351
|
Serrano-Villar S, Rojo D, Martínez-Martínez M, Deusch S, Vázquez-Castellanos JF, Bargiela R, Sainz T, Vera M, Moreno S, Estrada V, Gosalbes MJ, Latorre A, Seifert J, Barbas C, Moya A, Ferrer M. Gut Bacteria Metabolism Impacts Immune Recovery in HIV-infected Individuals. EBioMedicine 2016; 8:203-216. [PMID: 27428431 PMCID: PMC4919658 DOI: 10.1016/j.ebiom.2016.04.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
While changes in gut microbial populations have been described in human immuno-deficiency virus (HIV)-infected patients undergoing antiretroviral therapy (ART), the mechanisms underlying the contributions of gut bacteria and their molecular agents (metabolites and proteins) to immune recovery remain unexplored. To study this, we examined the active fraction of the gut microbiome, through examining protein synthesis and accumulation of metabolites inside gut bacteria and in the bloodstream, in 8 healthy controls and 29 HIV-infected individuals (6 being longitudinally studied). We found that HIV infection is associated to dramatic changes in the active set of gut bacteria simultaneously altering the metabolic outcomes. Effects were accentuated among immunological ART responders, regardless diet, subject characteristics, clinical variables other than immune recovery, the duration and type of ART and sexual preferences. The effect was found at quantitative levels of several molecular agents and active bacteria which were herein identified and whose abundance correlated with HIV immune pathogenesis markers. Although, we cannot rule out the possibility that some changes are partially a random consequence of the disease status, our data suggest that most likely reduced inflammation and immune recovery is a joint solution orchestrated by both the active fraction of the gut microbiota and the host.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, University Hospital Ramón y Cajal and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | | | - Simon Deusch
- Institute of Animal Science, Universität Hohenheim, Stuttgart, Germany
| | - Jorge F Vázquez-Castellanos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain; Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Talía Sainz
- Department of Pediatric Infectious Diseases, University Hospital La Paz, and La Paz Research Institute (IdiPAZ), Madrid, Spain
| | - Mar Vera
- Centro Sanitario Sandoval, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, University Hospital Ramón y Cajal and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Vicente Estrada
- HIV Unit, Department of Internal Medicine, University Hospital Clínico San Carlos, Madrid, Spain
| | - María José Gosalbes
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain; Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Amparo Latorre
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain; Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain; Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain
| | - Jana Seifert
- Institute of Animal Science, Universität Hohenheim, Stuttgart, Germany
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain.
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Valencia, Spain; Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain; Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain.
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
352
|
Abstract
Consistent interactions between the gut microbiome and adaptive immunity recently led several research groups to evaluate modifications of human gut microbiota composition during HIV infection. Herein we propose to review the shifts reported in infected individuals, as their correlation to disease progression. Though the gut microbiota is consistently altered in HIV individuals, the literature reveals several discrepancies, such as changes in microbial diversity associated with HIV status, taxa modified in infected subjects or influence of ART on gut flora restoration. Similarly, mechanisms involved in interactions between gut bacteria and immunity are to date poorly elucidated, emphasizing the importance of understanding how microbes can promote HIV replication. Further research is needed to propose adjuvant therapeutics dedicated to controlling disease progression through gut microbiome restoration.
Collapse
|
353
|
Gut immune dysfunction through impaired innate pattern recognition receptor expression and gut microbiota dysbiosis in chronic SIV infection. Mucosal Immunol 2016; 9:677-88. [PMID: 26376368 PMCID: PMC4794436 DOI: 10.1038/mi.2015.92] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023]
Abstract
HIV targets the gut mucosa early in infection, causing immune and epithelial barrier dysfunction and disease progression. However, gut mucosal sensing and innate immune signaling through mucosal pattern recognition receptors (PRRs) during HIV infection and disease progression are not well defined. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model of AIDS, we found a robust increase in PRRs and inflammatory cytokine gene expression during the acute SIV infection in both peripheral blood and gut mucosa, coinciding with viral replication. PRR expression remained elevated in peripheral blood following the transition to chronic SIV infection. In contrast, massive dampening of PRR expression was detected in the gut mucosa, despite the presence of detectable viral loads. Exceptionally, expression of Toll-like receptor 4 (TLR4) and TLR8 was downmodulated and diverged from expression patterns for most other TLRs in the gut. Decreased mucosal PRR expression was associated with increased abundance of several pathogenic bacterial taxa, including Pasteurellaceae members, Aggregatibacter and Actinobacillus, and Mycoplasmataceae family. Early antiretroviral therapy led to viral suppression but only partial maintenance of gut PRRs and cytokine gene expression. In summary, SIV infection dampens mucosal innate immunity through PRR dysregulation and may promote immune activation, gut microbiota changes, and ineffective viral clearance.
Collapse
|
354
|
Effects of Fecal Microbial Transplantation on Microbiome and Immunity in Simian Immunodeficiency Virus-Infected Macaques. J Virol 2016; 90:4981-4989. [PMID: 26937040 DOI: 10.1128/jvi.00099-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED An altered intestinal microbiome during chronic human immunodeficiency virus (HIV) infection is associated with mucosal dysfunction, inflammation, and disease progression. We performed a preclinical evaluation of the safety and efficacy of fecal microbiota transplantation (FMT) as a potential therapeutic in HIV-infected individuals. Antiretroviral-treated, chronically simian immunodeficiency virus (SIV)-infected rhesus macaques received antibiotics followed by FMT. The greatest microbiota shift was observed after antibiotic treatment. The bacterial community composition at 2 weeks post-FMT resembled the pre-FMT community structure, although differences in the abundances of minor bacterial populations remained. Immunologically, we observed significant increases in the number of peripheral Th17 and Th22 cells and reduced CD4(+) T cell activation in gastrointestinal tissues post-FMT. Importantly, the transplant was well tolerated with no negative clinical side effects. Although this pilot study did not control for the differential contributions of antibiotic treatment and FMT to the observed results, the data suggest that FMT may have beneficial effects that should be further evaluated in larger studies. IMPORTANCE Due to the immunodeficiency and chronic inflammation that occurs during HIV infection, determination of the safety of FMT is crucial to prevent deleterious consequences if it is to be used as a treatment in the future. Here we used the macaque model of HIV infection and performed FMT on six chronically SIV-infected rhesus macaques on antiretroviral treatment. In addition to providing a preclinical demonstration of the safety of FMT in primates infected with a lentivirus, this study provided a unique opportunity to examine the relationships between alterations to the microbiome and immunological parameters. In this study, we found increased numbers of Th17 and Th22 cells as well as decreased activation of CD4(+) T cells post-FMT, and these changes correlated most strongly across all sampling time points with lower-abundance taxonomic groups and other taxonomic groups in the colon. Overall, these data provide evidence that changes in the microbiome, particularly in terms of diversity and changes in minor populations, can enhance immunity and do not have adverse consequences.
Collapse
|
355
|
Li SX, Armstrong A, Neff CP, Shaffer M, Lozupone CA, Palmer BE. Complexities of Gut Microbiome Dysbiosis in the Context of HIV Infection and Antiretroviral Therapy. Clin Pharmacol Ther 2016; 99:600-11. [PMID: 26940481 DOI: 10.1002/cpt.363] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) infection is associated with an altered gut microbiome that is not consistently restored with effective antiretroviral therapy (ART). Interpretation of the specific microbiome changes observed during HIV infection is complicated by factors like population, sample type, and ART-each of which may have dramatic effects on gut bacteria. Understanding how these factors shape the microbiome during HIV infection (which we refer to as the HIV-associated microbiome) is critical for defining its role in HIV disease, and for developing therapies that restore gut health during infection.
Collapse
Affiliation(s)
- S X Li
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ajs Armstrong
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - C P Neff
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - M Shaffer
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - C A Lozupone
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - B E Palmer
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
356
|
Tincati C, Douek DC, Marchetti G. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection. AIDS Res Ther 2016; 13:19. [PMID: 27073405 PMCID: PMC4828806 DOI: 10.1186/s12981-016-0103-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past 10 years, extensive work has been carried out in the field of microbial translocation in HIV infection, ranging from studies on its clinical significance to investigations on its pathogenic features. In the present work, we review the most recent findings on this phenomenon, focusing on the predictive role of microbial translocation in HIV-related morbidity and mortality, the mechanisms by which it arises and potential therapeutic approaches. From a clinical perspective, current work has shown that markers of microbial translocation may be useful in predicting clinical events in untreated HIV infection, while conflicting data exist on their role in cART-experienced subjects, possibly due to the inclusion of extremely varied patient populations in cohort studies. Results from studies addressing the pathogenesis of microbial translocation have improved our knowledge of the damage of the gastrointestinal epithelial barrier occurring in HIV infection. However, the extent to which mucosal impairment translates directly to increased gastrointestinal permeability remains an open issue. In this respect, novel work has established a role for IL-17 and IL-22-secreting T cell populations in limiting microbial translocation and systemic T-cell activation/inflammation, thus representing a possible target of immune-therapeutic interventions shown to be promising in the animal model. Further, recent reports have not only confirmed the presence of a dysbiotic intestinal community in the course of HIV infection but have also shown that it may be linked to mucosal damage, microbial translocation and peripheral immune activation. Importantly, technical advances have also shed light on the metabolic activity of gut microbes, highlighting the need for novel therapeutic approaches to correct the function, as well as the composition, of the gastrointestinal microbiota.
Collapse
|
357
|
Fidler S, Ananworanich J, Vandekerckhove L, Kiselinova M, Schuetz A, Vera JH, Dwyer E, Alagaratnam J. Highlights from the Conference on Retroviruses and Opportunistic Infections 2016: 22-25 February 2016, Boston, Massachusetts, USA. J Virus Erad 2016; 2:124-30. [PMID: 27482450 PMCID: PMC4965246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Jintanat Ananworanich
- US Military HIV Research Program , Walter Reed Army Institute of Research ; Henry M Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | | | - Maja Kiselinova
- Department of Internal Medicine , Ghent University Hospital , Belgium
| | - Alexandra Schuetz
- Department of Retrovirology , US Army Medical Component , Armed Forces Institute of Medical Research , Henry M Jackson Foundation , Bangkok , Thailand
| | - Jaime H Vera
- Lawson Unit , Brighton and Sussex University NHS Trust and Brighton and Sussex Medical School , UK
| | - Ellen Dwyer
- St George's University Hospitals NHS Foundation Trust , London , UK
| | | |
Collapse
|
358
|
Fidler S, Ananworanich J, Vandekerckhove L, Kiselinova M, Schuetz A, Vera JH, Dwyer E, Alagaratnam J. Highlights from the Conference on Retroviruses and Opportunistic Infections 2016. J Virus Erad 2016. [DOI: 10.1016/s2055-6640(20)30478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
359
|
Hauser LJ, Ir D, Kingdom TT, Robertson CE, Frank DN, Ramakrishnan VR. Evaluation of bacterial transmission to the paranasal sinuses through sinus irrigation. Int Forum Allergy Rhinol 2016; 6:800-6. [PMID: 26990369 DOI: 10.1002/alr.21755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Saline nasal irrigation is effective in the treatment of sinonasal disorders, including chronic rhinosinusitis (CRS). Despite bacterial contamination in rinse bottles and reports of infections from contaminated irrigation water, tap water is still used by ∼50% of irrigation users, raising a potential public health concern. This study aimed to determine whether bacteria from the water supply used in sinus irrigations colonizes the paranasal sinuses. METHODS Samples were taken from the: (1) water used for irrigation, (2) faucet or container the water originated from, (3) rinse bottle, and (4) postoperative ethmoid cavity from 13 subjects with CRS. Microbiota were characterized using quantitative polymerase chain reaction (qPCR) and 16S ribosomal RNA (rRNA) gene sequencing. The Morisita-Horn beta-diversity index (M-H) was used to assess similarity in microbiota between samples, and genomic analysis was performed to assess clonality of cultured bacteria. RESULTS Of 13 subjects, 6 used distilled water, 6 used tap water, and 1 used well water in this institutional review board (IRB)-approved observational study. Well-water had markedly more bacteria than tap or distilled water. There was a trend toward tap having more bacteria than distilled water. The sinus samples were notably dissimilar to the bottle, faucet, and irrigant (M-H 0.15, 0.09, and 0.18, respectively). There was no difference in postoperative microbiotas between distilled and tap water users. CONCLUSION The current study suggests that irrigation plays little role in establishing the sinus microbiome. Although rinsing with tap water may never be formally recommended, these data are useful to counsel patients who prefer to do so in non-endemic areas if the municipal water supply is appropriately treated.
Collapse
Affiliation(s)
- Leah J Hauser
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, CO
| | - Diana Ir
- Division of Infectious Diseases, University of Colorado, Aurora, CO
| | - Todd T Kingdom
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, CO
| | - Charles E Robertson
- The Microbiome Research Consortium, University of Colorado, Aurora, CO.,Department of Biostatistics and Informatics, University of Colorado, Aurora, CO.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Aurora, CO
| | - Daniel N Frank
- Division of Infectious Diseases, University of Colorado, Aurora, CO.,The Microbiome Research Consortium, University of Colorado, Aurora, CO
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, CO
| |
Collapse
|
360
|
Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS, Lim ES, Lankowski A, Baldridge MT, Wilen CB, Flagg M, Norman JM, Keller BC, Luévano JM, Wang D, Boum Y, Martin JN, Hunt PW, Bangsberg DR, Siedner MJ, Kwon DS, Virgin HW. Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe 2016; 19:311-22. [PMID: 26962942 PMCID: PMC4821831 DOI: 10.1016/j.chom.2016.02.011] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/31/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) infection is associated with increased intestinal translocation of microbial products and enteropathy as well as alterations in gut bacterial communities. However, whether the enteric virome contributes to this infection and resulting immunodeficiency remains unknown. We characterized the enteric virome and bacterial microbiome in a cohort of Ugandan patients, including HIV-uninfected or HIV-infected subjects and those either treated with anti-retroviral therapy (ART) or untreated. Low peripheral CD4 T cell counts were associated with an expansion of enteric adenovirus sequences and this increase was independent of ART treatment. Additionally, the enteric bacterial microbiome of patients with lower CD4 T counts exhibited reduced phylogenetic diversity and richness with specific bacteria showing differential abundance, including increases in Enterobacteriaceae, which have been associated with inflammation. Thus, immunodeficiency in progressive HIV infection is associated with alterations in the enteric virome and bacterial microbiome, which may contribute to AIDS-associated enteropathy and disease progression.
Collapse
Affiliation(s)
- Cynthia L Monaco
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Efrem S Lim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Alex Lankowski
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan T Baldridge
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Meaghan Flagg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Brian C Keller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yap Boum
- Médecins Sans Frontières Epicentre, 1956 Mbarara, Uganda
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter W Hunt
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - David R Bangsberg
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard School of Public Health, Boston, MA 02114, USA
| | - Mark J Siedner
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
361
|
Reduced Levels of D-dimer and Changes in Gut Microbiota Composition After Probiotic Intervention in HIV-Infected Individuals on Stable ART. J Acquir Immune Defic Syndr 2016; 70:329-37. [PMID: 26258571 DOI: 10.1097/qai.0000000000000784] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Microbial translocation and chronic inflammation may contribute to non-AIDS morbidity in patients with HIV. This study assessed the impact of probiotic intervention on microbial translocation and inflammation in patients on antiretroviral therapy with viral suppression and subnormal CD4 count. METHODS Thirty-two patients receiving antiretroviral therapy (CD4 <500 cells/μL) were randomized in a double-blind fashion to multistrain daily probiotics (n = 15), placebo (n = 9), or controls (n = 8) for 8 weeks. Soluble inflammation markers, D-dimer, lipopolysaccharide (LPS), sCD14, T-cell activation, tryptophan metabolites, and gut microbiota composition were analyzed at baseline and end of study. Nonparametric statistics were applied. RESULTS Twenty-four participants completed the study and were included in as-treated analyses. In patients receiving probiotics, there was a significant reduction in D-dimer levels (median change 33%, P = 0.03) and a tendency to reduced levels of C-reactive protein (CRP) (P = 0.05) and interleukin (IL)-6 (P = 0.06). The changes in CRP and IL-6 were highly correlated (r = 0.95, P < 0.01), whereas changes in D-dimer did not correlate with changes in CRP or IL-6. Increases in Bifidobacteria (P = 0.04) and Lactobacilli (P = 0.06) were observed in the probiotic group, whereas the relative abundance of Bacteroides decreased (P ≤ 0.01). No significant changes were seen in markers of microbial translocation or T-cell activation. However, the expansion of Bifidobacteria correlated negatively with differences in LPS (r = -0.77, P = 0.01), whereas the reduction in Bacteroides correlated positively with changes in LPS during the study period (r = 0.72, P = 0.02). CONCLUSIONS Probiotic intervention seemed to reduce markers of coagulation and inflammation without overt changes in microbial translocation. These findings warrant further studies in larger cohorts with long-term follow-up.
Collapse
|
362
|
Márquez M, Fernández Gutiérrez del Álamo C, Girón-González JA. Gut epithelial barrier dysfunction in human immunodeficiency virus-hepatitis C virus coinfected patients: Influence on innate and acquired immunity. World J Gastroenterol 2016; 22:1433-1448. [PMID: 26819512 PMCID: PMC4721978 DOI: 10.3748/wjg.v22.i4.1433] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/11/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Even in cases where viral replication has been controlled by antiretroviral therapy for long periods of time, human immunodeficiency virus (HIV)-infected patients have several non-acquired immunodeficiency syndrome (AIDS) related co-morbidities, including liver disease, cardiovascular disease and neurocognitive decline, which have a clear impact on survival. It has been considered that persistent innate and acquired immune activation contributes to the pathogenesis of these non-AIDS related diseases. Immune activation has been related with several conditions, remarkably with the bacterial translocation related with the intestinal barrier damage by the HIV or by hepatitis C virus (HCV)-related liver cirrhosis. Consequently, increased morbidity and mortality must be expected in HIV-HCV coinfected patients. Disrupted gut barrier lead to an increased passage of microbial products and to an activation of the mucosal immune system and secretion of inflammatory mediators, which in turn might increase barrier dysfunction. In the present review, the intestinal barrier structure, measures of intestinal barrier dysfunction and the modifications of them in HIV monoinfection and in HIV-HCV coinfection will be considered. Both pathogenesis and the consequences for the progression of liver disease secondary to gut microbial fragment leakage and immune activation will be assessed.
Collapse
|
363
|
Ponte R, Mehraj V, Ghali P, Couëdel-Courteille A, Cheynier R, Routy JP. Reversing Gut Damage in HIV Infection: Using Non-Human Primate Models to Instruct Clinical Research. EBioMedicine 2016; 4:40-9. [PMID: 26981570 PMCID: PMC4776249 DOI: 10.1016/j.ebiom.2016.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART) has led to dramatic improvements in the lives of HIV-infected persons. However, residual immune activation, which persists despite ART, is associated with increased risk of non-AIDS morbidities. Accumulating evidence shows that disruption of the gut mucosal epithelium during SIV/HIV infections allows translocation of microbial products into the circulation, triggering immune activation. This disruption is due to immune, structural and microbial alterations. In this review, we highlighted the key findings of gut mucosa studies of SIV-infected macaques and HIV-infected humans that have revealed virus-induced changes of intestinal CD4, CD8 T cells, innate lymphoid cells, myeloid cells, and of the local cytokine/chemokine network in addition to epithelial injuries. We review the interplay between the host immune response and the intestinal microbiota, which also impacts disease progression. Collectively, these studies have instructed clinical research on early ART initiation, modifiers of microbiota composition, and recombinant cytokines for restoring gut barrier integrity.
Collapse
Affiliation(s)
- Rosalie Ponte
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Vikram Mehraj
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter Ghali
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada; Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
| | - Anne Couëdel-Courteille
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Université Paris Diderot, Paris 75013, France
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada; Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
364
|
Pandrea I, Xu C, Stock JL, Frank DN, Ma D, Policicchio BB, He T, Kristoff J, Cornell E, Haret-Richter GS, Trichel A, Ribeiro RM, Tracy R, Wilson C, Landay AL, Apetrei C. Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques. PLoS Pathog 2016; 12:e1005384. [PMID: 26764484 PMCID: PMC4713071 DOI: 10.1371/journal.ppat.1005384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection. We report that administration of the intraluminal antibiotic Rifaximin and the gut-focused anti-inflammatory drug Sulfasalazine to acutely SIV-infected pigtailed macaques is associated with a transient disruption of the vicious circle of inflammation-microbial translocation-immune activation which is pathognomonic to pathogenic HIV/SIV infection and drives HIV disease progression and non-AIDS comorbidities in HIV-infected patients. This therapeutic approach resulted in transient lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and lower levels of hypercoagulation biomarkers throughout acute SIV infection. Our results thus support the use of therapeutic approaches to reduce microbial translocation, improve the clinical outcome of HIV-infected patients receiving antiretroviral therapy and prevent non-AIDS comorbidities. Our results also reinforce the importance of early therapeutic management of HIV infection.
Collapse
Affiliation(s)
- Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
- * E-mail:
| | - Cuiling Xu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer L. Stock
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel N. Frank
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
| | - Benjamin B. Policicchio
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tianyu He
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - George S. Haret-Richter
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita Trichel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Cara Wilson
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Alan L. Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
| |
Collapse
|
365
|
Dillon SM, Lee EJ, Donovan AM, Guo K, Harper MS, Frank DN, McCarter MD, Santiago ML, Wilson CC. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection. Retrovirology 2016; 13:5. [PMID: 26762145 PMCID: PMC4712466 DOI: 10.1186/s12977-016-0237-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Early HIV-1 infection is characterized by high levels of HIV-1 replication and substantial CD4 T cell depletion in the intestinal mucosa, intestinal epithelial barrier breakdown, and microbial translocation. HIV-1-induced disruption of intestinal homeostasis has also been associated with changes in the intestinal microbiome that are linked to mucosal and systemic immune activation. In this study, we investigated the impact of representative bacterial species that were altered in the colonic mucosa of viremic HIV-1 infected individuals (HIV-altered mucosal bacteria; HAMB) on intestinal CD4 T cell function, infection by HIV-1, and survival in vitro. Lamina propria (LP) mononuclear cells were infected with CCR5-tropic HIV-1BaL or mock infected, exposed to high (3 gram-negative) or low (2 gram-positive) abundance HAMB or control gram-negative Escherichia coli and levels of productive HIV-1 infection and CD4 T cell depletion assessed. HAMB-associated changes in LP CD4 T cell activation, proliferation and HIV-1 co-receptor expression were also evaluated. RESULTS The majority of HAMB increased HIV-1 infection and depletion of LP CD4 T cells, but gram-negative HAMB enhanced CD4 T cell infection to a greater degree than gram-positive HAMB. Most gram-negative HAMB enhanced T cell infection to levels similar to that induced by gram-negative E. coli despite lower induction of T cell activation and proliferation by HAMB. Both gram-negative HAMB and E. coli significantly increased expression of HIV-1 co-receptor CCR5 on LP CD4 T cells. Lipopolysaccharide, a gram-negative bacteria cell wall component, up-regulated CCR5 expression on LP CD4 T cells whereas gram-positive cell wall lipoteichoic acid did not. Upregulation of CCR5 by gram-negative HAMB was largely abrogated in CD4 T cell-enriched cultures suggesting an indirect mode of stimulation. CONCLUSIONS Gram-negative commensal bacteria that are altered in abundance in the colonic mucosa of HIV-1 infected individuals have the capacity to enhance CCR5-tropic HIV-1 productive infection and depletion of LP CD4 T cells in vitro. Enhanced infection appears to be primarily mediated indirectly through increased expression of CCR5 on LP CD4 T cells without concomitant large scale T cell activation. This represents a novel mechanism potentially linking intestinal dysbiosis to HIV-1 mucosal pathogenesis.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eric J Lee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Andrew M Donovan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Kejun Guo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Michael S Harper
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Daniel N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,University of Colorado Microbiome Research Consortium, Aurora, CO, USA.
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cara C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
366
|
Pandrea I, Landay A, Wilson C, Stock J, Tracy R, Apetrei C. Using the pathogenic and nonpathogenic nonhuman primate model for studying non-AIDS comorbidities. Curr HIV/AIDS Rep 2016; 12:54-67. [PMID: 25604236 PMCID: PMC4369284 DOI: 10.1007/s11904-014-0245-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the advent of antiretroviral therapy that can control virus replication below the detection levels of conventional assays, a new clinical landscape of AIDS emerged, in which non-AIDS complications prevail over AIDS-defining conditions. These comorbidities are diverse and affect multiple organs, thus resulting in cardiovascular, kidney, neurocognitive and liver disease, osteopenia/osteoporosis, and cancers. A common feature of these conditions is that they are generally associated with accelerated aging. The mechanism behind these comorbidities is chronic excessive inflammation induced by HIV infection, which persists under antiretroviral therapy. Progressive simian immunodeficiency virus (SIV) infection of nonhuman primates (NHPs) closely reproduces these comorbidities and offers a simplified system in which most of the traditional human risk factors for comorbidities (i.e., smoking, hyperlipidemia) are absent. Additionally, experimental conditions can be properly controlled during a shorter course of disease for SIV infection. As such, NHPs can be employed to characterize new paradigms of AIDS pathogenesis and to test the efficacy of interventions aimed at alleviating non-AIDS-related comorbidities.
Collapse
Affiliation(s)
- Ivona Pandrea
- Center for Vaccine Research and Department of Pathology, University of Pittsburgh, 9014 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261-9045, USA,
| | | | | | | | | | | |
Collapse
|
367
|
Yang L, Poles MA, Fisch GS, Ma Y, Nossa C, Phelan JA, Pei Z. HIV-induced immunosuppression is associated with colonization of the proximal gut by environmental bacteria. AIDS 2016; 30:19-29. [PMID: 26731752 DOI: 10.1097/qad.0000000000000935] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To evaluate the impact of HIV infection on colonization resistance in the proximal gut. DESIGN It was a case-control study. METHODS We contrasted microbiota composition between eight HIV-1-infected patients and eight HIV-negative controls to characterize community alteration and detect exogenous bacteria in the esophagus, stomach, and duodenum, as well as the mouth using a universal 16s ribosomal RNA gene survey and correlated the findings with HIV serostatus and peripheral blood T-cell counts. RESULTS HIV infection was associated with an enrichment of Proteobacteria (P=0.020) and depletion of Firmicutes (P = 0.005) in the proximal gut. In particular, environmental species Burkholderia fungorum and Bradyrhizobium pachyrhizi colonized the duodenum of HIV patients who had abnormal blood CD4 T-cell counts but were absent in HIV-negative controls or HIV patients whose CD4 cell counts were normal. The two species coexisted and exhibited a decreasing trend proximally toward the stomach and esophagus and were virtually absent in the mouth. B. fungorum always outnumbered B. pachyrhizi in a ratio of approximately 15 to 1 regardless of the body sites (P < 0.0001, r = 0.965). Their abundance was inversely correlated with CD4 cell counts (P = 0.004) but not viral load. Overgrowth of potential opportunistic pathogens for example, Prevotella, Fusobacterium, and Ralstonia and depletion of beneficial bacteria, for example, Lactobacillus was also observed in HIV patients. CONCLUSIONS The colonization of the duodenum by environmental bacteria reflects loss of colonization resistance in HIV infection. Their correlation with CD4 cell counts suggests that compromised immunity could be responsible for the observed invasion by exogenous microbes.
Collapse
|
368
|
Shang Q, Shan X, Cai C, Hao J, Li G, Yu G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance ofLactobacillusandRuminococcaceae. Food Funct 2016; 7:3224-32. [DOI: 10.1039/c6fo00309e] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study provides a new insight into the well-recognized beneficial effects of dietary fucoidan by demonstrating its positive modulations on gut microbiota.
Collapse
Affiliation(s)
- Qingsen Shang
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Xindi Shan
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Chao Cai
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Jiejie Hao
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Guoyun Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Guangli Yu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| |
Collapse
|
369
|
Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, Smith DM, Landay AL, McManus MC, Robertson CE, Frank DN, McCarter MD, Wilson CC. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 2016; 9:24-37. [PMID: 25921339 PMCID: PMC4626441 DOI: 10.1038/mi.2015.33] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/03/2015] [Indexed: 02/04/2023]
Abstract
HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c(+) and CD1c(neg)) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c(+) mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percentage of CD83(+)CD1c(+) mDCs negatively correlated with frequencies of interferon-γ-producing colon CD4(+) and CD8(+) T cells. CD40 expression on CD1c(+) mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and Prevotella stercorea but negatively associated with a number of low prevalence mucosal species, including Rumminococcus bromii. CD1c(+) mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that, during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation.
Collapse
Affiliation(s)
- S M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - E J Lee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C V Kotter
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - G L Austin
- Department of Gastroenterology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - S Gianella
- Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - B Siewe
- Department of Immunology-Microbiology, Rush University Medical Center, Chicago, Illinois, USA
| | - D M Smith
- Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - A L Landay
- Department of Immunology-Microbiology, Rush University Medical Center, Chicago, Illinois, USA
| | - M C McManus
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C E Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Microbiome Research Consortium, Aurora, Colorado, USA
| | - D N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Microbiome Research Consortium, Aurora, Colorado, USA
| | - M D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
370
|
Barbian HJ, Li Y, Ramirez M, Klase Z, Lipende I, Mjungu D, Moeller AH, Wilson ML, Pusey AE, Lonsdorf EV, Bushman FD, Hahn BH. Destabilization of the gut microbiome marks the end-stage of simian immunodeficiency virus infection in wild chimpanzees. Am J Primatol 2015; 80. [PMID: 26676710 DOI: 10.1002/ajp.22515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/20/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
Enteric dysbiosis is a characteristic feature of progressive human immunodeficiency virus type 1 (HIV-1) infection but has not been observed in simian immunodeficiency virus (SIVmac)-infected macaques, including in animals with end-stage disease. This has raised questions concerning the mechanisms underlying the HIV-1 associated enteropathy, with factors other than virus infection, such as lifestyle and antibiotic use, implicated as playing possible causal roles. Simian immunodeficiency virus of chimpanzees (SIVcpz) is also associated with increased mortality in wild-living communities, and like HIV-1 and SIVmac, can cause CD4+ T cell depletion and immunodeficiency in infected individuals. Given the central role of the intestinal microbiome in mammalian health, we asked whether gut microbial constituents could be identified that are indicative of SIVcpz status and/or disease progression. Here, we characterized the gut microbiome of SIVcpz-infected and -uninfected chimpanzees in Gombe National Park, Tanzania. Subjecting a small number of fecal samples (N = 9) to metagenomic (shotgun) sequencing, we found bacteria of the family Prevotellaceae to be enriched in SIVcpz-infected chimpanzees. However, 16S rRNA gene sequencing of a larger number of samples (N = 123) failed to show significant differences in both the composition and diversity (alpha and beta) of gut bacterial communities between infected (N = 24) and uninfected (N = 26) chimpanzees. Similarly, chimpanzee stool-associated circular virus (Chi-SCV) and chimpanzee adenovirus (ChAdV) identified by metagenomic sequencing were neither more prevalent nor more abundant in SIVcpz-infected individuals. However, fecal samples collected from SIVcpz-infected chimpanzees within 5 months before their AIDS-related death exhibited significant compositional changes in their gut bacteriome. These data indicate that SIVcpz-infected chimpanzees retain a stable gut microbiome throughout much of their natural infection course, with a significant destabilization of bacterial (but not viral) communities observed only in individuals with known immunodeficiency within the last several months before their death. Am. J. Primatol. 80:e22515, 2018. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah J Barbian
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Miguel Ramirez
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zachary Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania
| | | | - Deus Mjungu
- Gombe Stream Research Center, Kigoma, Tanzania
| | - Andrew H Moeller
- Department of Integrative Biology, University of California, Berkeley, California.,Miller Institute for Basic Research, University of California, Berkeley, California
| | - Michael L Wilson
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota.,Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Elizabeth V Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
371
|
Abstract
OBJECTIVE HIV-1 infection is characterized by altered intestinal barrier, gut microbiota dysbiosis, and systemic inflammation. We hypothesized that changes of the gut microbiota predict immune dysfunction and HIV-1 progression, and that antiretroviral therapy (ART) partially restores the microbiota composition. DESIGN An observational study including 28 viremic patients, three elite controllers, and nine uninfected controls. Blood and stool samples were collected at baseline and for 19 individuals at follow-up (median 10 months) during ART. METHODS Microbiota composition was determined by 16S rRNA sequencing (Illumina MiSeq). Soluble markers of microbial translocation and monocyte activation were analyzed by Limulus Amebocyte Lysate assay or ELISA. RESULTS Several alpha-diversity measures, including number of observed bacterial species and Shannon index, were significantly lower in viremic patients compared to controls. The alpha diversity correlated with CD4 T-cell counts and inversely with markers of microbial translocation and monocyte activation. In multivariate linear regression, for every age and sex-adjusted increase in the number of bacterial species, the CD4 T-cell count increased with 0.88 (95% confidence interval 0.35-1.41) cells/μl (P = 0.002). After introduction of ART, microbiota alterations persisted with further reduction in alpha diversity. The microbiota composition at the genus level was profoundly altered in viremic patients, both at baseline and after ART, with Prevotella reduced during ART (P < 0.007). CONCLUSIONS Gut microbiota alterations are closely associated with immune dysfunction in HIV-1 patients, and these changes persist during short-term ART. Our data implicate that re-shaping the microbiota may be an adjuvant therapy in patients commencing successful ART.
Collapse
|
372
|
Vujkovic-Cvijin I, Swainson LA, Chu SN, Ortiz AM, Santee CA, Petriello A, Dunham RM, Fadrosh DW, Lin DL, Faruqi AA, Huang Y, Apetrei C, Pandrea I, Hecht FM, Pilcher CD, Klatt NR, Brenchley JM, Lynch SV, McCune JM. Gut-Resident Lactobacillus Abundance Associates with IDO1 Inhibition and Th17 Dynamics in SIV-Infected Macaques. Cell Rep 2015; 13:1589-97. [PMID: 26586432 DOI: 10.1016/j.celrep.2015.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 01/23/2023] Open
Abstract
Gut microbes can profoundly modulate mucosal barrier-promoting Th17 cells in mammals. A salient feature of HIV/simian immunodeficiency virus (SIV) immunopathogenesis is the loss of Th17 cells, which has been linked to increased activity of the immunomodulatory enzyme, indoleamine 2,3-dioxygenase 1 (IDO 1). The role of gut microbes in this system remains unknown, and the SIV-infected rhesus macaque provides a well-described model for HIV-associated Th17 loss and mucosal immune disruption. We observed a specific depletion of gut-resident Lactobacillus during acute and chronic SIV infection of rhesus macaques, which was also seen in early HIV-infected humans. This depletion in rhesus macaques correlated with increased IDO1 activity and Th17 loss. Macaques supplemented with a Lactobacillus-containing probiotic exhibited decreased IDO1 activity during chronic SIV infection. We propose that Lactobacillus species inhibit mammalian IDO1 and thus may help to preserve Th17 cells during pathogenic SIV infection, providing support for Lactobacillus species as modulators of mucosal immune homeostasis.
Collapse
Affiliation(s)
- Ivan Vujkovic-Cvijin
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Louise A Swainson
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Simon N Chu
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; University of California, Berkeley-University of California, San Francisco Joint Medical Program, San Francisco, CA 94143, USA
| | - Alexandra M Ortiz
- Laboratory of Molecular Microbiology, Program in Tissue Immunity and Repair and Immunopathogenesis Section, NIAID, NIH, Bethesda, MD 20892, USA
| | - Clark A Santee
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Annalise Petriello
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Dunham
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Douglas W Fadrosh
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Din L Lin
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ali A Faruqi
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cristian Apetrei
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ivona Pandrea
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frederick M Hecht
- Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher D Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nichole R Klatt
- Department of Pharmaceutics, University of Washington, Seattle, WA 98121, USA
| | - Jason M Brenchley
- Laboratory of Molecular Microbiology, Program in Tissue Immunity and Repair and Immunopathogenesis Section, NIAID, NIH, Bethesda, MD 20892, USA
| | - Susan V Lynch
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joseph M McCune
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
373
|
Zhang Y, Lun CY, Tsui SKW. Metagenomics: A New Way to Illustrate the Crosstalk between Infectious Diseases and Host Microbiome. Int J Mol Sci 2015; 16:26263-79. [PMID: 26540050 PMCID: PMC4661816 DOI: 10.3390/ijms161125957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/10/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Microbes have co-evolved with human beings for millions of years. They play a very important role in maintaining the health of the host. With the advancement in next generation sequencing technology, the microbiome profiling in the host can be obtained under different circumstances. This review focuses on the current knowledge of the alteration of complex microbial communities upon the infection of different pathogens, such as human immunodeficiency virus, hepatitis B virus, influenza virus, and Mycobacterium tuberculosis, at different body sites. It is believed that the increased understanding of the correlation between infectious disease and the alteration of the microbiome can contribute to better management of disease progression in the future. However, future studies may need to be more integrative so as to establish the exact causality of diseases by analyzing the correlation between microorganisms within the human host and the pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Cheuk-Yin Lun
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
374
|
Younas M, Psomas C, Reynes J, Corbeau P. Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy. HIV Med 2015; 17:89-105. [PMID: 26452565 DOI: 10.1111/hiv.12310] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2015] [Indexed: 12/31/2022]
Abstract
Systemic immune activation is a striking consequence of HIV-1 infection. Even in virologically suppressed patients, some hyperactivity of the immune system and even of the endothelium and of the coagulation pathway may persist. Apart from immune deficiency, this chronic activation may contribute to various morbidities including atherothrombosis, neurocognitive disorders, liver steatosis and osteoporosis, which are currently main challenges. It is therefore of major importance to better understand the causes and the phenotypes of immune activation in the course of HIV-1 infection. In this review we will discuss the various causes of immune activation in HIV-1 infected organisms: the presence of the virus together with other microbes, eventually coming from the gut, CD4+ T cell lymphopenia, senescence and dysregulation of the immune system, and/or genetic factors. We will also describe the activation of the immune system: CD4+ and CD8+ T cells, B cells, NKT and NK cells, dendritic cells, monocytes and macrophages, and neutrophils of the inflammation cascade, as well as of the endothelium and the coagulation system. Finally, we will see that antiretroviral therapy reduces the hyperactivity of the immune and coagulation systems and the endothelial dysfunction, but often does not abolish it. A better knowledge of this phenomenon might help us to identify biomarkers predictive of non AIDS-linked comorbidities, and to define new strategies aiming at preventing their emergence.
Collapse
Affiliation(s)
- M Younas
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France
| | - C Psomas
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France
| | - J Reynes
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France
| | - P Corbeau
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France.,Immunology Department, University Hospital, Nîmes Cedex, France
| |
Collapse
|
375
|
Burgener A, McGowan I, Klatt NR. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr Opin Immunol 2015; 36:22-30. [DOI: 10.1016/j.coi.2015.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
|
376
|
Klase Z, Ortiz A, Deleage C, Mudd JC, Quiñones M, Schwartzman E, Klatt NR, Canary L, Estes JD, Brenchley JM. Dysbiotic bacteria translocate in progressive SIV infection. Mucosal Immunol 2015; 8:1009-20. [PMID: 25586559 PMCID: PMC4501910 DOI: 10.1038/mi.2014.128] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/12/2014] [Indexed: 02/04/2023]
Abstract
Infection of gut-resident CD4(+) memory T cells during acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection is associated with rapid loss of these cells and damage to the epithelial barrier. Damage to the epithelial barrier allows translocation of microbial products from the intestinal lumen into the body. Immune activation caused by these microbial products has been associated with disease progression. Although microbial translocation has been demonstrated in SIV-infected nonhuman primates, the identity of translocating bacteria has not been determined. In this study we examined the communities of bacteria both within the gastrointestinal (GI) tract and systemic tissues of both healthy and experimentally SIV-infected Asian macaques. Although there were only modest changes in the GI tract-associated microbiome resulting from infection, there is substantial dysbiosis after administration of antiretrovirals. Analysis of bacterial DNA isolated from tissues of infected animals revealed a preference for the phylum Proteobacteria, suggesting that they preferentially translocate. Consistent with this finding, we observed increased metabolic activity of Proteobacterial species within the colonic lumen of SIV-infected animals. Overall, these data provide insights into disease progression and suggest that therapies aimed at altering the composition and metabolic activity of the GI tract microbiome could benefit chronically HIV-infected individuals, particularly those on antiretroviral therapies.
Collapse
Affiliation(s)
- Zachary Klase
- Program in Barrier Immunity and Repair, Immunopathogenesis Section, LMM, NIAID NIH, Bethesda, MD
| | - Alexandra Ortiz
- Program in Barrier Immunity and Repair, Immunopathogenesis Section, LMM, NIAID NIH, Bethesda, MD
| | - Claire Deleage
- The AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Joseph C. Mudd
- Program in Barrier Immunity and Repair, Immunopathogenesis Section, LMM, NIAID NIH, Bethesda, MD
| | - Mariam Quiñones
- Computational Biology Section, Bioinformatics and Computational Biosciences Branch, OCICB, OSMO, OD, NIAID, NIH, Bethesda, MD
| | - Elias Schwartzman
- Program in Barrier Immunity and Repair, Immunopathogenesis Section, LMM, NIAID NIH, Bethesda, MD
| | - Nichole R. Klatt
- Program in Barrier Immunity and Repair, Immunopathogenesis Section, LMM, NIAID NIH, Bethesda, MD
| | - Lauren Canary
- Program in Barrier Immunity and Repair, Immunopathogenesis Section, LMM, NIAID NIH, Bethesda, MD
| | - Jacob D. Estes
- The AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jason M. Brenchley
- Program in Barrier Immunity and Repair, Immunopathogenesis Section, LMM, NIAID NIH, Bethesda, MD
| |
Collapse
|
377
|
Clark RI, Salazar A, Yamada R, Fitz-Gibbon S, Morselli M, Alcaraz J, Rana A, Rera M, Pellegrini M, Ja WW, Walker DW. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality. Cell Rep 2015; 12:1656-67. [PMID: 26321641 DOI: 10.1016/j.celrep.2015.08.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.
Collapse
Affiliation(s)
- Rebecca I Clark
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Anna Salazar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sorel Fitz-Gibbon
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeanette Alcaraz
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anil Rana
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Rera
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William W Ja
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
378
|
Reeves RK, Burgener A, Klatt NR. Targeting the gastrointestinal tract to develop novel therapies for HIV. Clin Pharmacol Ther 2015; 98:381-6. [PMID: 26179624 DOI: 10.1002/cpt.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023]
Abstract
Despite the use of antiretroviral therapy (ART), which delays and/or prevents AIDS pathogenesis, human immunodeficiency virus (HIV)-infected individuals continue to face increased morbidities and mortality rates compared with uninfected individuals. Gastrointestinal (GI) mucosal dysfunction is a key feature of HIV infection, and is associated with mortality. In this study, we review current knowledge about mucosal dysfunction in HIV infection, and describe potential avenues for therapeutic targets to enhance mucosal function and decrease morbidities and mortalities in HIV-infected individuals.
Collapse
Affiliation(s)
- R K Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - A Burgener
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Sweden
| | - N R Klatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
379
|
Glavan TW, Gaulke CA, Hirao LA, Sankaran-Walters S, Dandekar S. SIV-infection-driven changes of pattern recognition receptor expression in mesenteric lymph nodes and gut microbiota dysbiosis. J Med Primatol 2015; 44:241-52. [PMID: 26275157 DOI: 10.1111/jmp.12187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The impact of HIV infection on pattern recognition receptor (PRR) expression in gut-associated lymphoid tissue and its association with dysbiosis is not well understood. METHODS PRR and cytokine gene expression were examined in mesenteric lymph nodes (mLN) of rhesus macaques during acute and chronic (untreated and early antiretroviral (ART) treated) infections. Gene expression was correlated with microbial abundance in the gut and immune activation. RESULTS PRR expression rapidly increases during acute infection and is significantly decreased in chronic infection. Early ART maintains elevated PRR expression. Correlation analysis revealed three distinct groups of bacterial taxa that were associated with gene expression changes in infection. CONCLUSIONS PRR and cytokine gene expression in the gut-draining mLN are rapidly modulated in response to viral infection and are correlated with gut dysbiosis. These data suggest that the dysregulation of PRR and related cytokine expression may contribute to chronic immune activation in SIV infection.
Collapse
Affiliation(s)
- Tiffany W Glavan
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| | - Christopher A Gaulke
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| | - Lauren A Hirao
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| | | | - Satya Dandekar
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| |
Collapse
|
380
|
Frank DN, Bales ES, Monks J, Jackman MJ, MacLean PS, Ir D, Robertson CE, Orlicky DJ, McManaman JL. Perilipin-2 Modulates Lipid Absorption and Microbiome Responses in the Mouse Intestine. PLoS One 2015; 10:e0131944. [PMID: 26147095 PMCID: PMC4493139 DOI: 10.1371/journal.pone.0131944] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/08/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity and its co-morbidities, such as fatty liver disease, are increasingly prevalent worldwide health problems. Intestinal microorganisms have emerged as critical factors linking diet to host physiology and metabolic function, particularly in the context of lipid homeostasis. We previously demonstrated that deletion of the cytoplasmic lipid drop (CLD) protein Perilipin-2 (Plin2) in mice largely abrogates long-term deleterious effects of a high fat (HF) diet. Here we test the hypotheses that Plin2 function impacts the earliest steps of HF diet-mediated pathogenesis as well as the dynamics of diet-associated changes in gut microbiome diversity and function. WT and perilipin-2 null mice raised on a standard chow diet were randomized to either low fat (LF) or HF diets. After four days, animals were assessed for changes in physiological (body weight, energy balance, and fecal triglyceride levels), histochemical (enterocyte CLD content), and fecal microbiome parameters. Plin2-null mice had significantly lower respiratory exchange ratios, diminished frequencies of enterocyte CLDs, and increased fecal triglyceride levels compared with WT mice. Microbiome analyses, employing both 16S rRNA profiling and metagenomic deep sequencing, indicated that dietary fat content and Plin2 genotype were significantly and independently associated with gut microbiome composition, diversity, and functional differences. These data demonstrate that Plin2 modulates rapid effects of diet on fecal lipid levels, enterocyte CLD contents, and fuel utilization properties of mice that correlate with structural and functional differences in their gut microbial communities. Collectively, the data provide evidence of Plin2 regulated intestinal lipid uptake, which contributes to rapid changes in the gut microbial communities implicated in diet-induced obesity.
Collapse
Affiliation(s)
- Daniel N. Frank
- Division of Infectious Disease, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Microbiome Research Consortium, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Elise S. Bales
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jenifer Monks
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Matthew J. Jackman
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul S. MacLean
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Diana Ir
- Division of Infectious Disease, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Division of Infectious Disease, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Microbiome Research Consortium, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - James L. McManaman
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
381
|
Vázquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferrús ML, Madrid N, Vallejo A, Sainz T, Martínez-Botas J, Ferrando-Martínez S, Vera M, Dronda F, Leal M, Del Romero J, Moreno S, Estrada V, Gosalbes MJ, Moya A. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol 2015; 8:760-772. [PMID: 25407519 DOI: 10.1038/mi.2014.107] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Altered interplay between gut mucosa and microbiota during treated HIV infection may possibly contribute to increased bacterial translocation and chronic immune activation, both of which are predictors of morbidity and mortality. Although a dysbiotic gut microbiota has recently been reported in HIV+ individuals, the metagenome gene pool associated with HIV infection remains unknown. The aim of this study is to characterize the functional gene content of gut microbiota in HIV+ patients and to define the metabolic pathways of this bacterial community, which is potentially associated with immune dysfunction. We determined systemic markers of innate and adaptive immunity in a cohort of HIV-infected individuals on successful antiretroviral therapy without comorbidities and in healthy non-HIV-infected subjects. Metagenome sequencing revealed an altered functional profile, with enrichment of the genes involved in various pathogenic processes, lipopolysaccharide biosynthesis, bacterial translocation, and other inflammatory pathways. In contrast, we observed depletion of genes involved in amino acid metabolism and energy processes. Bayesian networks showed significant interactions between the bacterial community, their altered metabolic pathways, and systemic markers of immune dysfunction. This study reveals altered metabolic activity of microbiota and provides novel insight into the potential host-microbiota interactions driving the sustained inflammatory state in successfully treated HIV-infected patients.
Collapse
Affiliation(s)
- J F Vázquez-Castellanos
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - S Serrano-Villar
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - A Latorre
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A Artacho
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain
| | - M L Ferrús
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain
| | - N Madrid
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - A Vallejo
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - T Sainz
- 1] Laboratory of Molecular Immune Biology, University Hospital Gregorio Marañón and Gregorio Marañón Research Institute, Madrid, Spain [2] CIBER on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - J Martínez-Botas
- 1] Department of Biochemistry, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain [2] CIBER on Obesity and Nutrition Pathophysiology (CIBEROBN), Madrid, Spain
| | - S Ferrando-Martínez
- 1] Laboratory of Molecular Immune Biology, University Hospital Gregorio Marañón and Gregorio Marañón Research Institute, Madrid, Spain [2] CIBER on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain [3] Laboratory of Immunovirology, Department of Infectious Diseases, Biomedicine Institute of Seville (IBIS), University Hospital Virgen del Rocío, Sevilla, Spain
| | - M Vera
- Centro Sandoval, Madrid, Spain
| | - F Dronda
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - M Leal
- Laboratory of Immunovirology, Department of Infectious Diseases, Biomedicine Institute of Seville (IBIS), University Hospital Virgen del Rocío, Sevilla, Spain
| | | | - S Moreno
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - V Estrada
- HIV Unit, Department of Internal Medicine, University Hospital Clínico San Carlos, Madrid, Spain
| | - M J Gosalbes
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A Moya
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
382
|
Meng J, Sindberg GM, Roy S. Disruption of gut homeostasis by opioids accelerates HIV disease progression. Front Microbiol 2015; 6:643. [PMID: 26167159 PMCID: PMC4481162 DOI: 10.3389/fmicb.2015.00643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/12/2015] [Indexed: 01/18/2023] Open
Abstract
Cumulative studies during the past 30 years have established the correlation between opioid abuse and human immunodeficiency virus (HIV) infection. Further studies also demonstrate that opioid addiction is associated with faster progression to AIDS in patients. Recently, it was revealed that disruption of gut homeostasis and subsequent microbial translocation play important roles in pathological activation of the immune system during HIV infection and contributes to accelerated disease progression. Similarly, opioids have been shown to modulate gut immunity and induce gut bacterial translocation. This review will explore the mechanisms by which opioids accelerate HIV disease progression by disrupting gut homeostasis. Better understanding of these mechanisms will facilitate the search for new therapeutic interventions to treat HIV infection especially in opioid abusing population.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Surgery, Division of Infection, Inflammation, and Vascular Biology, Medical School, University of Minnesota, Minneapolis, MN USA
| | - Gregory M Sindberg
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Sabita Roy
- Department of Surgery, Division of Infection, Inflammation, and Vascular Biology, Medical School, University of Minnesota, Minneapolis, MN USA ; Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
383
|
Fast disease progression in simian HIV-infected female macaque is accompanied by a robust local inflammatory innate immune and microbial response. AIDS 2015; 29:F1-8. [PMID: 26035329 DOI: 10.1097/qad.0000000000000711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Gender differences in immune response and the rate of disease progression in HIV-infected individuals have been reported but the underlying mechanism remains unclear, in part because of the lack of relevant animal models. Here, we report a novel nonhuman primate model for investigation of sex disparity in HIV disease progression. DESIGN/METHODS Viral load and rate of disease progression were evaluated in rhesus macaques infected intrarectally with lineage-related subtype C R5 simian HIVs. Cytokine/chemokine levels in rectal swab eluates, and bacterial species adherent to the swabs and in the feces were determined. RESULTS Simian HIV-infected female rhesus macaques progressed faster to AIDS than male macaques, recapitulating the sex bias in HIV-1 disease in humans. There were no significant differences in the levels of soluble immune mediators in the rectal mucosa of naive female and male macaques. However, an exploratory longitudinal study in six infected macaques indicates that the female macaques mounted an earlier and more robust proinflammatory skewed rectal immune response to infection. Moreover, expansion of Proteobacteria that increase in other intestinal inflammatory disorders was significantly higher in the rectal mucosa of female than male macaques during acute infection. CONCLUSION These findings suggest that sex differences in local innate immune activation and compositional shifts in the gut microbiota could be the drivers of increased disease susceptibility in female macaques. Further studies with this novel nonhuman primate model of HIV infection could lead to innovative research on gender differences, which may have important therapeutic implications for controlling disease in infected men as well as women.
Collapse
|
384
|
|
385
|
Role of intestinal myofibroblasts in HIV-associated intestinal collagen deposition and immune reconstitution following combination antiretroviral therapy. AIDS 2015; 29:877-88. [PMID: 25784439 DOI: 10.1097/qad.0000000000000636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the potential role of mucosal intestinal myofibroblasts (IMFs) in HIV and associated fibrosis in gut-associated lymphoid tissue. DESIGN Profibrotic changes within the secondary lymphoid organs and mucosa have been implicated in failed immune reconstitution following effective combination antiretroviral therapy (cART). Microbial translocation is believed to be sustaining these systemic inflammatory pathways. IMFs are nonprofessional antigen-presenting cells with both immunoregulatory and mesenchymal functions that are ideally positioned to respond to translocating microbial antigen. METHODS Duodenal biopsies, obtained from patients naive to cART, underwent trichrome staining and were examined for tissue growth factor-beta (TGF-β) expression. Combined immunostaining and second harmonic generation analysis were used to determine IMF activation and collagen deposition. Confocal microscopy was performed to examine IMF activation and Toll-like receptor (TLR)4 expression. Finally, primary IMF cultures were stimulated with lipopolysaccharide to demonstrate the expression of the inflammatory biomarkers. RESULTS The expression of the fibrosis-promoting molecule, TGF-β1, is significantly increased in duodenal biopsies from HIV patients naïve to cART, and negatively correlated with subsequent peripheral CD4(+) recovery. The increase in TGF-β1 coincided with an increase in collagen deposition in the duodenal mucosa in the tissue area adjacent to the IMFs. We also observed that IMFs expressed TLR4 and had an activated phenotype since they were positive for fibroblast activation protein. Finally, stimulation of IMFs from HIV patients with TLR4 resulted in significantly increased expression of profibrotic molecules, TGF-β1, and interleukin-6. CONCLUSION Our data support the hypothesis that activated IMFs may be among the major cells contributing to the profibrotic changes, and thus, the establishment and maintenance of systemic inflammation interfering with immune reconstitution in HIV patients.
Collapse
|
386
|
Abstract
The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria.
Collapse
Affiliation(s)
- Husen Zhang
- Department of Civil and Environmental Engineering; Virginia Tech; Blacksburg, VA USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology; Virginia Tech; Blacksburg, VA USA,Correspondence to: Xin M. Luo;
| |
Collapse
|
387
|
Sullivan ZA, Wong EB, Ndung'u T, Kasprowicz VO, Bishai WR. Latent and Active Tuberculosis Infection Increase Immune Activation in Individuals Co-Infected with HIV. EBioMedicine 2015; 2:334-340. [PMID: 26114158 PMCID: PMC4476549 DOI: 10.1016/j.ebiom.2015.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, chronic immune activation and systemic inflammation have emerged as hallmarks of HIV disease progression and mortality. Several studies indicate that soluble inflammatory biomarkers (sCD14, IL-6, IL-8, CRP and hyaluronic acid), as well as surface markers of T-cell activation (CD38, HLA-DR) independently predict progression to AIDS and mortality in HIV-infected individuals. While co-infections have been shown to contribute to immune activation, the impact of latent tuberculosis infection (LTBI), which is widely endemic in the areas most affected by the global AIDS epidemic, has not been evaluated. We hypothesized that both active and latent states of Mycobacterium tuberculosis co-infection contribute to elevated immune activation as measured by these markers. In HIV-infected individuals with active, but not latent TB, we found elevated levels of soluble markers associated with monocyte activation. Interestingly, T-cell activation was elevated individuals with both latent and active TB. These results suggest that in the highly TB- and HIV-endemic settings of southern Africa, latent TB-associated T-cell activation may contribute to HIV disease progression and exacerbate the HIV epidemic. In addition, our findings indicate that aggressive campaigns to treat LTBI in HIV-infected individuals in high-burden countries will not only impact TB rates, but may also slow HIV progression. Significance Latent tuberculosis, which affects an estimated 1/3 of the world's population, has long been thought to be a relatively benign, quiescent state of M. tuberculosis infection. While HIV co-infection is known to exacerbate M. tuberculosis infection and increase the risk of developing active TB, little is known about the potential effect of latent TB infection on HIV disease. This study shows that HIV-infected individuals with both active and latent TB have elevated levels of inflammation and immune activation, biomarkers of HIV disease progression and elevated risk of mortality. These results suggest that, in the context of HIV, latent TB infection may be associated with increased risk of progression to AIDS and mortality. While HIV co-infection is known to exacerbate TB, little is known about the effect of latent TB infection on HIV disease. In HIV-infected individuals, active and latent TB elevate immunological biomarkers of HIV morbidity and mortality. In the context of HIV, latent TB infection may be associated with increased risk of progression to AIDS and mortality. In addition to reducing TB transmission, aggressive treatment of latent TB infection may also reduce the progression of HIV.
Collapse
Affiliation(s)
- Zuri A Sullivan
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa ; Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily B Wong
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa ; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa ; HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa ; The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA ; Max Planck Institute for Infection Biology, Berlin, Germany
| | - Victoria O Kasprowicz
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa ; HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa ; The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA
| | - William R Bishai
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa ; Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
388
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to describe the alterations that HIV-1 induces in antigen-presenting cells (APCs), in vitro, ex vivo and in vivo. RECENT FINDINGS HIV-1 disarms several arms of the immune system including APCs. We summarize here recent findings on the impact of the virus on APC. SUMMARY HIV-1 can invade APC and overall reduce their capacity to present antigens effectively, mostly by reducing their numbers and inducing permanent hyperactivation. This occurs via a combination of alterations; however, the host can counteract, at least in part, some of these defects via restriction factors, autophagy, the production of type I interferon, antiviral cytokines, among others. However, these specific mechanisms of viral evasion from APCs' control lead to a chronic hyperactivation of the immune system implicated in AIDS-related and non-AIDS related pathogenesis. Unfortunately, the current regimens of antiretroviral therapy are unable to dampen sufficiently APC-driven viral-induced immune hyperactivation. Understanding how HIV alters APC will help to tune appropriately both intrinsic immunity and innate immunity, as well as achieve efficient antigen presentation to the adaptive immune system, without inducing a detrimental pervasive hyperactivation of the immune system.
Collapse
|
389
|
Abstract
OBJECTIVE Despite the use of HAART to control HIV, systemic immune activation and inflammation persists with the consequence of developing serious non-AIDS events. The mechanisms that contribute to persistent systemic immune activation have not been well defined. The intestine is the major source of "sterile" inflammation and plays a critical role in immune function; thus, we sought to determine whether intestinal gene expression was altered in virally controlled HIV-infected individuals. DESIGN AND METHODS Gene expression was compared in biopsy samples collected from HIV-uninfected and HIV-infected individuals from the ileum, right colon (ascending colon), and left colon (sigmoid). Affymetrix gene arrays were performed on tissues and pathway analyses were conducted. Gene expression was correlated with systemic markers of intestinal barrier dysfunction and inflammation and intestinal microbiota composition. RESULTS Genes involved in cellular immune response, cytokine signaling, pathogen-influenced signaling, humoral immune response, apoptosis, intracellular and second messenger signaling, cancer, organismal growth and development, and proliferation and development were upregulated in the intestine of HIV-infected individuals with differences observed in the ileum, right, and left colon. Gene expression in the ileum primarily correlated with systemic markers of inflammation (e.g., IL7R, IL2, and TLR2 with serum TNF) whereas expression in the colon correlated with the microbiota community (e.g., IFNG, IL1B, and CD3G with Bacteroides). CONCLUSION These data demonstrate persistent, proinflammatory changes in the intestinal mucosa of virally suppressed HIV-infected individuals. These changes in intestinal gene expression may be the consequence of or contribute to barrier dysfunction and intestinal dysbiosis observed in HIV.
Collapse
|
390
|
Krajmalnik-Brown R, Lozupone C, Kang DW, Adams JB. Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26914. [PMID: 25769266 PMCID: PMC4359272 DOI: 10.3402/mehd.v26.26914] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut–brain interactions could also be a direct result of microbially produced metabolites.
Collapse
Affiliation(s)
- Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, USA;
| | | | - Dae-Wook Kang
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - James B Adams
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
391
|
Moeller AH, Peeters M, Ayouba A, Ngole EM, Esteban A, Hahn BH, Ochman H. Stability of the gorilla microbiome despite simian immunodeficiency virus infection. Mol Ecol 2015; 24:690-7. [PMID: 25545295 DOI: 10.1111/mec.13057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/04/2023]
Abstract
Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1-infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority.
Collapse
Affiliation(s)
- Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | | | | | | | | | | | | |
Collapse
|
392
|
Somsouk M, Estes JD, Deleage C, Dunham RM, Albright R, Inadomi JM, Martin JN, Deeks SG, McCune JM, Hunt PW. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS 2015; 29:43-51. [PMID: 25387317 PMCID: PMC4444362 DOI: 10.1097/qad.0000000000000511] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Microbial translocation and innate immune action characterize HIV infection. Continued gut mucosal dysfunction during treatment and its relationship to CD4 T-cell recovery has not been well described. DESIGN A cross-sectional study was performed of antiretroviral therapy (ART)-suppressed (immunologic responders with CD4 > 500 cells/μl and immunologic nonresponders with CD4 < 350 cells/μl), untreated HIV-infected, and seronegative participants consenting to gut biopsies and a blood draw. METHODS Neutrophil infiltration as a surrogate response to epithelial breach, colorectal epithelial proliferation as a measure of repair, and mucosal apoptosis by immunohistochemistry were determined in gut biopsies. Plasma markers of monocyte activation (sCD14), immune activation (interleukin-6), and indoleamine 2,3-dioxygenase-1 activity (plasma kynurenine/tryptophanratio) were concurrently measured. RESULTS Each HIV-infected group had greater neutrophil infiltration than controls. Similarly, untreated HIV-infected participants and ART-suppressed immunologic responders had increased epithelial proliferation compared with controls, but immunologic nonresponders had no appreciable increase in epithelial proliferation despite elevated neutrophil infiltration. The CD4 T-cell count was positively correlated with epithelial proliferation and was modestly negatively correlated with neutrophil infiltration in ART-suppressed patients. Epithelial proliferation was inversely correlated with mucosal apoptosis, and apoptosis was linked to plasma sCD14 and modestly to kynurenine/tryptophan ratio. CONCLUSIONS Neutrophil infiltration and mucosal apoptosis remain abnormally high despite ART. Epithelial proliferation increases in HIV, but may be impaired in immunologic nonresponders. Whether mucosal apoptosis is a cause or consequence of epithelial proliferative defects is unclear, but appears to be associated with systemic inflammation. The impact of ART and interventions targeting the gut epithelial barrier in treated HIV infection warrant further investigation.
Collapse
Affiliation(s)
- Ma Somsouk
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94110, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Richard M. Dunham
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Rebecca Albright
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, CA, USA
| | - John M. Inadomi
- Division of Gastroenterology, Department of Medicine, University of Washington, WA, USA
| | - Jeffrey N. Martin
- Positive Health Program, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Peter W. Hunt
- Positive Health Program, Department of Medicine, UCSF, San Francisco, CA, USA
| |
Collapse
|
393
|
Abstract
Human immunodeficiency virus (HIV) primary infection occurs at mucosa tissues, suggesting an intricate interplay between the microbiome and HIV infection. Recent advanced technologies of high-throughput sequencing and bioinformatics allow researchers to explore nonculturable microbes, including bacteria, virus, and fungi, and their association with diseases. HIV/simian immunodeficiency virus infection is associated with microbiome shifts and immune activation that may affect the outcome of disease progression. In this review, the authors focus on microbiome in HIV infection at various mucosal compartments. Understanding the relationship between microbiome and HIV may offer insights into development of better strategies for HIV prevention and treatment.
Collapse
Affiliation(s)
- January T Salas
- Department of Microbiology and Molecular Genetics, Public Health Research Institute, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | - Theresa L Chang
- Department of Microbiology and Molecular Genetics, Public Health Research Institute, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA.
| |
Collapse
|
394
|
Tenorio AR, Chan ES, Bosch RJ, Macatangay BJC, Read SW, Yesmin S, Taiwo B, Margolis DM, Jacobson JM, Landay AL, Wilson CC. Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune non-responders to antiretroviral therapy - ACTG A5286. J Infect Dis 2014; 211:780-90. [PMID: 25214516 DOI: 10.1093/infdis/jiu515] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rifaximin, a nonabsorbable antibiotic that decreases lipopolysaccharide (LPS) in cirrhotics, may decrease the elevated levels of microbial translocation, T-cell activation and inflammation in human immunodeficiency virus (HIV)-positive immune nonresponders to antiretroviral therapy (ART). METHODS HIV-positive adults receiving ART for ≥96 weeks with undetectable viremia for ≥48 weeks and CD4(+) T-cell counts <350 cells/mm(3) were randomized 2:1 to rifaximin versus no study treatment for 4 weeks. T-cell activation, LPS, and soluble CD14 were measured at baseline and at weeks 2, 4, and 8. Wilcoxon rank sum tests compared changes between arms. RESULTS Compared with no study treatment (n = 22), rifaximin (n = 43) use was associated with a significant difference between study arms in the change from baseline to week 4 for CD8(+)T-cell activation (median change, 0.0% with rifaximin vs +0.6% with no treatment; P = .03). This difference was driven by an increase in the no-study-treatment arm because there was no significant change within the rifaximin arm. Similarly, although there were significant differences between study arms in change from baseline to week 2 for LPS and soluble CD14, there were no significant changes within the rifaximin arm. CONCLUSIONS In immune nonresponders to ART, rifaximin minimally affected microbial translocation and CD8(+)T-cell activation. Trial registration number. NCT01466595.
Collapse
Affiliation(s)
| | - Ellen S Chan
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts
| | | | - Sarah W Read
- HIV Research Branch, TRP, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda
| | - Suria Yesmin
- ACTG Operations Center, Social and Scientific Systems, Silver Spring, Maryland
| | - Babafemi Taiwo
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David M Margolis
- Department of Medicine, University of North Carolina, Chapel Hill
| | - Jeffrey M Jacobson
- Division of Infectious Diseases and HIV, Drexel University, Philadelphia, Pennsylvania
| | - Alan L Landay
- Department of Immunology and Microbiology, Rush University Medical Center
| | - Cara C Wilson
- Department of Medicine, University of Colorado at Denver, Aurora
| | | |
Collapse
|
395
|
Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis 2014; 211:19-27. [PMID: 25057045 DOI: 10.1093/infdis/jiu409] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite effective antiretroviral therapy (ART), patients with chronic human immunodeficiency virus (HIV) infection have increased microbial translocation and systemic inflammation. Alterations in the intestinal microbiota may play a role in microbial translocation and inflammation. METHODS We profiled the fecal microbiota by pyrosequencing the gene encoding 16S ribosomal RNA (rRNA) and measured markers of microbial translocation and systemic inflammation in 21 patients who had chronic HIV infection and were receiving suppressive ART (cases) and 16 HIV-uninfected controls. RESULTS The fecal microbial community composition was significantly different between cases and controls. The relative abundance of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, Erysipelotrichi, Erysipelotrichales, Erysipelotrichaceae, and Barnesiella was significantly enriched in cases, whereas that of Rikenellaceae and Alistipes was depleted. The plasma soluble CD14 level (sCD14) was significantly higher and the endotoxin core immunoglobulin M (IgM) level lower in cases, compared with controls. There were significant positive correlations between the relative abundances of Enterobacteriales and Enterobacteriaceae and the sCD14 level; the relative abundances of Gammaproteobacteria, Enterobacteriales, and Enterobacteriaceae and the interleukin 1β (IL-1β) level; the relative abundances of Enterobacteriales and Enterobacteriaceae and the interferon γ level; and the relative abundances of Erysipelotrichi and Barnesiella and the TNF-α level. There were negative correlations between endotoxin core IgM and IL-1β levels. CONCLUSIONS Patients who have chronic HIV infection and are receiving suppressive ART display intestinal dysbiosis associated with increased microbial translocation and significant associations between specific taxa and markers of microbial translocation and systemic inflammation. This was an exploratory study, the findings of which need to be confirmed.
Collapse
Affiliation(s)
- Duy M Dinh
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Gretchen E Volpe
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Department of Public Health and Community Medicine
| | - Chad Duffalo
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Albert K Tai
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Anne V Kane
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Christine A Wanke
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Department of Public Health and Community Medicine
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Department of Public Health and Community Medicine
| |
Collapse
|
396
|
Aging of the human innate immune system in HIV infection. Curr Opin Immunol 2014; 29:127-36. [PMID: 24997358 DOI: 10.1016/j.coi.2014.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
HIV infection is associated with a chronic inflammatory state arising from multiple factors, including innate immune recognition of HIV, increased microbial translocation, and release of endogenous ligands from damaged cells (such as CD4 T cells). In many respects, this heightened pro-inflammatory environment resembles that associated with aging in the absence of HIV infection, and evidence of dysregulated innate immune responses can be found in not only older HIV-negative adults, but also adults with HIV infection. While the study of innate immune aging in HIV infection is still in its early stages, it seems likely that at least additive, or potentially synergistic effects of aging and HIV infection will be found.
Collapse
|
397
|
Lozupone CA, Rhodes ME, Neff CP, Fontenot AP, Campbell TB, Palmer BE. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy. Gut Microbes 2014; 5:562-70. [PMID: 25078714 DOI: 10.4161/gmic.32132] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Consistent with an important role for adaptive immunity in modulating interactions between intestinal bacteria and host, dramatic alteration in the composition of gut microbes during chronic HIV infection was recently reported by ourselves and independently by four other research groups. Here we evaluate our results in the context of these other studies and delve into the effects of antiretroviral therapy (ART). Although gut microbiota of HIV-positive individuals on ART usually does not resemble that of HIV-negative individuals, the degree to which ART restores health-associated prevalence varies across bacterial taxa. Finally, we discuss potential drivers and health consequences of gut microbiota alterations. We propose that understanding the mechanism of HIV-associated gut microbiota changes will elucidate the role of adaptive immunity in shaping gut microbiota composition, and lay the foundation for therapeutics targeting the microbiota to attenuate HIV disease progression and reduce the risk of gut-linked disease in people with HIV.
Collapse
Affiliation(s)
- Catherine A Lozupone
- Department of Medicine; University of Colorado Denver; Anschutz Medical Campus; Aurora, CO USA
| | - Matthew E Rhodes
- Department of Medicine; University of Colorado Denver; Anschutz Medical Campus; Aurora, CO USA
| | - Charles P Neff
- Department of Medicine; University of Colorado Denver; Anschutz Medical Campus; Aurora, CO USA
| | - Andrew P Fontenot
- Department of Medicine; University of Colorado Denver; Anschutz Medical Campus; Aurora, CO USA
| | - Thomas B Campbell
- Department of Medicine; University of Colorado Denver; Anschutz Medical Campus; Aurora, CO USA
| | - Brent E Palmer
- Department of Medicine; University of Colorado Denver; Anschutz Medical Campus; Aurora, CO USA
| |
Collapse
|