches in applying stem cells derived conditioned medium, extracellular matrix, exosomes, and microvesicles in knee OA treatment and cartilage repair were reviewed and analyzed. RESULTS The satisfying outcomes of using different products of stem cells paracrine effect in knee OA condition as well as cartilage defect is revealed in studies in vitro and in vivo. The mechanism including suppressing the intraarticular inflammation, the apoptosis of chondrocytes, and the degradation of cartilage matrix, while enhancing the synthesis of cartilage matrix, the differentiation of in-situ stem cells into chondrocytes and the migration to the affected area. The effectiveness can be further improved supplemented with the tissue engineering methods or gene modification. CONCLUSION Compared with the traditional stem cell therapy, applying the products from paracrine effect of stem cells in knee OA treatment is more economical and safer, presenting great potential in clinical practice.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Jiangyu Cai
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Yaying Sun
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Jun Chen
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Shiyi Chen
- Department of Sports Medicine and Arthroscopy, Huashan Hospital, Fudan University, Shanghai, 200040,
| |
Collapse
|
354
|
Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int 2019; 2019:3673857. [PMID: 31781238 PMCID: PMC6875209 DOI: 10.1155/2019/3673857] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs), like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2) osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a better vascularization and integration of the scaffolds, while improvements in scaffolds' materials and design tried to exploit the osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs' subpopulations, the interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.
Collapse
|
355
|
Secretome and Extracellular Vesicles as New Biological Therapies for Knee Osteoarthritis: A Systematic Review. J Clin Med 2019; 8:jcm8111867. [PMID: 31689923 PMCID: PMC6912212 DOI: 10.3390/jcm8111867] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Secretome and extracellular vesicles (EVs) are considered a promising option to exploit mesenchymal stem cells’ (MSCs) properties to address knee osteoarthritis (OA). The aim of this systematic review was to analyze both the in vitro and in vivo literature, in order to understand the potential of secretome and EVs as a minimally invasive injective biological approach. A systematic review of the literature was performed on PubMed, Embase, and Web of Science databases up to 31 August 2019. Twenty studies were analyzed; nine in vitro, nine in vitro and in vivo, and two in vivo. The analysis showed an increasing interest in this emerging field, with overall positive findings. Promising in vitro results were documented in terms of enhanced cell proliferation, reduction of inflammation, and down-regulation of catabolic pathways while promoting anabolic processes. The positive in vitro findings were confirmed in vivo, with studies showing positive effects on cartilage, subchondral bone, and synovial tissues in both OA and osteochondral models. However, several aspects remain to be clarified, such as the different effects induced by EVs and secretome, which is the most suitable cell source and production protocol, and the identification of patients who may benefit more from this new biological approach for knee OA treatment.
Collapse
|
356
|
Exosomes May Be the Potential New Direction of Research in Osteoarthritis Management. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7695768. [PMID: 31781642 PMCID: PMC6875272 DOI: 10.1155/2019/7695768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a joint degenerative disease, which is prominent in the middle-aged and elderly population, often leading to repeated pain in the joints of patients and seriously affecting the life quality of patients. At present, the treatment of OA mainly depends on the surgery and drug treatment. Nevertheless, these treatments still face many problems, such as surgical safety, complications, and drug side effects. Exosomes can be secreted and released by multiple cell types and have lipid bilayer membranes and contain abundant biological molecules, including proteins, lipids, and nucleic acids. Moreover, exosomes play a critical role in local and distal intercellular and intracellular communication. In recent years, several studies have found that exosomes can regulate the progression of OA and have a potential efficacy for OA treatment. Thus, in this article, we summarize and review the relevant research of exosomes in OA and emphasize the importance of exosomes in the development of OA.
Collapse
|
357
|
Melling GE, Carollo E, Conlon R, Simpson JC, Carter DRF. The Challenges and Possibilities of Extracellular Vesicles as Therapeutic Vehicles. Eur J Pharm Biopharm 2019; 144:50-56. [DOI: 10.1016/j.ejpb.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
|
358
|
Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: Current use and future applications. Clin Chim Acta 2019; 500:226-232. [PMID: 31678573 DOI: 10.1016/j.cca.2019.10.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Exosomes are endosomal-derived vesicles that play a critical role in cell-to-cell communication and are secreted in several biological fluids including serum, saliva, urine, ascites, and cerebro-spinal fluid amongst others. Exosomes are small (30-150 nm diameter) with a distinctive bilipid protein structure. They can carry and exchange various cargos between cells and are used as a non-invasive biomarker for several diseases. Exosomes are considered the best biomarkers for cancer diagnosis, owing to their unique characteristics. Here, we provide a review of the up-to-date applications of exosomes, derived from various sources, in the prognosis and diagnosis of several diseases including cancer, cardiovascular and regenerative diseases as well as, arthritis, neurological diseases, and diabetes mellitus. The role of exosomes and their applications in biomedical research and preclinical trials have also been briefly discussed.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Govindasamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Baskar Venkidasamy
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Central University Laboratory Building, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Madhavaram Milk Colony, Chennai 600051, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
359
|
Wang X, Shah FA, Vazirisani F, Johansson A, Palmquist A, Omar O, Ekström K, Thomsen P. Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces. Biomaterials 2019; 230:119571. [PMID: 31753474 DOI: 10.1016/j.biomaterials.2019.119571] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) have important roles during osseointegration. This study determined (i) if MSC-derived extracellular vesicles (EVs)/exosomes can be immobilized on titanium (Ti) surfaces and influence the behavior of MSCs, (ii) if the response is differentially affected by EVs from expanded vs differentiated MSCs and (iii) if the EV protein cargos predict the functional features of the exosomes. EVs secreted by human adipose-derived MSCs were isolated by ultracentrifugation and analyzed using nanoparticle tracking analysis, Western blotting and relative quantitative mass spectrometry. Fluorescence microscopy, scanning electron microscopy, cell counting assay and quantitative polymerase chain reaction were used to analyze MSC adhesion, proliferation and differentiation. Exosome immobilization on Ti promoted MSC adhesion and spreading after 24 h and proliferation after 3 and 6 days, irrespective of whether the exosomes were obtained from expansion or differentiation conditions. Immobilized exosomes upregulated stromal cell-derived factor (SDF-1α) gene expression. Cell adhesion molecules and signaling molecules were abundant in the exosomal proteome. The predicted functions of the equally-abundant proteins in both exosome types were in line with the observed biological effects mediated by the exosomes. Thus, exosomes derived from MSCs and immobilized on Ti surfaces interact with MSCs and rapidly promote MSC adhesion and proliferation. These findings provide a novel route for modification of titanium implant surfaces.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Forugh Vazirisani
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Ekström
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
360
|
Liu Y, Ma Y, Zhang J, Yuan Y, Wang J. Exosomes: A Novel Therapeutic Agent for Cartilage and Bone Tissue Regeneration. Dose Response 2019; 17:1559325819892702. [PMID: 31857803 PMCID: PMC6913055 DOI: 10.1177/1559325819892702] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Despite traditionally treating autologous and allogeneic transplantation and emerging tissue engineering (TE)-based therapies, which have commonly performed in clinic for skeletal diseases, as the "gold standard" for care, undesirably low efficacy and other complications remain. Therefore, exploring new strategies with better therapeutic outcomes and lower incidences of unfavorable side effect is imperative. Recently, exosomes, secreted microvesicles of endocytic origin, have caught researcher's eyes in tissue regeneration fields, especially in cartilage and bone-related regeneration. Multiple researchers have demonstrated the crucial roles of exosomes throughout every developing stage of cartilage and bone tissue regeneration, indicating that there may be a potential therapeutic application of exosomes in future clinical use. Herein, we summarize the function of exosomes derived from the primary cells functioning in skeletal diseases and their restoration processes, therapeutic exosomes used to promote cartilage and bone repairing in recent research, and applications of exosomes within the setting of the TE matrix.
Collapse
Affiliation(s)
- Yanxin Liu
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jinqiao Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
361
|
Kletukhina S, Neustroeva O, James V, Rizvanov A, Gomzikova M. Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Epithelial-Mesenchymal Transition. Int J Mol Sci 2019; 20:E4813. [PMID: 31569731 PMCID: PMC6801704 DOI: 10.3390/ijms20194813] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process that takes place during embryonic development, wound healing, and under some pathological processes, including fibrosis and tumor progression. The molecular changes occurring within epithelial cells during transformation to a mesenchymal phenotype have been well studied. However, to date, the mechanism of EMT induction remains to be fully elucidated. Recent findings in the field of intercellular communication have shed new light on this process and indicate the need for further studies into this important mechanism. New evidence supports the hypothesis that intercellular communication between mesenchymal stroma/stem cells (MSCs) and resident epithelial cells plays an important role in EMT induction. Besides direct interactions between cells, indirect paracrine interactions by soluble factors and extracellular vesicles also occur. Extracellular vesicles (EVs) are important mediators of intercellular communication, through the transfer of biologically active molecules, genetic material (mRNA, microRNA, siRNA, DNA), and EMT inducers to the target cells, which are capable of reprogramming recipient cells. In this review, we discuss the role of intercellular communication by EVs to induce EMT and the acquisition of stemness properties by normal and tumor epithelial cells.
Collapse
Affiliation(s)
- Sevindzh Kletukhina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Olga Neustroeva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Albert Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK.
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - Marina Gomzikova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
362
|
Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Sci Rep 2019; 9:13854. [PMID: 31554894 PMCID: PMC6761110 DOI: 10.1038/s41598-019-50435-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2019] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative condition of the temporomandibular joint (TMJ) characterised by chronic inflammation and damage to joint structures. Because of the complexity of TMJ-OA, only symptomatic treatments are currently available. Recent reports have shown that many of stem cells can exert anti-inflammatory and tissue-regenerating effects. In this study, we investigated the potential cartilage-regenerating and anti-inflammatory effects of human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs) for the treatment of TMJ-OA. hUCM-MSC lines, isolated from different donors, which showed different activities in vitro. Using a selected cell line, we used different concentrations of hUCM-MSCs to assess therapeutic effects in a rabbit model of monosodium iodoacetate-induced TMJ-OA. Compared with the untreated control group, the potential regenerative result and anti-inflammatory effects of hUCM-MSCs were evident at all the tested concentrations in rabbits with induced TMJ-OA. The median dose of hUCM-MSCs showed the prominent cartilage protective effect and further cartilage regeneration potential. This effect occurred via upregulated expression of growth factors, extracellular matrix markers, and anti-inflammatory cytokines, and reduced expression of pro-inflammatory cytokines. The anti-inflammatory effect of hUCM-MSCs was comparable to that of dexamethasone (DEX). However, only hUCM-MSCs showed potential chondrogenesis effects in this study. In conclusion, our results indicate that hUCM-MSCs may be an effective treatment option for the treatment of TMJ-OA.
Collapse
|
363
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
364
|
Weber B, Lackner I, Haffner-Luntzer M, Palmer A, Pressmar J, Scharffetter-Kochanek K, Knöll B, Schrezenemeier H, Relja B, Kalbitz M. Modeling trauma in rats: similarities to humans and potential pitfalls to consider. J Transl Med 2019; 17:305. [PMID: 31488164 PMCID: PMC6728963 DOI: 10.1186/s12967-019-2052-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trauma is the leading cause of mortality in humans below the age of 40. Patients injured by accidents frequently suffer severe multiple trauma, which is life-threatening and leads to death in many cases. In multiply injured patients, thoracic trauma constitutes the third most common cause of mortality after abdominal injury and head trauma. Furthermore, 40-50% of all trauma-related deaths within the first 48 h after hospital admission result from uncontrolled hemorrhage. Physical trauma and hemorrhage are frequently associated with complex pathophysiological and immunological responses. To develop a greater understanding of the mechanisms of single and/or multiple trauma, reliable and reproducible animal models, fulfilling the ethical 3 R's criteria (Replacement, Reduction and Refinement), established by Russell and Burch in 'The Principles of Human Experimental Technique' (published 1959), are required. These should reflect both the complex pathophysiological and the immunological alterations induced by trauma, with the objective to translate the findings to the human situation, providing new clinical treatment approaches for patients affected by severe trauma. Small animal models are the most frequently used in trauma research. Rattus norvegicus was the first mammalian species domesticated for scientific research, dating back to 1830. To date, there exist numerous well-established procedures to mimic different forms of injury patterns in rats, animals that are uncomplicated in handling and housing. Nevertheless, there are some physiological and genetic differences between humans and rats, which should be carefully considered when rats are chosen as a model organism. The aim of this review is to illustrate the advantages as well as the disadvantages of rat models, which should be considered in trauma research when selecting an appropriate in vivo model. Being the most common and important models in trauma research, this review focuses on hemorrhagic shock, blunt chest trauma, bone fracture, skin and soft-tissue trauma, burns, traumatic brain injury and polytrauma.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Bernd Knöll
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Hubert Schrezenemeier
- Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
365
|
Chen W, Sun Y, Gu X, Hao Y, Liu X, Lin J, Chen J, Chen S. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy. J Tissue Eng Regen Med 2019; 13:1618-1628. [PMID: 31210406 DOI: 10.1002/term.2916] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
Evidence accumulated that mesenchymal stem cell (MSC) therapy ameliorated osteoarthritis (OA) via paracrine effect, whereas conditioned medium (CM) of MSCs contains all the secretomes. In vitro studies have proved its therapeutic effect in OA, but few in vivo evidences were unveiled. This study investigated the effect of MSCs-CM in an animal model of OA. OA was induced by anterior cruciate ligament transaction and destabilization of the medial meniscus in 12 rats bilaterally. The CM group (N = 6) was administered with intraarticular injection of MSCs-CM weekly, whereas the phosphate-buffered saline (PBS) group (N = 6) was injected with PBS. Six rats served as normal control and received sham operation with weekly PBS injection. Rats were sacrificed 8 weeks postoperatively. Gross and histological morphology were analysed. Microcomputed tomography was applied to assess the subchondral bone. Components of extracellular matrix (ECM) including type II collagen (Col II) and aggrecan, and ECM homeostasis-related enzymes (metalloproteinase-13 [MMP-13] and tissue inhibitor of metalloproteinase-1 [TIMP-1]), as well as autophagy markers (Beclin-1 and microtubule-associated protein light chain 3) were evaluated immunohistochemically. Chondrocyte apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining. Gene expression of Col II, aggrecan, MMP-13, and TIMP-1 was confirmed by real-time polymerase chain reaction. Morphological outcomes demonstrated remarkable articular-protective effect of MSCs-CM. Well-maintained subchondral bone structure, significantly more abundant cartilage matrix, notably decreased ratio of MMP-13 to TIMP-1, and inhibited chondrocyte apoptosis with enhanced autophagy were observed in the CM group compared with the PBS group. In conclusion, MSCs-CM demonstrated satisfactory effect in alleviating OA in rats via protecting the microarchitecture of subchondral bone, balancing the ratio of MMP-13 to TIMP-1 in cartilage, and enhancing autophagy, which might provide a new remedy against OA.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueping Gu
- Department of Orthopaedics and Sports Medicine, The Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopaedics and Sports Medicine, The Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
366
|
The Role of Exosomes in Bone Remodeling: Implications for Bone Physiology and Disease. DISEASE MARKERS 2019; 2019:9417914. [PMID: 31485281 PMCID: PMC6710799 DOI: 10.1155/2019/9417914] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
Bone remodeling represents a physiological phenomenon of continuous bone tissue renewal that requires fine orchestration of multiple cell types, which is critical for the understanding of bone disease but not yet clarified in precise detail. Exosomes, which are cell-secreted nanovesicles drawing increasing attention for their broad biosignaling functions, can shed new light on how multiple heterogeneous cells communicate for the purpose of bone remodeling. In the healthy bone, exosomes transmit signals favoring both bone synthesis and resorption, regulating the differentiation, recruitment, and activity of most cell types involved in bone remodeling and even assuming an active role in extracellular matrix mineralization. Additionally, in the ailing bone, they actively participate in pathogenic processes constituting also potential therapeutic agents and drug vectors. The present review summarizes the current knowledge on bone exosomes and bone remodeling in health and disease.
Collapse
|
367
|
Lu J, Wang QY, Sheng JG. Exosomes in the Repair of Bone Defects: Next-Generation Therapeutic Tools for the Treatment of Nonunion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1983131. [PMID: 31467871 PMCID: PMC6699293 DOI: 10.1155/2019/1983131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Nonunion with bone defects, a common complication after long bone fracture, is a major challenge for orthopaedic surgeons worldwide because of the high incidence rate and difficulties in achieving successful treatment. Bone defects are the main complications of nonunion. The conventional biological treatments for nonunion with bone defects involve the use of autologous bone grafts or bone graft substitutes and cell-based therapy. Traditional nonunion treatments have always been associated with safety issues and various other complications. Bone grafts have limited autologous cancellous bone and there is a risk of infection. Additionally, problems with bone graft substitutes, including rejection and stimulation of bone formation, have been noted, and the health of the stem cell niche is a major consideration in cell-based therapy. In recent years, researchers have found that exosomes can be used to deliver functional RNA and mediate cell-to-cell communication, suggesting that exosomes may repair bone defects by regulating cells and cytokines involved in bone metabolism. In this review, we highlight the possible relationships between risk factors for nonunion and exosomes. Additionally, we discuss the roles of exosomes in bone metabolism and bone regeneration.
Collapse
Affiliation(s)
- Jian Lu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Qi-Yang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jia-Gen Sheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
368
|
Kondo S, Nakagawa Y, Mizuno M, Katagiri K, Tsuji K, Kiuchi S, Ono H, Muneta T, Koga H, Sekiya I. Transplantation of Aggregates of Autologous Synovial Mesenchymal Stem Cells for Treatment of Cartilage Defects in the Femoral Condyle and the Femoral Groove in Microminipigs. Am J Sports Med 2019; 47:2338-2347. [PMID: 31306591 DOI: 10.1177/0363546519859855] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous work has demonstrated that patients with cartilage defects of the knee benefit from arthroscopic transplantation of autologous synovial mesenchymal stem cells (MSCs) in terms of magnetic resonance imaging (MRI), qualitative histologic findings, and Lysholm score. However, the effectiveness was limited by the number of cells obtained, so large-sized defects (>500 mm2) were not investigated. The use of MSC aggregates may enable treatment of larger defects by increasing the number of MSCs adhering to the cartilage defect. PURPOSE To investigate whether transplantation of aggregates of autologous synovial MSCs with 2-step surgery could promote articular cartilage regeneration in microminipig osteochondral defects. STUDY DESIGN Controlled laboratory study. METHODS Synovial MSCs derived from a microminipig were examined for in vitro colony-forming and multidifferentiation abilities. An aggregate of 250,000 synovial MSCs was formed with hanging drop culture, and 16 aggregates (for each defect) were implanted on both osteochondral defects (6 × 6 × 1.5 mm) created in the medial femoral condyle and femoral groove (MSC group). The defects in the contralateral knee were left empty (control group). The knee joints were evaluated at 4 and 12 weeks by macroscopic findings and histology. MRI T1rho mapping images were acquired at 12 weeks. For cell tracking, synovial MSCs were labeled with ferucarbotran before aggregate formation and were observed with MRI at 1 week. RESULTS Synovial MSCs showed in vitro colony-forming and multidifferentiation abilities. Regenerative cartilage formation was significantly better in the MSC group than in the control group, as indicated by International Cartilage Repair Society score (macro), modified Wakitani score (histology), and T1rho mapping (biochemical MRI) in the medial condyle at 12 weeks. Implanted cells, labeled with ferucarbotran, were observed in the osteochondral defects at 1 week with MRI. No significant difference was noted in the modified Wakitani score at 4 weeks in the medial condyle and at 4 and 12 weeks in the femoral groove. CONCLUSION Transplantation of autologous synovial MSC aggregates promoted articular cartilage regeneration at the medial femoral condyle at 12 weeks in microminipigs. CLINICAL RELEVANCE Aggregates of autologous synovial MSCs could expand the indications for cartilage repair with synovial MSCs.
Collapse
Affiliation(s)
- Shimpei Kondo
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenta Katagiri
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Takeshi Muneta
- National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
369
|
Jafari D, Malih S, Eslami SS, Jafari R, Darzi L, Tarighi P, Samadikuchaksaraei A. The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics. Biochimie 2019; 165:76-89. [PMID: 31302163 DOI: 10.1016/j.biochi.2019.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
At least, more than half of our understanding of extracellular vesicles owes to the studies conducted over the past few years. When it became clear that the exosomes have various potentials in medicine, extensive research has focused on these potentials in a variety of areas including cancer, drug delivery and regenerative medicine. The growing understanding of molecular structure and functions of exosomes causes the vision to become brighter in the exosomes complexity, and our attitude toward these vesicles has undergone changes accordingly. Proteomic and transcriptomic studies on exosomes have highlighted their molecular diversity. In this review, we explicitly examine the exosomes composition, molecular structure and their therapeutic potentials in some diseases. Due to the very heterogeneous nature of exosomes, the process of their use as a therapeutic agent in the clinic has been challenged. We are still at the beginning of recognizing the molecular composition of exosomes and mechanisms that affect their physiology and biology. The growing trend of engineering of exosomes has shown a promising future to further utilize them in a different field. Molecular profiling of exosomes and their content for their related potentials in regenerative medicine should be done exactly for further defining a minimum content for specific therapeutic potentials.
Collapse
Affiliation(s)
- Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Leila Darzi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
370
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [PMID: 30853397 DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
371
|
Promoting Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Altering the Expression of Exosomal miRNA. Stem Cells Int 2019; 2019:1351860. [PMID: 31354836 PMCID: PMC6636464 DOI: 10.1155/2019/1351860] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human adipose-derived stem cells (ADSCs) can release exosomes; however, their specific functions remain elusive. In this study, we verified that exosomes derived from osteogenically differentiated ADSCs can promote osteogenic differentiation of ADSCs. Furthermore, in order to investigate the importance of exosomal microRNAs (miRNAs) in osteogenic differentiation of ADSCs, we used microarray assays to analyze the expression profiles of exosomal miRNAs derived from undifferentiated as well as osteogenically differentiated ADSCs; 201 miRNAs were upregulated and 33 miRNAs were downregulated between the two types of exosomes. Additionally, bioinformatic analyses, which included gene ontology analyses, pathway analysis, and miRNA-mRNA-network investigations, were performed. The results of these analyses revealed that the differentially expressed exosomal miRNAs participate in multiple biological processes, such as gene expression, synthesis of biomolecules, cell development, differentiation, and signal transduction, among others. Moreover, we found that these differentially expressed exosomal miRNAs connect osteogenic differentiation to processes such as axon guidance, MAPK signaling, and Wnt signaling. To the best of our knowledge, this is the first study to identify and characterize exosomal miRNAs derived from osteogenically differentiated ADSCs. This study confirms that alterations in the expression of exosomal miRNAs can promote osteogenic differentiation of ADSCs, which also provides the foundation for further research on the regulatory functions of exosomal miRNAs in the context of ADSC osteogenesis.
Collapse
|
372
|
Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Res 2019; 7:18. [PMID: 31263627 PMCID: PMC6594995 DOI: 10.1038/s41413-019-0056-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a debilitating bone disease affecting millions of people. Here, we used human urine-derived stem cells (USCs), which were noninvasively harvested from unlimited and easily available urine, as a “factory” to obtain extracellular vesicles (USC-EVs) and demonstrated that the systemic injection of USC-EVs effectively alleviates bone loss and maintains bone strength in osteoporotic mice by enhancing osteoblastic bone formation and suppressing osteoclastic bone resorption. More importantly, the anti-osteoporotic properties of USC-EVs are not notably disrupted by the age, gender, or health condition (with or without osteoporosis) of the USC donor. Mechanistic studies determined that collagen triple-helix repeat containing 1 (CTHRC1) and osteoprotegerin (OPG) proteins are enriched in USC-EVs and required for USC-EV-induced pro-osteogenic and anti-osteoclastic effects. Our results suggest that autologous USC-EVs represent a promising novel therapeutic agent for osteoporosis by promoting osteogenesis and inhibiting osteoclastogenesis by transferring CTHRC1 and OPG.
Collapse
|
373
|
Yuan QL, Zhang YG, Chen Q. Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles: Potential Therapeutics as MSC Trophic Mediators in Regenerative Medicine. Anat Rec (Hoboken) 2019; 303:1735-1742. [PMID: 31168963 DOI: 10.1002/ar.24186] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/29/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are pluripotent progenitor cells with the capabilities of self-renewing, differentiating into multiple lineages, and achieving trophic effects during tissue repair. MSCs can secrete extracellular vesicles (EVs) including exosomes and microvesicles, which mediate their trophic effects on other cells. Carrying a variety of intracellular molecules of MSCs including lipids, proteins, RNA (mRNA and noncoding RNA), and DNA, EVs deliver them into other cells to regulate tissue regeneration process. The therapeutic effects of MSC-derived EVs have been observed in a number of animal disease models. In this review, we focus on the current state and future directions of MSC-derived EVs in regenerative medicine. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qi-Ling Yuan
- Department of Orthopaedics, Bone and Joint Research Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yin-Gang Zhang
- Department of Orthopaedics, Bone and Joint Research Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Chen
- Department of Orthopaedics, Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
374
|
Szychlinska MA, D'Amora U, Ravalli S, Ambrosio L, Di Rosa M, Musumeci G. Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration. Curr Pharm Biotechnol 2019; 20:32-46. [PMID: 30727886 DOI: 10.2174/1389201020666190206202048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a common degenerative disease which involves articular cartilage, and leads to total joint disability in the advanced stages. Due to its avascular and aneural nature, damaged cartilage cannot regenerate itself. Stem cell therapy and tissue engineering represent a promising route in OA therapy, in which cooperation of mesenchymal stem cells (MSCs) and three-dimensional (3D) scaffolds contribute to cartilage regeneration. However, this approach still presents some limits such as poor mechanical properties of the engineered cartilage. The natural dynamic environment of the tissue repair process involves a collaboration of several signals expressed in the biological system in response to injury. For this reason, tissue engineering involving exogenous "influencers" such as mechanostimulation and functional biomolecule delivery systems (BDS), represent a promising innovative approach to improve the regeneration process. BDS provide a controlled release of biomolecules able to interact between them and with the injured tissue. Nano-dimensional BDS is the future hope for the design of personalized scaffolds, able to overcome the delivery problems. MSC-derived extracellular vesicles (EVs) represent an attractive alternative to BDS, due to their innate targeting abilities, immunomodulatory potential and biocompatibility. Future advances in cartilage regeneration should focus on multidisciplinary strategies such as modular assembly strategies, EVs, nanotechnology, 3D biomaterials, BDS, mechanobiology aimed at constructing the functional scaffolds for actively targeted biomolecule delivery. The aim of this review is to run through the different approaches adopted for cartilage regeneration, with a special focus on biomaterials, BDS and EVs explored in terms of their delivery potential, healing capabilities and mechanical features.
Collapse
Affiliation(s)
- Marta A Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, V.le J.F. Kennedy, 54, Mostra d'Oltremare Pad. 20, 80125, Naples, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, V.le J.F. Kennedy, 54, Mostra d'Oltremare Pad. 20, 80125, Naples, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| |
Collapse
|
375
|
Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage - Why does hyaline cartilage fail to repair? Adv Drug Deliv Rev 2019; 146:289-305. [PMID: 30605736 DOI: 10.1016/j.addr.2018.12.015] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
Once damaged, articular cartilage has a limited potential to repair. Clinically, a repair tissue is formed, yet, it is often mechanically inferior fibrocartilage. The use of monolayer expanded versus naïve cells may explain one of the biggest discrepancies in mesenchymal stromal/stem cell (MSC) based cartilage regeneration. Namely, studies utilizing monolayer expanded MSCs, as indicated by numerous in vitro studies, report as a main limitation the induction of type X collagen and hypertrophy, a phenotype associated with endochondral bone formation. However, marrow stimulation and transfer studies report a mechanically inferior collagen I/II fibrocartilage as the main outcome. Therefore, this review will highlight the collagen species produced during the different therapeutic approaches. New developments in scaffold design and delivery of therapeutic molecules will be described. Potential future directions towards clinical translation will be discussed. New delivery mechanisms are being developed and they offer new hope in targeted therapeutic delivery.
Collapse
Affiliation(s)
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos Platz, Switzerland.
| | | |
Collapse
|
376
|
Wang Y, He G, Guo Y, Tang H, Shi Y, Bian X, Zhu M, Kang X, Zhou M, Lyu J, Yang M, Mu M, Lai F, Lu K, Chen W, Zhou B, Zhang J, Tang K. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J Cell Mol Med 2019; 23:5475-5485. [PMID: 31148334 PMCID: PMC6653097 DOI: 10.1111/jcmm.14430] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022] Open
Abstract
Tendon injuries are common musculoskeletal system disorders in clinical, but the regeneration ability of tendon is limited. Tendon stem cells (TSCs) have shown promising effect on tissue engineering and been used for the treatment of tendon injury. Exosomes that serve as genetic information carriers have been implicated in many diseases and physiological processes, but effect of exosomes from TSCs on tendon injury repair is unclear. The aim of this study is to make clear that the effect of exosomes from TSCs on tendon injury healing. Exosomes were harvested from conditioned culture media of TSCs by a sequential centrifugation process. Rat Achilles tendon tendinopathy model was established by collagenase‐I injection. This was followed by intra‐Achilles‐tendon injection with TSCs or exosomes. Tendon healing and matrix degradation were evaluated by histology analysis and biomechanical test at the post‐injury 5 weeks. In vitro, TSCs treated with interleukin 1 beta were added by conditioned medium including exosomes or not, or by exosomes or not. Tendon matrix related markers and tenogenesis related markers were measured by immunostaining and western blot. We found that TSCs injection and exosomes injection significantly decreased matrix metalloproteinases (MMP)‐3 expression, increased expression of tissue inhibitor of metalloproteinase‐3 (TIMP‐3) and Col‐1a1, and increased biomechanical properties of the ultimate stress and maximum loading. In vitro, conditioned medium with exosomes and exosomes also significantly decreased MMP‐3, and increased expression of tenomodulin, Col‐1a1 and TIMP‐3. Exosomes from TSCs could be an ideal therapeutic strategy in tendon injury healing for its balancing tendon extracellular matrix and promoting the tenogenesis of TSCs.
Collapse
Affiliation(s)
- Yunjiao Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gang He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yupeng Guo
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Youxing Shi
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuting Bian
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Min Zhu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xia Kang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mei Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jingtong Lyu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mingyu Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Miduo Mu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fan Lai
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kang Lu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wan Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Binghua Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiqiang Zhang
- Department of Neurology, Third Military Medical University, Chongqing, China
| | - Kanglai Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopeadics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
377
|
Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019; 8:cells8050467. [PMID: 31100966 PMCID: PMC6562906 DOI: 10.3390/cells8050467] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC)-sourced secretome, defined as the set of MSC-derived bioactive factors (soluble proteins, nucleic acids, lipids and extracellular vesicles), showed therapeutic effects similar to those observed after transplantation of MSCs. MSC-derived secretome may bypass many side effects of MSC-based therapy, including unwanted differentiation of engrafted MSCs. In contrast to MSCs which had to be expanded in culture to reach optimal cell number for transplantation, MSC-sourced secretome is immediately available for treatment of acute conditions, including fulminant hepatitis, cerebral ischemia and myocardial infarction. Additionally, MSC-derived secretome could be massively produced from commercially available cell lines avoiding invasive cell collection procedure. In this review article we emphasized molecular and cellular mechanisms that were responsible for beneficial effects of MSC-derived secretomes in the treatment of degenerative and inflammatory diseases of hepatobiliary, respiratory, musculoskeletal, gastrointestinal, cardiovascular and nervous system. Results obtained in a large number of studies suggested that administration of MSC-derived secretomes represents a new, cell-free therapeutic approach for attenuation of inflammatory and degenerative diseases. Therapeutic effects of MSC-sourced secretomes relied on their capacity to deliver genetic material, growth and immunomodulatory factors to the target cells enabling activation of anti-apoptotic and pro-survival pathways that resulted in tissue repair and regeneration.
Collapse
Affiliation(s)
| | | | - Nemanja Jovicic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland.
| | - Nebojsa Arsenijevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| |
Collapse
|
378
|
Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11:eaav8521. [PMID: 31092696 PMCID: PMC7104415 DOI: 10.1126/scitranslmed.aav8521] [Citation(s) in RCA: 687] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-sized, lipid membrane-enclosed vesicles secreted by most, if not all, cells and contain lipids, proteins, and various nucleic acid species of the source cell. EVs act as important mediators of intercellular communication that influence both physiological and pathological conditions. Given their ability to transfer bioactive components and surmount biological barriers, EVs are increasingly being explored as potential therapeutic agents. EVs can potentiate tissue regeneration, participate in immune modulation, and function as potential alternatives to stem cell therapy, and bioengineered EVs can act as delivery vehicles for therapeutic agents. Here, we cover recent approaches and advances of EV-based therapies.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
- Evox Therapeutics Limited, Medawar Centre, Robert Robinson Avenue, Oxford OX4 4HG, UK
| | - Meadhbh Á Brennan
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- INSERM UMR 1238, PhyOS, Faculty of Medicine, Université de Nantes, 44034 Nantes cedex 1, France
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
- Evox Therapeutics Limited, Medawar Centre, Robert Robinson Avenue, Oxford OX4 4HG, UK
| |
Collapse
|
379
|
Holliday LS, Truzman E, Zuo J, Han G, Torres-Medina R, Rody WJ. Extracellular vesicle identification in tooth movement models. Orthod Craniofac Res 2019; 22 Suppl 1:101-106. [PMID: 31074148 PMCID: PMC6512852 DOI: 10.1111/ocr.12287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are 30-150 nm in diameter vesicles released by cells that serve important intercellular regulatory functions. EVs include exosomes and microvesicles. Exosomes form in multivesicular bodies and are released extracellularly as the multivesicular bodies fuse with the plasma membrane. Microvesicles bud directly from the plasma membrane. Here, we examine methods that are available or emerging to detect and study EVs during orthodontic tooth movement (OTM). EV's involvement in regulating bone remodelling associated with OTM may be demonstrated by adding isolated EVs to an animal model to change the rate of tooth movement. Exosomes in multivesicular bodies might be detected by immunogold labelling of markers in sections from the tooth and jaw and detection by electron microscopy. Gingival crevicular fluid (GCF) is enriched in EVs. Detection and characterization of EVs released by osteoclasts during resorption have been described, and this information could be used to analyse EVs in OTM models. Regulatory EVs may be enriched in the GCF from teeth that are being moved or are undergoing root resorption. Emerging approaches, including nanoparticle tracking, ExoView and micro- and nanofluidics, show promise for studying EVs in the GCF. Techniques that amplify signal, including polymerase chain reaction (PCR), provide the sensitivity necessary to utilize EVs from GCF as biomarkers. Studies of the role of EVs in OTM will provide fresh insight that may identify means for enhancing OTM procedures. EVs in GCF may include biomarkers for bone remodelling during OTM, orthodontic-associated root resorption, and other dental pathologies.
Collapse
Affiliation(s)
- L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Estella Truzman
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida
| | - Jian Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida
| | - Guanghong Han
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Rosemarie Torres-Medina
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida
| | - Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook School of Dental Medicine, Stony Brook, New York
| |
Collapse
|
380
|
Sheveleva ON, Domaratskaya EI, Payushina OV. Extracellular Vesicles and Prospects of Their Use for Tissue Regeneration. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747818040104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
381
|
Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater 2019; 89:252-264. [PMID: 30878447 DOI: 10.1016/j.actbio.2019.03.021] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are potential therapeutics for the treatment of periodontal defects. It is increasingly accepted that MSCs mediate tissue repair through secretion of trophic factors, particularly exosomes. Here, we investigated the therapeutic effects of human MSC exosome-loaded collagen sponge for regeneration of surgically created periodontal intrabony defects in an immunocompetent rat model. We observed that relative to control rats, exosome-treated rats repaired the defects more efficiently with regeneration of periodontal tissues including newly-formed bone and periodontal ligament (PDL). We also observed that concomitant with this, there was increased cellular infiltration and proliferation. We therefore postulated that MSC exosomes enhanced regeneration through increased cellular mobilisation and proliferation. Using PDL cell cultures, we demonstrated that MSC exosomes could increase PDL cell migration and proliferation through CD73-mediated adenosine receptor activation of pro-survival AKT and ERK signalling. Inhibition of AKT or ERK phosphorylation suppressed PDL cell migration and proliferation. Our findings demonstrated for the first time that MSC exosomes enhance periodontal regeneration possibly by increasing PDL migration and proliferation. This study suggests that MSC exosome is a viable ready-to-use and cell-free MSC therapeutic for the treatment of periodontal defects. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cell (MSC) therapies have demonstrated regenerative potential for the treatment of periodontal defects. However, translation of cellular therapies is hampered by challenges in maintaining optimal cell vitality and viability from manufacturing and storage to final delivery to patients. Although the use of MSCs for tissue repair was first predicated on their differentiation potential, the therapeutic efficacy of MSCs has increasingly been attributed to its paracrine secretion, particularly exosomes or small extracellular vesicles. In this study, MSC exosome-loaded collagen sponge enhanced periodontal regeneration in an immunocompetent rat periodontal defect model without any obvious adverse effects. These findings provide the basis for future development of MSC exosomes as a cell-free strategy for periodontal regeneration.
Collapse
|
382
|
Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, Gu C, Chen J, Qiu P, Mei S, Ning L, Shi Y, Fang C, Fan S, Lin X. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 2019; 9:2439-2459. [PMID: 31131046 PMCID: PMC6525998 DOI: 10.7150/thno.31017] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress damage are hallmarks of osteoarthritis (OA). Mesenchymal stem cell (MSC)-derived exosomes are important in intercellular mitochondria communication. However, the use of MSC exosomes for regulating mitochondrial function in OA has not been reported. This study aimed to explore the therapeutic effect of MSC exosomes in a three dimensional (3D) printed scaffold for early OA therapeutics. Methods: We first examined the mitochondria-related proteins in normal and OA human cartilage samples and investigated whether MSC exosomes could enhance mitochondrial biogenesis in vitro. We subsequently designed a bio-scaffold for MSC exosomes delivery and fabricated a 3D printed cartilage extracellular matrix (ECM)/gelatin methacrylate (GelMA)/exosome scaffold with radially oriented channels using desktop-stereolithography technology. Finally, the osteochondral defect repair capacity of the 3D printed scaffold was assessed using a rabbit model. Results: The ECM/GelMA/exosome scaffold effectively restored chondrocyte mitochondrial dysfunction, enhanced chondrocyte migration, and polarized the synovial macrophage response toward an M2 phenotype. The 3D printed scaffold significantly facilitated the cartilage regeneration in the animal model. Conclusion: This study demonstrated that the 3D printed, radially oriented ECM/GelMA/exosome scaffold could be a promising strategy for early OA treatment.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
- Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Yiyun Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Min Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Jiaxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| |
Collapse
|
383
|
The State of Exosomes Research: A Global Visualized Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1495130. [PMID: 31073519 PMCID: PMC6470441 DOI: 10.1155/2019/1495130] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/28/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Objective With the development of exosomes studies increased around the whole world. Our present study was aimed to investigate the global status and trends in exosomes field. Methods Publications related to exosomes studies from 1994 to 2017 were retrieved from the Web of Science database. The data source was studied and indexed by using bibliometric methodology. For visualized study, VOS viewer software was used to conduct bibliographic coupling analysis, coauthorship analysis, cocitation analysis, and cooccurrence analysis and to analyze the publication trend in exosomes research. Results A total of 4960 publications were included. The relative research interests and number of publications were increasing per year globally. The USA made the highest contributions to the global research with the most citations, the highest H-index, and the most total link strength, while Sweden had the highest average citation per item. The journal PLOS ONE had the highest publication number. The Natl Canc Ctr was the most contributive institutions. Studies could be divided into three clusters: mechanism study, in vivo study, and in vitro study. Conclusions The efforts should be put into mechanism studies, predicted to be the next hot spots in exosomes studies.
Collapse
|
384
|
Sokolov AV, Kostin NN, Ovchinnikova LA, Lomakin YA, Kudriaeva AA. Targeted Drug Delivery in Lipid-like Nanocages and Extracellular Vesicles. Acta Naturae 2019; 11:28-41. [PMID: 31413877 PMCID: PMC6643341 DOI: 10.32607/20758251-2019-11-2-28-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
The possibility of targeted drug delivery to a specific tissue, organ, or cell has opened new promising avenues in treatment development. The technology of targeted delivery aims to create multifunctional carriers that are capable of long circulation in the patient's organism and possess low toxicity at the same time. The surface of modern synthetic carriers has high structural similarity to the cell membrane, which, when combined with additional modifications, also promotes the transfer of biological properties in order to penetrate physiological barriers effectively. Along with artificial nanocages, further efforts have recently been devoted to research into extracellular vesicles that could serve as natural drug delivery vehicles. This review provides a detailed description of targeted delivery systems that employ lipid and lipid-like nanocages, as well as extracellular vesicles with a high level of biocompatibility, highlighting genetically encoded drug delivery vehicles.
Collapse
Affiliation(s)
- A. V. Sokolov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - N. N. Kostin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - L. A. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - Y. A. Lomakin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| | - A. A. Kudriaeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16 /10, Moscow, 117997, Russia
| |
Collapse
|
385
|
Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, Liu R, Ni Z, Chen L, Yang L. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 2019; 206:87-100. [PMID: 30927715 DOI: 10.1016/j.biomaterials.2019.03.022] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is the most common disabling joint disease throughout the world and its therapeutic effect is still not satisfactory in clinic nowadays. Recent studies showed that the exosomes derived from several types of mesenchymal stem cells (MSCs) could maintain chondrocyte homeostasis and ameliorate the pathological severity of OA in animal models, indicating that MSCs-derived exosomes could be a novel promising strategy for treating OA. In this study, we investigated the role and underlying mechanisms of infrapatellar fat pad (IPFP) MSCs-derived exosomes (MSCIPFP-Exos) on OA in vitro and in vivo. Our data revealed that MSCIPFP could produce amounts of MSCIPFP-Exos, which exhibited the typical morphological features of exosomes. The MSCIPFP-Exos ameliorated the OA severity in vivo and inhibited cell apoptosis, enhanced matrix synthesis and reduced the expression of catabolic factor in vitro. Moreover, MSCIPFP-Exos could significantly enhance autophagy level in chondrocytes partially via mTOR inhibition. Exosomal RNA-seq showed that the level of miR-100-5p that could bind to the 3'-untranslated region (3'UTR) of mTOR was the highest among microRNAs. MSCIPFP-Exos decreased the luciferase activity of mTOR 3'UTR, while inhibition of miR-100-5p could reverse the MSCIPFP-Exos-decreased mTOR signaling pathway. Intra-articular injection of antagomir-miR-100-5p dramatically attenuated MSCIPFP-Exos-mediated protective effect on articular cartilage in vivo. In brief, MSCIPFP-derived exosomes protect articular cartilage from damage and ameliorate gait abnormality in OA mice by maintaining cartilage homeostasis, the mechanism of which may be related to miR100-5p-regulated inhibition of mTOR-autophagy pathway. As it is relatively feasible to obtain human IPFP from OA patients by arthroscopic operation in clinic, MSCIPFP-derived exosomes may be a potential therapy for OA in the future.
Collapse
Affiliation(s)
- Jiangyi Wu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liang Kuang
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wei-Nan Zeng
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hao Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shu Huang
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiamiao Li
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Renfeng Liu
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhenhong Ni
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lin Chen
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
386
|
Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front Physiol 2019; 10:282. [PMID: 30941062 PMCID: PMC6433879 DOI: 10.3389/fphys.2019.00282] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | - Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jordan Naylor
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T, Incubator and Technology Transfer, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jameel M. Inal
- Extracellular Vesicle Research Unit and Bioscience Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
387
|
Murphy DE, de Jong OG, Brouwer M, Wood MJ, Lavieu G, Schiffelers RM, Vader P. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med 2019; 51:1-12. [PMID: 30872574 PMCID: PMC6418170 DOI: 10.1038/s12276-019-0223-5] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly being recognized as mediators of intercellular signaling via the delivery of effector molecules. Interestingly, certain types of EVs are also capable of inducing therapeutic responses. For these reasons, the therapeutic potential of EVs is a topic of intense research, both in the context of drug delivery and regenerative medicine. However, to fully utilize EVs for therapeutic purposes, an improved understanding of the mechanisms by which they function would be highly advantageous. Here, the current state of knowledge regarding the cellular uptake and trafficking of EVs is reviewed, along with a consideration of how these pathways potentially influence the functions of therapeutic EVs. Furthermore, the natural cell-targeting abilities, biodistribution profiles, and pharmacokinetics of exogenously administered EVs, along with the components responsible for these features are discussed. An overview of the potential clinical applications and preclinical examples of their successful use is also provided. Finally, examples of EV modifications that have successfully been employed to improve their therapeutic characteristics receive a particular focus. We suggest that, in addition to investigation of EV cell targeting and routes of uptake, future research into the routes of intracellular trafficking in recipient cells is required to optimally utilize EVs for therapeutic purposes. An increased understanding of how extracellular vesicles (EVs) enter cells and deliver molecules will enable promising new therapies, according to researchers in the Netherlands, UK and France. EVs are liquid-filled sacs secreted by cells that transport proteins, lipids and RNA between cells, and therefore have potential for delivering drugs. Pieter Vader at UMC Utrecht and co-workers review recent research into EVs, focusing on how EVs are distributed around the body, and how they target and enter cells. However, there is little known about EV biology once they are inside cells, and it is likely that many EVs simply degrade without delivering their cargo. Further research in this area could help identify features that improve cargo escape from EVs, thus ensuring that future therapies can be effective.
Collapse
Affiliation(s)
- Daniel E Murphy
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Olivier G de Jong
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maarten Brouwer
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Grégory Lavieu
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Raymond M Schiffelers
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands.
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands. .,Department of Experimental Cardiology, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
388
|
Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, Chen D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B 2019; 7:2421-2433. [PMID: 32255119 DOI: 10.1039/c9tb00170k] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent decades have witnessed the fast and impressive development of nanocarriers as a drug delivery system. Considering the safety, delivery efficiency and stability of nanocarriers, there are many obstacles in accomplishing successful clinical translation of these nanocarrier-based drug delivery systems. The gap has urged drug delivery scientists to develop innovative nanocarriers with high compatibility, stability and longer circulation time. Exosomes are nanometer-sized, lipid-bilayer-enclosed extracellular vesicles secreted by many types of cells. Exosomes serving as versatile drug vehicles have attracted increasing attention due to their inherent ability of shuttling proteins, lipids and genes among cells and their natural affinity to target cells. Attractive features of exosomes, such as nanoscopic size, low immunogenicity, high biocompatibility, encapsulation of various cargoes and the ability to overcome biological barriers, distinguish them from other nanocarriers. To date, exosome-based nanocarriers delivering small molecule drugs as well as bioactive macromolecules have been developed for the treatment of many prevalent and obstinate diseases including cancer, CNS disorders and some other degenerative diseases. Exosome-based nanocarriers have a huge prospect in overcoming many hindrances encountered in drug and gene delivery. This review highlights the advances as well as challenges of exosome-based nanocarriers as drug vehicles. Special focus has been placed on the advantages of exosomes in delivering various cargoes and in treating obstinate diseases, aiming to offer new insights for exploring exosomes in the field of drug delivery.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
389
|
Regenerative Medicine: A Review of the Evolution of Autologous Chondrocyte Implantation (ACI) Therapy. Bioengineering (Basel) 2019; 6:bioengineering6010022. [PMID: 30871236 PMCID: PMC6466051 DOI: 10.3390/bioengineering6010022] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
Articular cartilage is composed of chondrons within a territorial matrix surrounded by a highly organized extracellular matrix comprising collagen II fibrils, proteoglycans, glycosaminoglycans, and non-collagenous proteins. Damaged articular cartilage has a limited potential for healing and untreated defects often progress to osteoarthritis. High hopes have been pinned on regenerative medicine strategies to meet the challenge of preventing progress to late osteoarthritis. One such strategy, autologous chondrocyte implantation (ACI), was first reported in 1994 as a treatment for deep focal articular cartilage defects. ACI has since evolved to become a worldwide well-established surgical technique. For ACI, chondrocytes are harvested from the lesser weight bearing edge of the joint by arthroscopy, their numbers expanded in monolayer culture for at least four weeks, and then re-implanted in the damaged region under a natural or synthetic membrane via an open joint procedure. We consider the evolution of ACI to become an established cell therapy, its current limitations, and on-going strategies to improve its efficacy. The most promising developments involving cells and natural or synthetic biomaterials will be highlighted.
Collapse
|
390
|
Identification of miRNA Reference Genes in Extracellular Vesicles from Adipose Derived Mesenchymal Stem Cells for Studying Osteoarthritis. Int J Mol Sci 2019; 20:ijms20051108. [PMID: 30841483 PMCID: PMC6429322 DOI: 10.3390/ijms20051108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) leads to chronic pain and disability, and traditional conservative treatments are not effective in the long term. The intra-articular injection of mesenchymal stem cells (MSCs) is considered a novel therapy for OA whose efficacy mainly relies on the adaptive release of paracrine molecules which are either soluble or extracellular vesicles (EVs) embedded. The correct quantification of EV-miRNAs using reliable reference genes (RGs) is a crucial step in optimizing this future therapeutic cell-free approach. The purpose of this study is to rate the stabilities of literature-selected proposed RGs for EV-miRNAs in adipose derived-MSCs (ASCs). EVs were isolated by ultracentrifugation from ASCs cultured with or without inflammatory priming mimicking OA synovial fluid condition. Expression of putative RGs (let-7a-5p, miR-16-5p, miR-23a-3p, miR-26a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, U6 snRNA) was scored by using the algorithms geNorm, NormFinder, BestKeeper and ΔCt method. miR-16a-5p/miR-23a-3p yielded the most stable RGs, whereas let-7a-5p/miR-425-5p performed poorly. Outcomes were validated by qRT-PCR on miR-146a-5p, reported to be ASC-EVs enriched and involved in OA. Incorrect RG selection affected the evaluation of miR-146a-5p abundance and modulation by inflammation, with both values resulting strongly donor-dependent. Our findings demonstrated that an integrated approach of multiple algorithms is necessary to identify reliable, stable RGs for ASC-EVs miRNAs evaluation. A correct approach would increase the accuracy of embedded molecule assessments aimed to develop therapeutic strategies for the treatment of OA based on EVs.
Collapse
|
391
|
Esa A, Connolly KD, Williams R, Archer CW. Extracellular Vesicles in the Synovial Joint: Is there a Role in the Pathophysiology of Osteoarthritis? Malays Orthop J 2019; 13:1-7. [PMID: 31001376 PMCID: PMC6459045 DOI: 10.5704/moj.1903.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The role of extracellular vesicles (EV) in osteoarthritis has become the focus of much research. These vesicles were isolated from several cell types found in synovial joint including chondrocytes and synovium. As articular cartilage is an avascular tissue surrounded by synovial fluid, it is believed that EV might play a crucial role in the homeostasis of cartilage and also could hold key information in the pathogenesis of osteoarthritis. This is thought to be due to activation of pro-inflammatory factors leading to a catabolic state and degradation of cartilage. In addition, due to the nature of articular cartilage lacking neuronal innervation, knowledge of EV can contribute to identification of novel biomarkers in this debilitating condition. This can be either directly isolated from aspirate of synovial fluid or from peripheral blood. Finally, EVs are known to shuttle important signalling molecules which can be utilised as unique modality in transferring therapeutic compounds in a cell free manner.
Collapse
Affiliation(s)
- A Esa
- School of Bioscience, Cardiff University, Cardiff, United Kingdom.,Swansea University Medical School, Swansea University, Swansea, United Kingdom.,School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - K D Connolly
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - R Williams
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - C W Archer
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
392
|
Osteoarthritis year in review 2018: biology. Osteoarthritis Cartilage 2019; 27:365-370. [PMID: 30808484 DOI: 10.1016/j.joca.2018.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 02/02/2023]
Abstract
This Year in Review highlights a selection of articles published between the 2017 and 2018 Osteoarthritis Research Society International (OARSI) World Congress meetings within the field of osteoarthritis biology, presented at OARSI 2018. Selected articles were obtained from a PubMed search covering cartilage, subchondral bone, inflammation, ageing, pain and animal models. Studies focused on biomechanics, biomarkers, genetics and epigenetics, imaging and clinical studies were excluded due to their coverage in other articles within the OARSI Year in Review series. Significant themes including the role of progenitor cells in cartilage homeostasis and repair, novel signalling mechanisms controlling chondrocyte phenotypic stability and the influence of disrupted or senescent chondrocytes were identified and are discussed in this review. Overarching conclusions derived from these study areas indicate that promising avenues of intervention are on the horizon, however further understanding is required in order to target therapeutic treatments to suitable patient subgroups and disease stages.
Collapse
|
393
|
Zhang Y, Hao Z, Wang P, Xia Y, Wu J, Xia D, Fang S, Xu S. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif 2019; 52:e12570. [PMID: 30663158 PMCID: PMC6496165 DOI: 10.1111/cpr.12570] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/24/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Exosomes, as important players in intercellular communication due to their ability to transfer certain molecules to target cells, are believed to take similar effects in promoting bone regeneration with their derived stem cells. Studies have suggested that umbilical cord mesenchymal stem cells (uMSCs) could promote angiogenesis. This study investigated whether exosomes derived from uMSCs (uMSC-Exos) could enhance fracture healing as primary factors by promoting angiogenesis. MATERIALS AND METHODS uMSCs were obtained to isolate uMSC-Exos by ultrafiltration, with exosomes from human embryonic kidney 293 cells (HEK293) and phosphate-buffered saline (PBS) being used as control groups. NanoSight, laser light scattering spectrometer, transmission electron microscopy and Western blotting were used to identify exosomes. Next, uMSC-Exos combined with hydrogel were transplanted into the fracture site in a rat model of femoral fracture. Bone healing processes were monitored and evaluated by radiographic methods on days 7, 14, 21 and 31 after surgery; angiogenesis of the fracture sites was assessed by radiographic and histological strategies on post-operative day 14. In vitro, the expression levels of osteogenesis- or angiogenesis-related genes after being cultured with uMSC-Exos were identified by qRT-PCR. The internalization ability of exosomes was determined using the PKH67 assay. Cell cycle analysis, EdU incorporation and immunofluorescence staining, scratch wound assay and tube formation analysis were also used to determine the altered abilities of human umbilical vein endothelial cells (HUVECs) administered with uMSC-Exos in proliferation, migration and angiogenesis. Finally, to further explore the underlying molecular mechanisms, specific RNA inhibitors or siRNAs were used, and the subsequent effects were observed. RESULTS uMSC-Exos had a diameter of approximately 100 nm, were spherical, meanwhile expressing CD9, CD63 and CD81. Transplantation of uMSC-Exos markedly enhanced angiogenesis and bone healing processes in a rat model of femoral fracture. In vitro, other than enhancing osteogenic differentiation, uMSC-Exos increased the expression of vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α (HIF-1α). uMSC-Exos were taken up by HUVECs and enhanced their proliferation, migration and tube formation. Finally, by using specific RNA inhibitors or siRNAs, it has been confirmed that HIF-1α played an important role in the uMSC-Exos-induced VEGF expression, pro-angiogenesis and enhanced fracture repair, which may be one of the underlying mechanisms. CONCLUSIONS These results revealed a novel role of exosomes in uMSC-mediated therapy and suggested that implanted uMSC-Exos may represent a crucial clinical strategy to accelerate fracture healing via the promotion of angiogenesis. HIF-1α played an important role in this process.
Collapse
Affiliation(s)
- Yuntong Zhang
- Department of Emergency and TraumaShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
| | - Zichen Hao
- Department of Emergency and TraumaShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
- Department of Orthopaedics and Rehabilitation, School of MedicineYale UniversityNew HavenConnecticut
| | - Panfeng Wang
- Department of Emergency and TraumaShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
| | - Yan Xia
- Department of Emergency and TraumaShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
| | - Jianghong Wu
- Department of Emergency and TraumaShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
| | - Demeng Xia
- Department of Emergency and TraumaShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
| | - Shuo Fang
- Department of Plastic and ReconstructionShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
| | - Shuogui Xu
- Department of Emergency and TraumaShanghai Changhai Hospital Affiliated to the Second Military Medical UniversityShanghaiChina
| |
Collapse
|
394
|
Chamberlain CS, Clements AEB, Kink JA, Choi U, Baer GS, Halanski MA, Hematti P, Vanderby R. Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. Stem Cells 2019; 37:652-662. [PMID: 30720911 PMCID: PMC6850358 DOI: 10.1002/stem.2988] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
Tendon healing follows a complex series of coordinated events, which ultimately produces a mechanically inferior tissue more scar‐like than native tendon. More regenerative healing occurs when anti‐inflammatory M2 macrophages play a more dominant role. Mesenchymal stromal/stem cells (MSCs) are able to polarize macrophages to an M2 immunophenotype via paracrine mechanisms. We previously reported that coculture of CD14+ macrophages (MQs) with MSCs resulted in a unique M2‐like macrophage. More recently, we generated M2‐like macrophages using only extracellular vesicles (EVs) isolated from MSCs creating “EV‐educated macrophages” (also called exosome‐educated macrophages [EEMs]), thereby foregoing direct use of MSCs. For the current study, we hypothesized that cell therapy with EEMs would improve in vivo tendon healing by modulating tissue inflammation and endogenous macrophage immunophenotypes. We evaluated effects of EEMs using a mouse Achilles tendon rupture model and compared results to normal tendon healing (without any biologic intervention), MSCs, MQs, or EVs. We found that exogenous administration of EEMs directly into the wound promoted a healing response that was significantly more functional and more regenerative. Injured tendons treated with exogenous EEMs exhibited (a) improved mechanical properties, (b) reduced inflammation, and (c) earlier angiogenesis. Treatment with MSC‐derived EVs alone were less effective functionally but stimulated a biological response as evidenced by an increased number of endothelial cells and decreased M1/M2 ratio. Because of their regenerative and immunomodulatory effects, EEM treament could provide a novel strategy to promote wound healing in this and various other musculoskeletal injuries or pathologies where inflammation and inadequate healing is problematic. Stem Cells2019;37:652–662
Collapse
Affiliation(s)
- Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Anna E B Clements
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - John A Kink
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Ugeun Choi
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Geoffrey S Baer
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Matthew A Halanski
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Ray Vanderby
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
395
|
Li JJ, Hosseini-Beheshti E, Grau GE, Zreiqat H, Little CB. Stem Cell-Derived Extracellular Vesicles for Treating Joint Injury and Osteoarthritis. NANOMATERIALS 2019; 9:nano9020261. [PMID: 30769853 PMCID: PMC6409698 DOI: 10.3390/nano9020261] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale particles secreted by almost all cell types to facilitate intercellular communication. Stem cell-derived EVs theoretically have the same biological functions as stem cells, but offer the advantages of small size, low immunogenicity, and removal of issues such as low cell survival and unpredictable long-term behaviour associated with direct cell transplantation. They have been an area of intense interest in regenerative medicine, due to the potential to harness their anti-inflammatory and pro-regenerative effects to induce healing in a wide variety of tissues. However, the potential of using stem cell-derived EVs for treating joint injury and osteoarthritis has not yet been extensively explored. The pathogenesis of osteoarthritis, with or without prior joint injury, is not well understood, and there is a longstanding unmet clinical need to develop new treatments that provide a therapeutic effect in preventing or stopping joint degeneration, rather than merely relieving the symptoms of the disease. This review summarises the current evidence relating to stem cell-derived EVs in joint injury and osteoarthritis, providing a concise discussion of their characteristics, advantages, therapeutic effects, limitations and outlook in this exciting new area.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW 2006, Australia.
| | - Elham Hosseini-Beheshti
- Vascular Immunology Unit, Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Georges E Grau
- Vascular Immunology Unit, Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW 2006, Australia.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
396
|
Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 2019; 200:35-47. [PMID: 30771585 DOI: 10.1016/j.biomaterials.2019.02.006] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
The efficacy of mesenchymal stem cell (MSC) therapies is increasingly attributed to paracrine secretion, particularly exosomes. In this study, we investigated the role of MSC exosomes in the regulation of inflammatory response, nociceptive behaviour, and condylar cartilage and subchondral bone healing in an immunocompetent rat model of temporomandibular joint osteoarthritis (TMJ-OA). We observed that exosome-mediated repair of osteoarthritic TMJs was characterized by early suppression of pain and degeneration with reduced inflammation, followed by sustained proliferation and gradual improvements in matrix expression and subchondral bone architecture, leading to overall joint restoration and regeneration. Using chondrocyte cultures, we could attribute some of the cellular activities during exosome-mediated joint repair to adenosine activation of AKT, ERK and AMPK signalling. Specifically, MSC exosomes enhanced s-GAG synthesis impeded by IL-1β, and suppressed IL-1β-induced nitric oxide and MMP13 production. These effects were partially abrogated by inhibitors of adenosine receptor activation, AKT, ERK and AMPK phosphorylation. Together, our observations suggest that MSC exosomes promote TMJ repair and regeneration in OA through a well-orchestrated mechanism of action that involved multiple cellular processes to restore the matrix and overall joint homeostasis. This study demonstrates the translational potential of a cell-free ready-to-use exosome-based therapeutic for treating TMJ pain and degeneration.
Collapse
Affiliation(s)
- Shipin Zhang
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
397
|
Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, Qiu W, Gao X, Qian M, Xu J, Wang Z, Li G. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE -/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 2019; 510:565-572. [PMID: 30739785 DOI: 10.1016/j.bbrc.2019.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature. Exosomes derived from mesenchymal stem cells (MSCs) exert immunomodulatory and immunosuppressive effects; however, the MSCs-exosomes administration on atherosclerosis was unknown. Here, our ApoE-/- mice were fed a high-fat diet and received intravenous injections of exosomes from MSCs for 12 weeks. After tail-vein injection, MSCs-exosomes were capable of migrating to atherosclerotic plaque and selectively taking up residence near macrophages. MSCs-exosomes treatment decreased the atherosclerotic plaque area of ApoE-/- mice and greatly reduced the infiltration of macrophages in the plaque, associating induced macrophage polarization towards M2. In vitro, MSCs-exosomes treatment markedly inhibited LPS-induced M1 markers expression, while increased M2 markers expression in macrophages. Moreover, miR-let7 family was found to be highly enriched in MSCs-exosomes. Endogenous miR-let7 expression was found in the aortic root of ApoE-/- mice, and MSCs-exosomes treatment further up-regulated miR-let7 levels. In addition, inhibition of miR-let7 in U937 cells significantly inhibited the migration and M2 polarization via IGF2BP1 and HMGA2 pathway respectively in vitro. Our study demonstrates that MSCs-exosomes ameliorated atherosclerosis in ApoE-/- and promoted M2 macrophage polarization in the plaque through miR-let7/HMGA2/NF-κB pathway. In addition, MSCs-exosomes suppressed macrophage infiltration via miR-let7/IGF2BP1/PTEN pathway in the plaque. This finding extends our knowledge on MSCs-exosomes affect inflammation in atherosclerosis plaque and provides a potential method to prevent the atherosclerosis. Exosomes from MSCs hold promise as therapeutic agents to reduce the residual risk of coronary artery diseases.
Collapse
Affiliation(s)
- Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China; Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Tingting Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Ye Xiong
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Xiao Gao
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China; Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Jiangye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
398
|
Zhu Z, Zhang Y, Zhang Y, Zhang H, Liu W, Zhang N, Zhang X, Zhou G, Wu L, Hua K, Ding J. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate growth of VK2 vaginal epithelial cells through MicroRNAs in vitro. Hum Reprod 2019; 34:248-260. [PMID: 30576496 DOI: 10.1093/humrep/dey344] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Could human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Ex) accelerate vaginal epithelium cell (VK2) growth? SUMMARY ANSWER HucMSC-Ex play a significant role in promoting proliferation of VK2 cells by accelerating the cell cycle and inhibiting apoptosis through exosomal microRNAs in vitro. WHAT IS KNOWN ALREADY Numerous studies have reported that MSC-Ex play an important role in tissue injury repair. STUDY DESIGN, SIZE, DURATION hucMSC and exosomes isolated from their conditioned medium were used to treat a vaginal epithelial cell line (VK2). Normal human fibroblasts (HFF-1) were used as negative control to hucMSC. PARTICIPANTS/MATERIALS, SETTING, METHODS VK2 cells were co-cultured with hucMSC whose paracrine effect on the viability, cell cycle and cell apoptosis of VK2 vaginal epithelial cells was further assessed by the CCK-8 assay and flow cytometry. HucMSC-Ex isolated from culture medium by ultracentrifuge were characterized by transmission electron microscopy, nanoparticle tracking analysis and Western blot. HucMSC-Ex at different concentrations and HFF-1 exosomes were used to treat VK2 cells. High-throughput RNA sequencing was utilized to reveal the profile of microRNAs in hucMSC, hucMSC-Ex, HFF-1 and HFF-1 exosomes and GO analysis was applied to demonstrate their functions. To evaluate the function of these specific microRNAs in hucMSC-Ex, VK2 cells were treated with RNA-interfered-hucMSC-Ex (RNAi-hucMSC-Ex) and their proliferation was measured by Label-free Real-time Cellular Analysis System. MAIN RESULTS AND THE ROLE OF CHANCE The study showed that hucMSC stimulate VK2 cell growth possibly through a paracrine route by promoting cell cycle and inhibiting apoptosis. Compared with control and low dose groups, hucMSC-Ex of high concentration (more than 1000 ng/ml) significantly increased VK2's growth after treatment in a dose-depended manner (P < 0.05). HucMSC-Ex raised the proportion of cells in S-phase and reduced the percentage of apoptotic cells in VK2 cells in comparison with the HFF-1 exosomes and control groups (P < 0.05). microRNAs, including miR-100 (16.92%), miR-146a (9.21%), miR-21 (6.67%), miR-221 (6.39%) and miR-143 (4.63%), were found to be specifically enriched (P < 0.05) in hucMSC-Ex and their functions concentrated on cell cycle, development and differentiation. Collectively, our findings indicate that hucMSC-Ex may play a significant role in accelerating VK2's proliferation by promoting cell cycle and inhibiting apoptosis through exosomal microRNAs in vitro. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Our study did not confirm the function of hucMSC-Ex or specifically enriched exosomal microRNAs in vivo. miR-100 and miR-146a are well-known immunomodulatory miRNAs that participate in the regulation of inflammatory disorders and may enhance the therapeutic effect of hucMSC-Ex by promoting the surgical injury repair after vaginal reconstruction. But whether it acts through anti-inflammatory responses needs further study. WIDER IMPLICATIONS OF THE FINDINGS This finding supports the potential use of hucMSC-Ex as a cell-free therapy of Meyer-Rokitansky-Küster-Hauser syndrome (MRKHS) after vaginoplasty. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Chinese National Nature Sciences Foundation (grant number 91440107, 81471416 and 81771524) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19040102). All authors state that there is no conflict of interest to disclose.
Collapse
Affiliation(s)
- Zhongyi Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yijing Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai, China
| | - Yiqun Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongdao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaodan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jingxin Ding
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
399
|
Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal Stem Cell Therapy for Osteoarthritis: The Critical Role of the Cell Secretome. Front Bioeng Biotechnol 2019; 7:9. [PMID: 30761298 PMCID: PMC6361779 DOI: 10.3389/fbioe.2019.00009] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is an inflammatory condition still lacking effective treatments. Mesenchymal stem/stromal cells (MSCs) have been successfully employed in pre-clinical models aiming to resurface the degenerated cartilage. In early-phase clinical trials, intra-articular (IA) administration of MSCs leads to pain reduction and cartilage protection or healing. However, the consistent lack of engraftment indicates that the observed effect is delivered through a "hit-and-run" mechanism, by a temporal release of paracrine molecules. MSCs express a variety of chemokines and cytokines that aid in repair of degraded tissue, restoration of normal tissue metabolism and, most importantly, counteracting inflammation. Secretion of therapeutic factors is increased upon licensing by inflammatory signals or apoptosis, induced by the host immune system. Trophic effectors are released as soluble molecules or carried by extracellular vesicles (ECVs). This review provides an overview of the functions and mechanisms of MSC-secreted molecules found to be upregulated in models of OA, whether using in vitro or in vivo models.
Collapse
Affiliation(s)
- Patrizio Mancuso
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Swarna Raman
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Glynn
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - J Mary Murphy
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
400
|
Vitha AE, Kollefrath AW, Huang CYC, Garcia-Godoy F. Characterization and Therapeutic Uses of Exosomes: A New Potential Tool in Orthopedics. Stem Cells Dev 2019; 28:141-150. [DOI: 10.1089/scd.2018.0205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Franklin Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|