351
|
Maddison K, Clarke AR. New approaches for modelling cancer mechanisms in the mouse. J Pathol 2005; 205:181-93. [PMID: 15641017 DOI: 10.1002/path.1698] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse models of human cancer are vital to our understanding of the neoplastic process, and to advances in both basic and clinical research. Indeed, models of many of the major human tumours are now available and are subject to constant revision to more faithfully recapitulate human disease. Despite these advances, it is important to recognize that limitations do exist to the current range of models. The principal approach to modelling has relied upon the use of constitutive gene knockouts, which can often result in embryonic lethality, can potentially be affected by developmental compensation, and which do not mimic the sporadic development of a tumour expanding from a single cell in an otherwise normal environment. Furthermore, simple knockouts are usually designed to lead to loss of protein function, whereas a subset of cancer-causing mutations clearly results in gain of function. These drawbacks are well recognized and this review describes some of the approaches used to address these issues. Key amongst these is the development of conditional alleles that precisely mimic the mutations found in vivo, and which can be spatially and tissue-specifically controlled using 'smart' systems such as the tetracycline system and Cre-Lox technology. Examples of genes being manipulated in this way include Ki-Ras, Myc, and p53. These new developments in modelling mean that any mutant allele can potentially be turned on or off, or over- or under-expressed, in any tissue at any stage of the life-cycle of the mouse. This will no doubt lead to ever more accurate and powerful mouse models to dissect the genetic pathways that lead to cancer.
Collapse
Affiliation(s)
- Kathryn Maddison
- School of Biosciences, Cardiff University, Cardiff, CF10 3US, UK
| | | |
Collapse
|
352
|
MacLellan WR, Garcia A, Oh H, Frenkel P, Jordan MC, Roos KP, Schneider MD. Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol 2005; 25:2486-97. [PMID: 15743840 PMCID: PMC1061608 DOI: 10.1128/mcb.25.6.2486-2497.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/10/2004] [Accepted: 12/15/2004] [Indexed: 11/20/2022] Open
Abstract
The pocket protein family of tumor suppressors, and Rb specifically, have been implicated as controlling terminal differentiation in many tissues, including the heart. To establish the biological functions of Rb in the heart and overcome the early lethality caused by germ line deletion of Rb, we used a Cre/loxP system to create conditional, heart-specific Rb-deficient mice. Mice that are deficient in Rb exclusively in cardiac myocytes (CRbL/L) are born with the expected Mendelian distribution, and the adult mice displayed no change in heart size, myocyte cell cycle distribution, myocyte apoptosis, or mechanical function. Since both Rb and p130 are expressed in the adult myocardium, we created double-knockout mice (CRbL/L p130-/-) to determine it these proteins have a shared role in regulating cardiac myocyte cell cycle progression. Adult CRbL/L p130-/- mice demonstrated a threefold increase in the heart weight-to-body weight ratio and showed increased numbers of bromodeoxyuridine- and phosphorylated histone H3-positive nuclei, consistent with persistent myocyte cycling. Likewise, the combined deletion of Rb plus p130 up-regulated myocardial expression of Myc, E2F-1, and G1 cyclin-dependent kinase activities, synergistically. Thus, Rb and p130 have overlapping functional roles in vivo to suppress cell cycle activators, including Myc, and maintain quiescence in postnatal cardiac muscle.
Collapse
Affiliation(s)
- W R MacLellan
- Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 675 C. E. Young Dr., MRL 3-645, Los Angeles, CA 90095-1760, USA.
| | | | | | | | | | | | | |
Collapse
|
353
|
Adegbola O, Pasternack GR. Phosphorylated retinoblastoma protein complexes with pp32 and inhibits pp32-mediated apoptosis. J Biol Chem 2005; 280:15497-502. [PMID: 15716273 DOI: 10.1074/jbc.m411382200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma gene product (Rb) is a tumor suppressor that affects apoptosis paradoxically. Most sporadic cancers inactivate Rb by preferentially targeting the pathway that regulates Rb phosphorylation, resulting in resistance to apoptosis; this contrasts with Rb inactivation by mutation, which is associated with high rates of apoptosis. How phosphorylated Rb protects cells from apoptosis is not well understood, but there is evidence that Rb may sequester a pro-apoptotic nuclear factor. pp32 (ANP32A) is a pro-apoptotic nuclear phosphoprotein, the expression of which is commonly increased in cancer. We report that hyperphosphorylated Rb interacts with pp32 but not with the closely related proteins pp32r1 and pp32r2. We further demonstrate that pp32-Rb interaction inhibits the apoptotic activity of pp32 and stimulates proliferation. These results suggest a mechanism whereby cancer cells gain both a proliferative and survival advantage when Rb is inactivated by hyperphosphorylation.
Collapse
Affiliation(s)
- Onikepe Adegbola
- Division of Molecular Pathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
354
|
Stevens C, La Thangue NB. The emerging role of E2F-1 in the DNA damage response and checkpoint control. DNA Repair (Amst) 2005; 3:1071-9. [PMID: 15279795 DOI: 10.1016/j.dnarep.2004.03.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genotoxic stress triggers a myriad of cellular responses including cell cycle arrest, stimulation of DNA repair and apoptosis. A central role for the E2F-1 transcription factor in the DNA damage response pathway is gaining support. E2F-1 is phosphorylated by DNA damage responsive protein kinases, which leads to E2F-1 accumulation and the induction of apoptosis. In addition, emerging information suggests that E2F-1 may play a role in the detection and subsequent repair of damaged DNA.
Collapse
Affiliation(s)
- Craig Stevens
- Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
355
|
|
356
|
McCabe MT, Azih OJ, Day ML. pRb-Independent growth arrest and transcriptional regulation of E2F target genes. Neoplasia 2005; 7:141-51. [PMID: 15802019 PMCID: PMC1501127 DOI: 10.1593/neo.04394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 09/02/2004] [Accepted: 09/13/2004] [Indexed: 01/28/2023]
Abstract
The retinoblastoma tumor suppressor (pRb) has traditionally been studied as a negative regulator of cell cycle progression through its interactions with the E2F family of transcription factors. Utilizing prostate epithelial cell lines established from Rb+/+ and Rb-/- prostate tissues, we previously demonstrated that Rb-/- epithelial cells were not transformed and retained the ability to differentiate in vivo despite the lack of pRb. To further study the effects of pRb loss in an epithelial cell population, we utilized oligonucleotide microarrays to identify any pRb-dependent transcriptional regulation during serum depletion-induced growth arrest. These studies identified 120 unique transcripts regulated by growth arrest in Rb+/+ cells. In these wild-type cells, the majority (80%) of altered transcripts were downregulated, including 40 previously identified E2F target genes. Although the transcriptional repression of E2F target genes is characteristic of pRb pocket protein family activity, further analysis revealed that, compared to Rb+/+ cells, Rb-/- cells exhibited a nearly identical response for all transcripts including those of E2F target genes. These findings demonstrate that pRb is not strictly required for the vast majority of transcriptional alterations associated with growth arrest.
Collapse
Affiliation(s)
- Michael T McCabe
- Department of Urology, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | | | | |
Collapse
|
357
|
Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005; 25:1215-27. [PMID: 15684376 PMCID: PMC548021 DOI: 10.1128/mcb.25.4.1215-1227.2005] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rita Ferreira
- Department of Cell Biology, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
358
|
Zhou Z, Flesken-Nikitin A, Levine CG, Shmidt EN, Eng JP, Nikitina EY, Spencer DM, Nikitin AY. Suppression of Melanotroph Carcinogenesis Leads to Accelerated Progression of Pituitary Anterior Lobe Tumors and Medullary Thyroid Carcinomas in Rb+/− Mice. Cancer Res 2005. [DOI: 10.1158/0008-5472.787.65.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Mice with a single copy of the retinoblastoma gene (Rb+/−) develop a syndrome of multiple neuroendocrine neoplasia. They usually succumb to fast-growing, Rb-deficient melanotroph tumors of the pituitary intermediate lobe, which are extremely rare in humans. Thus, full assessment of Rb role in other, more relevant to human pathology, neoplasms is complicated. To prevent melanotroph neoplasia while preserving spontaneous carcinogenesis in other types of cells, we have prepared transgenic mice in which 770-bp fragment of pro-opiomelanocortin promoter directs expression of the human RB gene to melanotrophs (TgPOMC-RB). In three independent lines, transgenic mice crossed to Rb+/− background are devoid of melanotroph tumors but develop the usual spectrum of other neoplasms. Interestingly, abrogation of melanotroph carcinogenesis results in accelerated progression of pituitary anterior lobe tumors and medullary thyroid carcinomas. A combination of immunologic tests, cell culture studies, and tumorigenicity assays indicates that α-melanocyte–stimulating hormone, which is overproduced by melanotroph tumors, attenuates neoplastic progression by decreasing cell proliferation and inducing apoptosis. Taken together, we show that cell lineage–specific complementation of Rb function can be successfully used for refining available models of stochastic carcinogenesis and identify α-melanocyte–stimulating hormone as a potential attenuating factor during progression of neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Zongxiang Zhou
- 1Department of Biomedical Sciences, Cornell University, Ithaca, New York and
| | | | - Corinna G. Levine
- 1Department of Biomedical Sciences, Cornell University, Ithaca, New York and
| | - Elena N. Shmidt
- 1Department of Biomedical Sciences, Cornell University, Ithaca, New York and
| | - Jessica P. Eng
- 1Department of Biomedical Sciences, Cornell University, Ithaca, New York and
| | | | - David M. Spencer
- 2Department of Immunology, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
359
|
Abstract
The cellular effects of the genetic defects associated with tumorigenesis are context dependent. To better understand the reasons that different cell types require distinct combinations of mutations to form tumours, it is essential to identify and characterize a tumour's 'cell of origin'. Retinoblastoma, a rare childhood cancer of the retina that is caused by RB inactivation, is a good model in which to search for a tumour cell of origin, because retinal development is well understood and the initiating genetic lesion is well characterized. Identifying the cell of origin for this tumour would advance our understanding of how cellular context affects the requirement of specific mutations for cancer initiation and progression.
Collapse
Affiliation(s)
- Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
360
|
Lee JS, Grisham JW, Thorgeirsson SS. Comparative functional genomics for identifying models of human cancer. Carcinogenesis 2005; 26:1013-20. [PMID: 15677630 DOI: 10.1093/carcin/bgi030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetically modified mice with overexpressed and/or deleted genes have been used extensively to model human cancer. However, it is uncertain as to what extent the mouse models reproduce the corresponding cancers in humans. We have compared the global gene expression patterns in human and mouse hepatocellular carcinomas (HCCs) in an attempt to identify the mouse models that most extensively reproduce the molecular pathways in the human tumors. The comparative analysis of the gene expression patterns in murine and human HCC indicates that certain genetic mouse models closely reproduce the gene expression patterns of HCC in humans, while others do not. Identification of mouse models that reproduce the molecular features of specific human cancers (or subclasses of specific human cancers) promises to accelerate both the understanding of the molecular pathogenesis of cancer and the discovery of therapeutic targets. We propose that this method, comparative functional genomics, could be effectively applied to the analysis of mouse models for other human cancers.
Collapse
Affiliation(s)
- Ju-Seog Lee
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | | | | |
Collapse
|
361
|
Song MH, Brown NL, Kuwada JY. The cfy mutation disrupts cell divisions in a stage-dependent manner in zebrafish embryos. Dev Biol 2005; 276:194-206. [PMID: 15531374 DOI: 10.1016/j.ydbio.2004.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/27/2004] [Accepted: 08/16/2004] [Indexed: 11/26/2022]
Abstract
The zebrafish curly fry (cfy) mutation leads to embryonic lethality and abnormal cell divisions starting at 12-14 h postfertilization (hpf) during neural tube formation. The mitotic defect is seen in a variety of tissues including the central nervous system (CNS). In homozygous mutant embryos, mitoses are disorganized with an increase in mitotic figures throughout the developing neural tube. One consequence of aberrant mitoses in cfy embryos is an increase in cell death. Despite this, patterning of the early CNS is relatively unperturbed with distribution of the early, primary neurons indistinguishable from that of wild-type embryos. At later stages, however, the number of neurons was dramatically decreased throughout the CNS. The effect on neurons in older cfy embryos but not young ones correlates with the time of birth of neurons: primary neurons are born before the action of the cfy gene and later neurons after. Presumably, death of neuronal progenitors that divide beginning at the neural keel stage or death of their neuronal progeny accounts for the diminution of neurons in older mutant embryos. In addition, oligodendrocytes, which also develop late in the CNS, are greatly reduced in number in cfy embryos due to an apparent decrease in oligodendrocyte precursors. Genetic mosaic analysis demonstrates that the mutant phenotype is cell-autonomous. Furthermore, there are no obvious defects in apical/basal polarity within the neuroepithelium, suggesting that the cfy gene is not critical for epithelial polarity and that polarity defects are unlikely to account for the increased mitotic figures in mutants. These results suggest that the cfy gene regulates mitosis perhaps in a stage-dependent manner in vertebrate embryos.
Collapse
Affiliation(s)
- Mi Hye Song
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
362
|
Takahashi C, Contreras B, Bronson RT, Loda M, Ewen ME. Genetic interaction between Rb and K-ras in the control of differentiation and tumor suppression. Mol Cell Biol 2005; 24:10406-15. [PMID: 15542848 PMCID: PMC529028 DOI: 10.1128/mcb.24.23.10406-10415.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the retinoblastoma protein (pRb) has been implicated in the processes of cellular differentiation, there is no compelling genetic or in vivo evidence that such activities contribute to pRb-mediated tumor suppression. Motivated by cell culture studies suggesting that Ras is a downstream effector of pRb in the control of differentiation, we have examined the tumor and developmental phenotypes of Rb and K-ras double-knockout mice. We find that heterozygosity for K-ras (i) rescued a unique subset of developmental defects that characterize Rb-deficient embryos by affecting differentiation but not proliferation and (ii) significantly enhanced the degree of differentiation of pituitary adenocarcinomas arising in Rb heterozygotes, leading to their prolonged survival. These observations suggest that Rb and K-ras function together in vivo, in the contexts of both embryonic and tumor development, and that the ability to affect differentiation is a major facet of the tumor suppressor function of pRb.
Collapse
Affiliation(s)
- Chiaki Takahashi
- Department of Medial Oncology, Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
363
|
Nguyen DX, McCance DJ. Role of the retinoblastoma tumor suppressor protein in cellular differentiation. J Cell Biochem 2005; 94:870-9. [PMID: 15669057 DOI: 10.1002/jcb.20375] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The retinoblastoma protein (pRb105) is a true tumor suppressor as deregulation of the Rb pathway by either mutation of pRb105 itself or other proteins in the pathway, such as p16INK4a, occur in most cancers. This prototypical family member, along with the related p107 and p130, are involved in the control of cell cycle regulation, but pRb105 has also been shown to be involved in tissue development and differentiation. This prospective will discuss the increasing evidence for a role of pRb105 in cellular differentiation and the fact that various cancers, which contain mutant pRb105, or mutations in proteins in the pRb105 pathway, are perhaps a result of deregulation of differentiation.
Collapse
Affiliation(s)
- Don X Nguyen
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
364
|
Jori FP, Melone MAB, Napolitano MA, Cipollaro M, Cascino A, Giordano A, Galderisi U. RB and RB2/p130 genes demonstrate both specific and overlapping functions during the early steps of in vitro neural differentiation of marrow stromal stem cells. Cell Death Differ 2005; 12:65-77. [PMID: 15459751 DOI: 10.1038/sj.cdd.4401499] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marrow stromal stem cells (MSCs) are stem-like cells that are currently being tested for their potential use in cell therapy for a number of human diseases. MSCs can differentiate into both mesenchymal and nonmesenchymal lineages. In fact, in addition to bone, cartilage and fat, it has been demonstrated that MSCs are capable of differentiating into neurons and astrocytes. RB and RB2/p130 genes are involved in the differentiation of several systems. For this reason, we evaluated the role of RB and RB2/p130 in the differentiation and apoptosis of MSCs under experimental conditions that allow for MSC differentiation toward the neuron-like phenotype. To this end, we ectopically expressed either RB or RB2/p130 and monitored proliferation, differentiation and apoptosis in rat primary MSC cultures induced to differentiate toward the neuron-like phenotype. Both RB and RB2/P130 decreased cell proliferation rate. In pRb-overexpressing cells, the arrest of cell growth was also observed in the presence of the HDAC-inhibitor TSA, suggesting that its antiproliferative activity does not rely upon the HDAC pathway, while the addition of TSA to pRb2/p130-overexpressing cells relieved growth inhibition. TUNEL reactions and studies on the expression of genes belonging to the Bcl-2 family showed that while RB protected differentiating MSCs from apoptosis, RB2/p130 induced an increase of apoptosis compared to controls. The effects of both RB and RB2/p130 on programmed cell death appeared to be HDAC- independent. Molecular analysis of neural differentiation markers and immunocytochemistry revealed that RB2/p130 contributes mainly to the induction of generic neural properties and RB triggers cholinergic differentiation. Moreover, the differentiation potentials of RB2/p130 and RB appear to rely, at least in part, on the activity of HDACs.
Collapse
Affiliation(s)
- F P Jori
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
365
|
Iavarone A, King ER, Dai XM, Leone G, Stanley ER, Lasorella A. Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Nature 2004; 432:1040-1045. [PMID: 15616565 DOI: 10.1038/nature03068] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 09/25/2004] [Indexed: 12/31/2022]
Abstract
In mammals, the fetal liver is the first site of definitive erythropoiesis-the generation of mature, enucleated red cells. The functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by erythroblasts at various stages of differentiation. Targeted disruption of the retinoblastoma (Rb) tumour suppressor gene in the mouse leads to embryonic death caused by failure of erythroblasts to enucleate. The erythroid defect has been attributed to loss of Rb in cells that support erythropoiesis, but the identity of these cells is unknown. Here we show that Rb-deficient embryos carry profound abnormalities of fetal liver macrophages that prevent physical interactions with erythroblasts. In contrast, wild-type macrophages bind Rb-deficient erythroblasts and lead them to terminal differentiation and enucleation. Loss of Id2, a helix-loop-helix protein that mediates the lethality of Rb-deficient embryos, rescues the defects of Rb-deficient fetal liver macrophages. Rb promotes differentiation of macrophages by opposing the inhibitory functions of Id2 on the transcription factor PU.1, a master regulator of macrophage differentiation. Thus, Rb has a cell autonomous function in fetal liver macrophages, and restrains Id2 in these cells in order to implement definitive erythropoiesis.
Collapse
Affiliation(s)
- Antonio Iavarone
- Institute for Cancer Genetics, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
366
|
Dannenberg JH, Schuijff L, Dekker M, van der Valk M, te Riele H. Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. Genes Dev 2004; 18:2952-62. [PMID: 15574596 PMCID: PMC534655 DOI: 10.1101/gad.322004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 09/15/2004] [Indexed: 11/24/2022]
Abstract
The retinoblastoma gene family consists of three genes: RB, p107, and p130. While loss of pRB causes retinoblastoma in humans and pituitary gland tumors in mice, tumorigenesis in other tissues may be suppressed by p107 and p130. To test this hypothesis, we have generated chimeric mice from embryonic stem cells carrying compound loss-of-function mutations in the Rb gene family. We found that Rb/p107- and Rb/p130-deficient mice were highly cancer prone. We conclude that in a variety of tissues tumor development by loss of pRB is suppressed by its homologs p107 and p130. The redundancy of the retinoblastoma proteins in vivo is reflected by the behavior of Rb-family-defective mouse embryonic fibroblasts in vitro.
Collapse
Affiliation(s)
- Jan-Hermen Dannenberg
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
367
|
Donovan SL, Dyer MA. Developmental defects in Rb-deficient retinae. Vision Res 2004; 44:3323-33. [PMID: 15536000 DOI: 10.1016/j.visres.2004.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/30/2004] [Indexed: 01/03/2023]
Abstract
We recently found that the Rb protein is important for the regulation of retinal progenitor cell proliferation and rod photoreceptor development in the mouse retina. These two functions are separate for Rb and in this study we further characterize the role of Rb in retinal development. At postnatal day 12 in the retinae of Chx10-Cre;RbLox/- mice, immature cells are found in the outer nuclear layer where rods normally are differentiating. This results in alternating patches of the outer nuclear layer (ONL) that are lacking rod inputs. At this stage of development, horizontal cell processes at the outer plexiform layer do not mature appropriately and they extend into the outer nuclear layer. These disruptions in horizontal cell differentiation can persist for several weeks into the adult stage. While there are several secondary effects of the loss of Rb on retinal development including, limited cell death in the ONL, Müller glial cell activation, persistence of immature cells in the ONL, and altered nuclear morphology of cells in the ONL, we suggest that the defect in horizontal cell synapse formation at the OPL results from fewer rod inputs. Mice with other developmental defects in photoreceptor cell fate specification or glial cell activation do not exhibit a similar alteration in horizontal cell differentiation. Therefore, the retinae from Chx10-Cre;RbLox/- mice represent a unique model to study the role of rod photoreceptor inputs in horizontal cell differentiation and synapse formation.
Collapse
Affiliation(s)
- Stacy L Donovan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
368
|
Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 2004; 119:181-93. [PMID: 15479636 DOI: 10.1016/j.cell.2004.09.034] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/12/2004] [Accepted: 09/23/2004] [Indexed: 01/05/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRb) regulates gene transcription by binding E2F transcription factors. pRb can recruit several repressor complexes to E2F bound promoters; however, native pRb repressor complexes have not been isolated. We have purified E2F/RBF repressor complexes from Drosophila embryo extracts and characterized their roles in E2F regulation. These complexes contain RBF, E2F, and Myb-interacting proteins that have previously been shown to control developmentally regulated patterns of DNA replication in follicle cells. The complexes localize to transcriptionally silent sites on polytene chromosomes and mediate stable repression of a specific set of E2F targets that have sex- and differentiation-specific expression patterns. Strikingly, seven of eight complex subunits are structurally and functionally related to C. elegans synMuv class B genes, which cooperate to control vulval differentiation in the worm. These results reveal an extensive evolutionary conservation of specific pRb repressor complexes that physically combine subunits with established roles in the regulation of transcription, DNA replication, and chromatin structure.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Yun K, Mantani A, Garel S, Rubenstein J, Israel MA. Id4 regulates neural progenitor proliferation and differentiation in vivo. Development 2004; 131:5441-8. [PMID: 15469968 DOI: 10.1242/dev.01430] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms that determine whether a precursor cell re-enters the cell cycle or exits and differentiates are crucial in determining the types and numbers of cells that constitute a particular organ. Here, we report that Id4 is required for normal brain size, and regulates lateral expansion of the proliferative zone in the developing cortex and hippocampus. In its absence, proliferation of stem cells in the ventricular zone (VZ) is compromised. In early cortical progenitors, Id4 is required for the normal G1-S transition. By contrast, at later ages, ectopically positioned proliferating cells are found in the mantle zone of the Id4-/- cortex. These observations, together with evidence for the premature differentiation of early cortical stem cells, indicate that Id4 has a unique and complex function in regulating neural stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Kyuson Yun
- Department of Pediatrics and Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
370
|
Levine EM, Green ES. Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Semin Cell Dev Biol 2004; 15:63-74. [PMID: 15036209 DOI: 10.1016/j.semcdb.2003.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proliferative expansion of retinal progenitor cells (RPCs) is a fundamental mechanism of growth during vertebrate retinal development. Over the past couple of years, significant progress has been made in identifying genes expressed in RPCs that are essential for their proliferation, and the molecular mechanisms are beginning to be resolved. In this review, we highlight recent studies that have identified regulatory components of the RPC cell cycle machinery and implicate a set of homeobox genes as key regulators of proliferative expansion in the retina.
Collapse
Affiliation(s)
- Edward M Levine
- Department of Ophthalmology & Visual Sciences, Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
371
|
Abstract
Emerging data suggest that stem cells may be one of the key elements in normal tissue regeneration and cancer development, although they are not necessarily the same entity in both scenarios. As extensively demonstrated in the hematopoietic system, stem cell repopulation is hierarchically organized and is intrinsically limited by the intracellular cell cycle inhibitors. Their inhibitory effects appear to be highly associated with the differentiation stage in stem/progenitor pools. While this negative regulation is important for maintaining homeostasis, especially at the stem cell level under physiological cues or pathological insults, it constrains the therapeutic use of adult stem cells in vitro and restricts endogenous tissue repair after injury. On the other hand, disruption of cell cycle inhibition may contribute to the formation of the so-called 'tumor stem cells' (TSCs) that are currently hypothesized to be partially responsible for tumorigenesis and recurrence of cancer after conventional therapies. Therefore, understanding how cell cycle inhibitors control stem cells may offer new strategies not only for therapeutic manipulations of normal stem cells but also for novel therapies selectively targeting TSCs.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, PA 15213, USA.
| |
Collapse
|
372
|
Herrup K, Neve R, Ackerman SL, Copani A. Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 2004; 24:9232-9. [PMID: 15496657 PMCID: PMC6730083 DOI: 10.1523/jneurosci.3347-04.2004] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 09/07/2004] [Accepted: 09/07/2004] [Indexed: 11/21/2022] Open
Affiliation(s)
- Karl Herrup
- Department of Neurosciences, Case School of Medicine, University Hospitals of Cleveland, Cleveland, Ohio 44120, USA
| | | | | | | |
Collapse
|
373
|
Maddison LA, Sutherland BW, Barrios RJ, Greenberg NM. Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 2004; 64:6018-25. [PMID: 15342382 DOI: 10.1158/0008-5472.can-03-2509] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer remains the second leading cause of cancer-related death for men in the United States. Mutations in tumor suppressor genes including retinoblastoma (Rb), p53, and PTEN have been linked to the development of prostate cancer in man and mouse models, and loss of heterozygosity of the Rb locus has been observed in up to 60% of clinical cases. In this study we demonstrate that conditional somatic deletion of even a single Rb allele in the epithelial cells of the mouse prostate causes focal hyperplasia, thereby establishing a causal relationship between Rb loss and development of early stage prostate cancer. As a consequence of Rb ablation we observed increased expression of E2F target genes and a concomitant increase in proliferation in the epithelial compartment. However, by 52 weeks of age these lesions had not become malignant and represent an early stage of the disease. Nevertheless, the multifocal nature of the phenotype in the mice closely resembled multifocality of clinical disease. Taken together, our data demonstrated that loss of pRB-mediated cell cycle control directly caused the initiation of proliferative prostate disease but was insufficient to cause malignancy. Establishment of this early initiation model will aid efforts to thoroughly characterize early prostate disease as well as the elucidation of molecular mechanisms that cooperate with Rb loss to facilitate progression and metastasis.
Collapse
Affiliation(s)
- Lisette A Maddison
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
374
|
Spike BT, Dirlam A, Dibling BC, Marvin J, Williams BO, Jacks T, Macleod KF. The Rb tumor suppressor is required for stress erythropoiesis. EMBO J 2004; 23:4319-29. [PMID: 15457215 PMCID: PMC524396 DOI: 10.1038/sj.emboj.7600432] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 09/09/2004] [Indexed: 11/09/2022] Open
Abstract
The retinoblastoma tumor suppressor gene plays important roles in cell cycle control, differentiation and survival during development and is functionally inactivated in most human cancers. Early studies using gene targeting in mice suggested a critical role for pRb in erythropoiesis, while more recent experiments have suggested that many of the abnormal embryonic phenotypes in the Rb null mouse result from a defective placenta. To address this controversy and determine whether Rb has cell intrinsic functions in erythropoiesis, we examined the effects of Rb loss on red cell production following acute deletion of pRb in vitro and under different stress conditions in vivo. Under stress conditions, pRb was required to regulate erythroblast expansion and promote red cell enucleation. Acute deletion of Rb in vitro induced erythroid cell cycle and differentiation defects similar to those observed in vivo. These results demonstrate a cell intrinsic role for pRb in stress erythropoiesis and hematopoietic homeostasis that has relevance for human diseases.
Collapse
Affiliation(s)
- Benjamin T Spike
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL, USA
- The Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Alexandra Dirlam
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL, USA
- The Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Benjamin C Dibling
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - James Marvin
- The Flow Cytometry Laboratory, University of Chicago, Chicago, IL, USA
| | | | - Tyler Jacks
- The Department of Biology & Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Howard Hughes Medical Institutes, Chevy Chase, MD, USA
| | - Kay F Macleod
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL, USA
- The Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
- The Committee on Immunology, University of Chicago, Chicago, IL, USA
- The Ben May Institute for Cancer Research, The University of Chicago, The Knapp Medical Research Building, R118, 924 East 57th Street, Chicago, IL 60637, USA. Tel.: +1 773 834 8309; Fax: +1 773 702 3701; E-mail:
| |
Collapse
|
375
|
Vanderluit JL, Ferguson KL, Nikoletopoulou V, Parker M, Ruzhynsky V, Alexson T, McNamara SM, Park DS, Rudnicki M, Slack RS. p107 regulates neural precursor cells in the mammalian brain. ACTA ACUST UNITED AC 2004; 166:853-63. [PMID: 15353549 PMCID: PMC2172121 DOI: 10.1083/jcb.200403156] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we show a novel function for Retinoblastoma family member, p107 in controlling stem cell expansion in the mammalian brain. Adult p107-null mice had elevated numbers of proliferating progenitor cells in their lateral ventricles. In vitro neurosphere assays revealed striking increases in the number of neurosphere forming cells from p107(-/-) brains that exhibited enhanced capacity for self-renewal. An expanded stem cell population in p107-deficient mice was shown in vivo by (a) increased numbers of slowly cycling cells in the lateral ventricles; and (b) accelerated rates of neural precursor repopulation after progenitor ablation. Notch1 was up-regulated in p107(-/-) neurospheres in vitro and brains in vivo. Chromatin immunoprecipitation and p107 overexpression suggest that p107 may modulate the Notch1 pathway. These results demonstrate a novel function for p107 that is distinct from Rb, which is to negatively regulate the number of neural stem cells in the developing and adult brain.
Collapse
|
376
|
Rice JM. Causation of nervous system tumors in children: insights from traditional and genetically engineered animal models. Toxicol Appl Pharmacol 2004; 199:175-91. [PMID: 15313589 DOI: 10.1016/j.taap.2003.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 12/23/2003] [Indexed: 11/30/2022]
Abstract
Pediatric neurogenic tumors include primitive neuroectodermal tumors (PNETs), especially medulloblastoma; ependymomas and choroid plexus papillomas; astrocytomas; retinoblastoma; and sympathetic neuroblastoma. Meningiomas and nerve sheath tumors, although uncommon in childhood, are also significant because they can result from exposures of children to ionizing radiation. Specific chromosomal loci and specific genes are related to each of these tumor types. Virtually all these genes appear to act as tumor suppressor genes, which are inactivated in tumor cells by mutations or by chromosomal loss. In genetically engineered mice, some genes that are clearly associated with specific human tumors (e.g., RB1 in retinoblastoma and NF2 in meningiomas and schwannomas) have no such effect. Other genetic constructs in mice involving the genes p53, ptc1, and Nf1 have produced tumors remarkably similar to some of the human pediatric neoplasms. Some of these tumors become clinically apparent after only a few weeks, while the mice are still juveniles, especially when two or more tumor suppressor genes are inactivated in the same genetic construct. Conversely, at least one genetic pathway in rodents involving point mutation in the coding region of a transforming gene (neu in malignant schwannomas) does not appear to operate in any human tumors. The nervous system is markedly susceptible to experimental carcinogenesis during early life in rodents, dogs, primates, and other nonhuman species, and there is no obvious reason why this generalization should not also apply to humans. However, except for therapeutic ionizing radiation, no physical, chemical, or biological cause of human pediatric nervous system tumors is known. The failure of experimental transplacental carcinogenesis to mirror human pediatric experience more closely may reflect the need for multiple mutational events in target cells, and for experimental carcinogens that are capable of causing the full spectrum of mutations that occur in cancer-related genes in pediatric neurogenic tumors.
Collapse
Affiliation(s)
- Jerry M Rice
- Department of Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1465, USA
| |
Collapse
|
377
|
Pei XH, Bai F, Tsutsui T, Kiyokawa H, Xiong Y. Genetic evidence for functional dependency of p18Ink4c on Cdk4. Mol Cell Biol 2004; 24:6653-64. [PMID: 15254233 PMCID: PMC444851 DOI: 10.1128/mcb.24.15.6653-6664.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The INK4 family of cyclin-dependent kinase (CDK) inhibitors negatively regulates cyclin D-dependent CDK4 and CDK6 and induces the growth-suppressive function of Rb family proteins. Mutations in the Cdk4 gene conferring INK4 resistance are associated with familial and sporadic melanoma in humans and result in a wide spectrum of tumors in mice, suggesting that INK4 is a major regulator of CDK4. Mice lacking the Cdk4 gene exhibit various defects in many organs associated with hypocellularity, whereas loss of the p18(Ink4c) gene results in widespread hyperplasia and organomegaly. To genetically test the notion that the function of INK4 is dependent on CDK4, we generated p18; Cdk4 double-mutant mice and examined the organs and tissues which developed abnormalities when either gene is deleted. We show here that, in all organs we have examined, including pituitary, testis, pancreas, kidney, and adrenal gland, hyperproliferative phenotypes associated with p18 loss were canceled. The double-mutant mice exhibited phenotypes very close to or indistinguishable from that of Cdk4 single-mutant mice. Mice lacking p27(Kip1) develop widespread hyperplasia and organomegaly similar to those developed by p18-deficient mice. The p27; Cdk4 double-mutant mice, however, displayed phenotypes intermediate between those of p27 and Cdk4 single-mutant mice. These results provide genetic evidence that in mice p18(Ink4c) and p27(Kip1) mediate the transduction of different cell growth and proliferation signals to CDK4 and that p18(Ink4c) is functionally dependent on CDK4.
Collapse
Affiliation(s)
- Xin-Hai Pei
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
378
|
Leung SW, Wloga EH, Castro AF, Nguyen T, Bronson RT, Yamasaki L. A dynamic switch in Rb+/- mediated neuroendocrine tumorigenesis. Oncogene 2004; 23:3296-307. [PMID: 15021915 DOI: 10.1038/sj.onc.1207457] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rb+/- mice develop a complex spectrum of neuroendocrine tumors on a mixed genetic (129Sv x C57BL/6) background. To understand how the 129Sv and C57BL/6 contributions affect Rb+/- tumorigenesis, we serially backcrossed Rb+/- animals to the 129Sv or C57BL/6 strain, and analysed their pathological profiles. Strikingly, the length of survival and the penetrance, severity and multiplicity of neuroendocrine tumors switch dramatically between Rb+/- animals from the two genetic backgrounds. In fact, the 129Sv background significantly enhances both the initiation and progression of tumorigenesis in the intermediate lobe of the pituitary (ILP) in Rb+/- animals. This is due to the surprising fact that ILPs from wild-type 129Sv animals are inherently abnormal, and thus greatly predisposed to neoplasia. This is likely to explain the high incidence of ILP tumors, an otherwise rare tumor type in wild-type mice, in numerous knockout studies performed on the 129Sv strain, and raises the intriguing possibility that the classic Rb+/- neuroendocrine tumors may fade away in another as of yet unidentified inbred strain. Finally, we have increased the utility of the Rb+/- tumor model, since Rb+/- animals on the C57BL/6 background develop high-penetrance tumors of the anterior lobe of the pituitary, a class of tumors estimated to occur in 20-25% of humans.
Collapse
Affiliation(s)
- Sandra W Leung
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
379
|
Lin SCJ, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A, Kang KW, Frank SA, Lee WH, Lee EYHP. Somatic mutation of p53 leads to estrogen receptor alpha-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 2004; 64:3525-32. [PMID: 15150107 DOI: 10.1158/0008-5472.can-03-3524] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately 70% of human breast cancers are estrogen receptor alpha (ERalpha)-positive, but the origins of ERalpha-positive and -negative tumors remain unclear. Hormonal regulation of mammary gland development in mice is similar to that in humans; however, most mouse models produce only ERalpha-negative tumors. In addition, these mouse tumors metastasize at a low rate relative to human breast tumors. We report here that somatic mutations of p53 in mouse mammary epithelial cells using the Cre/loxP system leads to ERalpha-positive and -negative tumors. p53 inactivation under a constitutive active WAPCre(c) in prepubertal/pubertal mice, but not under MMTVCre in adult mice, leads to the development of ERalpha-positive tumors, suggesting that target cells or developmental stages can determine ERalpha status in mammary tumors. Importantly, these tumors have a high rate of metastasis. An inverse relationship between the number of targeted cells and median tumor latency was also observed. Median tumor latency reaches a plateau when targeted cell numbers exceed 20%, implying the existence of saturation kinetics for breast carcinogenesis. Genetic alterations commonly observed in human breast cancer including c-myc amplification and Her2/Neu/erbB2 activation were seen in these mouse tumors. Thus, this tumor system reproduces many important features of human breast cancer and provides tools for the study of the origins of ERalpha-positive and -negative breast tumors in mice.
Collapse
Affiliation(s)
- Suh-Chin J Lin
- Departments of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Jori FP, Napolitano MA, Melone MAB, Cipollaro M, Cascino A, Giordano A, Galderisi U. Role of RB and RB2/P130 genes in marrow stromal stem cells plasticity. J Cell Physiol 2004; 200:201-212. [PMID: 15174090 DOI: 10.1002/jcp.20026] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Marrow stromal cells (MSCs) are stem-like cells having a striking somatic plasticity. In fact, besides differentiating into mesenchymal lineages (bone, cartilage, and fat), they are capable of differentiating into neurons and astrocytes in vitro and in vivo. The RB and RB2/P130 genes, belonging to the retinoblastoma gene family, play a key role in neurogenesis, and for this reason, we investigated their role in neural commitment and differentiation of MSCs. In MSCs that were either uncommitted or committed toward neural differentiation, we ectopically expressed RB and RB2/P130 genes and analyzed their role in regulating the cell cycle, apoptosis and differentiation. In uncommitted MSCs, the activity of RB and RB2/P130 appeared limited to negatively regulating cell cycle progression, having no role in apoptosis and differentiation (toward either mesenchymal or neural lineages). On the other hand, in MSCs committed toward the neural phenotype, both RB and RB2/P130 reduced cell proliferation rate and affected the apoptotic process. RB protected differentiating cells from programmed cell death. On the contrary, RB2/P130 increased the percentage of cells in apoptosis. All of these activities were accomplished mainly in an HDAC-independent way. The retinoblastoma genes also influenced differentiation in neural committed MSCs. RB2/P130 contributes mainly to the induction of generic neural properties, while RB triggers cholinergic differentiation. These differentiating activities are HDAC-dependent. Our research shows that there is a critical temporal requirement for the RB genes during neuronal differentiation of MSCs: they are not required for cell commitment but play a role in the maturation process. For the above reasons, RB and RB2/P130 may have a role in neural differentiation but not in neural determination.
Collapse
Affiliation(s)
- Francesco P Jori
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
381
|
Ebel C, Mariconti L, Gruissem W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 2004; 429:776-80. [PMID: 15201912 DOI: 10.1038/nature02637] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/10/2004] [Indexed: 11/09/2022]
Abstract
Haploid spores of plants divide mitotically to form multicellular gametophytes. The female spore (megaspore) of most flowering plants develops by means of a well-defined programme into the mature megagametophyte consisting of the egg apparatus and a central cell. We investigated the role of the Arabidopsis retinoblastoma protein homologue and its function as a negative regulator of cell proliferation during megagametophyte development. Here we show that three mutant alleles of the gene for the Arabidopsis retinoblastoma-related protein, RBR1 (ref. 4), are gametophytic lethal. In heterozygous plants 50% of the ovules are aborted when the mutant allele is maternally inherited. The mature unfertilized mutant megagametophyte fails to arrest mitosis and undergoes excessive nuclear proliferation in the embryo sac. Supernumerary nuclei are present at the micropylar end of the megagametophyte, which develops into the egg apparatus and central cell. The central cell nucleus, which gives rise to the endosperm after fertilization, initiates autonomous endosperm development reminiscent of fertilization-independent seed (fis) mutants. Thus, RBR1 has a novel and previously unrecognized function in cell cycle control during gametogenesis and in the repression of autonomous endosperm development.
Collapse
Affiliation(s)
- Chantal Ebel
- Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zürich, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
382
|
MacPherson D, Sage J, Kim T, Ho D, McLaughlin ME, Jacks T. Cell type-specific effects of Rb deletion in the murine retina. Genes Dev 2004; 18:1681-94. [PMID: 15231717 PMCID: PMC478190 DOI: 10.1101/gad.1203304] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 05/18/2004] [Indexed: 11/24/2022]
Abstract
Certain cells of the human retina are extremely sensitive to loss of function of the retinoblastoma tumor suppressor gene RB. Retinoblastomas develop early in life and at high frequency in individuals heterozygous for a germ-line RB mutation, and sporadic retinoblastomas invariably have somatic mutation in the RB gene. In contrast, retinoblastomas do not develop in Rb+/- mice. Although retinoblastoma is thought to have developmental origins, the function of Rb in retinal development has not been fully characterized. Here we studied the role of Rb in normal retinal development and in retinoblastoma using conditional Rb mutations in the mouse. In late embryogenesis, Rb-deficient retinas exhibited ectopic S-phase and high levels of p53-independent apoptosis, particularly in the differentiating retinal ganglion cell layer. During postnatal retinal development, loss of Rb led to more widespread retinal apoptosis, and adults showed loss of photoreceptors and bipolar cells. Conditional Rb mutation in the retina did not result in retinoblastoma formation even in a p53-mutant background. However, on a p107- or p130-deficient background, Rb mutation in the retina caused retinal dysplasia or retinoblastoma.
Collapse
Affiliation(s)
- David MacPherson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
383
|
Abstract
Phosphorylation of target proteins by cyclin D1-Cdk4 requires both substrate docking and kinase activity. In addition to the ability of cyclin D1-Cdk4 to catalyze the phosphorylation of consensus sites within the primary amino acid sequence of a substrate, maximum catalytic activity requires the enzyme complex to anchor at a site remote from the phospho-acceptor site. A novel Cdk4 docking motif has been defined within a stretch of 19 amino acids from the C-terminal domain of the Rb protein that are essential for Cdk4 binding. Mutation or deletion of the docking motif prevents Cdk4-dependent phosphorylation of full-length Rb protein or C-terminal Rb fragments in vitro and in cells, while a peptide encompassing the Cdk4 docking motif specifically inhibits Cdk4-dependent phosphorylation of Rb. Cyclin D1-Cdk4 can overcome the growth-suppressive activity of Rb in both cell cycle progression and colony formation assays; however, while mutants of Rb in which the Cdk4 docking site has been either deleted or mutated retain growth suppressor activity, they are resistant to inactivation by cyclin D1-Cdk4. Finally, binding of Cdk4 to its docking site can inhibit cleavage of exogenous and endogenous Rb in response to distinct apoptotic signals. The Cdk4 docking motif in Rb gives insight into the mechanism by which enzyme specificity is ensured and highlights a role for Cdk4 docking in maintaining the Rb protein in a form that favors cell survival rather than apoptosis.
Collapse
Affiliation(s)
- Maura Wallace
- CRUK Laboratories, University of Dundee Medical School, Dundee DD1 9SY, United Kingdom
| | | |
Collapse
|
384
|
Abstract
Targeted cancer treatments rely on understanding signalling cascades, genetic changes, and compensatory programmes activated during tumorigenesis. Increasingly, pathologists are required to interpret molecular profiles of tumour specimens to target new treatments. This is challenging because cancer is a heterogeneous disease-tumours change over time in individual patients and genetic lesions leading from preneoplasia to malignancy can differ substantially between patients. For childhood tumours of the nervous system, the challenge is even greater, because tumours arise from progenitor cells in a developmental context different from that of the adult, and the cells of origin, neural progenitor cells, show considerable temporal and spatial heterogeneity during development. Thus, the underlying mechanisms regulating normal development of the nervous system also need to be understood. Many important advances have come from model mouse genetic systems. This review will describe several mouse models of childhood tumours of the nervous system, emphasising how understanding the normal developmental processes, combined with mouse models of cancer and the molecular pathology of the human diseases, can provide the information needed to treat cancer more effectively.
Collapse
Affiliation(s)
- M A Dyer
- St Jude Children's Research, Department of Developmental Neurobiology, Memphis, TN 38105, USA.
| |
Collapse
|
385
|
Johnson BR, Nitta RT, Frock RL, Mounkes L, Barbie DA, Stewart CL, Harlow E, Kennedy BK. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc Natl Acad Sci U S A 2004; 101:9677-82. [PMID: 15210943 PMCID: PMC470734 DOI: 10.1073/pnas.0403250101] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The retinoblastoma protein (pRB) is a critical regulator of cell proliferation and differentiation and an important tumor suppressor. In the G(1) phase of the cell cycle, pRB localizes to perinucleolar sites associated with lamin A/C intranuclear foci. Here, we examine pRB function in cells lacking lamin A/C, finding that pRB levels are dramatically decreased and that the remaining pRB is mislocalized. We demonstrate that A-type lamins protect pRB from proteasomal degradation. Both pRB levels and localization are restored upon reintroduction of lamin A. Lmna(-/-) cells resemble Rb(-/-) cells, exhibiting altered cell-cycle properties and reduced capacity to undergo cell-cycle arrest in response to DNA damage. These findings establish a functional link between a core nuclear structural component and an important cell-cycle regulator. They further raise the possibility that altered pRB function may be a contributing factor in dystrophic syndromes arising from LMNA mutation.
Collapse
Affiliation(s)
- Brett R Johnson
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
386
|
Mayhew CN, Perkin LM, Zhang X, Sage J, Jacks T, Knudsen ES. Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene 2004; 23:4107-20. [PMID: 15064736 DOI: 10.1038/sj.onc.1207503] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The retinoblastoma (RB) tumor suppressor has been proposed to function as a key mediator of cell cycle checkpoints induced by chemotherapeutic agents. However, these prior studies have relied on embryonic fibroblasts harboring chronic loss of RB, a condition under which compensation of RB functions is known to occur. Here we utilized primary adult fibroblasts derived from mice harboring loxP sites flanking exon 3 of the Rb gene to delineate the action of RB in the chemotherapeutic response. In this system we find that targeted disruption of Rb leads to little overt change in cell cycle distribution. However, these cells exhibited deregulation of RB/E2F target genes and became aneuploid following culture in the absence of RB. When challenged with both DNA damaging and antimetabolite chemotherapeutics, RB was required for primary adult cells to undergo DNA damage checkpoint responses and loss of RB resulted in enhanced aneuploidy following challenge. In contrast, following spontaneous immortalization and the loss of functional p53 signaling, the antimetabolite 5-fluorouracil (5-FU) failed to induce arrest despite the presence of RB. In these immortal cultures RB/E2F targets were deregulated in a complex, gene-specific manner and RB was required for the checkpoint response to camptothecin (CPT). Mechanistic analyses of the checkpoint responses in primary cells indicated that loss of RB leads to increased p53 signaling and decreased viability following both CPT and 5-FU treatment. However, the mechanism through which these agents act to facilitate cell cycle inhibition through RB were distinct. These studies underscore the critical role of RB in DNA-damage checkpoint signaling and demonstrate that RB mediates chemotherapeutic-induced cell cycle inhibition in adult fibroblasts by distinct mechanisms.
Collapse
Affiliation(s)
- Christopher N Mayhew
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | |
Collapse
|
387
|
Davey RA, MacLean HE, McManus JF, Findlay DM, Zajac JD. Genetically modified animal models as tools for studying bone and mineral metabolism. J Bone Miner Res 2004; 19:882-92. [PMID: 15125787 DOI: 10.1359/jbmr.040206] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 11/20/2003] [Accepted: 02/06/2004] [Indexed: 01/20/2023]
Abstract
Genetic modification of mice is a powerful tool for the study of bone development and metabolism. This review discusses the advantages and disadvantages of various approaches used in bone-related research and the contributions these studies have made to bone biology. Genetic modification of mice is a powerful tool for the study of bone development and metabolism. This review discusses the advantages and disadvantages of various approaches used in bone-related research and the contributions these studies have made to bone biology. The approaches to genetic modification included in this review are (1) overexpression of genes, (2) global gene knockouts, (3) tissue-specific gene deletion, and (4) gene knock-in models. This review also highlights issues that should be considered when using genetically modified animal models, including the rigorous control of genetic background, use of appropriate control lines, and confirmation of tissue specificity of gene expression where appropriate. This technology provides a unique and powerful way to probe the function of genes and is already revolutionizing our approach to understanding the physiology of bone development and metabolism.
Collapse
Affiliation(s)
- Rachel A Davey
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | | | | | | | | |
Collapse
|
388
|
Chen D, Livne-bar I, Vanderluit JL, Slack RS, Agochiya M, Bremner R. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 2004; 5:539-51. [PMID: 15193257 DOI: 10.1016/j.ccr.2004.05.025] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Revised: 03/26/2004] [Accepted: 05/18/2004] [Indexed: 01/04/2023]
Abstract
Retinogenesis involves expansion of pluripotent progenitors, specification of postmitotic precursors, and terminal differentiation. Rb or Rb/p107 loss causes retinoblastoma in humans or mice, respectively. One model suggests that Rb- or Rb/p107-deficient retinal precursors have infinite proliferative capacity but are death-prone and must acquire an antiapoptotic mutation. Indeed, we show that Rb/p107 loss does not affect progenitor proliferation or precursor specification, but perturbs cell cycle exit in all seven retinal precursors. However, three precursors survive Rb/p107-loss and stop proliferating following terminal differentiation. Tumors arise from precursors that escape this delayed growth arrest. Thus, retinoblastoma arises from a precursor that has extended, not infinite, proliferative capacity, and is intrinsically death-resistant, not death-prone. We suggest that additional lesions common in retinoblastoma overcome growth arrest, not apoptosis.
Collapse
Affiliation(s)
- Danian Chen
- Toronto Western Research Institute, University Health Network, Vision Science Research Program, Department of Ophthalmology and Visual Sciences, University of Toronto, 399 Bathurst Street, Toronto, Ontario, Canada, M5T 2S8
| | | | | | | | | | | |
Collapse
|
389
|
Ruiz S, Santos M, Segrelles C, Leis H, Jorcano JL, Berns A, Paramio JM, Vooijs M. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis. Development 2004; 131:2737-48. [PMID: 15148303 DOI: 10.1242/dev.01148] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The retinoblastoma gene product, pRb, plays a crucial role in cell cycle regulation, differentiation and inhibition of oncogenic transformation. pRb and its closely related family members p107 and p130 perform exclusive and overlapping functions during mouse development. The embryonic lethality of Rb-null animals restricts the phenotypic analysis of these mice to mid-gestation embryogenesis. We employed the Cre/loxP system to study the function of Rb in adult mouse stratified epithelium. RbF19/F19;K14cre mice displayed hyperplasia and hyperkeratosis in the epidermis with increased proliferation and aberrant expression of differentiation markers. In vitro, pRb is essential for the maintainance of the postmitotic state of terminally differentiated keratinocytes, preventing cell cycle re-entry. However, p107 compensates for the effects of Rb loss as the phenotypic abnormalities of RbF19/F19;K14cre keratinocytes in vivo and in vitro become more severe with the concurrent loss of p107 alleles. p107 alone appears to be dispensable for all these phenotypic changes, as the presence of a single Rb allele in a p107-null background rescues all these alterations. Luciferase reporter experiments indicate that these phenotypic alterations might be mediated by increased E2F activity. Our findings support a model in which pRb in conjunction with p107 plays a central role in regulating epidermal homeostasis.
Collapse
Affiliation(s)
- Sergio Ruiz
- Department of Cell and Molecular Biology and Gene Therapy, CIEMAT, Madrid E28040, Spain
| | | | | | | | | | | | | | | |
Collapse
|
390
|
Liu H, Dibling B, Spike B, Dirlam A, Macleod K. New roles for the RB tumor suppressor protein. Curr Opin Genet Dev 2004; 14:55-64. [PMID: 15108806 DOI: 10.1016/j.gde.2003.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For a gene whose existence was first postulated in 1971, was cloned in 1986 and whose functions have been extensively characterized ever since, you might be inclined to think there was not much new to report regarding the retinoblastoma tumor suppressor gene (RB)--but you would be wrong to make such an assumption. RB is still piquing our interest with several activities defined over the past year that reveal new and exciting roles for this key tumor suppressor gene. These functions include regulation of senescence through specific gene silencing mechanisms, control of developmental processes in extra-embryonic tissues, maintaining tissue homeostasis and determining survival responses to chemotherapy.
Collapse
Affiliation(s)
- Huiping Liu
- The Ben May Institute for Cancer Research, The University of Chicago, The Knapp Medical Research Building, BSLC-R118, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
391
|
Abstract
Retinoblastoma (Rb) and family members have been implicated as key regulators of cell proliferation and differentiation. In particular, accumulated data have suggested that the Rb gene product pRb is an important controller of erythroid differentiation. However, current published data are conflicting as to whether the role of pRb in erythroid cells is cell intrinsic or non-cell intrinsic. Here, we have made use of an in vitro erythroid differentiation culture system to determine the cell-intrinsic requirement for pRb in erythroid differentiation. We demonstrate that the loss of pRb function in primary differentiating erythroid cells results in impaired cell cycle exit and terminal differentiation. Furthermore, we have used coculture experiments to establish that this requirement is cell intrinsic. Together, these data unequivocally demonstrate that pRb is required in a cell-intrinsic manner for erythroid differentiation and provide clarification as to its role in erythropoiesis.
Collapse
Affiliation(s)
- Allison J Clark
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia
| | | | | |
Collapse
|
392
|
Alonso J, Menéndez I, López A, Frayle H, Ruisánchez N, Pestaña A. Two independent RB1-inactivating mutations in peripheral blood DNA of a hereditary retinoblastoma patient. Genes Chromosomes Cancer 2004; 40:271-5. [PMID: 15139006 DOI: 10.1002/gcc.20042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We report the presence of a hemizygous inactivating germ-line RB1 mutation (a recurrent g.78250C-->T transition, resulting in a stop codon in exon 17) in peripheral blood DNA from a patient with hereditary bilateral retinoblastoma. Hemizygosity was established by sequencing that showed no traces of the wild-type C nucleotide and by quantitative real-time PCR, which showed loss of one copy of exon 17. Genotyping of the RB1 locus with several polymorphic markers delineated a maximal deletion region between g.76875 and g.99426, including exons 15-17 and a large piece (21 kb) of intron 17. The heterozygosity for the mutation found in skin fibroblasts proves that the intragenic RB1 deletion probably took place in the definitive hematopoietic lineage of the patient. The presence of a null Rb-/- genotype in the hematopoietic cell lineage suggests that the white blood cells of the proband could be useful in the investigation of the role of complementary RBI family proteins in the control of the cell cycle.
Collapse
Affiliation(s)
- Javier Alonso
- OncoLab, Unidad de Biología Molecular y Celular del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
393
|
Pennaneach V, Barbier V, Regazzoni K, Fotedar R, Fotedar A. Rb Inhibits E2F-1-induced Cell Death in a LXCXE-dependent Manner by Active Repression. J Biol Chem 2004; 279:23376-83. [PMID: 15016799 DOI: 10.1074/jbc.m309809200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rb (retinoblastoma protein) inhibits E2F-1-induced cell death. We now show that the ability of Rb to inhibit E2F-1-induced cell death is dependent on a functional LXCXE-binding site in Rb, thereby suggesting that proteins that bind the LXCXE-binding site in Rb may regulate the anti-apoptotic activity of Rb. HDAC1, an LXCXE protein that plays a critical role in Rb-mediated transcription repression, abrogates the effect of Rb on E2F-1-induced cell death. In contrast, RF-Cp145, another LXCXE protein, cooperates with Rb to inhibit E2F-1-induced cell death. Both proteins exert their effect in an LXCXE-dependent manner. Rb regulates E2F-induced cell death by acting upstream of p73. Rb represses the p73 promoter. Our results further suggest a model in which Rb-E2F-1 complexes mediate the anti-apoptotic activity of Rb through active repression of target genes without recruiting HDAC1.
Collapse
|
394
|
Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ. Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 2004; 23:1609-18. [PMID: 15044952 PMCID: PMC391080 DOI: 10.1038/sj.emboj.7600176] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 02/25/2004] [Indexed: 11/08/2022] Open
Abstract
The retinoblastoma tumor-suppressor protein (pRb) is known to induce growth arrest and cellular differentiation. The molecular determinants of pRb function include protein-protein interactions and post-translational modifications such as phosphorylation. Recently, the co-activator p300 was found to acetylate pRb. The biological significance of pRb acetylation, however, remains unclear. In the present study, we provide evidence that pRb undergoes acetylation upon cellular differentiation, including skeletal myogenesis. In addition to p300, the p300-Associated Factor (P/CAF) can mediate pRb acetylation as pRb interacts directly with the acetyltransferase domain of P/CAF in vitro and can associate with P/CAF in differentiated cells. Significantly, by using a C terminal acetylation-impaired mutant of pRb, we reveal that acetylation does not affect pRb-dependent growth arrest or the repression of E2F transcriptional activity. Instead, acetylation is required for pRb-mediated terminal cell cycle exit and the induction of late myogenic gene expression. Based on these results, we propose that acetylation regulates the differentiation-specific function(s) of pRb.
Collapse
Affiliation(s)
- Don X Nguyen
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Laurel A Baglia
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Shih-Min Huang
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Christina M Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Dennis J McCance
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
- The Cancer Center, University of Rochester, Rochester, NY, USA
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA. Tel.: +1 585 275 0101; Fax: +1 585 473 9573; E-mail: ,
| |
Collapse
|
395
|
Affiliation(s)
- Suzanne J Baker
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
396
|
Chow SN, Lin MC, Shen J, Wang S, Jong YJ, Chien CH. Analysis of chromosome abnormalities by comparative genomic hybridization in malignant peripheral primitive neuroectodermal tumor of the ovary. Gynecol Oncol 2004; 92:752-60. [PMID: 14984937 DOI: 10.1016/j.ygyno.2003.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Malignant primitive neuroectodermal tumor (PNET) originating from the ovary rather than from the central nervous system is extremely rare. The aim of this study is to demonstrate the chromosomal abnormalities in a case of peripheral primitive neuroectodermal tumor (PPNET) arising from the ovary of a girl. METHODS The 13-year-old girl underwent exploratory laparotomy because of a huge pelvic tumor in lower abdomen and pelvis. She underwent removal of ovaries, tubes, omentum, peritoneal nodules, and portion of urinary bladder. Tumor specimens were sent for pathology, short-term tissue culture, and for storage in deep freezer for laboratory studies. Immunohistochemical stainings of the tumor with antibodies against O-13 (MIC/CD99), NSE, GFAP, S-100, cytokeratin AE1/AE3, desmin, NF, and AFP were performed. Short-term cell culture of fresh tumor was done for analysis of chromosomal aberrations by the technique of comparative genomic hybridization (CGH). Names of specific genes corresponding to the losses or gains on gene map loci were identified from OMIM (Online Mendelian Inheritance in Man) of the NCBI website,. The overexpressions of N-myc and EGFR as well as underexpressions of Rb and ARHI were detected by RT-PCR analysis. The patient expired 17 months later despite of chemotherapy, repeated surgery, and radiation therapy. RESULT The histopathology of the specimens revealed malignant neuroectodermal tumor, involving ovaries, tubes, bladder, omentum, and peritoneum. Immunohistochemical stainings of PPNET of the ovary showed positive reaction for O-13 (MIC2/CD99) and NSE, but negative for GFAP, S-100, cytokeratin AE1/AE3, desmin, NF, and AFP. Analysis of CGH revealed multiple chromosomal abnormalities including losses of chromosomes in 1p, 1q, 4q, 6p, 6q, 7q, 8q, 13q, and 19q; as well as gains of chromosomes in 1q, 2p, 7p, 9q, 18q, and Xq. Losses of 13q14.1-q14.2, 1p31, and 4q34-q35 indicated that Rb gene, ARHI, and FAT were deleted. Gains of 2p24.1, 1q23, and 7p12.3-p12.1 demonstrated that N-myc oncogene, FASL, GITRL, and EGFR were amplified. RT-PCR analysis showed that N-myc and EGFR were overexpressed, while Rb and ARHI were underexpressed. CONCLUSIONS This report is the first to show multiple chromosomal aberrations in PPENT arising from the ovary. The deletions of Rb, ARHI, and FAT, as well as amplification of N-myc, FASL, GITRL, and EGFR, may be the crucial factors for tumorigenesis and the aggressive biological behavior of PPNET.
Collapse
Affiliation(s)
- Song-Nan Chow
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
397
|
Zhang J, Gray J, Wu L, Leone G, Rowan S, Cepko CL, Zhu X, Craft CM, Dyer MA. Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat Genet 2004; 36:351-60. [PMID: 14991054 DOI: 10.1038/ng1318] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 01/29/2004] [Indexed: 12/31/2022]
Abstract
The retinoblastoma protein (Rb) regulates proliferation, cell fate specification and differentiation in the developing central nervous system (CNS), but the role of Rb in the developing mouse retina has not been studied, because Rb-deficient embryos die before the retinas are fully formed. We combined several genetic approaches to explore the role of Rb in the mouse retina. During postnatal development, Rb is expressed in proliferating retinal progenitor cells and differentiating rod photoreceptors. In the absence of Rb, progenitor cells continue to divide, and rods do not mature. To determine whether Rb functions in these processes in a cell-autonomous manner, we used a replication-incompetent retrovirus encoding Cre recombinase to inactivate the Rb1(lox) allele in individual retinal progenitor cells in vivo. Combined with data from studies of conditional inactivation of Rb1 using a combination of Cre transgenic mouse lines, these results show that Rb is required in a cell-autonomous manner for appropriate exit from the cell cycle of retinal progenitor cells and for rod development.
Collapse
Affiliation(s)
- Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Wang X, Deng H, Basu I, Zhu L. Induction of Androgen Receptor-Dependent Apoptosis in Prostate Cancer Cells by the Retinoblastoma Protein. Cancer Res 2004; 64:1377-85. [PMID: 14973061 DOI: 10.1158/0008-5472.can-03-2428] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Re-expression of a tumor suppressor in tumor cells that lack it is an effective way to study its functional activities. However, because tumor cells contain multiple mutations, tumor suppressor functions that are dependent on (an)other regulators are unlikely to be identified by its re-expression alone if the other regulators are also mutated. In this study, we show that re-expression of retinoblastoma (RB) together with the androgen receptor (AR) in RB- and AR-deficient prostate cancer DU-145 cells resulted in an apoptotic activity, acting through the mitochondria damage-initiated caspase activation pathway, which was not present when RB, or the AR, was re-expressed alone. The ability of RB + AR to induce mitochondria damage was dependent on the proapoptotic proteins Bax and Bak and could be blocked by the antiapoptotic protein Bcl-x(L). Coexpressed AR did not detectably change RB's regulation of E2F and cell cycle progression in culture. On the other hand, coexpressed RB could activate the transactivation activity of the AR in an androgen-depleted media. Although androgen induced greater AR transactivation activity in this condition, it did not induce apoptosis in the absence of coexpressed RB. Analysis of mutants of RB and the AR indicated that intact pocket function of RB and the transactivation activity of the AR were required for RB + AR-induced apoptosis. These results provide direct functional data for an AR-dependent apoptosis-inducing activity of RB and highlight the importance of cell type-specific regulators in obtaining a more complete understanding of RB.
Collapse
Affiliation(s)
- Xintao Wang
- Department of Developmental and Molecular Biology, The Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
399
|
Sherr CJ. The ins and outs of RB: coupling gene expression to the cell cycle clock. Trends Cell Biol 2004; 4:15-8. [PMID: 14731824 DOI: 10.1016/0962-8924(94)90033-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extracellular growth-stimulatory and -inhibitory signals govern the subunit assembly and activity of G1 cyclin-dependent kinases (cdks), which in turn can phosphorylate the retinoblastoma gene product, pRb, to cancel its growth-suppressive function. Hypophosphorylated forms of pRb, present only during the G1 phase, sequester target proteins including known transcription factors, but pRb phosphorylation late in G1 prevents these interactions and thus frees factors to alter the expression of genes required for entry into S phase. Although pRb can act as a regulator of the G1-S transition, its loss is tolerated by most cells, suggesting that its functions overlap with those of other regulators or are restricted to special circumstances under which cells exit the division cycle.
Collapse
Affiliation(s)
- C J Sherr
- Howard Hughes Medical Institute, Department of Tumor Cell Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| |
Collapse
|
400
|
Abstract
Many of the documented changes in cellular DNA that occur during tumour development involve activation of proto-oncogenes, but newer evidence has shown that oncogenesis can involve loss or inactivation of a different group of genes, called tumour suppressor genes (TSGs). Molecular analysis of TSGs is revealing that their protein products are involved in cell adhesion, signal transduction, transcription, translation and cell cycle control. Surprisingly, most of the TSG products had not been previously identified in studies of normal cells, so their analysis is contributing not only to our understanding of oncogenesis, but also to basic cell biology. The 'comment' articles in this issue discuss progress towards understanding the cellular functions of TSG products.
Collapse
Affiliation(s)
- P J Bryant
- Developmental Biology Center, University of California, Irvine, CA 92717, USA
| |
Collapse
|