351
|
Zhou KM, Dong YM, Ge Q, Zhu D, Zhou W, Lin XG, Liang T, Wu ZX, Xu T. PKA Activation Bypasses the Requirement for UNC-31 in the Docking of Dense Core Vesicles from C. elegans Neurons. Neuron 2007; 56:657-69. [DOI: 10.1016/j.neuron.2007.09.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/07/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
|
352
|
Tecott LH. Serotonin and the orchestration of energy balance. Cell Metab 2007; 6:352-61. [PMID: 17983581 DOI: 10.1016/j.cmet.2007.09.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/26/2022]
Abstract
The phylogenetically ancient signaling molecule serotonin is found in all species that possess nervous systems and orchestrates diverse behavioral and physiological processes in the service of energy balance. In some instances, the manner in which serotonin signaling influences these processes appears comparable among invertebrate and vertebrate species. Within mammalian species, central nervous system serotonergic signaling influences both behavioral and physiological determinants of energy balance. Within the gastrointestinal tract, serotonin mediates diverse sensory, motor, and secretory functions. Further examinations of serotonergic influences on peripheral organ systems are likely to uncover novel functions consistent with an apparently pervasive association between serotonergic signaling and physiological substrates of energy balance.
Collapse
Affiliation(s)
- Laurence H Tecott
- Department of Psychiatry, Center for Neurobiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158-2324, USA.
| |
Collapse
|
353
|
Schlegel A, Stainier DYR. Lessons from "lower" organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet 2007; 3:e199. [PMID: 18081423 PMCID: PMC2098794 DOI: 10.1371/journal.pgen.0030199] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A pandemic of metabolic diseases (atherosclerosis, diabetes mellitus, and obesity), unleashed by multiple social and economic factors beyond the control of most individuals, threatens to diminish human life span for the first time in the modern era. Given the redundancy and inherent complexity of processes regulating the uptake, transport, catabolism, and synthesis of nutrients, magic bullets to target these diseases will be hard to find. Recent studies using the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the zebrafish Danio rerio indicate that these "lower" metazoans possess unique attributes that should help in identifying, investigating, and even validating new pharmaceutical targets for these diseases. We summarize findings in these organisms that shed light on highly conserved pathways of energy homeostasis.
Collapse
Affiliation(s)
- Amnon Schlegel
- Department of Biochemistry and Biophysics, Division of Endocrinology at the University of California San Francisco, San Francisco, California, United States of America.
| | | |
Collapse
|
354
|
Abstract
A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen.
Collapse
Affiliation(s)
- Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
355
|
Tripeptidyl peptidase II promotes fat formation in a conserved fashion. EMBO Rep 2007; 8:1183-9. [PMID: 17932511 DOI: 10.1038/sj.embor.7401086] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 08/20/2007] [Accepted: 09/10/2007] [Indexed: 11/09/2022] Open
Abstract
Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner.
Collapse
|
356
|
The C. elegans M3 neuron guides the growth cone of its sister cell M2 via the Krüppel-like zinc finger protein MNM-2. Dev Biol 2007; 311:185-99. [PMID: 17916347 DOI: 10.1016/j.ydbio.2007.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022]
Abstract
The invariant cell-cell interactions occurring during C. elegans development offer unique opportunities to discover how growing axons may receive guidance cues from neighboring cells. The mnm-2 mutant was isolated because of its defects in the axon trajectory of the bilateral M2 pharyngeal neurons in C. elegans. We found that mnm-2 enhances the effects of many growth cone guidance mutations on these axons, suggesting that it performs a novel function during axon guidance. We cloned mnm-2 and found that it encodes a protein with three C2H2 zinc finger domains related to the Krüppel-like Factor protein family. mnm-2 is expressed only transiently in the M2 neuron, but exhibits a sustained expression in its sister cell, the M3 neuron. Strikingly, the expression of mnm-2 is not sustained in the M3 cell of the mnm-2 mutant, indicating that this gene positively regulates itself in that cell. Electropharyngeograms also indicate that the M3 cell is functionally impaired in the mnm-2 mutant. We used an M3-specific promoter to show that the M2 axon defect can be rescued by expression of mnm-2 in its sister cell M3. The same promoter was used to express the pro-apoptotic gene egl-1 to kill the M3 cell, which resulted in an M2 axon guidance defect similar to that found in the mnm-2 mutant. Our results suggest an M2 axon guidance model in which the M3 cell provides an important signal to the growth cone of its sister M2 and that this signal and the proper differentiation of M3 both depend on mnm-2 expression. This mechanism of axon guidance regulation allows fine-tuning of trajectories between sister cells.
Collapse
|
357
|
Abstract
The neurotransmitter serotonin has been implicated in affecting the variation of longevity in natural Drosophila populations and age-related diseases in mammals. Based on these observations, it has been predicted that serotonin signal, perhaps at levels of serotonin biosynthesis, may control lifespan. Here, we investigated a variety of mutations in serotonin-signal genes, including serotonin biosynthesis genes, a serotonin transporter gene, and serotonin receptor genes. Despite this prediction, mutations in the serotonin biosynthesis genes had little or modest effects on lifespan, while the mod-5 mutation with increased availability of serotonin caused a modest life-shortening effect. In contrast, a deletion mutation of the ser-1 serotonin receptor gene increased longevity by up to 46%, likely through the insulin/insulin-like growth factor 1 pathway. This result suggests an interaction between the serotonin pathway and the insulin/insulin-like growth factor 1 pathway. A deletion mutation of another serotonin receptor gene, ser-4, shortened early to mid lifespan. The results suggest that serotonin signal antagonistically modulates longevity through different serotonin receptors. This study may indicate serotonin receptors as a potential target for antigeric interventions.
Collapse
Affiliation(s)
- Hana Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | |
Collapse
|
358
|
Loer CM, Rivard L. Evolution of neuronal patterning in free-living rhabditid nematodes I: Sex-specific serotonin-containing neurons. J Comp Neurol 2007; 502:736-67. [PMID: 17436291 DOI: 10.1002/cne.21288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a first step toward understanding the evolution of neuronal patterning and function in a group of simple animals, we have examined serotonin-containing neurons in 17 species of free-living rhabditid nematodes and compared them with identified neurons of Caenorhabditis elegans. We found many serotonin-immunoreactive (serotonin-IR) neurons that are likely homologs of those in C. elegans; this paper focuses on sex-specific neurons such as the egg laying hermaphrodite-specific neurons (HSNs), VCs, and male CAs, CPs, and ray sensory neurons known to function in mating. These cells vary in number and position in the species examined but are consistent with a current molecularly based phylogeny. Two groups (Oscheius and Pristionchus) appear independently to have lost a serotonin-IR HSN. Oscheius furthermore has no serotonin-IR innervation of the vulval region, in contrast to every other species we examined. We also saw variation in the location of somas of putative HSN, consistent with evolutionary changes in HSN migration. In C. elegans, the HSN soma migrates during embryogenesis from the tail to the central body, where it innervates its major postsynaptic targets, the vulval muscles. For other species, we observed putative HSN homologs along the anterior-posterior axis from the head to the tail, but typically HSNs were located near the vulva, which also varies in anterior-posterior position among the species we examined. The varying positions of the HSN somas in other species are reminiscent of phenotypes seen in various C. elegans mutants with altered HSN migration, suggesting possible mechanisms for the evolutionary differences we observed.
Collapse
Affiliation(s)
- Curtis M Loer
- Department of Biology, University of San Diego, California 92110, USA.
| | | |
Collapse
|
359
|
Schwartz HT. A protocol describing pharynx counts and a review of other assays of apoptotic cell death in the nematode worm Caenorhabditis elegans. Nat Protoc 2007; 2:705-14. [PMID: 17406633 DOI: 10.1038/nprot.2007.93] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Studies of the nematode worm Caenorhabditis elegans have provided important insights into the genetics of programmed cell death (PCD), and revealed molecular mechanisms conserved from nematodes to humans. The organism continues to offer opportunities to investigate the processes of apoptosis under very well-defined conditions and at single-cell resolution in living animals. Here, a survey of the common methods used to study the process of PCD in C. elegans is described. Detailed instructions are provided for one standard method--the counting of extra cells of the anterior pharynx--a quantitative technique that can be used to detect even very subtle alterations in the progression of apoptotic cell death.
Collapse
Affiliation(s)
- Hillel T Schwartz
- MIT Department of Biology, Howard Hughes Medical Institute, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
360
|
Esposito G, Di Schiavi E, Bergamasco C, Bazzicalupo P. Efficient and cell specific knock-down of gene function in targeted C. elegans neurons. Gene 2007; 395:170-6. [PMID: 17459615 DOI: 10.1016/j.gene.2007.03.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/02/2007] [Accepted: 03/02/2007] [Indexed: 11/22/2022]
Abstract
The nematode C. elegans has become an important model for understanding how genes influence behavior. However, in this organism the available approaches for identifying the neuron(s) where the function of a gene is required for a given behavioral trait are time consuming and restricted to non essential genes for which mutants are available. We describe a simple reverse genetics approach for reducing, in chosen C. elegans neurons, the function of genes. The method is based on the expression, under cell specific promoters, of sense and antisense RNA corresponding to a gene of interest. By targeting the genes osm-10, osm-6 and the Green Fluorescent Protein gene, gfp, we show that this approach leads to efficient, heritable and cell autonomous knock-downs of gene function, even in neurons usually refractory to classic RNA interference (RNAi). By targeting the essential and ubiquitously expressed gene, gpb-1, which encodes a G protein beta subunit, we identify for the first time two distinct sets of neurons in which the function of gpb-1 is required to regulate two distinct behaviors: egg-laying and avoidance of repellents. The cell specific knock-downs obtained with this approach provide information that is complementary to that provided by the cell specific rescue of loss-of-function mutations and represents a useful new tool for dissecting the role that genes play in selected neurons.
Collapse
Affiliation(s)
- Giovanni Esposito
- Istituto di Genetica e Biofisica, A. Buzzati Traverso, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
361
|
Reiner DJ, Weinshenker D, Tian H, Thomas JH, Nishiwaki K, Miwa J, Gruninger T, Leboeuf B, Garcia LR. Behavioral genetics of caenorhabditis elegans unc-103-encoded erg-like K(+) channel. J Neurogenet 2007; 20:41-66. [PMID: 16807195 DOI: 10.1080/01677060600788826] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Caenorhabditis elegans unc-103 gene encodes a potassium channel whose sequence is most similar to the ether-a-go-go related gene (erg) type of K+ channels. We find that the n 500 and e 1597 gain-of-function (gf) mutations in unc-103 cause reduced excitation in most muscles, while loss-of-function (lf) mutations cause mild muscle hyper-excitability. Both gf alleles change the same residue near the cytoplasmic end of S6, consistent with this region regulating channel activation. We also report additional dominant-negative and lf alleles of unc-103 that can antagonize or reduce the function of both gf and wild-type alleles. The unc-103 locus contains 6 promoter regions that express unc-103 in different combinations of body-wall and sex-specific muscles, motor-, inter- and sensory-neurons. Each promoter drives transcripts containing a unique first exon, conferring sequence variability to the N-terminus of the UNC-103 protein, while three splice variants introduce variability into the UNC-103 C-terminus. unc-103(0) hermaphrodites prematurely lay embryos that would normally be retained in the uterus and lay eggs under conditions that inhibit egg-laying behavior. In the egg-laying circuit, unc-103 is expressed in vulval muscles and the HSN neurons from different promoters. Supplying the proper UNC-103 isoform to the vulval muscles is sufficient to restore regulation to egg-laying behavior.
Collapse
Affiliation(s)
- David J Reiner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Pennati R, Candiani S, Biggiogero M, Zega G, Groppelli S, Oliveri D, Parodi M, De Bernardi F, Pestarino M. Developmental expression of tryptophan hydroxylase gene in Ciona intestinalis. Dev Genes Evol 2007; 217:307-13. [PMID: 17318659 DOI: 10.1007/s00427-007-0138-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/31/2007] [Indexed: 11/30/2022]
Abstract
To describe the serotonergic system in a tunicate larva, we cloned a gene encoding for tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin synthesis, in the ascidian Ciona intestinalis and studied its expression pattern during development. Ci-TPH expression was found from tailbud stage in the precursor cells of the visceral ganglion and in the tail. In the larva, TPH-expressing neurons formed two clusters in the anterior central nervous system at the level of the visceral ganglion. Moreover, we found Ci-TPH expression at the level of the muscle cells of the tail and suggested that this localisation might be at the level of neuro-muscular junctions. Moreover, we discussed the involvement of serotonin in the control of larval locomotory activity.
Collapse
Affiliation(s)
- Roberta Pennati
- Dipartimento di Biologia, Università di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Neckameyer WS, Coleman CM, Eadie S, Goodwin SF. Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. GENES BRAIN AND BEHAVIOR 2007; 6:756-69. [PMID: 17376153 DOI: 10.1111/j.1601-183x.2007.00307.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Drosophila, one enzyme (Drosophila tryptophan-phenylalanine hydroxylase, DTPHu) hydroxylates both tryptophan to yield 5-hydroxytryptophan, the first step in serotonin synthesis, and phenylalanine, to generate tyrosine. Analysis of the sequenced Drosophila genome identified an additional enzyme with extensive homology to mammalian tryptophan hydroxylase (TPH), which we have termed DTRHn. We have shown that DTRHn can hydroxylate tryptophan in vitro but displays differential activity relative to DTPHu when using tryptophan as a substrate. Recent studies in mice identified the presence of two TPH genes, Tph1 and Tph2, from distinct genetic loci. Tph1 represents the non-neuronal TPH gene, and Tph2 is expressed exclusively in the brain. In this article, we show that DTRHn is neuronal in expression and function and thus represents the Drosophila homologue of Tph2. Using a DTRHn-null mutation, we show that diminished neuronal serotonin affects locomotor, olfactory and feeding behaviors, as well as heart rate. We also show that DTPHu functions in vivo as a phenylalanine hydroxylase in addition to its role as the peripheral TPH in Drosophila, and is critical for non-neuronal developmental events.
Collapse
Affiliation(s)
- W S Neckameyer
- Department of Pharmacological and Physiological Science, St Louis, University School of Medicine, MO 63104, USA.
| | | | | | | |
Collapse
|
364
|
Voronezhskaya EE, Khabarova MY, Chaban AK, Nezlin LP. Role of chemical signalling in release of motor programs during embryogenesis of freshwater snails Lymnaea stagnalis and Helisoma trivolvis. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407020038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
365
|
Chang AJ, Chronis N, Karow DS, Marletta MA, Bargmann CI. A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biol 2007; 4:e274. [PMID: 16903785 PMCID: PMC1540710 DOI: 10.1371/journal.pbio.0040274] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 06/16/2006] [Indexed: 11/19/2022] Open
Abstract
The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in the presence of food; npr-1(215V) animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V) animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf) animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-beta homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.
Collapse
Affiliation(s)
- Andy J Chang
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Nikolas Chronis
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - David S Karow
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Chemistry and Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Division of Physical Biosciences, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Michael A Marletta
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Chemistry and Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Division of Physical Biosciences, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
366
|
Asakura T, Ogura KI, Goshima Y. UNC-6 expression by the vulval precursor cells of Caenorhabditis elegans is required for the complex axon guidance of the HSN neurons. Dev Biol 2007; 304:800-10. [PMID: 17320069 DOI: 10.1016/j.ydbio.2007.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 01/06/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
Netrin is an evolutionarily conserved axon guidance molecule that has both axonal attraction and repulsion activities. In Caenorhabditis elegans, Netrin/UNC-6 is secreted by ventral cells, attracting some axons ventrally and repelling some axons, which extend dorsally. One axon guided by UNC-6 is that of the HSN neuron. The axon guidance process for HSN neurons is complex, consisting of ventral growth, dorsal growth, branching, second ventral growth, fasciculation with ventral nerve cords, and then anterior growth. The vulval precursor cells (VPC) and the PVP and PVQ neurons are required for the HSN axon guidance; however, the molecular mechanisms involved are completely unknown. In this study, we found that the VPC strongly expressed UNC-6 during HSN axon growth. Silencing of UNC-6 expression in only the VPC, using a novel tissue-specific RNAi technique, resulted in abnormal HSN axon guidance. The expression of Netrin/UNC-6 by only the VPC in unc-6 null mutants partially rescued the HSN ventral axon guidance. Furthermore, the expression of Netrin/UNC-6 by the VPC and the ventral nerve cord (VNC) in unc-6 null mutants restored the complex HSN axon guidance. These results suggest that UNC-6 expressed by the VPC and the VNC cooperatively regulates the complex HSN axon guidance.
Collapse
Affiliation(s)
- Taro Asakura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | | | | |
Collapse
|
367
|
Torayama I, Ishihara T, Katsura I. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci 2007; 27:741-50. [PMID: 17251413 PMCID: PMC6672901 DOI: 10.1523/jneurosci.4312-06.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 11/21/2022] Open
Abstract
Behavioral plasticity induced by the integration of two sensory signals, such as associative learning, is an important issue in neuroscience, but its evolutionary origin and diversity have not been explored sufficiently. We report here a new type of such behavioral plasticity, which we call butanone enhancement, in Caenorhabditis elegans adult hermaphrodites: C. elegans specifically enhances chemotaxis to butanone by preexposure to butanone and food. Mutant analysis revealed that this plasticity requires the AWC(ON) olfactory neuron, whose fate is known to be determined by the NSY-1/ASK1 MAPKKK (mitogen-activated protein kinase kinase kinase) cascade as well as the DAF-11 and ODR-1 guanylyl cyclases. These proteins also control many aspects of olfactory sensation/plasticity in AWC neurons and seem to provide appropriate cellular conditions for butanone enhancement in the AWC(ON) neuron. Butanone enhancement also required the functions of Bardet-Biedl syndrome genes in the AWC(ON) neuron but not other genes that control ciliary transport. Furthermore, preexposure to butanone and the odor of food was enough for the enhancement of butanone chemotaxis. These results suggest that the AWC(ON) olfactory neuron may conduct a behavioral plasticity resembling associative learning and that the functions of Bardet-Biedl syndrome genes in sensory cilia may play an important role in this plasticity.
Collapse
Affiliation(s)
- Ichiro Torayama
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | - Takeshi Ishihara
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | - Isao Katsura
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| |
Collapse
|
368
|
Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura JI, Gengyo-Ando K, Mitani S, Nomura K, Sugahara K. Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis. J Biol Chem 2007; 282:8533-44. [PMID: 17237233 DOI: 10.1074/jbc.m611107200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteins encoded by all of the five cloned human EXT family genes (EXT1, EXT2, EXTL1, EXTL2, and EXTL3), members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the biosynthesis of heparan sulfate. In the Caenorhabditis elegans genome, only two genes, rib-1 and rib-2, homologous to the mammalian EXT genes have been identified. Although rib-2 encodes an N-acetylglucosaminyltransferase involved in initiating the biosynthesis and elongation of heparan sulfate, the involvement of the protein encoded by rib-1 in the biosynthesis of heparan sulfate remains unclear. Here we report that RIB-1 is indispensable for the biosynthesis and for embryonic morphogenesis. Despite little individual glycosyltransferase activity by RIB-1, the polymerization of heparan sulfate chains was demonstrated when RIB-1 was coexpressed with RIB-2 in vitro. In addition, RIB-1 and RIB-2 were demonstrated to interact by pulldown assays. To investigate the functions of RIB-1 in vivo, we depleted the expression of rib-1 by deletion mutagenesis. The null mutant worms showed reduced synthesis of heparan sulfate and embryonic lethality. Notably, the null mutant embryos showed abnormality at the gastrulation cleft formation stage or later and arrested mainly at the 1-fold stage. Nearly 100% of the embryos died before L1 stage, although the differentiation of some of the neurons and muscle cells proceeded normally. Similar phenotypes have been observed in rib-2 null mutant embryos. Thus, RIB-1 in addition to RIB-2 is indispensable for the biosynthesis of heparan sulfate in C. elegans, and the two cooperate to synthesize heparan sulfate in vivo. These findings also show that heparan sulfate is essential for post-gastrulation morphogenic movement of embryonic cells and is indispensable for ensuring the normal spatial organization of differentiated tissues and organs.
Collapse
Affiliation(s)
- Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Yang Y, Sun Y, Luo X, Zhang Y, Chen Y, Tian E, Lints R, Zhang H. Polycomb-like genes are necessary for specification of dopaminergic and serotonergic neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2007; 104:852-7. [PMID: 17215367 PMCID: PMC1783403 DOI: 10.1073/pnas.0610261104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms underlying the formation of neurons with defined neurotransmitters are not well understood. In this study, we demonstrate that the PcG-like genes in Caenorhabditis elegans, sop-2 and sor-3, regulate the formation of dopaminergic and serotonergic neurons and several other neuronal properties. sor-3 encodes a novel protein containing an MBT repeat, a domain that contains histone-binding activity and is present in PcG proteins SCM and Sfmbt in other organisms. We further show that mutations in sor-3 lead to ectopic expression of Hox genes and cause homeotic transformations. Specification of certain neuronal identities by these PcG-like genes appears to involve regulation of non-Hox gene targets. Our studies revealed that the PcG-like genes are crucial for coordinately regulating the expression of discrete aspects of neuronal identities in C. elegans.
Collapse
Affiliation(s)
- Yong Yang
- *National Institute of Biological Sciences, Beijing 102206, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China; and
| | - Yinyan Sun
- *National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Xin Luo
- *National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Yuxia Zhang
- *National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Yaoyao Chen
- *National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - E. Tian
- *National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Robyn Lints
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Hong Zhang
- *National Institute of Biological Sciences, Beijing 102206, People's Republic of China
- To whom correspondence should be addressed at:
National Institute of Biological Sciences, Zhongguancun Life Science Park, No. 7 Science Park Road, Beijing 102206, People's Republic of China. E-mail:
| |
Collapse
|
370
|
Sengupta P. Generation and modulation of chemosensory behaviors in C. elegans. Pflugers Arch 2007; 454:721-34. [PMID: 17206445 DOI: 10.1007/s00424-006-0196-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
C. elegans recognizes and discriminates among hundreds of chemical cues using a relatively compact chemosensory nervous system. Chemosensory behaviors are also modulated by prior experience and contextual cues. Because of the facile genetics and genomics possible in this organism, C. elegans provides an excellent system in which to explore the generation of chemosensory behaviors from the level of a single gene to the motor output. This review summarizes the current knowledge on the molecular and neuronal substrates of chemosensory behaviors and chemosensory behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
371
|
Gruninger TR, LeBoeuf B, Liu Y, Garcia LR. Molecular signaling involved in regulating feeding and other mitivated behaviors. Mol Neurobiol 2007; 35:1-20. [PMID: 17519503 DOI: 10.1007/bf02700621] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/30/1999] [Accepted: 09/06/2006] [Indexed: 12/29/2022]
Abstract
The metabolic and nutritional status of an organism influences multiple behaviors in addition to food intake. When an organism is hungry, it employs behaviors that help it locate and ingest food while suppressing behaviors that are not associated with this goal. Alternatively, when an organism is satiated, food-seeking behaviors are repressed so that the animal can direct itself to other goal-oriented tasks such as reproductive behaviors. Studies in both vertebrate and invertebrate model systems have revealed that food-deprived and -satiated behaviors are differentially executed and integrated via common molecular signaling mechanisms. This article discusses cellular and molecular mechanisms for how insulin, neuropeptide Y (NPY), and serotonin utilize common signaling pathways to integrate feeding and metabolic state with other motivated behaviors. Insulin, NPY, and serotonin are three of the most well-studied molecules implicated in regulating such behaviors. Overall, insulin signaling allows an organism to coordinate proper behavioral output with changes in metabolism, NPY activates behaviors required for locating and ingesting food, and serotonin modulates behaviors performed when an organism is satiated. These three molecules work to ensure that the proper behaviors are executed in response to the feeding state of an organism.
Collapse
Affiliation(s)
- Todd R Gruninger
- Department of Biology, Texas A&M University, TAMU 3258, College Station, TX, USA
| | | | | | | |
Collapse
|
372
|
Dernovici S, Starc T, Dent JA, Ribeiro P. The serotonin receptor SER-1 (5HT2ce) contributes to the regulation of locomotion inCaenorhabditis elegans. Dev Neurobiol 2007; 67:189-204. [PMID: 17443782 DOI: 10.1002/dneu.20340] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serotonin (5-hydroxytryptamine: 5HT) is an important neuroactive substance in the model roundworm, Caenorhabditis elegans. Aside from having effects in feeding and egg-laying, 5HT inhibits motility and also modulates several locomotory behaviors, notably food-induced slowing and foraging. Recent evidence showed that a serotonergic 5HT2-like receptor named SER-1 (also known as 5HT2ce) was responsible for the effect of 5HT on egg-laying. Here we confirm this observation and show that SER-1 also plays an important role in locomotion. A mutant lacking SER-1 was found to be highly resistant to exogenous 5HT in the absence of food and this resistant phenotype was rescued by reintroducing the SER-1 gene in a mutant background. Pharmacological studies showed that the same antagonists that blocked the activity of recombinant SER-1 in vitro also inhibited the effect of 5HT on motility, suggesting the same receptor was responsible for both effects. When tested for locomotory behaviors, the SER-1 mutant was found to be moderately defective in food-induced slowing. In addition, the mutant changed direction more frequently than the wildtype when searching for food, suggesting that SER-1 may play a role in navigational control during foraging. Both these effects required the presence of MOD-1, a 5HT gated chloride channel, and the results indicate that SER-1 and MOD-1 modulate these behaviors through a common pathway. On the basis of expression analysis of a ser-1::GFP translational fusion, SER-1 is prominently located in central, integrating neurons of the head ganglia (RIA and RIC) but not the body wall musculature. The evidence suggests that SER-1 controls locomotion through indirect modulation of neuromuscular circuits and has effects both on speed and direction of movement.
Collapse
Affiliation(s)
- Serge Dernovici
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | | | | | | |
Collapse
|
373
|
Hughes SE, Evason K, Xiong C, Kornfeld K. Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet 2006; 3:e25. [PMID: 17305431 PMCID: PMC1797816 DOI: 10.1371/journal.pgen.0030025] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 12/27/2006] [Indexed: 11/19/2022] Open
Abstract
Age-related degenerative changes in the reproductive system are an important aspect of aging, because reproductive success is the major determinant of evolutionary fitness. Caenorhabditis elegans is a prominent organism for studies of somatic aging, since many factors that extend adult lifespan have been identified. However, mechanisms that control reproductive aging in nematodes or other animals are not well characterized. To use C. elegans to measure reproductive aging, we analyzed mated hermaphrodites that do not become sperm depleted and monitored the duration and level of progeny production. Mated hermaphrodites display a decline of progeny production that culminates in reproductive cessation before the end of the lifespan, demonstrating that hermaphrodites undergo reproductive aging. To identify factors that influence reproductive aging, we analyzed genetic, environmental, and pharmacological factors that extend lifespan. Dietary restriction and reduced insulin/insulin-like growth factor signaling delayed reproductive aging, indicating that nutritional status and a signaling pathway that responds to environmental stress influence reproductive aging. Cold temperature delayed reproductive aging. The anticonvulsant medicine ethosuximide, which affects neural activity, delayed reproductive aging, indicating that neural activity can influence reproductive aging. Some of these factors decrease early progeny production, but there is no consistent relationship between early progeny production and reproductive aging in strains with an extended lifespan. To directly examine the effects of early progeny production on reproductive aging, we used sperm availability to modulate the level of early reproduction. Early progeny production neither accelerated nor delayed reproductive aging, indicating that reproductive aging is not controlled by use-dependent mechanisms. The implications of these findings for evolutionary theories of aging are discussed.
Collapse
Affiliation(s)
- Stacie E Hughes
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kimberley Evason
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
374
|
van der Linden AM, Nolan KM, Sengupta P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J 2006; 26:358-70. [PMID: 17170704 PMCID: PMC1783467 DOI: 10.1038/sj.emboj.7601479] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 11/07/2006] [Indexed: 11/09/2022] Open
Abstract
The expression of individual chemoreceptor (CR) genes in Caenorhabditis elegans is regulated by multiple environmental and developmental cues, possibly enabling C. elegans to modulate its sensory responses. We had previously shown that KIN-29, a member of the salt-inducible kinase family, acts in a subset of chemosensory neurons to regulate the expression of CR genes, body size and entry into the alternate dauer developmental stage. Here, we show that KIN-29 regulates these processes by phosphorylating the HDA-4 class II histone deacetylase (HDAC) and inhibiting the gene repression functions of HDA-4 and an MEF-2 MADS domain transcription factor. MEF-2 binds directly to the CR gene regulatory sequences, and is required only to repress but not activate CR gene expression. A calcineurin phosphatase antagonizes the KIN-29/MEF-2-regulated pathway to modulate levels of CR gene expression. Our results identify KIN-29 as a new regulator of MEF2/HDAC functions in the nervous system, reveal cell-specific mechanisms of action of this pathway in vivo and demonstrate remarkable complexity in the regulation of CR gene expression in C. elegans.
Collapse
Affiliation(s)
- Alexander M van der Linden
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Katherine M Nolan
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, South St., Waltham, MA 02454, USA. Tel.: +1 781 736 2686; Fax: +1 781 736 3107; E-mail:
| |
Collapse
|
375
|
Abstract
Neurotransmitters relay signals within the brain and to peripheral tissues, allowing communication between nerve cells. New work from in this issue of Cell Metabolism reveals that, in C. elegans, serotonin functions during conditions of stress through the well-characterized insulin/IGF-1 signaling pathway, suggesting a mechanism for the stress response.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Aaron Lazare Research Building Suite 615, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
376
|
Liang B, Moussaif M, Kuan CJ, Gargus JJ, Sze JY. Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab 2006; 4:429-40. [PMID: 17141627 DOI: 10.1016/j.cmet.2006.11.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/10/2006] [Accepted: 11/09/2006] [Indexed: 11/26/2022]
Abstract
Stress response is a fundamental form of behavioral and physiological plasticity. Here we describe how serotonin (5HT) governs stress behavior by regulating DAF-2 insulin/IGF-1 receptor signaling to the DAF-16/FOXO transcription factor at the nexus of development, metabolism, immunity, and stress responses in C. elegans. Serotonin-deficient tph-1 mutants, like daf-2 mutants, exhibit DAF-16 nuclear accumulation and constitutive physiological stress states. Exogenous 5HT and fluoxetine (Prozac) prevented DAF-16 nuclear accumulation in wild-type animals under stresses. Genetic analyses imply that DAF-2 is a downstream target of 5HT signaling and that distinct serotonergic neurons act through distinct 5HT receptors to influence distinct DAF-16-mediated stress responses. We suggest that modulation of FOXO by 5HT represents an ancient feature of stress physiology and that the C. elegans is a genetically tractable model that can be used to delineate the molecular mechanisms and drug actions linking 5HT, neuroendocrine signaling, immunity, and mitochondrial function.
Collapse
Affiliation(s)
- Bin Liang
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
377
|
Carre-Pierrat M, Baillie D, Johnsen R, Hyde R, Hart A, Granger L, Ségalat L. Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. INVERTEBRATE NEUROSCIENCE 2006; 6:189-205. [PMID: 17082916 DOI: 10.1007/s10158-006-0033-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/04/2006] [Indexed: 12/31/2022]
Abstract
Serotonin (5-HT) regulates a wide range of behaviors in Caenorhabditis elegans, including egg laying, male mating, locomotion and pharyngeal pumping. So far, four serotonin receptors have been described in the nematode C. elegans, three of which are G protein-coupled receptors (GPCR), (SER-1, SER-4 and SER-7), and one is an ion channel (MOD-1). By searching the C. elegans genome for additional 5-HT GPCR genes, we identified five further genes which encode putative 5-HT receptors, based on sequence similarities to 5-HT receptors from other species. Using loss-of-function mutants and RNAi, we performed a systematic study of the role of the eight GPCR genes in serotonin-modulated behaviors of C. elegans (F59C12.2, Y22D7AR.13, K02F2.6, C09B7.1, M03F4.3, F16D3.7, T02E9.3, C24A8.1). We also examined their expression patterns. Finally, we tested whether the most likely candidate receptors were able to modulate adenylate cyclase activity in transfected cells in a 5-HT-dependent manner. This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans. It provides a direct comparison of the expression patterns and functional roles for 5-HT receptors in C. elegans.
Collapse
Affiliation(s)
- Maïté Carre-Pierrat
- CGMC, CNRS-UMR 5534, Université Claude Bernard Lyon-1, Université Lyon-1, 43 bld du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | | | | | | | | | | | | |
Collapse
|
378
|
Abstract
Migraine is a chronic episodic disorder that has been linked to abnormalities in serotonin signaling and abnormal function of a presynaptic voltage-gated calcium channel, CACNA1A. Although the importance of serotonin to migraine tendency suggests a link between serotonergic signaling and CACNA1A function, the nature of this connection remains unclear in vertebrate studies. This article reviews findings, based on an invertebrate model of CACNA1A dysfunction, which suggest a potential connection between serotonergic and calcium channel abnormalities in migraine. Neurons of the invertebrate species Caenorhabditis elegans express a voltage-gated calcium channel, UNC-2, which is the closest ortholog in C. elegans of human CACNA1A. Mutations in unc-2, the gene that encodes this invertebrate channel, cause the animals to be lethargic and uncoordinated. By identifying the genes that could be altered in such a way as to suppress the lethargic phenotype of unc-2, a signaling pathway has been identified through which UNC-2 calcium channel function antagonizes a transforming growth factor-beta (TGF-beta) pathway modulating locomotion. In C. elegans, serotonergic signaling can inhibit the rate of movement. The UNC-2/transforming growth factor-beta pathway identified regulates the expression of a gene encoding the rate-limiting enzyme for serotonin synthesis, tryptophan hydroxylase. The evolutionary and functional relationship between the UNC-2 channel and the migraine-associated CACNA1A channel was further confirmed through experiments showing that transgenic expression of human CACNA1A can suppress the lethargic and serotonin-deficient phenotypes of unc-2 mutant animals. The findings in this invertebrate model constitute the first direct demonstration of how CACNA1A function might affect the levels of serotonin, a neurotransmitter known to be important in migraine.
Collapse
Affiliation(s)
- Miguel Estevez
- Veterans Administration Hospital and University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
379
|
Franks CJ, Holden-Dye L, Bull K, Luedtke S, Walker RJ. Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system. INVERTEBRATE NEUROSCIENCE : IN 2006; 6:105-22. [PMID: 16862440 DOI: 10.1007/s10158-006-0023-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/26/2006] [Indexed: 12/31/2022]
Abstract
Invertebrate neuroscience has provided a number of very informative model systems that have been extensively utilized in order to define the neurobiological bases of animal behaviours (Sattelle and Buckingham in Invert Neurosci 6:1-3, 2006). Most eminent among these are a number of molluscs, including Aplysia californica, Lymnaea stagnalis and Helix aspersa, crustacean systems such as the crab stomatogastric ganglion and a wide-range of other arthropods. All of these have been elegantly exploited to shed light on the very important phenomenon of the molecular and cellular basis for synaptic regulation that underpins behavioural plasticity. Key to the successful use of these systems has been the ability to study well-defined, relatively simple neuronal circuits that direct and regulate a quantifiable animal behaviour. Here we describe the pharyngeal system of the nematode C. elegans and its utility as a model for defining the genetic basis of behaviour. The circuitry of the nervous system in this animal is uniquely well-defined. Furthermore, the feeding behaviour of the worm is controlled by the activity of the pharynx and this in turn is regulated in a context-dependent manner by a simple nervous system that integrates external signals, e.g. presence or absence of food, and internal signals, e.g. the nutritional status of the animal to direct an appropriate response. The genetics of C. elegans is being effectively exploited to provide novel insight into genes that function to regulate the neuronal network that controls the pharynx. Here we summarise the progress to date and highlight topics for future research. Two main themes emerge. First, although the anatomy of the pharyngeal system is very well-defined, there is a much poorer understanding of its neurochemistry. Second, it is evident that the neurochemistry is remarkably complex for such a simple circuit/behaviour. This suggests that the pharyngeal activity may be subject to exquisitely precise regulation depending on the animal's environment and status. This therefore provides a very tractable genetic model to investigate neural mechanisms for signal integration and synaptic plasticity in a well-defined neuronal network that directs a quantifiable behaviour, feeding.
Collapse
Affiliation(s)
- Christopher J Franks
- School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton, SO16 7PX, UK
| | | | | | | | | |
Collapse
|
380
|
Schindelman G, Whittaker AJ, Thum JY, Gharib S, Sternberg PW. Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord. BMC Biol 2006; 4:26. [PMID: 16911797 PMCID: PMC1564418 DOI: 10.1186/1741-7007-4-26] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 08/15/2006] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. RESULTS Based on observation of wild-type males and on genetic analysis, we have divided the sperm-transfer step of mating behavior into four sub-steps: initiation, release, continued transfer, and cessation. To begin to understand how these sub-steps of sperm transfer are regulated, we screened for ethylmethanesulfonate (EMS)-induced mutations that cause males to transfer sperm aberrantly. We isolated an allele of unc-18, a previously reported member of the Sec1/Munc-18 (SM) family of proteins that is necessary for regulated exocytosis in C. elegans motor neurons. Our allele, sy671, is defective in two distinct sub-steps of sperm transfer: initiation and continued transfer. By a series of transgenic site-of-action experiments, we found that motor neurons in the ventral nerve cord require UNC-18 for the initiation of sperm transfer, and that UNC-18 acts downstream or in parallel to the SPV sensory neurons in this process. In addition to this neuronal requirement, we found that non-neuronal expression of UNC-18, in the male gonad, is necessary for the continuation of sperm transfer. CONCLUSION Our division of sperm-transfer behavior into sub-steps has provided a framework for the further detailed analysis of sperm transfer and its integration with other aspects of mating behavior. By determining the site of action of UNC-18 in sperm-transfer behavior, and its relation to the SPV sensory neurons, we have further defined the cells and tissues involved in the generation of this behavior. We have shown both a neuronal and non-neuronal requirement for UNC-18 in distinct sub-steps of sperm-transfer behavior. The definition of circuit components is a crucial first step toward understanding how genes specify the neural circuit and hence the behavior.
Collapse
Affiliation(s)
- Gary Schindelman
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allyson J Whittaker
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jian Yuan Thum
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shahla Gharib
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
381
|
Brignull HR, Moore FE, Tang SJ, Morimoto RI. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci 2006; 26:7597-606. [PMID: 16855087 PMCID: PMC6674286 DOI: 10.1523/jneurosci.0990-06.2006] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The basis of neuron-specific pathogenesis, resulting from the expression of misfolded proteins, is poorly understood and of central importance to an understanding of the cell-type specificity of neurodegenerative disease. In this study, we developed a new model for neuron-specific polyQ pathogenesis in Caenorhabditis elegans by pan-neuronal expression that exhibits polyQ length-dependent aggregation, neurotoxicity, and a pathogenic threshold at a length of 35-40 glutamines. Analysis of specific neurons in C. elegans revealed that only at the threshold length, but not at shorter or longer lengths, polyQ proteins can exist in a soluble state in certain lateral neurons or in an aggregated state in motor neurons of the same animal. These results provide direct experimental evidence that the expression of a single species of a toxic misfolded protein can exhibit a range of neuronal consequences.
Collapse
|
382
|
Donohoe DR, Aamodt EJ, Osborn E, Dwyer DS. Antipsychotic drugs disrupt normal development in Caenorhabditis elegans via additional mechanisms besides dopamine and serotonin receptors. Pharmacol Res 2006; 54:361-72. [PMID: 16962336 PMCID: PMC1694634 DOI: 10.1016/j.phrs.2006.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 07/07/2006] [Accepted: 07/10/2006] [Indexed: 01/13/2023]
Abstract
Antipsychotic drugs may produce adverse effects during development in humans and rodents. However, the extent of these effects has not been systematically characterized nor have molecular mechanisms been identified. Consequently, we sought to evaluate the effects of an extensive panel of antipsychotic drugs in a model organism, Caenorhabditis elegans, whose development is well characterized and which offers the possibility of identifying novel molecular targets. For these studies, animals were grown from hatching in the presence of vehicle (control) or antipsychotic drugs over a range of concentrations (20-160microM) and growth was analyzed by measuring head-to-tail length at various intervals. First-generation antipsychotics (e.g., fluphenazine) generally slowed growth and maturation more than second-generation drugs such as quetiapine and olanzapine. This is consistent with in vitro effects on human neuronal cell lines. Clozapine, a second-generation drug, produced similar growth deficits as haloperidol. Converging lines of evidence, including the failure to rescue growth with high concentrations of agonists, suggested that the drug-induced delay in development was not mediated by the major neurotransmitter receptors recognized by the antipsychotic drugs. Moreover, in serotonin-deficient tph-1 mutants, the drugs dramatically slowed development and led to larval arrest (including dauer formation) and neuronal abnormalities. Evaluation of alternative targets of the antipsychotics revealed a potential role for calmodulin and underscored the significance of Ca(2+)-calmodulin signaling in development. These findings suggest that antipsychotic drugs may interfere with normal developmental processes and provide a tool for investigating the key signaling pathways involved.
Collapse
Affiliation(s)
| | | | - Elizabeth Osborn
- Department of Psychiatry, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience
- Department of Psychiatry, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
- *Address correspondence to: Dr. Donard S. Dwyer, Department of Psychiatry, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA, PH: 318 675-7612; FAX: 318 675-6148; EMAIL:
| |
Collapse
|
383
|
Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, Hanover JA. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci U S A 2006; 103:11952-7. [PMID: 16882729 PMCID: PMC1567679 DOI: 10.1073/pnas.0601931103] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A dynamic cycle of O-linked N-acetylglucosamine (O-GlcNAc) addition and removal acts on nuclear pore proteins, transcription factors, and kinases to modulate cellular signaling cascades. Two highly conserved enzymes (O-GlcNAc transferase and O-GlcNAcase) catalyze the final steps in this nutrient-driven "hexosamine-signaling pathway." A single nucleotide polymorphism in the human O-GlcNAcase gene is linked to type 2 diabetes. Here, we show that Caenorhabditis elegans oga-1 encodes an active O-GlcNAcase. We also describe a knockout allele, oga-1(ok1207), that is viable and fertile yet accumulates O-GlcNAc on nuclear pores and other cellular proteins. Interfering with O-GlcNAc cycling with either oga-1(ok1207) or the O-GlcNAc transferase-null ogt-1(ok430) altered Ser- and Thr-phosphoprotein profiles and increased glycogen synthase kinase 3beta (GSK-3beta) levels. Both the oga-1(ok1207) and ogt-1(ok430) strains showed elevated stores of glycogen and trehalose, and decreased lipid storage. These striking metabolic changes prompted us to examine the insulin-like signaling pathway controlling nutrient storage, longevity, and dauer formation in the C. elegans O-GlcNAc cycling mutants. Indeed, we found that the oga-1(ok1207) knockout augmented dauer formation induced by a temperature sensitive insulin-like receptor (daf-2) mutant under conditions in which the ogt-1(ok430)-null diminished dauer formation. Our findings suggest that the enzymes of O-GlcNAc cycling "fine-tune" insulin-like signaling in response to nutrient flux. The knockout of O-GlcNAcase (oga-1) in C. elegans mimics many of the metabolic and signaling changes associated with human insulin resistance and provides a genetically amenable model of non-insulin-dependent diabetes.
Collapse
Affiliation(s)
- Michele E. Forsythe
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Dona C. Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Brooke D. Lazarus
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Eun Ju Kim
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - William A. Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Gilbert Ashwell
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| | - Michael W. Krause
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
384
|
Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 2006; 5:387-98. [PMID: 16672925 DOI: 10.1038/nrd2031] [Citation(s) in RCA: 715] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite its apparent simplicity, the nematode worm Caenorhabditis elegans has developed into an important model for biomedical research, particularly in the functional characterization of novel drug targets that have been identified using genomics technologies. The cellular complexity and the conservation of disease pathways between C. elegans and higher organisms, together with the simplicity and cost-effectiveness of cultivation, make for an effective in vivo model that is amenable to whole-organism high-throughput compound screens and large-scale target validation. This review describes how C. elegans models can be used to advance our understanding of the molecular mechanisms of drug action and disease pathogenesis.
Collapse
|
385
|
Carre-Pierrat M, Mariol MC, Chambonnier L, Laugraud A, Heskia F, Giacomotto J, Ségalat L. Blocking of striated muscle degeneration by serotonin in C. elegans. J Muscle Res Cell Motil 2006; 27:253-8. [PMID: 16791712 DOI: 10.1007/s10974-006-9070-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/30/2006] [Indexed: 12/31/2022]
Abstract
Prevention of muscle fiber degeneration is a key issue in the treatment of muscular dystrophies such as Duchenne Muscular Dystrophy (DMD). It is widely postulated that existing pharmaceutical compounds might potentially be beneficial to DMD patients, but tools to identify them are lacking. Here, by using a Caenorhabditis elegans model of dystrophin-dependent muscular dystrophy, we show that the neurohormone serotonin and some of its agonists are potent suppressors of muscle degeneration. Inhibitors of serotonin reuptake transporters, which prolong the action of endogenous serotonin, have a similar effect. Moreover, reduction of serotonin levels leads to degeneration of non-dystrophic muscles. Our results demonstrate that serotonin is critical to C. elegans striated muscles. These findings reveal a new function of serotonin in striated muscles.
Collapse
Affiliation(s)
- Maité Carre-Pierrat
- CGMC, CNRS-UMR 5534, Université Lyon 1, 43 bld du 11 Novembre, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | |
Collapse
|
386
|
Taubert S, Van Gilst MR, Hansen M, Yamamoto KR. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 2006; 20:1137-49. [PMID: 16651656 PMCID: PMC1472473 DOI: 10.1101/gad.1395406] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Caenorhabditis elegans Nuclear Hormone Receptor NHR-49 coordinates expression of fatty acid (FA) metabolic genes during periods of feeding and in response to fasting. Here we report the identification of MDT-15, a subunit of the C. elegans Mediator complex, as an NHR-49-interacting protein and transcriptional coactivator. Knockdown of mdt-15 by RNA interference (RNAi) prevented fasting-induced mRNA accumulation of NHR-49 targets in vivo, and fasting-independent expression of other NHR-49 target genes, including two FA-Delta9-desaturases (fat-5, fat-7). Interestingly, mdt-15 RNAi affected additional FA-metabolism genes (including the third FA-Delta9-desaturase, fat-6) that are regulated independently of NHR-49, suggesting that distinct unidentified regulatory factors also recruit MDT-15 to selectively modulate metabolic gene expression. The deregulation of FA-Delta9-desaturases by knockdown of mdt-15 correlated with dramatically decreased levels of unsaturated FAs and multiple deleterious phenotypes (short life span, sterility, uncoordinated locomotion, and morphological defects). Importantly, dietary addition of specific polyunsaturated FAs partially suppressed these pleiotropic phenotypes. Thus, failure to properly govern FA-Delta9-desaturation contributed to decreased nematode viability. Our findings imply that a single subunit of the Mediator complex, MDT-15, integrates the activities of several distinct regulatory factors to coordinate metabolic and hormonal regulation of FA metabolism.
Collapse
Affiliation(s)
- Stefan Taubert
- Department of Cellular and Molecular Pharmacology, University of California, San Francicso, CA 94143, USA
| | | | | | | |
Collapse
|
387
|
Estevez AO, Cowie RH, Gardner KL, Estevez M. Both insulin and calcium channel signaling are required for developmental regulation of serotonin synthesis in the chemosensory ADF neurons of Caenorhabditis elegans. Dev Biol 2006; 298:32-44. [PMID: 16860310 DOI: 10.1016/j.ydbio.2006.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 06/04/2006] [Accepted: 06/05/2006] [Indexed: 11/18/2022]
Abstract
Proper calcium channel and insulin signaling are essential for normal brain development. Leaner mice with a mutation in the P/Q-type voltage-gated calcium channel, Cacna1a, develop cerebellar atrophy and mutations in the homologous human gene are associated with increased migraine and seizure tendency. Similarly, abnormalities in insulin signaling are associated with abnormal brain growth and migraine tendency. Previously, we have shown that in the ADF chemosensory neurons of Caenorhabditis elegans UNC-2/Ca(2+) channel function affects TGF-beta-dependent developmental regulation of tryptophan hydroxylase, the rate-limiting enzyme in serotonin synthesis. Here we show that developmental expression of a tryptophan hydroxylase: :GFP reporter construct is similarly decreased by reduction-of-function mutations in the daf-2/insulin receptor. This decreased expression of tryptophan hydroxylase observed in both the daf-2 and unc-2 mutant backgrounds is suppressible either genetically by reduction-of-function mutations in the daf-16/forkhead transcription factor, an effector of the DAF-2/insulin receptor, or pharmacologically by the serotonin receptor antagonist cyproheptadine. Overall, these data suggest that both UNC-2 and DAF-2 function are required in the developmental regulation of DAF-16 and serotonin-dependent inhibition of tryptophan hydroxylase expression.
Collapse
Affiliation(s)
- Annette O Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
388
|
Hoshi K, Shingai R. Computer-driven automatic identification of locomotion states in Caenorhabditis elegans. J Neurosci Methods 2006; 157:355-63. [PMID: 16750860 DOI: 10.1016/j.jneumeth.2006.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 04/18/2006] [Accepted: 05/01/2006] [Indexed: 11/17/2022]
Abstract
We developed a computer-driven tracking system for the automated analysis of the locomotion of Caenorhabditis elegans. The algorithm for the identification of locomotion states on agar plates (forward movement, backward movement, rest, and curl) includes the identification of the worm's head and tail. The head and tail are first assigned, by using three criteria, based on time-sequential binary images of the worm, and the determination is made based on the majority of the three criteria. By using the majority of the criteria, the robustness was improved. The system allowed us to identify locomotion states and to reconstruct the path of a worm using more than 1h data. Based on 5-min image sequences from a total of 230 individual wild-type worms and 22 mutants, the average error of identification of the head/tail for all strains was 0.20%. The system was used to analyze 70 min of locomotion for wild-type and two mutant strains after a worm was transferred from a seeded plate to a bacteria-free assay plate. The error of identifying the state was less than 1%, which is sufficiently accurate for locomotion studies.
Collapse
Affiliation(s)
- Katsunori Hoshi
- Laboratory of Bioscience, Faculty of Engineering, Iwate University, 4 Ueda, Morioka, Iwate 020-8551, Japan
| | | |
Collapse
|
389
|
Holt SJ. Staying alive in adversity: transcriptome dynamics in the stress-resistant dauer larva. Funct Integr Genomics 2006; 6:285-99. [PMID: 16636823 DOI: 10.1007/s10142-006-0024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 01/23/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
In response to food depletion and overcrowding, the soil nematode Caenorhabditis elegans can arrest development and form an alternate third larval stage called the dauer. Though nonfeeding, the dauer larva is long lived and stress resistant. Metabolic and transcription rates are lowered but the transcriptome of the dauer is complex. In this study, distribution analysis of transcript profiles generated by Serial Analysis of Gene Expression (SAGE) in dauer larvae and in mixed developmental stages is presented. An inverse relationship was observed between frequency and abundance/copy number of SAGE tag types (transcripts) in both profiles. In the dauer profile, a relatively greater proportion of highly abundant transcripts was counterbalanced by a smaller fraction of low to moderately abundant transcripts. Comparisons of abundant tag counts between the two profiles revealed relative enrichment in the dauer profile of transcripts with predicted or known involvement in ribosome biogenesis and protein synthesis, membrane transport, and immune responses. Translation-coupled mRNA decay is proposed as part of an immune-like stress response in the dauer larva. An influence of genomic region on transcript level may reflect the coordination of transcription and mRNA turnover.
Collapse
|
390
|
Developmental Mechanisms in Aging and Age-Related Diseases of the Nervous System. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
391
|
Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A. Hormonal Control of C. elegans Dauer Formation and Life Span by a Rieske-like Oxygenase. Dev Cell 2006; 10:473-82. [PMID: 16563875 DOI: 10.1016/j.devcel.2006.02.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/30/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
C. elegans diapause, gonadal outgrowth, and life span are regulated by a lipophilic hormone, which serves as a ligand to the nuclear hormone receptor DAF-12. A key step in hormone production is catalyzed by the CYP450 DAF-9, but the extent of the biosynthetic pathway is unknown. Here, we identify a conserved Rieske-like oxygenase, DAF-36, as a component in hormone metabolism. Mutants display larval developmental and adult aging phenotypes, as well as patterns of epistasis similar to that of daf-9. Larval phenotypes are potently reversed by crude lipid extracts, 7-dehydrocholesterol, and a recently identified DAF-12 sterol ligand, suggesting that DAF-36 works early in the hormone biosynthetic pathway. DAF-36 is expressed primarily within the intestine, a major organ of metabolic and endocrine control, distinct from DAF-9. These results imply that C. elegans hormone production has multiple steps and is distributed, and that it may provide one way that tissues register their current physiological state during organismal commitments.
Collapse
Affiliation(s)
- Veerle Rottiers
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
392
|
Kage E, Hayashi Y, Takeuchi H, Hirotsu T, Kunitomo H, Inoue T, Arai H, Iino Y, Kubo T. MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans. Curr Biol 2006; 15:1554-9. [PMID: 16139210 DOI: 10.1016/j.cub.2005.07.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/17/2022]
Abstract
In the developing brain, excessive neurites are actively pruned in the construction and remodeling of neural circuits. We demonstrate for the first time that the pruning of neurites occurs in the simple neural circuit of Caenorhabditis elegans and that a novel transcription factor, MBR-1, is involved in this process. We identified MBR-1 as a C. elegans ortholog of Mblk-1, a transcription factor that is expressed preferentially in the mushroom bodies of the honeybee brain. Although Mblk-1 homologs are conserved among animal species, their roles in the nervous system have never been analyzed. We used C. elegans as an ideal model animal for analysis of neuronal development. mbr-1 is expressed in various neurons in the head and tail ganglia. A comparison of the morphology of mbr-1-expressing neurons revealed that excessive neurites connecting the left and right AIM interneurons are eliminated during larval stages in wild-type but are sustained through the adult stage in the mbr-1 mutant. In addition, mbr-1 expression is regulated by UNC-86, a POU domain transcription factor, and the pruning of the excessive AIM connection is impaired in the unc-86 mutant. These findings provide an important clue for further genetic dissection of neurite pruning.
Collapse
Affiliation(s)
- Eriko Kage
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L. Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. ACTA ACUST UNITED AC 2006; 65:304-19. [PMID: 16187307 DOI: 10.1002/neu.20201] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nervous system of C. elegans has a remarkable abundance of flp genes encoding FMRFamide-like (FLP) neuropeptides. To provide insight into the physiological relevance of this neuropeptide diversity, we have tested more than 30 FLPs (encoded by 23 flps) for bioactivity on C. elegans pharynx. Eleven flp genes encode peptides that inhibit pharyngeal activity, while eight flp genes encode peptides that are excitatory. Three potent peptides (inhibitory, FLP-13A, APEASPFIRFamide; excitatory, FLP-17A, KSAFVRFamide; excitatory, FLP-17B, KSQYIRFamide) are encoded by flp genes, which, according to reporter gene constructs, are expressed in pharyngeal motoneurons. Thus, they may act through receptors localized on the pharyngeal muscle. The two other potent peptides, FLP-8 (excitatory AF1, KNEFIRFamide,) and FLP-11A (inhibitory, AMRNALVRFamide), appear to be expressed in extrapharyngeal neurons and are therefore likely to act either indirectly or as neurohormones. Intriguingly, a single neuron can express peptides that have potent but opposing biological activity in the pharynx. Only five flp genes encode neuropeptides that have no observable effect on the pharynx, but none of these have shown reporter gene expression in the pharyngeal nervous system. To examine the roles of multiple peptides produced from single precursors, a comparison was made between the bioactivity of different neuropeptides for five flp genes (flp-3, flp-13, flp-14, flp-17, and flp-18). For all but one gene (flp-14), the effects of peptides encoded by the same gene were similar. Overall, this study demonstrates the impressive neurochemical complexity of the simple circuit that regulates feeding in the nematode, C. elegans.
Collapse
Affiliation(s)
- Sylvana Papaioannou
- Neurosciences Research Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, United Kingdom, SO16 7PX
| | | | | | | | | |
Collapse
|
394
|
Carnell L, Illi J, Hong SW, McIntire SL. The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. J Neurosci 2006; 25:10671-81. [PMID: 16291940 PMCID: PMC6725853 DOI: 10.1523/jneurosci.3399-05.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin (5-HT) is a neuromodulator that regulates many aspects of animal behavior, including mood, aggression, sex drive, and sleep. In vertebrates, most of the behavioral effects of 5-HT appear to be mediated by G-protein-coupled receptors (GPCRs). Here, we show that SER-1 is the 5-HT GPCR responsible for the stimulatory effects of exogenous 5-HT in two sexually dimorphic behaviors of Caenorhabditis elegans, egg laying and male ventral tail curling. Loss of ser-1 function leads to decreased egg laying in hermaphrodites and defects in the turning step of mating behavior in males. ser-1 is expressed in muscles that are postsynaptic to serotonergic neurons and are known to be required for these behaviors. Analysis of the ser-1 mutant also reveals an inhibitory effect of 5-HT on egg laying that is normally masked by SER-1-dependent stimulation. This inhibition of egg laying requires MOD-1, a 5-HT-gated chloride channel. Loss of mod-1 function in males also produces defects in ventral tail curling and enhances the turning defects in ser-1 mutant males. Sustained elevations in 5-HT levels result in behavioral adaptation to both the stimulatory and inhibitory actions of the neurotransmitter, indicating that both SER-1 and MOD-1 signaling can be modulated. Removal of wild-type animals from high levels of exogenous 5-HT produces a SER-1-dependent withdrawal response in which egg laying is significantly decreased. These studies provide insight into the role of 5-HT in behavior and the regulation of 5-HT(2) receptor function.
Collapse
Affiliation(s)
- Lucinda Carnell
- Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California, San Francisco, Emeryville, California 94608, USA
| | | | | | | |
Collapse
|
395
|
Murakami H, Bessinger K, Hellmann J, Murakami S. Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans. J Neurosci 2006; 25:10894-904. [PMID: 16306402 PMCID: PMC6725869 DOI: 10.1523/jneurosci.3600-04.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the insulin/IGF-1 neuroendocrine pathway extend lifespan and affect development, metabolism, and other biological processes in Caenorhabditis elegans and in other species. In addition, they may play a role in learning and memory. Investigation of the insulin/IGF-1 pathway may provide clues for the prevention of age-related declines in cognitive functions. Here, we examined the effects of the life-extending (Age) mutations, such as the age-1 (phosphatidylinositol 3-OH kinase) and daf-2 (insulin/IGF-1 receptor) mutations, on associative learning behavior called isothermal tracking. This thermotaxis learning behavior associates paired stimuli, temperature, and food. The age-1 mutation delayed the age-related decline of isothermal tracking, resulting in a 210% extension of the period that ensures it. The effect is dramatic compared with the extension of other physiological health spans. In addition, young adults of various Age mutants (age-1, daf-2, clk-1, and eat-2) showed increased consistency of temperature-food association, which may be caused by a common feature of the mutants, such as the secondary effects of life extension (i.e., enhanced maintenance of neural mechanisms). The age-1 and daf-2 mutants but not the other Age mutants showed an increase in temperature-starvation association through a different mechanism. Increased temperature-food association of the daf-2 mutant was dependent on neuronal Ca2+-sensor ncs-1, which modulates isothermal tracking in the AIY interneuron. Interestingly, mutations in the daf-7 TGFbeta gene, which functions in parallel to the insulin/IGF-1 pathway, caused deficits in acquisition of temperature-food and temperature-starvation association. This study highlights roles of the Age mutations in modulation of certain behavioral plasticity.
Collapse
Affiliation(s)
- Hana Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
396
|
Chow DK, Glenn CF, Johnston JL, Goldberg IG, Wolkow CA. Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 2006; 41:252-60. [PMID: 16446070 PMCID: PMC2553216 DOI: 10.1016/j.exger.2005.12.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/17/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
In muscles, sarcopenia, the loss of muscle mass, is the major cause of aging-related functional decline and frailty. Several factors are correlated with sarcopenia during aging, including contraction-related cellular injury, oxidative stress, endocrine changes and reduced regenerative potential. However the involvement of these factors has not been experimentally investigated. Here, we report that contraction-related injury may significantly promote the progression of sarcopenia in the pharynx of the nematode, Caenorhabditis elegans, a model of aging in non-regenerative tissues. Both functional and structural declines in the pharynx during aging were significantly delayed in mutants with reduced muscle contraction rates. We also examined the role of bacteria in pharynx muscle decline during aging, as previous studies reported that antimicrobial treatments could extend C. elegans lifespan. Although microbial infection may have enhanced functional decline in the pharynx during aging, it was not the sole cause of decreased pumping rates in old animals. This study identifies contraction-related injury as a factor affecting the initiation and progression of sarcopenia during aging. Further, characterization of the specific types of damage induced by muscle contraction will be helpful for understanding the underlying causes of sarcopenia.
Collapse
Affiliation(s)
- David K. Chow
- Laboratory of Neurosciences, National Institute on Aging/Intramural Research Program (NIA/IRP),Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Charles F. Glenn
- Laboratory of Neurosciences, National Institute on Aging/Intramural Research Program (NIA/IRP),Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | - Catherine A. Wolkow
- Laboratory of Neurosciences, National Institute on Aging/Intramural Research Program (NIA/IRP),Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
397
|
Lanjuin A, Claggett J, Shibuya M, Hunter CP, Sengupta P. Regulation of neuronal lineage decisions by the HES-related bHLH protein REF-1. Dev Biol 2006; 290:139-51. [PMID: 16376329 DOI: 10.1016/j.ydbio.2005.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/08/2005] [Accepted: 11/14/2005] [Indexed: 12/12/2022]
Abstract
Members of the HES subfamily of bHLH proteins play crucial roles in neural patterning via repression of neurogenesis. In C. elegans, loss-of-function mutations in ref-1, a distant nematode-specific member of this subfamily, were previously shown to cause ectopic neurogenesis from postembryonic lineages. However, while the vast majority of the nervous system in C. elegans is generated embryonically, the role of REF-1 in regulating these neural lineage decisions is unknown. Here, we show that mutations in ref-1 result in the generation of multiple ectopic neuron types derived from an embryonic neuroblast. In wild-type animals, neurons derived from this sublineage are present in a left/right symmetrical manner. However, in ref-1 mutants, while the ectopically generated neurons exhibit gene expression profiles characteristic of neurons on the left, they are present only on the right side. REF-1 functions in a Notch-independent manner to regulate this ectopic lineage decision. We also demonstrate that loss of REF-1 function results in defective differentiation of an embryonically generated serotonergic neuron type. These results indicate that REF-1 functions in both Notch-dependent and independent pathways to regulate multiple developmental decisions in different neuronal sublineages.
Collapse
Affiliation(s)
- Anne Lanjuin
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
398
|
Wakabayashi T, Osada T, Shingai R. Serotonin deficiency shortens the duration of forward movement in Caenorhabditis elegans. Biosci Biotechnol Biochem 2006; 69:1767-70. [PMID: 16195598 DOI: 10.1271/bbb.69.1767] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serotonin has been implicated in numerous behaviors in a wide variety of animals. We examined the effect of serotonin deficiency, induced by genetic perturbations and cell ablations, on the duration of Caenorhabditis elegans forward movement. Mutants with defective serotonin biosynthesis or worms with ablated serotonergic neurons showed a markedly decreased duration of forward movement, suggesting involvement of this neuromodulator in the regulation of the duration of worm locomotion.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Laboratory of Bioscience, Faculty of Engineering, Iwate University, Iwate 020-8551, Japan.
| | | | | |
Collapse
|
399
|
Gruninger TR, Gualberto DG, LeBoeuf B, Garcia LR. Integration of male mating and feeding behaviors in Caenorhabditis elegans. J Neurosci 2006; 26:169-79. [PMID: 16399684 PMCID: PMC6674329 DOI: 10.1523/jneurosci.3364-05.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022] Open
Abstract
The Caenorhabditis elegans male must integrate various environmental cues to ensure proper execution of mating. One step of male mating, the insertion of the male copulatory spicules into its mate, requires UNC-103 ERG (ether-a-go-go-related gene)-like K+ channels. unc-103(lf) alleles cause males to protract their spicules spontaneously in the absence of mating cues. To identify proteins that work with UNC-103, we suppressed unc-103(lf) and isolated lev-11(rg1). LEV-11 (tropomyosin) regulates the spicules directly by controlling the male sex muscles and indirectly by controlling the pharyngeal muscles. lev-11-mediated suppression requires the pharyngeal NSM neurosecretory motor neurons; ablating these neurons in lev-11(rg1); unc-103(lf) males restores spontaneous spicule protraction. Additionally, unc-103-induced spicule protraction can be suppressed by reducing a pharyngeal-specific troponin T. These observations demonstrate that non-genitalia cells involved in feeding also mediate male sexual behaviors.
Collapse
Affiliation(s)
- Todd R Gruninger
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
400
|
Abstract
Genetic studies of behavior in the nematode Caenorhabditis elegans have provided an effective approach to investigate the molecular and cellular basis of nervous system function and development. Among the best studied behaviors is egg-laying, the process by which hermaphrodites deposit developing embryos into the environment. Egg-laying involves a simple motor program involving a small network of motorneurons and specialized smooth muscle cells, which is regulated by a variety of sensory stimuli. Analysis of egg-laying-defective mutants has provided insight into a number of conserved processes in nervous system development, including neurogenesis, cell migration, and synaptic patterning, as well as aspects of excitable cell signal transduction and neuromodulation.
Collapse
Affiliation(s)
- William F Schafer
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0349, USA.
| |
Collapse
|