351
|
|
352
|
Akdemir F, Christich A, Sogame N, Chapo J, Abrams JM. p53 directs focused genomic responses in Drosophila. Oncogene 2007; 26:5184-93. [PMID: 17310982 DOI: 10.1038/sj.onc.1210328] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
p53 is a fundamental determinant of cancer susceptibility and other age-related pathologies. Similar to mammalian counterparts, Drosophila p53 integrates stress signals and elicits apoptotic responses that maintain genomic stability. To illuminate core-adaptive functions controlled by this gene family, we examined the Drosophila p53 regulatory network at a genomic scale. In development, the absence of p53 impacted constitutive expression for a surprisingly broad scope of genes. By contrast, stimulus-dependent responses governed by Drosophila p53 were limited in scope. The vast majority of stress responders were induced and p53 dependent (RIPD) genes. The signature set of 29 'high stringency' RIPD genes identified here were enriched for intronless loci, with a non-uniform distribution that includes a recently evolved cluster unique to Drosophila melanogaster. Two RIPD genes, with known and unknown biochemical activities, were functionally examined. One RIPD gene, designated XRP1, maintains genome stability after genotoxic challenge and prevents cell proliferation upon induced expression. A second gene, RnrL, is an apoptogenic effector required for caspase activation in a model of p53-dependent killing. Together, these studies identify ancient and convergent features of the p53 regulatory network.
Collapse
Affiliation(s)
- F Akdemir
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
353
|
Sasaki H, Ohara N, Xu Q, Wang J, DeManno DA, Chwalisz K, Yoshida S, Maruo T. A novel selective progesterone receptor modulator asoprisnil activates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated signaling pathway in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells. J Clin Endocrinol Metab 2007; 92:616-23. [PMID: 17105846 DOI: 10.1210/jc.2006-0898] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT We previously demonstrated that asoprisnil, a selective progesterone receptor modulator, induces apoptosis of cultured uterine leiomyoma cells. This study was conducted to evaluate whether asoprisnil activates TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptotic pathway in cultured uterine leiomyoma and matching myometrial cells. OBJECTIVE AND METHODS After subculture in phenol red-free DMEM supplemented with 10% fetal bovine serum for 120 h, cultured cells were stepped down to serum-free conditions for 24 h in the absence or presence of graded concentrations of asoprisnil. The levels of TRAIL signaling molecules and cellular inhibitors of apoptosis protein were assessed by Western blot analysis. RESULTS TRAIL contents in untreated cultured leiomyoma cells were significantly (P < 0.01) lower compared with those in untreated cultured myometrial cells. There was no difference in death receptor (DR)4 and DR5 contents between the two types of cells. Asoprisnil treatment significantly (P < 0.05) increased TRAIL, DR4, and DR5 contents in cultured leiomyoma cells in a dose-dependent manner with a cleavage of caspase-8, -7, and -3, and decreased X-linked chromosome-linked inhibitor of apoptosis protein contents. In cultured myometrial cells, however, asoprisnil treatment did not affect either TRAIL signaling molecule or cellular inhibitors of apoptosis protein contents. The concomitant treatment with 100 ng/ml P4 significantly (P < 0.05) reversed asoprisnil-induced increase in DR4 and cleaved poly(adenosine 5'-diphosphate-ribose) polymerase contents in cultured leiomyoma cells. CONCLUSIONS These results suggest that asoprisnil induces apoptosis of cultured leiomyoma cells by activating TRAIL-mediated apoptotic pathway and down-regulating X-linked chromosome-linked inhibitor of apoptosis protein levels in the absence of comparable effects on myometrial cells.
Collapse
Affiliation(s)
- Hiroko Sasaki
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
354
|
Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M, Tassone P, Raje N, Mitsiades C, Mitsiades N, Richardson P, Zawel L, Tran M, Munshi N, Anderson KC. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007; 109:1220-7. [PMID: 17032924 PMCID: PMC1785138 DOI: 10.1182/blood-2006-04-015149] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 08/23/2006] [Indexed: 01/19/2023] Open
Abstract
Second mitochondria-derived activator of caspases (Smac) promotes apoptosis via activation of caspases. Here we show that a low-molecular-weight Smac mimetic LBW242 induces apoptosis in multiple myeloma (MM) cells resistant to conventional and bortezomib therapies. Examination of purified patient MM cells demonstrated similar results, without significant cytotoxicity against normal lymphocytes and bone marrow stromal cells (BMSCs). Importantly, LBW242 abrogates paracrine MM cell growth triggered by their adherence to BMSCs and overcomes MM cell growth and drug-resistance conferred by interleukin-6 or insulinlike growth factor-1. Overexpression of Bcl-2 similarly does not affect LBW242-induced cytotoxicity. Mechanistic studies show that LBW242-induced apoptosis in MM cells is associated with activation of caspase-8, caspase-9, and caspase-3, followed by PARP cleavage. In human MM xenograft mouse models, LBW242 is well tolerated, inhibits tumor growth, and prolongs survival. Importantly, combining LBW242 with novel agents, including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the proteasome inhibitors bortezomib and NPI-0052, as well as with the conventional anti-MM agent melphalan, induces additive/synergistic anti-MM activity. Our study therefore provides the rationale for clinical protocols evaluating LBW242, alone and together with other anti-MM agents, to improve patient outcome in MM.
Collapse
Affiliation(s)
- Dharminder Chauhan
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. ACTA ACUST UNITED AC 2007; 54:34-66. [PMID: 17222914 DOI: 10.1016/j.brainresrev.2006.11.003] [Citation(s) in RCA: 540] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia (stroke) triggers a complex series of biochemical and molecular mechanisms that impairs the neurologic functions through breakdown of cellular integrity mediated by excitotoxic glutamatergic signalling, ionic imbalance, free-radical reactions, etc. These intricate processes lead to activation of signalling mechanisms involving calcium/calmodulin-dependent kinases (CaMKs) and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The distribution of these transducers bring them in contact with appropriate molecular targets leading to altered gene expression, e.g. ERK and JNK mediated early gene induction, responsible for activation of cell survival/damaging mechanisms. Moreover, inflammatory reactions initiated at the neurovascular interface and alterations in the dynamic communication between the endothelial cells, astrocytes and neurons are thought to substantially contribute to the pathogenesis of the disease. The damaging mechanisms may proceed through rapid nonspecific cell lysis (necrosis) or by active form of cell demise (apoptosis or necroptosis), depending upon the severity and duration of the ischemic insult. A systematic understanding of these molecular mechanisms with prospect of modulating the chain of events leading to cellular survival/damage may help to generate the potential strategies for neuroprotection. This review briefly covers the current status on the molecular mechanisms of stroke pathophysiology with an endeavour to identify potential molecular targets such as targeting postsynaptic density-95 (PSD-95)/N-methyl-d-aspartate (NMDA) receptor interaction, certain key proteins involved in oxidative stress, CaMKs and MAPKs (ERK, p38 and JNK) signalling, inflammation (cytokines, adhesion molecules, etc.) and cell death pathways (caspases, Bcl-2 family proteins, poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor (AIF), inhibitors of apoptosis proteins (IAPs), heat shock protein 70 (HSP70), receptor interacting protein (RIP), etc., besides targeting directly the genes itself. However, selecting promising targets from various signalling cascades, for drug discovery and development is very challenging, nevertheless such novel approaches may lead to the emergence of new avenues for therapeutic intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Suresh L Mehta
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow-226001, India
| | | | | |
Collapse
|
356
|
Liu B, Han M, Wen JK, Wang L. Livin/ML-IAP as a new target for cancer treatment. Cancer Lett 2007; 250:168-76. [PMID: 17218055 DOI: 10.1016/j.canlet.2006.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/19/2006] [Accepted: 09/28/2006] [Indexed: 11/21/2022]
Abstract
Livin is a member of the inhibitors of apoptosis protein (IAP) gene family, which encodes negative regulatory proteins that prevent cell apoptosis. Livin is selectively expressed in the most common human neoplasms and appears to be involved in tumor cell resistance to chemotherapeutic agents. Several studies in vitro and in vivo have demonstrated that down-regulation of Livin expression increases the apoptotic rate, reduces tumor growth potential and sensitized tumor cells to chemotherapeutic drugs. This review will focus on the role of this protein during cancer development and progression and will demonstrate possible targets for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Hebei Laboratory of Medical Biotechnology, Institute of Basic Medical Science, Hebei Medical University, Shijiazhuang 050017, PR China
| | | | | | | |
Collapse
|
357
|
Burke RE. Programmed cell death in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:591-605. [DOI: 10.1016/s0072-9752(07)83029-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
358
|
Checinska A, Hoogeland BSJ, Rodriguez JA, Giaccone G, Kruyt FAE. Role of XIAP in inhibiting cisplatin-induced caspase activation in non-small cell lung cancer cells: a small molecule Smac mimic sensitizes for chemotherapy-induced apoptosis by enhancing caspase-3 activation. Exp Cell Res 2006; 313:1215-24. [PMID: 17291493 DOI: 10.1016/j.yexcr.2006.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/18/2006] [Accepted: 12/20/2006] [Indexed: 01/10/2023]
Abstract
X-linked IAP (XIAP) suppresses apoptosis by binding to initiator caspase-9 and effector caspases-3 and -7. Smac/DIABLO that is released from mitochondria during apoptosis can relieve its inhibitory activity. Here we investigated the role of XIAP in the previously found obstruction of chemotherapy-induced caspase-9 activation in non-small cell lung cancer (NSCLC) cells. Endogenously expressed XIAP bound active forms of both caspase-9 and caspase-3. However, downregulation of XIAP using shRNA or disruption of XIAP/caspase-9 interaction using a small molecule Smac mimic were unable to significantly induce caspase-9 activity, indicating that despite a strong binding potential of XIAP to caspase-9 it is not a major determinant in blocking caspase-9 in NSCLC cells. Although unable to revert caspase-9 blockage, the Smac mimic was able to enhance cisplatin-induced apoptosis, which was accompanied by increased caspase-3 activity. Additionally, a more detailed analysis of caspase activation in response to cisplatin indicated a reverse order of activation, whereby caspase-3 cleaved caspase-9 yielding an inactive form. Our findings indicate that the use of small molecule Smac mimic, when combined with an apoptotic trigger, may have therapeutic potential for the treatment of NSCLC.
Collapse
Affiliation(s)
- Agnieszka Checinska
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, CCA 2.44 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
359
|
Abstract
Mitochondria, the cells powerhouses, are essential for maintaining cell life, and they also play a major role in regulating cell death, which occurs upon permeabilization of their membranes. Once mitochondrial membrane permeabilization (MMP) occurs, cells die either by apoptosis or necrosis. Key factors regulating MMP include calcium, the cellular redox status (including levels of reactive oxygen species) and the mobilization and targeting to mitochondria of Bcl-2 family members. Contemporary approaches to targeting mitochondria in cancer therapy use strategies that either modulate the action of Bcl-2 family members at the mitochondrial outer membrane or use specific agents that target the mitochondrial inner membrane and the mitochondrial permeability transition (PT) pore. The aim of this review is to describe the major mechanisms regulating MMP and to discuss, with examples, mitochondrial targeting strategies for potential use in cancer therapy.
Collapse
Affiliation(s)
- Jeffrey S Armstrong
- Department of Biochemistry, Faculty of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
360
|
Abstract
Fenretinide, a synthetic retinoid, has emerged as a promising anticancer agent based on numerous in vitro and animal studies, as well as chemoprevention clinical trials. In vitro observations suggest that the anticancer activity of fenretinide may arise from its ability to induce apoptosis in tumor cells. Diverse signaling molecules including reactive oxygen species, ceramide, and ganglioside GD3 can mediate apoptosis induction by fenretinide in transformed, premalignant, and malignant cells. In many cell types, these signaling intermediates appear to be induced by mechanisms that are independent of retinoic acid receptor activation, and ultimately initiate the intrinsic or mitochondrial-mediated pathway of cell elimination. Numerous investigations conducted during the past 10 years have discovered a great deal about the apoptogenic activity of fenretinide. In this review we explore the mechanisms associated with fenretinide-induced apoptosis and highlight certain mechanistic underpinnings of fenretinide-induced cell death that remain poorly understood and thus warrant further characterization.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Box C238, 80262, USA.
| | | | | |
Collapse
|
361
|
Kim R, Emi M, Matsuura K, Tanabe K. Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 2006; 14:1-11. [PMID: 17041564 DOI: 10.1038/sj.cgt.7700986] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bcl-2 is an oncoprotein that plays a critical role in inhibiting apoptotic cell death in the mitochondria-dependent pathway in cancer chemotherapy. As a strategy for blocking Bcl-2 for enhancement of the chemotherapeutic effect, antisense Bcl-2 (AS Bcl-2; G3139, oblimersen sodium, Genasense) has shown promise, and there are several ongoing clinical studies with hematological malignancies as well as solid tumors. Although several preclinical and clinical studies have shown the therapeutic efficacy of Bcl-2 in combination with an anticancer drug as a chemosensitizer, in clinical trials the downregulation of Bcl-2 has not been observed with a high frequency in tumor cells. Nevertheless, previous studies showed nonantisense effects such as production of reactive oxygen species and immunostimulatory action through cytosine-phosphate-guanosine-motif in the antisense oligodeoxynucleotides. Further, Bcl-2 is able to inhibit Beclin 1-dependent autophagic cell death, which is a nonapoptotic cell death. The current status and future directions of AS Bcl-2 and the potential mechanisms for multiple roles that Bcl-2 has in cancer therapy are reviewed.
Collapse
Affiliation(s)
- R Kim
- International Radiation Information Center, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | |
Collapse
|
362
|
Abstract
E3 ubiquitin ligases are a large family of proteins that are engaged in the regulation of the turnover and activity of many target proteins. Together with ubiquitin-activating enzyme E1 and ubiquitin-conjugating enzyme E2, E3 ubiquitin ligases catalyze the ubiquitination of a variety of biologically significant protein substrates for targeted degradation through the 26S proteasome, as well as for nonproteolytic regulation of their functions or subcellular localizations. E3 ubiquitin ligases, therefore, play an essential role in the regulation of many biologic processes. Increasing amounts of evidence strongly suggest that the abnormal regulation of some E3 ligases is involved in cancer development. Furthermore, some E3 ubiquitin ligases are frequently overexpressed in human cancers, which correlates well with increased chemoresistance and poor clinic prognosis. In this review, E3 ubiquitin ligases (such as murine double minute 2, inhibitor of apoptosis protein, and Skp1-Cullin-F-box protein) will be evaluated as potential cancer drug targets and prognostic biomarkers. Extensive study in this field would lead to a better understanding of the molecular mechanism by which E3 ligases regulate cellular processes and of how their deregulations contribute to carcinogenesis. This would eventually lead to the development of a novel class of anticancer drugs targeting specific E3 ubiquitin ligases, as well as the development of sensitive biomarkers for cancer treatment, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Yi Sun
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109-0936, USA.
| |
Collapse
|
363
|
Chan PH. Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke. Ann N Y Acad Sci 2006; 1042:203-9. [PMID: 15965064 DOI: 10.1196/annals.1338.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondria are the powerhouse of the cell. Their primary physiological function is to generate ATP through oxidative phosphorylation via the electron transport chain. Reactive oxygen radicals generated from mitochondria have been implicated in acute brain injuries, like stroke and neurodegeneration. Recent studies have shown that mitochondrially formed oxidants are mediators of molecular signaling and have implicated mitochondria-dependent apoptosis involving pro- and antiapoptotic protein binding, the release of cytochrome c and Smac, the activation of downstream caspase-9 and -3, and the fragmentation of DNA. Oxidative stress and the redox state are also implicated in the survival signaling pathway that involves phosphatidylinositol 3-kinase (PI3-K)/Akt and downstream signaling molecular bindings like Bad/Bcl-X(L) and phosphorylated Bad/14-3-3. Genetically modified mice (SOD1, SOD2) or rats that overexpress or are deficient in superoxide dismutase have provided strong evidence in support of the role of mitochondrial dysfunction and oxidative stress as determinants of neuronal death/survival after stroke and neurodegeneration.
Collapse
Affiliation(s)
- Pak H Chan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5487, USA.
| |
Collapse
|
364
|
Abstract
Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death mostly by apoptosis is crucially involved in the regulation of tumor formation and also critically determines treatment response. Killing of tumor cells by most anticancer strategies currently used in clinical oncology, for example, chemotherapy, gamma-irradiation, suicide gene therapy or immunotherapy, has been linked to activation of apoptosis signal transduction pathways in cancer cells such as the intrinsic and/or extrinsic pathway. Thus, failure to undergo apoptosis may result in treatment resistance. Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.
Collapse
Affiliation(s)
- S Fulda
- University Children's Hospital, Ulm, Germany.
| | | |
Collapse
|
365
|
Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 2006; 25:4812-30. [PMID: 16892093 DOI: 10.1038/sj.onc.1209598] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are vital for cellular bioenergetics and play a central role in determining the point-of-no-return of the apoptotic process. As a consequence, mitochondria exert a dual function in carcinogenesis. Cancer-associated changes in cellular metabolism (the Warburg effect) influence mitochondrial function, and the invalidation of apoptosis is linked to an inhibition of mitochondrial outer membrane permeabilization (MOMP). On theoretical grounds, it is tempting to develop specific therapeutic interventions that target the mitochondrial Achilles' heel, rendering cancer cells metabolically unviable or subverting endogenous MOMP inhibitors. A variety of experimental therapeutic agents can directly target mitochondria, causing apoptosis induction. This applies to a heterogeneous collection of chemically unrelated compounds including positively charged alpha-helical peptides, agents designed to mimic the Bcl-2 homology domain 3 of Bcl-2-like proteins, ampholytic cations, metals and steroid-like compounds. Such MOMP inducers or facilitators can induce apoptosis by themselves (monotherapy) or facilitate apoptosis induction in combination therapies, bypassing chemoresistance against DNA-damaging agents. In addition, it is possible to design molecules that neutralize inhibitor of apoptosis proteins (IAPs) or heat shock protein 70 (HSP70). Such IAP or HSP70 inhibitors can mimic the action of mitochondrion-derived mediators (Smac/DIABLO, that is, second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point, in the case of IAPs; AIF, that is apoptosis-inducing factor, in the case of HSP70) and exert potent chemosensitizing effects.
Collapse
Affiliation(s)
- L Galluzzi
- CNRS-FRE 2939, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
366
|
Chevallet M, Lescuyer P, Diemer H, van Dorsselaer A, Leize-Wagner E, Rabilloud T. Alterations of the mitochondrial proteome caused by the absence of mitochondrial DNA: A proteomic view. Electrophoresis 2006; 27:1574-83. [PMID: 16548050 PMCID: PMC2797067 DOI: 10.1002/elps.200500704] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proper functioning of mitochondria requires that both the mitochondrial and the nuclear genome are functional. To investigate the importance of the mitochondrial genome, which encodes only 13 subunits of the respiratory complexes, the mitochondrial rRNAs and a few tRNAs, we performed a comparative study on the 143B cell line and on its Rho-0 counterpart, i.e., devoid of mitochondrial DNA. Quantitative differences were found, of course in the respiratory complexes subunits, but also in the mitochondrial translation apparatus, mainly mitochondrial ribosomal proteins, and in the ion and protein import system, i.e., including membrane proteins. Various mitochondrial metabolic processes were also altered, especially electron transfer proteins and some dehydrogenases, but quite often on a few proteins for each pathway. This study also showed variations in some hypothetical or poorly characterized proteins, suggesting a mitochondrial localization for these proteins. Examples include a stomatin-like protein and a protein sharing homologies with bacterial proteins implicated in tyrosine catabolism. Proteins involved in apoptosis control are also found modulated in Rho-0 mitochondria.
Collapse
Affiliation(s)
- Mireille Chevallet
- Contrôle moléculaire de la réponse immune specifique
INSERM : U548CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | - Pierre Lescuyer
- Contrôle moléculaire de la réponse immune specifique
INSERM : U548CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | - Hélène Diemer
- Electrochimie et physicochimie des complexes et systèmes interfaciaux
CNRS : UMR7512Université Louis Pasteur - Strasbourg IG. RITZLER Institut le Bel 4, Rue Blaise Pascal 67008 STRASBOURG CEDEX,FR
| | - Alain van Dorsselaer
- Electrochimie et physicochimie des complexes et systèmes interfaciaux
CNRS : UMR7512Université Louis Pasteur - Strasbourg IG. RITZLER Institut le Bel 4, Rue Blaise Pascal 67008 STRASBOURG CEDEX,FR
| | - Emmanuelle Leize-Wagner
- Electrochimie et physicochimie des complexes et systèmes interfaciaux
CNRS : UMR7512Université Louis Pasteur - Strasbourg IG. RITZLER Institut le Bel 4, Rue Blaise Pascal 67008 STRASBOURG CEDEX,FR
| | - Thierry Rabilloud
- Contrôle moléculaire de la réponse immune specifique
INSERM : U548CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
- * Correspondence should be adressed to: Thierry Rabilloud
| |
Collapse
|
367
|
Means JC, Muro I, Clem RJ. Lack of involvement of mitochondrial factors in caspase activation in a Drosophila cell-free system. Cell Death Differ 2006; 13:1222-34. [PMID: 16322754 PMCID: PMC2575646 DOI: 10.1038/sj.cdd.4401821] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although mitochondrial proteins play well-defined roles in caspase activation in mammalian cells, the role of mitochondrial factors in caspase activation in Drosophila is unclear. Using cell-free extracts, we demonstrate that mitochondrial factors play no apparent role in Drosophila caspase activation. Cytosolic extract from apoptotic S2 cells, in which caspases were inhibited, induced caspase activation in cytosolic extract from normal S2 cells. Mitochondrial extract did not activate caspases, nor did it influence caspase activation by cytosolic extract. Silencing of Hid, Reaper, or Grim reduced caspase activation by apoptotic cell extract. Furthermore, a peptide representing the amino terminus of Hid was sufficient to activate caspases in cytosolic extract, and this activity was not enhanced by addition of mitochondria or mitochondrial lysate. The Hid peptide also induced apoptosis when introduced into S2 cells. These results suggest that caspase activation in Drosophila is regulated solely by cytoplasmic factors and does not involve any mitochondrial factors.
Collapse
Affiliation(s)
- John C. Means
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | | | - Rollie J. Clem
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
368
|
Verhagen AM, Kratina TK, Hawkins CJ, Silke J, Ekert PG, Vaux DL. Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death Differ 2006; 14:348-57. [PMID: 16794601 DOI: 10.1038/sj.cdd.4402001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.
Collapse
Affiliation(s)
- A M Verhagen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|
369
|
Wang L, Fuqing Z, Zheng L, Tong Q. Smac/DIABLO promotes mitomycin C-induced apoptosis of bladder cancer T24 cells. ACTA ACUST UNITED AC 2006; 26:317-8, 328. [PMID: 16961280 DOI: 10.1007/bf02829562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The enhancing effects of Smac gene on the mitomycin C-induced apoptosis of the bladder cancer cell line T24 were investigated. The Smac gene was transfected into bladder cancer cell line T24 under the induction of liposome. The intrinsic Smac level was detected by using immunohistochemistry and RT-PCR. The in vitro cellular growth activities were assayed by MTT colorimetry. Apoptosis was assayed by the flow cytometry. The results showed that as compared with the control cells, the apoptosis rate of T24 cells induced by mitomycin C was enhanced by transfected Smac gene. Flow cytometry revealed that, the apoptosis rate was 18.84% and 33.52%, and 10.72% and 26.24% respectively in blank and transfected cells treated with 0.05 or 0.005 mg/mL mitomycin C (P < 0.05). It was concluded that Smac could enhance the apoptosis of T24 by mitomycin C, which could provide a useful experimental evidence for bladder cancer therapy.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | |
Collapse
|
370
|
Xie W, Jiang P, Miao L, Zhao Y, Zhimin Z, Qing L, Zhu WG, Wu M. Novel link between E2F1 and Smac/DIABLO: proapoptotic Smac/DIABLO is transcriptionally upregulated by E2F1. Nucleic Acids Res 2006; 34:2046-55. [PMID: 16617145 PMCID: PMC1440883 DOI: 10.1093/nar/gkl150] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Deregulated expression of E2F1 not only promotes S-phase entry but also induces apoptosis. Although it has been well documented that E2F1 is able to induce p53-dependent apoptosis via raising ARF activity, the mechanism by which E2F induces p53-independent apoptosis remains unclear. Here we report that E2F1 can directly bind to and activate the promoter of Smac/DIABLO, a mitochondrial proapoptotic gene, through the E2F1-binding sites BS2 (−542 ∼ −535 bp) and BS3 (−200 ∼ −193 bp). BS2 and BS3 appear to be utilized in combination rather than singly by E2F1 in activation of Smac/DIABLO. Activation of BS2 and BS3 are E2F1-specific, since neither E2F2 nor E2F3 is able to activate BS2 or BS3. Using the H1299 ER-E2F1 cell line where E2F1 activity can be conditionally induced, E2F1 has been shown to upregulate the Smac/DIABLO expression at both mRNA and protein levels upon 4-hydroxytamoxifen treatment, resulting in an enhanced mitochondria-mediated apoptosis. Reversely, reducing the Smac/DIABLO expression by RNA interference significantly diminishes apoptosis induced by E2F1. These results may suggest a novel mechanism by which E2F1 promotes p53-independent apoptosis through directly regulating its downstream mitochondrial apoptosis-inducing factors, such as Smac/DIABLO.
Collapse
Affiliation(s)
| | | | | | - Ying Zhao
- Department of Biochemistry and Molecular Biology and the Cancer Research Center, Peking University Health Science Center38 Xueyuan Road, Beijing, 100083, China
| | - Zhai Zhimin
- Central Laboratory, Anhui Provincial HospitalHefei, Anhui, 230001, China
| | - Li Qing
- Central Laboratory, Anhui Provincial HospitalHefei, Anhui, 230001, China
| | - Wei-guo Zhu
- Department of Biochemistry and Molecular Biology and the Cancer Research Center, Peking University Health Science Center38 Xueyuan Road, Beijing, 100083, China
| | - Mian Wu
- To whom correspondence should be addressed. Tel: +86 551 3607324; Fax: +86 551 3606264;
| |
Collapse
|
371
|
Imam SZ, Jankovic J, Ali SF, Skinner JT, Xie W, Conneely OM, Le WD. Nitric oxide mediates increased susceptibility to dopaminergic damage in Nurr1 heterozygous mice. FASEB J 2006; 19:1441-50. [PMID: 16126911 DOI: 10.1096/fj.04-3362com] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Knocking out of Nurr1 gene, a member of nuclear receptor superfamily, causes selective agenesis of dopaminergic neurons in midbrain. Reduced expression of Nurr1 increases the vulnerability of mesencephalic dopamine neurons to dopaminergic toxins. We evaluated the role of nitric oxide as a possible mechanism for this increased susceptibility. Increased expression of neuronal nitric oxide synthase and increased 3-nitrotyrosine were observed in striatum of Nurr1 heterozygous (Nurr1 +/-) mice as compared with wild-type. Increased cytochrome C activation and consecutive release of Smac/DIABLO were also observed in Nurr1 +/- mice. An induction of active Caspase-3 and p53, cleavage of poly-ADP (RNase) polymerase and reduced expression of bcl-2 were observed in Nurr1 +/- mice. Methamphetamine significantly increased these markers in Nurr1 +/- mice as compared with wild-type. The present data therefore suggest that nitric oxide plays a role as a modulating factor for the increased susceptibility, but not the potentiation, of the dopaminergic terminals in Nurr1 +/- mice. We also report that this increased neuronal nitric oxide synthase expression and increased nitration in Nurr1 +/- mice led to the activation of apoptotic cascade via the differential alterations in the DNA binding activity of transcription factors responsible for the propagation of growth arrest as well as apoptosis.
Collapse
Affiliation(s)
- Syed Z Imam
- South Texas Veteran Health Care System and Department of Medicine of UT Health Science, San Antonio, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
372
|
Sharma SK, Straub C, Zawel L. Development of Peptidomimetics Targeting IAPs. Int J Pept Res Ther 2006; 12:21-32. [PMID: 19617919 PMCID: PMC2710984 DOI: 10.1007/s10989-005-9003-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2005] [Indexed: 11/21/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) such as XIAP subvert apoptosis by binding and inhibiting caspases. Because occupation of the XIAP BIR3 peptide binding pocket by Smac abolishes the XIAP–caspase 9 interaction, it is a proapoptotic event of great therapeutic interest. An assay for pocket binding was developed based on the displacement of Smac 7-mer from BIR3. Through the physical and biochemical analysis of a variety of peptides, we have determined the minimum sequence required for inhibition of the Smac–BIR3 interaction and detailed the dimensions and topology of the BIR3 peptide binding pocket. This work describes the structure–activity relationship (SAR) for peptide inhibitors of Smac-IAP binding.
Collapse
|
373
|
Ortiz-Ferrón G, Tait SW, Robledo G, de Vries E, Borst J, López-Rivas A. The mitogen-activated protein kinase pathway can inhibit TRAIL-induced apoptosis by prohibiting association of truncated Bid with mitochondria. Cell Death Differ 2006; 13:1857-65. [PMID: 16485030 DOI: 10.1038/sj.cdd.4401875] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Breast cancer cells often show increased activity of the mitogen-activated protein kinase (MAPK) pathway. We report here that this pathway reduces their sensitivity to death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and present the underlying mechanism. Activation of protein kinase C (PKC) inhibited TRAIL-induced apoptosis in a protein synthesis-independent manner. Deliberate activation of MAPK was also inhibitory. In digitonin-permeabilized cells, PKC activation interfered with the capacity of recombinant truncated (t)Bid to release cytochrome c from mitochondria. MAPK activation did not affect TRAIL or tumor necrosis factor (TNF)alpha-induced Bid cleavage. However, it did inhibit translocation of (t)Bid to mitochondria as determined both by subcellular fractionation analysis and confocal microscopy. Steady state tBid mitochondrial localization was prohibited by activation of the MAPK pathway, also when the Bcl-2 homology domain 3 (BH3) domain of tBid was disrupted. We conclude that the MAPK pathway inhibits TRAIL-induced apoptosis in MCF-7 cells by prohibiting anchoring of tBid to the mitochondrial membrane. This anchoring is independent of its interaction with resident Bcl-2 family members.
Collapse
Affiliation(s)
- G Ortiz-Ferrón
- Instituto de Parasitología y Biomedicina, CSIC, Granada, Spain
| | | | | | | | | | | |
Collapse
|
374
|
Soung YH, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH. SMAC/DIABLO mutation is uncommon in gastric and colorectal carcinomas. Pathology 2006; 38:85-87. [PMID: 16484020 DOI: 10.1080/00313020500468848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
375
|
Takasawa R, Nakamura H, Mori T, Tanuma S. Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UVB and UVC. Apoptosis 2006; 10:1121-30. [PMID: 16151645 DOI: 10.1007/s10495-005-0901-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The induction of apoptosis in keratinocytes by ultraviolet (UV)-irradiation is considered to be a protective function against skin cancer. UV-induced DNA damage is a crucial event in UVB- and UVC-mediated apoptosis. However, the differences between the UVB- and UVC-induced apoptotic pathways remain unclear. Here we examine the differential mechanisms by which UVB and UVC irradiations induce keratinocyte apoptosis using human keratinocyte HaCaT cells. Differences in the production of (6-4)photoproducts ((6-4)PPs) and cyclobutane pyrimidine dimers (CPDs) were measured following irradiation with UVB and UVC at doses causing the same extent of apoptotic cell death. In addition, main apoptotic features, such as caspase activation and its regulation, were compared between UVB- and UVC-induced apoptosis. Exposures of 500 J/m(2) UVB and 100 J/m(2) UVC resulted in apoptosis to almost the same extent. At these apoptotic doses, the amounts of both (6-4)PPs and CPDs were significantly larger in the case of UVC irradiation than UVB irradiation; in parallel, the release of cytochrome c and Smac/DIABLO and the activation of caspases-9 following UVC irradiation were greater than after UVB irradiation. Importantly, caspase-8 activation occurred only in UVB-irradiated cells. Furthermore, the activation of caspase-8 was not inhibited by caspases-9 and -3 specific tetrapeptide inhibitors, indicating that the caspase-8 cleavage is not due to feedback from activation of caspases-9 and -3. Thus, these results clearly suggest that the reason apoptosis is induced to the same extent by UVB irradiation as by UVC irradiation, despite the lower production of photoproducts in DNA by UVB irradiation, is attributable to the additional activation of the caspase-8 pathway. Thus, UVB irradiation induces apoptosis through both mitochondrial (intrinsic) and caspase-8 activation (extrinsic) pathways, while UVC induces apoptosis only via the intrinsic pathway.
Collapse
Affiliation(s)
- R Takasawa
- Genome & Drug Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
376
|
Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 2006; 31:105-16. [PMID: 15953815 DOI: 10.1385/mn:31:1-3:105] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 11/11/2022]
Abstract
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Holcík M. Targeting endogenous inhibitors of apoptosis for treatment of cancer, stroke and multiple sclerosis. Expert Opin Ther Targets 2006; 8:241-53. [PMID: 15161430 DOI: 10.1517/14728222.8.3.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The inhibitor of apoptosis (IAP) genes have emerged as probably the most important intrinsic regulators of apoptosis. The members of the IAP family are highly conserved in evolutionarily distant species and perform the critical role of binding to and inhibiting distinct caspases. This inhibition is mediated by discrete baculoviral IAP repeat domains that, in a domain-specific manner, inhibit either the initiator or executioner caspases. As such the function of IAPs lies at the very centre of virtually all apoptotic pathways. Since many, if not most, human pathologies involve aberrant apoptosis, the modulation of IAP levels or their activity offers huge therapeutic potential for treatment of various disorders. Indeed, available data suggest that the therapeutic downregulation of IAPs by antisense targeting or their adenovirally-mediated overexpression, can in fact be used to successfully modulate cell death.
Collapse
Affiliation(s)
- Martin Holcík
- Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, University of Ottawa, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, USA.
| |
Collapse
|
378
|
Abstract
Apoptosis plays a central role in the development and homeostasis of metazoans. Research in the past two decades has led to the identification of hundreds of genes that govern the initiation, execution, and regulation of apoptosis. An earlier focus on the genetic and cell biological characterization has now been complemented by systematic biochemical and structural investigation, giving rise to an unprecedented level of clarity in many aspects of apoptosis. In this review, we focus on the molecular mechanisms of apoptosis by synthesizing available biochemical and structural information. We discuss the mechanisms of ligand binding to death receptors, actions of the Bcl-2 family of proteins, and caspase activation, inhibition, and removal of inhibition. Although an emphasis is given to the mammalian pathways, a comparative analysis is applied to related mechanistic information in Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Nieng Yan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
379
|
Abstract
Mitochondria are essential for maintaining cell life but they also play a role in regulating cell death, which occurs when their membranes become permeabilized. Mitochondria possess two distinct membrane systems including an outer membrane in close communication with the cytosol and an inner membrane involved in energy transduction. Outer membrane permeabilization is regulated by Bcl-2 family proteins, which control the release of proteins from the mitochondrial intermembrane space; these proteins then activate apoptosis. Inner membrane permeabilization is regulated by the mitochondrial permeability transition (MPT), which is activated by calcium and oxidative stress and leads to bioenergetic failure and necrosis. The purpose of this review is to discuss the biochemical mechanisms regulating mitochondrial membrane permeabilization; this is crucial to our understanding of the role of cell death in diseases such as cancer and the neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeffrey S Armstrong
- Yong Loo Lin School of Medicine, Department of Biochemistry, National University of Singapore, Republic of Singapore.
| |
Collapse
|
380
|
Wang Y, Suominen JS, Parvinen M, Rivero-Muller A, Kiiveri S, Heikinheimo M, Robbins I, Toppari J. The regulated expression of c-IAP1 and c-IAP2 during the rat seminiferous epithelial cycle plays a role in the protection of germ cells from Fas-mediated apoptosis. Mol Cell Endocrinol 2005; 245:111-20. [PMID: 16343737 DOI: 10.1016/j.mce.2005.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/28/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
The inhibitor of apoptosis proteins, c-IAP1 and c-IAP2, are highly expressed in rat testis and potentially play a regulatory role in testicular apoptosis. To better understand their functions during spermatogenesis, we have analyzed their spatio-temporal distribution in rat testis, how their expression is controlled by the paracrine stem-cell factor (SCF) and how they affect Fas-mediated apoptosis. Both c-IAP1 and c-IAP2 showed cycles of transcriptional expression, throughout the seminiferous epithelial cycle. c-IAP1 protein showed a diffuse nuclear distribution in type B spermatogonia, preleptotene, leptotene, and zygotene spermatocytes. In pachytene spermatocytes, c-IAP1 colocalized with SUMO-1 in the XY-body. c-IAP2 protein was cytoplasmic in spermatocytes, from stage VI pachytene onwards, round spermatids, elongated spermatids and Leydig cells. Its expression was upregulated by SCF. Inhibition of IAP activity resulted in a greater sensitivity of germ cells to Fas-mediated apoptosis. These results suggest an important role for IAPs in the regulation of spermatogenic apoptosis.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Physiology and Pediatrics, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
381
|
Potts MB, Vaughn AE, McDonough H, Patterson C, Deshmukh M. Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. ACTA ACUST UNITED AC 2005; 171:925-30. [PMID: 16344307 PMCID: PMC2171313 DOI: 10.1083/jcb.200504082] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression studies have identified X-linked inhibitor of apoptosis protein (XIAP) as a potent inhibitor of caspases. However, the exact function of endogenous XIAP in regulating mammalian apoptosis is less clear. Endogenous XIAP strictly regulates cytochrome c-dependent caspase activation in sympathetic neurons but not in many mitotic cells. We report that postmitotic cardiomyocytes, unlike fibroblasts, are remarkably resistant to cytosolic microinjection of cytochrome c. The cardiomyocyte resistance to cytochrome c is mediated by endogenous XIAP, as XIAP-deficient cardiomyocytes die rapidly with cytosolic cytochrome c alone. Importantly, we found that cardiomyocytes, like neurons, have markedly reduced Apaf-1 levels and that this decrease in Apaf-1 is directly linked to the tight regulation of caspase activation by XIAP. These data identify an important function of XIAP in cardiomyocytes and point to a striking similarity in the regulation of apoptosis in postmitotic cells.
Collapse
Affiliation(s)
- Malia B Potts
- Neuroscience Center, Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
382
|
Malet G, Martín AG, Orzáez M, Vicent MJ, Masip I, Sanclimens G, Ferrer-Montiel A, Mingarro I, Messeguer A, Fearnhead HO, Pérez-Payá E. Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death Differ 2005; 13:1523-32. [PMID: 16341125 DOI: 10.1038/sj.cdd.4401828] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis is a biological process relevant to human disease states that is strongly regulated through protein-protein complex formation. These complexes represent interesting points of chemical intervention for the development of molecules that could modulate cellular apoptosis. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9 that link mitochondria disfunction with activation of the effector caspases and in turn is of interest for the development of apoptotic modulators. In the present study we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library. The active compounds rescued from the library were chemically optimised to obtain molecules that bind to both recombinant and human endogenous Apaf-1 in a cytochrome c-noncompetitive mechanism that inhibits the recruitment of procaspase-9 by the apoptosome. These newly identified Apaf-1 ligands decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.
Collapse
Affiliation(s)
- G Malet
- Department of Biochemistry and Molecular Biology, Universitat de València, E-46100 Burjassot, València, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Vogler M, Giagkousiklidis S, Genze F, Gschwend JE, Debatin KM, Fulda S. Inhibition of clonogenic tumor growth: a novel function of Smac contributing to its antitumor activity. Oncogene 2005; 24:7190-202. [PMID: 16091752 DOI: 10.1038/sj.onc.1208876] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While second mitochondria derived activator of caspase (Smac) has been described to sensitize for apoptosis, its effect on cell viability in the absence of apoptotic stimuli has remained unclear. Here, we report that Smac inhibits clonogenic tumor growth by blocking random migration and proliferation and by enhancing apoptosis in a cell density and cell type dependent manner in SH-EP neuroblastoma cells. Inhibition of clonogenic survival by overexpression of full-length or processed Smac strictly depended on low cell density, and was reversible by replatement at high density. We discovered that Smac inhibits cell motility and random migration at low cell density. In addition, Smac enhanced apoptosis and inhibited protein, but not mRNA expression of XIAP, survivin and other short-lived proteins (FLIP, p21), indicating that Smac may globally inhibit protein expression. Also, Smac inhibited proliferation and increased polynucleation with no evidence for polyploidy, cell cycle arrest or senescence indicating that Smac impaired cell division. Interestingly, inhibition of clonogenic capacity by Smac occurred independent of its apoptosis promoting activity. By demonstrating that Smac restrains clonogenic tumor growth, our findings may have important implications for control of tumor growth and/or its metastatic spread. Thus, Smac agonists may be useful in cancer therapy, for example, for tumor control in minimal residual disease. Oncogene (2005) 24, 7190-7202. doi:10.1038/sj.onc.1208876; published online 8 August 2005.
Collapse
Affiliation(s)
- Meike Vogler
- University Children's Hospital, Prittwitzstr. 43, 89075 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
384
|
Bockbrader KM, Tan M, Sun Y. A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 2005; 24:7381-8. [PMID: 16044155 DOI: 10.1038/sj.onc.1208888] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inhibitor of apoptosis protein (IAP) suppresses apoptosis through binding and inhibiting active caspases-3, -7 and -9 via its baculoviral IAP repeat (BIR) domains. During apoptosis the caspase inhibition by IAPs can be negatively regulated by a mitochondrial protein second mitochondrial-derived activator of caspase (Smac). Smac physically interacts with multiple IAPs and relieves their inhibitory effect on caspases-3, -7 and -9. Recently, a small molecule Smac-mimic compound (Smac-mimic), which potentiates TNF-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-alpha mediated cell death in glioblastoma T98G cells and HeLa cells, was identified and characterized. To determine the efficacy of this compound in breast cancer cells, we first measured protein expression of three IAPs: XIAP, cIAP-1, and cIAP-2 in nine independent breast cancer cell lines. Three cell lines were chosen: a high IAPs expressing line MDA-MB-231, and two low IAPs expressing lines, T47D and MDA-MB-453. The cell lines were tested for their sensitivity to Smac-mimic alone or in combination with TRAIL or etoposide. Acting alone, Smac-mimic was quite potent with a cytotoxic IC50 of 3.8 nM in high IAPs expressing MDA-MB-231 cells, but was inactive at a much higher concentration in low IAPs expressing T47D and MDA-MB-453 cells. In fact, as low as 2.5 nM of Smac-mimic alone was sufficient to activate caspase-3 and induce apoptosis in MDA-MB-231 cells. In combinational treatments with TRAIL or etoposide, Smac-mimic significantly sensitized cells to growth suppression in MDA-MB-231 cells, but to a lesser extent in T47D and MDA-MB-453 cells. Furthermore, it significantly synergized MDA-MB-231, but not T47D cells to apoptosis induced by either TRAIL or etoposide. Thus, in these cell lines, Smac-mimic acts in an apparent IAPs dependent manner to induce apoptosis alone as well as sensitizes breast cancer cells to TRAIL or etoposide induced apoptosis via caspase-3 activation.
Collapse
Affiliation(s)
- Katrina M Bockbrader
- Department of Radiation Oncology, Division of Cancer Biology, University of Michigan Comprehensive Cancer Center, 4304 CCGC, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0936, USA
| | | | | |
Collapse
|
385
|
Abstract
Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.
Collapse
Affiliation(s)
- Ssang-Goo Cho
- National Creative Research Initiative Center for Cell Death, Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | |
Collapse
|
386
|
Zhou LL, Zhou LY, Luo KQ, Chang DC. Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis 2005; 10:289-99. [PMID: 15843890 DOI: 10.1007/s10495-005-0803-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.
Collapse
Affiliation(s)
- L L Zhou
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
387
|
Gong J, Chen N, Zhou Q, Yang B, Wang Y, Wang X. Melanoma inhibitor of apoptosis protein is expressed differentially in melanoma and melanocytic naevus, but similarly in primary and metastatic melanomas. J Clin Pathol 2005; 58:1081-5. [PMID: 16189155 PMCID: PMC1770742 DOI: 10.1136/jcp.2005.025817] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Malignant melanoma is highly resistant to current treatments. The inhibitor of apoptosis protein (IAP) family member, melanoma IAP (ML-IAP), is overexpressed in some melanoma cell lines, rendering them resistant to apoptotic signals. Targeting ML-IAP is a promising approach to treating melanoma. However, the status of ML-IAP expression in human melanoma tissues and the difference in expression between melanoma and melanocytic naevus are not known. AIMS To investigate these issues. METHODS ML-IAP expression in 48 archived patient samples (34 melanomas and 14 dermal naevi) was assessed by immunohistochemistry and by in situ hybridisation and reverse transcription polymerase chain reaction (RT-PCR) assays developed for the study. RESULTS Expression of ML-IAP was detected in 47.6-70.6% (10 of 21 to 24 of 34) of the melanomas, varying with detection methods. The expression rate in melanoma was much higher than that in melanocytic naevus (10.0-21.4%; one of 10 to three of 14). No significant difference was seen between primary and secondary melanomas. ML-IAP expression rates assessed by the three methods were in agreement. CONCLUSIONS The ML-IAP expression rate in archived melanoma tissues is around 50-70%, with no difference between primary and secondary melanomas. A small number of dermal naevi ( approximately 20%) also expressed ML-IAP.
Collapse
Affiliation(s)
- J Gong
- Pathology Department, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | |
Collapse
|
388
|
Mitra D, Saha B, Das D, Wiker HG, Das AK. Correlating sequential homology of Mce1A, Mce2A, Mce3A and Mce4A with their possible functions in mammalian cell entry of Mycobacterium tuberculosis performing homology modeling. Tuberculosis (Edinb) 2005; 85:337-45. [PMID: 16256439 DOI: 10.1016/j.tube.2005.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The striking homology of the Mycobacterium tuberculosis mammalian cell entry operons (mce1, mce2, mce3 and mce4) with other mycobacterial species and the proposed role of the mammalian cell entry protein 1A (Mce1A) of M. tuberculosis to facilitate invasion of host cells have led us to look into the finer details of these proteins in order to better understand their structure-function relationship. DESIGN We performed sequential alignments and secondary structure predictions of Mce1A, Mce2A, Mce3A and Mce4A, and compared these results with results from homology modeling by fold prediction and threading. RESULTS Sequential alignments showed that Mce1A and Mce2A are highly homologous, close to 70%, while the other combinations gave only about 30% similarities. The major parts of the proteins aligned without gaps and there were striking similarities by secondary structure predictions indicating that the proteins would have similar folds and to be alpha/beta proteins like the previously reported Mce1A model based on Colicin N. Fold prediction showed that the best templates for Mce2A were substrate-binding domain of DnaK and slow processing precursor penicillin acylase from Escherichia coli while the alpha-domains of Mce3A and Mce4A could both be modeled using the cytoplasmic domain of serine chemotaxis receptor as template. CONCLUSION Although different templates had to be used to model the MceA proteins, functional information may be derived that is relevant for their overall function in M. tuberculosis. The beta-domain is probably involved in binding with the receptors on target cells while the alpha-domain is more likely to be involved in pore formation. As predicted from the folds, Mce3A and Mce4A model structures indicate a lipid bound conformation and therefore may be required in signaling events of the mammalian cell entry process.
Collapse
Affiliation(s)
- D Mitra
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India
| | | | | | | | | |
Collapse
|
389
|
Hansen TM, Smith DJ, Nagley P. Smac/DIABLO is not released from mitochondria during apoptotic signalling in cells deficient in cytochrome c. Cell Death Differ 2005; 13:1181-90. [PMID: 16239929 DOI: 10.1038/sj.cdd.4401795] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have characterised the apoptotic defects in cells null for cytochrome c (cyt c-/-). Such cells treated with staurosporine (STS) exhibited translocation to the mitochondria and activation of the proapoptotic signalling molecule Bax but failed to release Smac/DIABLO from these organelles, judged by both confocal microscopy and Western blotting. While reference cells expressing cytochrome c released both it and Smac/DIABLO under a variety of conditions of apoptotic induction, we have never observed release of Smac/DIABLO from cyt c-/- cells. We eliminate the possibility that proteasomal degradation of cytosolically localised Smac/DIABLO is responsible for our failure to visualise the protein outside the mitochondria. Our findings indicate an unanticipated nexus between release of cytochrome c and Smac/DIABLO from mitochondria, previously thought to be a more or less synchronised event early in apoptosis. We suggest that the failure of cyt c-/- cells to release Smac/DIABLO after recruitment of Bax to mitochondria represents an extreme manifestation of some inherent difference in the regulation of release of these two proteins from mitochondria.
Collapse
Affiliation(s)
- T M Hansen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
390
|
Jiang B, Xiao W, Shi Y, Liu M, Xiao X. Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones 2005; 10:252-62. [PMID: 16184770 PMCID: PMC1226023 DOI: 10.1379/csc-124r.1] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress may cause apoptosis of cardiomyocytes in ischemia-reperfused myocardium, and heat shock pretreatment is thought to be protective against ischemic injury when cardiac myocytes are subjected to ischemia or simulated ischemia. However, the detailed mechanisms responsible for the protective effect of heat shock pretreatment are currently unclear. The aim of this study was to determine whether heat shock pretreatment exerts a protective effect against hydrogen peroxide(H2O2)-induced apoptotic cell death in neonatal rat cardiomyocytes and C2C12 myogenic cells and whether such protection is associated with decreased release of second mitochondria-derived activator of caspase-direct IAP binding protein with low pl (where IAP is inhibitor of apoptosis protein) (Smac/DIABLO) from mitochondria and the activation of caspase-9 and caspase-3. After heat shock pretreatment (42 +/- 0.3 degrees C for 1 hour, recovery for 12 hours), cardiomyocytes and C2C12 myogenic cells were exposed to H2O2 (0.5 mmol/L) for 6, 12, 24, and 36 hours. Apoptosis was evaluated by Hoechst 33258 staining and DNA laddering. Caspase-9 and caspase-3 activities were assayed by caspase colorimetric assay kit and Western analysis. Inducible heat shock proteins (Hsp) were detected using Western analysis. The release of Smac/DIABLO from mitochondria to cytoplasm was observed by Western blot and indirect immunofluorescence analysis. (1) H2O2 (0.5 mmol/L) exposure induced apoptosis in neonatal rat cardiomyocytes and C2C12 myogenic cells, with a marked release of Smac/DIABLO from mitochondria into cytoplasm and activation of caspase-9 and caspase-3, (2) heat shock pretreatment induced expression of Hsp70, Hsp90, and alphaB-crystallin and inhibited H2O2-mediated Smac/DIABLO release from mitochondria, the activation of caspase-9, caspase-3, and subsequent apoptosis. H2O2 can induce the release of Smac/DIABLO from mitochondria and apoptosis in cardiomyocytes and C2C12 myogenic cells. Heat shock pretreatment protects the cells against H2O2-induced apoptosis, and its mechanism appears to involve the inhibition of Smac release from mitochondria.
Collapse
Affiliation(s)
- Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, People's Republic of China
| | | | | | | | | |
Collapse
|
391
|
Zhang N, Hartig H, Dzhagalov I, Draper D, He YW. The role of apoptosis in the development and function of T lymphocytes. Cell Res 2005; 15:749-69. [PMID: 16246265 DOI: 10.1038/sj.cr.7290345] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Apoptosis plays an essential role in T cell biology. Thymocytes expressing nonfunctional or autoreactive TCRs are eliminated by apoptosis during development. Apoptosis also leads to the deletion of expanded effector T cells during immune responses. The dysregulation of apoptosis in the immune system results in autoimmunity, tumorogenesis and immunodeficiency. Two major pathways lead to apoptosis: the intrinsic cell death pathway controlled by Bcl-2 family members and the extrinsic cell death pathway controlled by death receptor signaling. These two pathways work together to regulate T lymphocyte development and function.
Collapse
Affiliation(s)
- Nu Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
392
|
Jiang B, Xiao W, Shi Y, Liu M, Xiao X. Role of Smac/DIABLO in hydrogen peroxide-induced apoptosis in C2C12 myogenic cells. Free Radic Biol Med 2005; 39:658-67. [PMID: 16085184 DOI: 10.1016/j.freeradbiomed.2005.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 04/14/2005] [Accepted: 04/21/2005] [Indexed: 11/21/2022]
Abstract
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.
Collapse
Affiliation(s)
- Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | | | | | | | | |
Collapse
|
393
|
Abstract
It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by MP therapy alone. The present paper reviews the past development of MP, naloxone, tirilazad, and GM1 for acute SCI, the ongoing MP-SCI controversy, identifies the regulatory complications involved in future SCI drug development, and suggests some promising neuroprotective approaches that could either replace or be used in combination with high-dose MP.
Collapse
Affiliation(s)
- Edward D Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
394
|
Henderson CJ, Aleo E, Fontanini A, Maestro R, Paroni G, Brancolini C. Caspase activation and apoptosis in response to proteasome inhibitors. Cell Death Differ 2005; 12:1240-54. [PMID: 16094404 DOI: 10.1038/sj.cdd.4401729] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several studies have indicated that proteasome inhibitors (PIs) are promising anticancer agents. We have discovered that PIs have the unique ability to activate effector caspases through a mitochondrial Bcl-2 inhibitable but caspase-9 independent pathway. Stabilization of released Smac induced by blockade of the proteasome could explain the apoptosome-independent cell death induced by PIs. In fact, Smac/DIABLO critically supports this PIs-dependent caspase activation. By using a new assay, we confirm that at a single cell level both Smac and PIs can activate caspases in the absence of the apoptosome. Moreover, we have observed two PIs-induced kinetics of caspase activation, with caspase-9 being still required for the rapid caspase activation in response to mitochondrial depolarization, but dispensable for the slow DEVDase activation. In summary, our data indicate that PIs can activate downstream caspases at least in part through Smac/DIABLO stabilization.
Collapse
Affiliation(s)
- C J Henderson
- MATI Center of Excellence, Universita' di Udine. P.le Kolbe 4, Udine 33100, Italy
| | | | | | | | | | | |
Collapse
|
395
|
Fotin-Mleczek M, Welte S, Mader O, Duchardt F, Fischer R, Hufnagel H, Scheurich P, Brock R. Cationic cell-penetrating peptides interfere with TNF signalling by induction of TNF receptor internalization. J Cell Sci 2005; 118:3339-51. [PMID: 16079278 DOI: 10.1242/jcs.02460] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cationic cell-penetrating peptides (CPPs) have been used widely as delivery vectors for the import of molecules that otherwise do not cross the plasma membrane of eukaryotic cells. In this work, we demonstrate that the three cationic CPPs, Antennapedia homeodomain-derived peptide (Antp), nona-arginine and Tat-derived peptide, inhibit tumour necrosis factor (TNF)-mediated signal transduction. This inhibition is based on the downregulation of TNF receptors at the cell surface by induction of internalization. In contrast to TNF-dependent receptor internalization, no receptor activation occurs. The receptor downregulation is not restricted to the CPPs. Remarkably, the HIV-1 Tat protein itself also induces the internalization of TNF receptors. The dynamin dependence of the internalization, as well as the fact that epidermal growth factor receptors are also internalized, suggest a general induction of clathrin-dependent endocytosis as the mechanism of action. The significance of these findings for the use of cationic CPPs in the import of bioactive peptides is demonstrated here using a conjugate consisting of Antp and a Smac protein-derived cargo peptide. The cargo alone, when introduced into cells by electroporation, enhanced TNF-induced apoptosis by inhibiting the anti-apoptotic action of IAPs (inhibitor of apoptosis proteins). For the Antp-Smac conjugate at concentrations below 40 μM the inhibitory effect of the Antp peptide compensated for the pro-apoptotic activity of the cargo, and led to the protection of cells against TNF-mediated apoptosis. These data provide important new information for the use of cationic CPPs for the cellular delivery of bioactive molecules.
Collapse
MESH Headings
- Apoptosis/drug effects
- Caspase 3
- Caspase Inhibitors
- Caspases/metabolism
- Cations/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Enzyme-Linked Immunosorbent Assay
- Gene Products, tat/pharmacology
- HeLa Cells
- Humans
- Peptide Fragments/chemical synthesis
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Receptors, Tumor Necrosis Factor/drug effects
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I/drug effects
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/drug effects
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Mariola Fotin-Mleczek
- Department of Molecular Biology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany
| | | | | | | | | | | | | | | |
Collapse
|
396
|
Abstract
The mitochondria have emerged as a novel target for anticancer chemotherapy. This tenet is based on the observations that several conventional and experimental chemotherapeutic agents promote the permeabilization of mitochondrial membranes in cancerous cells to initiate the release of apoptogenic mitochondrial proteins. This ability to engage mitochondrial-mediated apoptosis directly using chemotherapy may be responsible for overcoming aberrant apoptosis regulatory mechanisms commonly encountered in cancerous cells. Interestingly, several putative cancer chemopreventive agents also possess the ability to trigger apoptosis in transformed, premalignant, or malignant cells in vitro via mitochondrial membrane permeabilization. This process may occur through the regulation of Bcl-2 family members, or by the induction of the mitochondrial permeability transition. Thus, by exploiting endogenous mitochondrial-mediated apoptosis-inducing mechanisms, certain chemopreventive agents may be able to block the progression of premalignant cells to malignant cells or the dissemination of malignant cells to distant organ sites as means of modulating carcinogenesis in vivo. This review will examine cancer chemoprevention with respect to apoptosis, carcinogenesis, and the proapoptotic activity of various chemopreventive agents observed in vitro. In doing so, I will construct a paradigm supporting the notion that the mitochondria are a novel target for the chemoprevention of cancer.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
397
|
Alladina SJ, Song JH, Davidge ST, Hao C, Easton AS. TRAIL-Induced Apoptosis in Human Vascular Endothelium Is Regulated by Phosphatidylinositol 3-Kinase/Akt through the Short Form of Cellular FLIP and Bcl-2. J Vasc Res 2005; 42:337-47. [PMID: 15985761 DOI: 10.1159/000086599] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 05/17/2005] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Apoptosis of vascular endothelial cells plays a central role in angiogenesis and atherosclerosis. This study investigates the molecular mechanisms of endothelial apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) following inhibition of phosphatidylinositol 3-kinase (PI3K). It examines downstream regulation and activation of the extrinsic and intrinsic pathways. METHODS AND RESULTS By flow cytometry, TRAIL receptors 2 and 3 were present to a greater extent than receptors 1 and 4. TRAIL reduced cell numbers in combination with the PI3K inhibitor LY 294002. TRAIL (100 ng/ml) with LY 294002 (20 micromol/l) activated the extrinsic pathway, causing progressive cleavage of caspase-8 and caspase-3. Activation of the intrinsic pathway proceeded by release of mitochondrial factors Smac/DIABLO and cytochrome c, and caspase-9 cleavage. LY 294002 reduced phosphorylated Akt (p-Akt), with early loss of the short form of cellular FLIP (c-FLIP(S)) and concurrent reduction of Bcl-2. Treatment with small interfering RNA against PI3K also reduced c-FLIP(S) and Bcl-2, and cotreatment with TRAIL triggered caspase-3 cleavage. CONCLUSIONS This study details the molecular regulation of TRAIL-induced apoptosis in vascular endothelium. Inhibition of PI3K reduces p-Akt, with concurrent reductions in c-FLIP(S) and Bcl-2, and so renders endothelium sensitive to TRAIL-induced apoptosis through the extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Salima J Alladina
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
398
|
Smith DP, Bath ML, Harris AW, Cory S. T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haemopoietic expression of MYC. Oncogene 2005; 24:3544-53. [PMID: 15688022 DOI: 10.1038/sj.onc.1208399] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deregulation of MYC expression occurs in many haematological malignancies. Previous studies modelling MYC-induced lymphomagenesis in the mouse used transgenic vectors that directed MYC overexpression in a lineage-specific manner. Here, we describe a transgenic mouse strain in which constitutive MYC expression is driven broadly in haemopoiesis by a vector containing regulatory elements of the Vav gene. Healthy young VavP-MYC17 mice had multiple haemopoietic abnormalities, most notably increased size and numbers of B-lymphoid cells, monocytes and megakaryocytes. The mice rapidly developed tumours and, surprisingly, these were exclusively T-cell lymphomas, mostly of mature CD4(+) CD8(-) T cells, a tumour type that is seldom seen in mouse models. To examine tumour development in the absence of the susceptible T cells, we bred VavP-MYC17 mice lacking the Rag1 recombinase. They survived longer and succumbed to tumours of several different haemopoietic cell types: pre-T cells, pro-B cells, macrophages and unusual progenitor cells. Thus, although T-lineage cells have the shortest latent period to transformation, the VavP-MYC17 transgene drives malignant transformation of multiple cell types and VavP-MYC17 mice provide a new model for tumours of multiple haemopoietic lineages.
Collapse
Affiliation(s)
- Darrin P Smith
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, Victoria 3050, Australia
| | | | | | | |
Collapse
|
399
|
Shin H, Renatus M, Eckelman B, Nunes V, Sampaio C, Salvesen G. The BIR domain of IAP-like protein 2 is conformationally unstable: implications for caspase inhibition. Biochem J 2005; 385:1-10. [PMID: 15485395 PMCID: PMC1134667 DOI: 10.1042/bj20041107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several IAP (inhibitor of apoptosis) proteins regulate cell fate decisions, and the X-linked IAP (XIAP) does so in part by inhibiting caspases, proteases that execute the apoptotic pathway. A tissue-specific homologue of XIAP, known as ILP2 (IAP-like protein 2), has previously been implicated in the control of apoptosis in the testis by direct inhibition of caspase 9. In examining this protein we found that the putative caspase 9 interaction domain is a surprisingly weak inhibitor and is also conformationally unstable. Comparison with the equivalent domain in XIAP demonstrated that the instability is due to the lack of a linker segment N-terminal to the inhibitory BIR (baculovirus IAP repeat) domain. Fusion of a 9-residue linker from XIAP to the N-terminus of ILP2 restored tight caspase 9 inhibition, dramatically increased conformational stability and allowed crystallization of the ILP2 BIR domain in a form strikingly similar to the XIAP third BIR domain. We conclude that ILP2 is an unstable protein, and cannot inhibit caspase 9 in a physiological way on its own. We speculate that ILP2 requires assistance from unidentified cellular factors to be an effective inhibitor of apoptosis in vivo.
Collapse
Affiliation(s)
- Hwain Shin
- *Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- †Graduate Program in Molecular Pathology, University of California San Diego, La Jolla, CA 92037, U.S.A
| | - Martin Renatus
- *Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Brendan P. Eckelman
- *Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- †Graduate Program in Molecular Pathology, University of California San Diego, La Jolla, CA 92037, U.S.A
| | - Viviane A. Nunes
- *Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- ‡Department of Biochemistry, Escola Paulista de Medicina, UNIFESP, Sao Paulo, SP, Brazil
| | - Claudio A. M. Sampaio
- ‡Department of Biochemistry, Escola Paulista de Medicina, UNIFESP, Sao Paulo, SP, Brazil
| | - Guy S. Salvesen
- *Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
400
|
Vucic D, Franklin M, Wallweber H, Das K, Eckelman B, Shin H, Elliott L, Kadkhodayan S, Deshayes K, Salvesen G, Fairbrother W. Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochem J 2005; 385:11-20. [PMID: 15485396 PMCID: PMC1134668 DOI: 10.1042/bj20041108] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ML-IAP (melanoma inhibitor of apoptosis) is a potent anti-apoptotic protein that is strongly up-regulated in melanoma and confers protection against a variety of pro-apoptotic stimuli. The mechanism by which ML-IAP regulates apoptosis is unclear, although weak inhibition of caspases 3 and 9 has been reported. Here, the binding to and inhibition of caspase 9 by the single BIR (baculovirus IAP repeat) domain of ML-IAP has been investigated and found to be significantly less potent than the ubiquitously expressed XIAP (X-linked IAP). Engineering of the ML-IAP-BIR domain, based on comparisons with the third BIR domain of XIAP, resulted in a chimeric BIR domain that binds to and inhibits caspase 9 significantly better than either ML-IAP-BIR or XIAP-BIR3. Mutational analysis of the ML-IAP-BIR domain demonstrated that similar enhancements in caspase 9 affinity can be achieved with only three amino acid substitutions. However, none of these modifications affected binding of the ML-IAP-BIR domain to the IAP antagonist Smac (second mitochondrial activator of caspases). ML-IAP-BIR was found to bind mature Smac with low nanomolar affinity, similar to that of XIAP-BIR2-BIR3. Correspondingly, increased expression of ML-IAP results in formation of a ML-IAP-Smac complex and disruption of the endogenous interaction between XIAP and mature Smac. These results suggest that ML-IAP might regulate apoptosis by sequestering Smac and preventing it from antagonizing XIAP-mediated inhibition of caspases, rather than by direct inhibition of caspases.
Collapse
Affiliation(s)
- Domagoj Vucic
- *Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Matthew C. Franklin
- †Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Heidi J. A. Wallweber
- †Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Kanad Das
- †Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Brendan P. Eckelman
- ‡Graduate Program in Molecular Pathology, University of California San Diego, La Jolla, CA 92037, U.S.A
- §Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Hwain Shin
- ‡Graduate Program in Molecular Pathology, University of California San Diego, La Jolla, CA 92037, U.S.A
| | - Linda O. Elliott
- ∥Department of Medicinal Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Saloumeh Kadkhodayan
- ¶Department of Bioanalytical Research and Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Kurt Deshayes
- †Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Guy S. Salvesen
- §Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Wayne J. Fairbrother
- *Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
- †Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|