351
|
Castel P, Rauen KA, McCormick F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat Rev Cancer 2020; 20:383-397. [PMID: 32341551 PMCID: PMC7787056 DOI: 10.1038/s41568-020-0256-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
Human oncoproteins promote transformation of cells into tumours by dysregulating the signalling pathways that are involved in cell growth, proliferation and death. Although oncoproteins were discovered many years ago and have been widely studied in the context of cancer, the recent use of high-throughput sequencing techniques has led to the identification of cancer-associated mutations in other conditions, including many congenital disorders. These syndromes offer an opportunity to study oncoprotein signalling and its biology in the absence of additional driver or passenger mutations, as a result of their monogenic nature. Moreover, their expression in multiple tissue lineages provides insight into the biology of the proto-oncoprotein at the physiological level, in both transformed and unaffected tissues. Given the recent paradigm shift in regard to how oncoproteins promote transformation, we review the fundamentals of genetics, signalling and pathogenesis underlying oncoprotein duality.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine A Rauen
- MIND Institute, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
352
|
Panciera T, Citron A, Di Biagio D, Battilana G, Gandin A, Giulitti S, Forcato M, Bicciato S, Panzetta V, Fusco S, Azzolin L, Totaro A, Dei Tos AP, Fassan M, Vindigni V, Bassetto F, Rosato A, Brusatin G, Cordenonsi M, Piccolo S. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. NATURE MATERIALS 2020; 19:797-806. [PMID: 32066931 PMCID: PMC7316573 DOI: 10.1038/s41563-020-0615-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
Defining the interplay between the genetic events and microenvironmental contexts necessary to initiate tumorigenesis in normal cells is a central endeavour in cancer biology. We found that receptor tyrosine kinase (RTK)-Ras oncogenes reprogram normal, freshly explanted primary mouse and human cells into tumour precursors, in a process requiring increased force transmission between oncogene-expressing cells and their surrounding extracellular matrix. Microenvironments approximating the normal softness of healthy tissues, or blunting cellular mechanotransduction, prevent oncogene-mediated cell reprogramming and tumour emergence. However, RTK-Ras oncogenes empower a disproportional cellular response to the mechanical properties of the cell's environment, such that when cells experience even subtle supra-physiological extracellular-matrix rigidity they are converted into tumour-initiating cells. These regulations rely on YAP/TAZ mechanotransduction, and YAP/TAZ target genes account for a large fraction of the transcriptional responses downstream of oncogenic signalling. This work lays the groundwork for exploiting oncogenic mechanosignalling as a vulnerability at the onset of tumorigenesis, including tumour prevention strategies.
Collapse
Affiliation(s)
- Tito Panciera
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Anna Citron
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Daniele Di Biagio
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Giusy Battilana
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering and INSTM, University of Padua, Padua, Italy
| | - Stefano Giulitti
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Health Care IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Sabato Fusco
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Health Care IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Antonio Totaro
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, Padua, Italy
| | | | - Franco Bassetto
- Clinic of Plastic Surgery, Padua University Hospital, Padua, Italy
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, and Department of Surgery, Oncology and Gastroenterology, University of Padua School of Medicine, Padua, Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering and INSTM, University of Padua, Padua, Italy
| | | | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.
- IFOM, The FIRC Institute of Molecular Oncology, Padua, Italy.
| |
Collapse
|
353
|
Affiliation(s)
- Eric Solary
- INSERM U1287 Gustave Roussy Cancer Center Villejuif France
- Faculté de Médecine Université Paris‐Saclay Le Kremlin‐Bicêtre France
| | - Lucie Laplane
- INSERM U1287 Gustave Roussy Cancer Center Villejuif France
- CNRS U8590 Institut d'Histoire et Philosophie des Sciences et des Techniques Université Paris I Panthéon‐Sorbonne Paris France
| |
Collapse
|
354
|
New LncRNAs in Chronic Hepatitis C progression: from fibrosis to hepatocellular carcinoma. Sci Rep 2020; 10:9886. [PMID: 32555359 PMCID: PMC7303194 DOI: 10.1038/s41598-020-66881-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world, and about 80% of the cases are associated with hepatitis B or C. Genetic and epigenetic alterations are accumulated over decades of chronic injury and may affect the functioning of tumor suppressor genes and protooncogenes. Studies have evidenced the role of Long non-coding RNAs (LncRNA) with oncogenic or tumor suppressor activities, suggesting a great potential in the treatment, diagnosis or indicator of prognosis in cancer. In this context, the aim of this study was to evaluate the global expression profile lncRNA in hepatic tissue samples with different stages of fibrosis associated with chronic hepatitis C, HCC and normal liver, in order to identify new lncRNAs that could contribute to study the progression of hepatic fibrosis to HCC associated with chronic hepatitis C. RNA-Seq was performed on Illumina NextSeq platform to identify lncRNAs expressed differently in 15 patients with chronic hepatitis C, three patients with HCC and three normal liver specimens. When the pathological tissues (fibrosis and carcinoma) were compared to normal hepatic tissue, were identified 2, 6 e 34 differentially expressed lncRNAs in moderate fibrosis, advanced fibrosis and HCC, respectively. The carcinoma group had the highest proportion of differentially expressed lncRNA (34) and of these, 29 were exclusive in this type of tissue. A heat map of the deregulated lncRNA revealed different expression patterns along the progression of fibrosis to HCC. The results showed the deregulation of some lncRNA already classified as tumor suppressors in HCC and other cancers, as well as some unpublished lncRNA whose function is unknown. Some of these lncRNAs are dysregulated since the early stages of liver injury in patients with hepatitis C, others overexpressed only in tumor tissue, indicating themselves as candidates of markers of fibrosis progression or tumor, with potential clinical applications in prognosis as well as a therapeutic target. Although there are already studies on lncRNA in hepatocellular carcinoma, this is the first study conducted in samples exclusively of HCV-related liver and HCV HCC.
Collapse
|
355
|
Tachibana S, Mizukami Y, Ono Y, Sugiyama Y, Okada T, Kitazaki A, Sasajima J, Tominaga M, Sakamoto J, Kimura K, Omori Y, Furukawa T, Kimura T, Tanaka S, Nagashima K, Karasaki H, Ohta T, Okumura T. Genetic Tracing of Clonal Expansion and Progression of Pancreatic Ductal Adenocarcinoma: A Case Report and Multi-Region Sequencing Analysis. Front Oncol 2020; 10:728. [PMID: 32582528 PMCID: PMC7280449 DOI: 10.3389/fonc.2020.00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Pancreatobiliary tumors frequently contain multiple malignant and precancerous lesions; however, the origin of the driver mutations and the mechanisms that underlie the generation of distinct clones within an organ field remain unclear. Herein, we describe a 76-year-old male suffering from moderately differentiated adenocarcinomas of the pancreas that primarily involved the distal bile duct and multiple “dispersing” invasive lesions in the pancreatic head. The patient underwent pylorus-preserving pancreaticoduodenectomy with superior mesenteric vein resection, and targeted sequencing of 18 genes associated with pancreatic tumorigenesis and immunohistochemical analysis of RNF43 and ARID1A were performed on each tumor compartment, including the invasive and non-invasive areas. Multi-region sequencing revealed shared KRAS and TGFBR1 mutations in all invasive foci, including those involving the distal bile duct. Distinct KRAS variants were found to be present in other non-continuous and non-invasive lesions in the pancreas. Intraductal lesions with KRAS G12D and RNF43 V50R mutations were evident in the main pancreatic duct. This appeared to be a founder clone, given that the mutation profile was common to the invasive foci as well as the additional high-grade dysplasia harboring ARID1A mutations, thereby suggesting a clonal branch-off during tumor evolution. In addition, we also observed independent intraductal papillary mucinous neoplasms with KRAS G12V and GNAS R201H mutations. Our theory, learned from this patient, was that lesions skipped dissemination and wide-spread movement potentially through the pancreatic ductal system as a process of pancreatic cancer development.
Collapse
Affiliation(s)
- Shion Tachibana
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Center for Gastroenterology, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuya Sugiyama
- Center for Gastroenterology, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tetsuhiro Okada
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Arisa Kitazaki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Junpei Sasajima
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Motoya Tominaga
- Center for Gastroenterology, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Jun Sakamoto
- Center for Gastroenterology, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Keisuke Kimura
- Center for Gastroenterology, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taichi Kimura
- Department of Pathology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazuo Nagashima
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Tomoyuki Ohta
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Toshikatsu Okumura
- Center for Gastroenterology, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
356
|
Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A, Dentro SC, Fowler JC, Herms A, King C, Ong SH, Sood RK, Gerstung M, Martincorena I, Hall BA, Jones PH. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat Genet 2020; 52:604-614. [PMID: 32424351 PMCID: PMC7116672 DOI: 10.1038/s41588-020-0624-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/07/2020] [Indexed: 12/29/2022]
Abstract
During aging, progenitor cells acquire mutations, which may generate clones that colonize the surrounding tissue. By middle age, normal human tissues, including the esophageal epithelium (EE), become a patchwork of mutant clones. Despite their relevance for understanding aging and cancer, the processes that underpin mutational selection in normal tissues remain poorly understood. Here, we investigated this issue in the esophageal epithelium of mutagen-treated mice. Deep sequencing identified numerous mutant clones with multiple genes under positive selection, including Notch1, Notch2 and Trp53, which are also selected in human esophageal epithelium. Transgenic lineage tracing revealed strong clonal competition that evolved over time. Clone dynamics were consistent with a simple model in which the proliferative advantage conferred by positively selected mutations depends on the nature of the neighboring cells. When clones with similar competitive fitness collide, mutant cell fate reverts towards homeostasis, a constraint that explains how selection operates in normal-appearing epithelium.
Collapse
Affiliation(s)
| | - Maria P Alcolea
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael W J Hall
- Wellcome Sanger Institute, Hinxton, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | | | | | | | | | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | - Benjamin A Hall
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
357
|
Yano T. Paradox of age-specific incidence rates of second primary cancer in individuals with esophageal cancer. J Gastroenterol 2020; 55:664-665. [PMID: 32285194 DOI: 10.1007/s00535-020-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, 277-8577, Japan.
| |
Collapse
|
358
|
Yuan W, Liu Z, Wang Y, Liu M, Pan Y, Lei W, Yang H, Xu R, Zhang L, Cai H, Li J, Ke Y. Clonal evolution of esophageal squamous cell carcinoma from normal mucosa to primary tumor and metastases. Carcinogenesis 2020; 40:1445-1451. [PMID: 31570939 DOI: 10.1093/carcin/bgz162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/25/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
The clonal evolution which drives esophageal squamous cell carcinoma (ESCC) from initiation in normal cell to primary carcinoma and metastases is poorly understood. In this study, multi-region whole-exome sequencing (WES) (284X) and whole-genome single nucleotide polymorphism genotyping were performed on a total of 109 samples of ESCC from 10 patients. This included 42 apparently normal samples of esophageal mucosa at increasing distances from the upper or lower boundaries of the primary tumor to the surgical margins of resection, 43 spatially separated tissue samples within primary tumor and 24 regional lymph node metastases. Phylogenetic analysis was performed to reconstruct ancestor-descendant relationships of clones and the clonal composition of multi-region samples. Mutations of cancer-related genes were validated by deep targeted sequencing (1,168X). Both inter- and intra-tumoral genetic heterogeneity were obvious across multi-region samples among ESCC patients. Clones varying in number from one to seven were discovered within each regional tumor or metastatic sample. Phylogenetic analysis demonstrated complex clonal evolution patterns. Regional lymph node metastases had characteristics of early initiation and polyclonal spreading, and could be derived from carcinoma in situ (CIS) directly. TP53 was the only gene harboring non-silent mutations identified across all multi-region tumor samples of all ten patients. Mutations of TP53 were also found in histologically normal mucosa in sites away from primary tumor.
Collapse
Affiliation(s)
- Wenqing Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China.,Department of Education, Peking University Third Hospital, Beijing, PR China
| | - Zhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Yu Wang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mengfei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Yaqi Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | | | - Haijun Yang
- Anyang Cancer Hospital, Anyang, Henan Province, PR China
| | - Ruiping Xu
- Anyang Cancer Hospital, Anyang, Henan Province, PR China
| | - Lixin Zhang
- Anyang Cancer Hospital, Anyang, Henan Province, PR China
| | - Hong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Jun Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| |
Collapse
|
359
|
Muyas F, Zapata L, Guigó R, Ossowski S. The rate and spectrum of mosaic mutations during embryogenesis revealed by RNA sequencing of 49 tissues. Genome Med 2020; 12:49. [PMID: 32460841 PMCID: PMC7254727 DOI: 10.1186/s13073-020-00746-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mosaic mutations acquired during early embryogenesis can lead to severe early-onset genetic disorders and cancer predisposition, but are often undetectable in blood samples. The rate and mutational spectrum of embryonic mosaic mutations (EMMs) have only been studied in few tissues, and their contribution to genetic disorders is unknown. Therefore, we investigated how frequent mosaic mutations occur during embryogenesis across all germ layers and tissues. METHODS Mosaic mutation detection in 49 normal tissues from 570 individuals (Genotype-Tissue Expression (GTEx) cohort) was performed using a newly developed multi-tissue, multi-individual variant calling approach for RNA-seq data. Our method allows for reliable identification of EMMs and the developmental stage during which they appeared. RESULTS The analysis of EMMs in 570 individuals revealed that newborns on average harbor 0.5-1 EMMs in the exome affecting multiple organs (1.3230 × 10-8 per nucleotide per individual), a similar frequency as reported for germline de novo mutations. Our multi-tissue, multi-individual study design allowed us to distinguish mosaic mutations acquired during different stages of embryogenesis and adult life, as well as to provide insights into the rate and spectrum of mosaic mutations. We observed that EMMs are dominated by a mutational signature associated with spontaneous deamination of methylated cytosines and the number of cell divisions. After birth, cells continue to accumulate somatic mutations, which can lead to the development of cancer. Investigation of the mutational spectrum of the gastrointestinal tract revealed a mutational pattern associated with the food-borne carcinogen aflatoxin, a signature that has so far only been reported in liver cancer. CONCLUSIONS In summary, our multi-tissue, multi-individual study reveals a surprisingly high number of embryonic mosaic mutations in coding regions, implying novel hypotheses and diagnostic procedures for investigating genetic causes of disease and cancer predisposition.
Collapse
Affiliation(s)
- Francesc Muyas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Luis Zapata
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Roderic Guigó
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
360
|
|
361
|
Abstract
As people age, their tissues accumulate an increasing number of somatic mutations. Although most of these mutations are of little or no functional consequence, a mutation may arise that confers a fitness advantage on a cell. When this process happens in the hematopoietic system, a substantial proportion of circulating blood cells may derive from a single mutated stem cell. This outgrowth, called "clonal hematopoiesis," is highly prevalent in the elderly population. Here we discuss recent advances in our knowledge of clonal hematopoiesis, its relationship to malignancies, its link to nonmalignant diseases of aging, and its potential impact on immune function. Clonal hematopoiesis provides a glimpse into the process of mutation and selection that likely occurs in all somatic tissues.
Collapse
Affiliation(s)
- Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Benjamin L Ebert
- Department of Medical Oncology, Howard Hughes Medical Institute, Boston, MA. .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
362
|
Inoue S, Yoshida E, Fukui Y, Ueno T, Kawazu M, Takeyama R, Ikemura M, Osuga Y, Terao Y, Hirota Y, Mano H. KRAS mutations in uterine endometrium are associated with gravidity and parity. Cell Death Dis 2020; 11:347. [PMID: 32393751 PMCID: PMC7214428 DOI: 10.1038/s41419-020-2559-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
| | - Emiko Yoshida
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Reina Takeyama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| |
Collapse
|
363
|
Ohashi S, Kikuchi O, Nakai Y, Ida T, Saito T, Kondo Y, Yamamoto Y, Mitani Y, Nguyen Vu TH, Fukuyama K, Tsukihara H, Suzuki N, Muto M. Synthetic Lethality with Trifluridine/Tipiracil and Checkpoint Kinase 1 Inhibitor for Esophageal Squamous Cell Carcinoma. Mol Cancer Ther 2020; 19:1363-1372. [PMID: 32371587 DOI: 10.1158/1535-7163.mct-19-0918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a disease characterized by a high mutation rate of the TP53 gene, which plays pivotal roles in the DNA damage response (DDR) and is regulated by checkpoint kinase (CHK) 2. CHK1 is another key DDR-related protein, and its selective inhibition is suggested to be particularly sensitive to TP53-mutated cancers, because a loss of both pathways (CHK1 and/or CHK2-p53) is lethal due to the serious impairment of DDR. Such a therapeutic strategy is termed synthetic lethality. Here, we propose a novel therapeutic strategy based on synthetic lethality combining trifluridine/tipiracil and prexasertib (CHK1 inhibitor) as a treatment for ESCC. Trifluridine is a key component of the antitumor drug combination with trifluridine/tipiracil (an inhibitor of trifluridine degradation), also known as TAS-102. In this study, we demonstrate that trifluridine increases CHK1 phosphorylation in ESCC cells combined with a reduction of the S-phase ratio as well as the induction of ssDNA damage. Because CHK1 phosphorylation is considered to be induced as DDR for trifluridine-mediated DNA damage, we examined the effects of CHK1 inhibition on trifluridine treatment. Consequently, CHK1 inhibition by short hairpin RNA or treatment with the CHK1 inhibitor, prexasertib, markedly enhanced trifluridine-mediated DNA damage, represented by an increase of γH2AX expression. Moreover, the combination of trifluridine/tipiracil and CHK1 inhibition significantly suppressed tumor growth of ESCC-derived xenograft tumors. Furthermore, the combination of trifluridine and prexasertib enhanced radiosensitivity both in vitro and in vivo Thus, the combination of trifluridine/tipiracil and a CHK1 inhibitor exhibits effective antitumor effects, suggesting a novel therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | - Osamu Kikuchi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yukie Nakai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomomi Ida
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomoki Saito
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuki Kondo
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Yamamoto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yosuke Mitani
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Trang H Nguyen Vu
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Keita Fukuyama
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Tsukihara
- Translational Research Laboratory, Taiho Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima, Japan
| | - Norihiko Suzuki
- Translational Research Laboratory, Taiho Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
364
|
Melki PN, Korenjak M, Zavadil J. Experimental investigations of carcinogen-induced mutation spectra: Innovation, challenges and future directions. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503195. [PMID: 32522347 DOI: 10.1016/j.mrgentox.2020.503195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/18/2022]
Abstract
Recent years have witnessed an expansion of mutagenesis research focusing on experimentally modeled genome-scale mutational signatures of carcinogens and of endogenous processes. Experimental mutational signatures can explain etiologic links to patterns found in human tumors that may be linked to same exposures, and can serve as biomarkers of exposure history and may even provide insights on causality. A number of innovative exposure models have been employed and reported, based on cells cultured in monolayers or in 3-D, on organoids, induced pluripotent stem cells, non-mammalian organisms, microorganisms and rodent bioassays. Here we discuss some of the latest developments and pros and cons of these experimental systems used in mutational signature analysis. Integrative designs that bring together multiple exposure systems (in vitro, in vivo and in silico pan-cancer data mining) started emerging as powerful tools to identify robust mutational signatures of the tested cancer risk agents. We further propose that devising a new generation of cell-based models is warranted to streamline systematic testing of carcinogen effects on the cell genomes, while seeking to increasingly supplant animal with non-animal systems to address relevant ethical issues and accentuate the 3R principles. We conclude that the knowledge accumulating from the growing body of signature modelling investigations has considerable power to advance cancer etiology studies and to support cancer prevention efforts through streamlined characterization of cancer-causing agents and the recognition of their specific effects.
Collapse
Affiliation(s)
- Pamela N Melki
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France.
| |
Collapse
|
365
|
Deng W, Li J, Dorrah K, Jimenez-Tapia D, Arriaga B, Hao Q, Cao W, Gao Z, Vadgama J, Wu Y. The role of PPM1D in cancer and advances in studies of its inhibitors. Biomed Pharmacother 2020; 125:109956. [PMID: 32006900 PMCID: PMC7080581 DOI: 10.1016/j.biopha.2020.109956] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
A greater understanding of factors causing cancer initiation, progression and evolution is of paramount importance. Among them, the serine/threonine phosphatase PPM1D, also referred to as wild-type p53-induced phosphatase 1 (Wip1) or protein phosphatase 2C delta (PP2Cδ), is emerging as an important oncoprotein due to its negative regulation on a number of crucial cancer suppressor pathways. Initially identified as a p53-regulated gene, PPM1D has been afterwards found amplified and more recently mutated in many human cancers such as breast cancer. The latest progress in this field further reveals that selective inhibition of PPM1D to delay tumor onset or reduce tumor burden represents a promising anti-cancer strategy. Here, we review the advances in the studies of the PPM1D activity and its relevance to various cancers, and recent progress in development of PPM1D inhibitors and discuss their potential application in cancer therapy. Consecutive research on PPM1D and its relationship with cancer is essential, as it ultimately contributes to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jieqing Li
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kimberly Dorrah
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Denise Jimenez-Tapia
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Brando Arriaga
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Zhaoxia Gao
- Department of General Surgery, 5th Hospital of Wuhan, Wuhan, 430050, China; Department of Surgery, Johns Hopkins Hospital Bayview Campus, Baltimore, MD, USA
| | - Jay Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
366
|
The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J Hepatol 2020; 72:990-1002. [PMID: 32044402 DOI: 10.1016/j.jhep.2020.01.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Chronic liver disease and primary liver cancer are a massive global problem, with a future increase in incidences predicted. The most prevalent form of primary liver cancer, hepatocellular carcinoma, occurs after years of chronic liver disease. Mutations in the genome are a causative and defining feature of all cancers. Chronic liver disease, mostly at the cirrhotic stage, causes the accumulation of progressive mutations which can drive cancer development. Within the liver, a Darwinian process selects out dominant clones with selected driver mutations but also leaves a trail of passenger mutations which can be used to track the evolution of a tumour. Understanding what causes specific mutations and how they combine with one another to form cancer is a question at the heart of understanding, preventing and tackling liver cancer. Herein, we review the landscape of gene mutations in cirrhosis, especially those paving the way toward hepatocellular carcinoma development, that have been characterised by recent studies capitalising on technological advances in genomic sequencing. With these insights, we are beginning to understand how cancers form in the liver, particularly on the background of chronic liver disease. This knowledge may soon lead to breakthroughs in the way we detect, diagnose and treat this devastating disease.
Collapse
|
367
|
Oishi Y, Manabe I. Organ System Crosstalk in Cardiometabolic Disease in the Age of Multimorbidity. Front Cardiovasc Med 2020; 7:64. [PMID: 32411724 PMCID: PMC7198858 DOI: 10.3389/fcvm.2020.00064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The close association among cardiovascular, metabolic, and kidney diseases suggests a common pathological basis and significant interaction among these diseases. Metabolic syndrome and cardiorenal syndrome are two examples that exemplify the interlinked development of disease or dysfunction in two or more organs. Recent studies have been sorting out the mechanisms responsible for the crosstalk among the organs comprising the cardiovascular, metabolic, and renal systems, including heart-kidney and adipose-liver signaling, among many others. However, it is also becoming clear that this crosstalk is not limited to just pairs of organs, and in addition to organ-organ crosstalk, there are also organ-system and organ-body interactions. For instance, heart failure broadly impacts various organs and systems, including the kidney, liver, lung, and nervous system. Conversely, systemic dysregulation of metabolism, immunity, and nervous system activity greatly affects heart failure development and prognosis. This is particularly noteworthy, as more and more patients present with two or more coexisting chronic diseases or conditions (multimorbidity) due in part to the aging of society. Advances in treatment also contribute to the increase in multimorbidity, as exemplified by cardiovascular disease in cancer survivors. To understand the mechanisms underlying the increasing burden of multimorbidity, it is vital to elucidate the multilevel crosstalk and communication within the body at the levels of organ systems, tissues, and cells. In this article, we focus on chronic inflammation as a key common pathological basis of cardiovascular and metabolic diseases, and discuss emerging mechanisms that drive chronic inflammation in the context of multimorbidity.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
368
|
Niida A, Hasegawa T, Innan H, Shibata T, Mimori K, Miyano S. A unified simulation model for understanding the diversity of cancer evolution. PeerJ 2020; 8:e8842. [PMID: 32296600 PMCID: PMC7150545 DOI: 10.7717/peerj.8842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/02/2020] [Indexed: 01/24/2023] Open
Abstract
Because cancer evolution underlies the therapeutic difficulties of cancer, it is clinically important to understand the evolutionary dynamics of cancer. Thus far, a number of evolutionary processes have been proposed to be working in cancer evolution. However, there exists no simulation model that can describe the different evolutionary processes in a unified manner. In this study, we constructed a unified simulation model for describing the different evolutionary processes and performed sensitivity analysis on the model to determine the conditions in which cancer growth is driven by each of the different evolutionary processes. Our sensitivity analysis has successfully provided a series of novel insights into the evolutionary dynamics of cancer. For example, we found that, while a high neutral mutation rate shapes neutral intratumor heterogeneity (ITH) characterized by a fractal-like pattern, a stem cell hierarchy can also contribute to shaping neutral ITH by apparently increasing the mutation rate. Although It has been reported that the evolutionary principle shaping ITH shifts from selection to accumulation of neutral mutations during colorectal tumorigenesis, our simulation revealed the possibility that this evolutionary shift is triggered by drastic evolutionary events that occur in a short time and confer a marked fitness increase on one or a few cells. This result helps us understand that each process works not separately but simultaneously and continuously as a series of phases of cancer evolution. Collectively, this study serves as a basis to understand in greater depth the diversity of cancer evolution.
Collapse
Affiliation(s)
- Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanori Hasegawa
- Division of Health Medical Data Science, Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Innan
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospita, Beppu, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
369
|
Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dentro SC, Dawson KJ, Butler T, Rahbari R, Mitchell TJ, Maura F, Nangalia J, Tarpey PS, Brunner SF, Lee-Six H, Hooks Y, Moody S, Mahbubani KT, Jimenez-Linan M, Brosens JJ, Iacobuzio-Donahue CA, Martincorena I, Saeb-Parsy K, Campbell PJ, Stratton MR. The mutational landscape of normal human endometrial epithelium. Nature 2020; 580:640-646. [PMID: 32350471 DOI: 10.1038/s41586-020-2214-z] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.
Collapse
Affiliation(s)
- Luiza Moore
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Daniel Leongamornlert
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter Ellis
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Inivata Ltd, Cambridge, UK
| | - Stefan C Dentro
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Kevin J Dawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Tim Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Francesco Maura
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jyoti Nangalia
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Patrick S Tarpey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Simon F Brunner
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Henry Lee-Six
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Mercedes Jimenez-Linan
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jan J Brosens
- Tommy's National Miscarriage Research Centre, Warwick Medical School, University of Warwick, Coventry, UK
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
370
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
371
|
Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley TE, Fisher DS, Blundell JR. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 2020; 367:1449-1454. [PMID: 32217721 DOI: 10.1126/science.aay9333] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022]
Abstract
Somatic mutations acquired in healthy tissues as we age are major determinants of cancer risk. Whether variants confer a fitness advantage or rise to detectable frequencies by chance remains largely unknown. Blood sequencing data from ~50,000 individuals reveal how mutation, genetic drift, and fitness shape the genetic diversity of healthy blood (clonal hematopoiesis). We show that positive selection, not drift, is the major force shaping clonal hematopoiesis, provide bounds on the number of hematopoietic stem cells, and quantify the fitness advantages of key pathogenic variants, at single-nucleotide resolution, as well as the distribution of fitness effects (fitness landscape) within commonly mutated driver genes. These data are consistent with clonal hematopoiesis being driven by a continuing risk of mutations and clonal expansions that become increasingly detectable with age.
Collapse
Affiliation(s)
- Caroline J Watson
- Department of Oncology, University of Cambridge, Cambridge, UK.
- Early Detection Programme, CRUK Cambridge Cancer Centre, University of Cambridge, Cambridge, UK
| | - A L Papula
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Gladys Y P Poon
- Department of Oncology, University of Cambridge, Cambridge, UK
- Early Detection Programme, CRUK Cambridge Cancer Centre, University of Cambridge, Cambridge, UK
| | - Wing H Wong
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew L Young
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd E Druley
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel S Fisher
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Jamie R Blundell
- Department of Oncology, University of Cambridge, Cambridge, UK.
- Early Detection Programme, CRUK Cambridge Cancer Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
372
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
373
|
Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiol Mol Biol Rev 2020; 84:84/2/e00064-19. [PMID: 32132244 DOI: 10.1128/mmbr.00064-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.
Collapse
|
374
|
Adashek JJ, Kato S, Lippman SM, Kurzrock R. The paradox of cancer genes in non-malignant conditions: implications for precision medicine. Genome Med 2020; 12:16. [PMID: 32066498 PMCID: PMC7027240 DOI: 10.1186/s13073-020-0714-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing has enabled patient selection for targeted drugs, some of which have shown remarkable efficacy in cancers that have the cognate molecular signatures. Intriguingly, rapidly emerging data indicate that altered genes representing oncogenic drivers can also be found in sporadic non-malignant conditions, some of which have negligible and/or low potential for transformation to cancer. For instance, activating KRAS mutations are discerned in endometriosis and in brain arteriovenous malformations, inactivating TP53 tumor suppressor mutations in rheumatoid arthritis synovium, and AKT, MAPK, and AMPK pathway gene alterations in the brains of Alzheimer's disease patients. Furthermore, these types of alterations may also characterize hereditary conditions that result in diverse disabilities and that are associated with a range of lifetime susceptibility to the development of cancer, varying from near universal to no elevated risk. Very recently, the repurposing of targeted cancer drugs for non-malignant conditions that are associated with these genomic alterations has yielded therapeutic successes. For instance, the phenotypic manifestations of CLOVES syndrome, which is characterized by tissue overgrowth and complex vascular anomalies that result from the activation of PIK3CA mutations, can be ameliorated by the PIK3CA inhibitor alpelisib, which was developed and approved for breast cancer. In this review, we discuss the profound implications of finding molecular alterations in non-malignant conditions that are indistinguishable from those driving cancers, with respect to our understanding of the genomic basis of medicine, the potential confounding effects in early cancer detection that relies on sensitive blood tests for oncogenic mutations, and the possibility of reverse repurposing drugs that are used in oncology in order to ameliorate non-malignant illnesses and/or to prevent the emergence of cancer.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
375
|
Laconi E, Marongiu F, DeGregori J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br J Cancer 2020; 122:943-952. [PMID: 32042067 PMCID: PMC7109142 DOI: 10.1038/s41416-019-0721-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
Why do we get cancer mostly when we are old? According to current paradigms, the answer is simple: mutations accumulate in our tissues throughout life, and some of these mutations contribute to cancers. Although mutations are necessary for cancer development, a number of studies shed light on roles for ageing and exposure-dependent changes in tissue landscapes that determine the impact of oncogenic mutations on cellular fitness, placing carcinogenesis into an evolutionary framework. Natural selection has invested in somatic maintenance to maximise reproductive success. Tissue maintenance not only ensures functional robustness but also prevents the occurrence of cancer through periods of likely reproduction by limiting selection for oncogenic events in our cells. Indeed, studies in organisms ranging from flies to humans are revealing conserved mechanisms to eliminate damaged or oncogenically initiated cells from tissues. Reports of the existence of striking numbers of oncogenically initiated clones in normal tissues and of how this clonal architecture changes with age or external exposure to noxious substances provide critical insight into the early stages of cancer development. A major challenge for cancer biology will be the integration of these studies with epidemiology data into an evolutionary theory of carcinogenesis, which could have a large impact on addressing cancer risk and treatment.
Collapse
Affiliation(s)
- Ezio Laconi
- Department of Biomedical Sciences, Section of Pathology, University of Cagliari School of Medicine, 09126, Cagliari, Italy.
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Pathology, University of Cagliari School of Medicine, 09126, Cagliari, Italy
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, Integrated Department of Immunology, Department of Pediatrics, Department of Medicine (Section of Hematology), University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
376
|
Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T, Maughan EF, Beal K, Menzies A, Millar FR, Anderson E, Clarke SE, Pennycuick A, Thakrar RM, Butler CR, Kakiuchi N, Hirano T, Hynds RE, Stratton MR, Martincorena I, Janes SM, Campbell PJ. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 2020; 578:266-272. [PMID: 31996850 PMCID: PMC7021511 DOI: 10.1038/s41586-020-1961-1] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/29/2019] [Indexed: 01/06/2023]
Abstract
Tobacco smoking causes lung cancer1-3, a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA4,5. The profound effects of tobacco on the genome of lung cancer cells are well-documented6-10, but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell; massively increasing the variance both within and between subjects; and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4-14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0-6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Kate H C Gowers
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Henry Lee-Six
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Tim Coorens
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Elizabeth F Maughan
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Kathryn Beal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew Menzies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Fraser R Millar
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Sarah E Clarke
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Adam Pennycuick
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Ricky M Thakrar
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Colin R Butler
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Robert E Hynds
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | | | | | - Sam M Janes
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK.
- Department of Thoracic Medicine, University College London Hospital, London, UK.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
- Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
377
|
Choi BK, Fujiwara K, Dayaram T, Darlington Y, Dickerson J, Goodell MA, Donehower LA. WIP1 dephosphorylation of p27 Kip1 Serine 140 destabilizes p27 Kip1 and reverses anti-proliferative effects of ATM phosphorylation. Cell Cycle 2020; 19:479-491. [PMID: 31959038 PMCID: PMC7100888 DOI: 10.1080/15384101.2020.1717025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
The phosphoinositide-3-kinase like kinases (PIKK) such as ATM and ATR play a key role in initiating the cellular DNA damage response (DDR). One key ATM target is the cyclin-dependent kinase inhibitor p27Kip1 that promotes G1 arrest. ATM activates p27Kip1-induced arrest in part through phosphorylation of p27Kip1 at Serine 140. Here we show that this site is dephosphorylated by the type 2C serine/threonine phosphatase, WIP1 (Wildtype p53-Induced Phosphatase-1), encoded by the PPM1D gene. WIP1 has been shown to dephosphorylate numerous ATM target sites in DDR proteins, and its overexpression and/or mutation has often been associated with oncogenesis. We demonstrate that wildtype, but not phosphatase-dead WIP1, efficiently dephosphorylates p27Kip1 Ser140 both in vitro and in cells and that this dephosphorylation is sensitive to the WIP1-specific inhibitor GSK 2830371. Increased expression of wildtype WIP1 reduces stability of p27Kip1 while increased expression of similar amounts of phosphatase-dead WIP1 has no effect on p27Kip1 protein stability. Overexpression of wildtype p27Kip1 reduces cell proliferation and colony forming capability relative to the S140A (constitutively non-phosphorylated) form of p27. Thus, WIP1 plays a significant role in homeostatic modulation of p27Kip1 activity following activation by ATM.
Collapse
Affiliation(s)
- Byung-Kwon Choi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kenichiro Fujiwara
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Tajhal Dayaram
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yolanda Darlington
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Dickerson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A. Goodell
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
378
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
379
|
Abstract
The past two centuries have witnessed an unprecedented rise in human life expectancy. Sustaining longer lives with reduced periods of disability will require an understanding of the underlying mechanisms of ageing, and genetics is a powerful tool for identifying these mechanisms. Large-scale genome-wide association studies have recently identified many loci that influence key human ageing traits, including lifespan. Multi-trait loci have been linked with several age-related diseases, suggesting shared ageing influences. Mutations that drive accelerated ageing in prototypical progeria syndromes in humans point to an important role for genome maintenance and stability. Together, these different strands of genetic research are highlighting pathways for the discovery of anti-ageing interventions that may be applicable in humans.
Collapse
|
380
|
Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, Mitchell TJ, Rubanova Y, Anur P, Yu K, Tarabichi M, Deshwar A, Wintersinger J, Kleinheinz K, Vázquez-García I, Haase K, Jerman L, Sengupta S, Macintyre G, Malikic S, Donmez N, Livitz DG, Cmero M, Demeulemeester J, Schumacher S, Fan Y, Yao X, Lee J, Schlesner M, Boutros PC, Bowtell DD, Zhu H, Getz G, Imielinski M, Beroukhim R, Sahinalp SC, Ji Y, Peifer M, Markowetz F, Mustonen V, Yuan K, Wang W, Morris QD, PCAWG Evolution & Heterogeneity Working Group DentroStefan C.346LeshchinerIgnaty5GerstungMoritz123JollyClemency4HaaseKerstin4TarabichiMaxime34WintersingerJeff89DeshwarAmit G.89YuKaixian11GonzalezSantiago1RubanovaYulia89MacintyreGeoff16AdamsDavid J.3AnurPavana10BeroukhimRameen531BoutrosPaul C.82526BowtellDavid D.27CampbellPeter J.3CaoShaolong11ChristieElizabeth L.1927CmeroMarek1920CunYupeng34DawsonKevin J.3DemeulemeesterJonas421DonmezNilgun1718DrewsRuben M.16EilsRoland1213FanYu11FittallMatthew4GarsedDale W.1927GetzGad5282930HaGavin5ImielinskiMarcin2223JermanLara114JiYuan1533KleinheinzKortine1213LeeJuhee24Lee-SixHenry3LivitzDimitri G.5MalikicSalem1718MarkowetzFlorian16MartincorenaInigo3MitchellThomas J.37MustonenVille35OesperLayla40PeiferMartin34PetoMyron10RaphaelBenjamin J.41RosebrockDaniel5SahinalpS. Cenk1832SalcedoAdriana25SchlesnerMatthias12SchumacherSteven5SenguptaSubhajit15ShiRuian8ShinSeung Jun1142SpiroOliver5SteinLincoln D.25Vázquez-GarcíaIgnacio37VembuShankar8WheelerDavid A.43YangTsun-Po34YaoXiaotong2223YuanKe1636ZhuHongtu11WangWenyi11MorrisQuaid D.89SpellmanPaul T.10WedgeDavid C.638Van LooPeter421, Spellman PT, Wedge DC, Van Loo P, PCAWG Consortium. The evolutionary history of 2,658 cancers. Nature 2020; 578:122-128. [PMID: 32025013 PMCID: PMC7054212 DOI: 10.1038/s41586-019-1907-7] [Citation(s) in RCA: 667] [Impact Index Per Article: 133.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/18/2019] [Indexed: 01/28/2023]
Abstract
Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.
Collapse
Affiliation(s)
- Moritz Gerstung
- grid.225360.00000 0000 9709 7726European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany ,grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Cambridge, UK
| | - Clemency Jolly
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Ignaty Leshchiner
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Stefan C. Dentro
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Cambridge, UK ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK ,grid.4991.50000 0004 1936 8948Big Data Institute, University of Oxford, Oxford, UK
| | - Santiago Gonzalez
- grid.225360.00000 0000 9709 7726European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Daniel Rosebrock
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Thomas J. Mitchell
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Cambridge, UK ,grid.5335.00000000121885934University of Cambridge, Cambridge, UK
| | - Yulia Rubanova
- grid.17063.330000 0001 2157 2938University of Toronto, Toronto, Ontario Canada ,grid.494618.6Vector Institute, Toronto, Ontario Canada
| | - Pavana Anur
- grid.5288.70000 0000 9758 5690Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR USA
| | - Kaixian Yu
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Maxime Tarabichi
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Cambridge, UK ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Amit Deshwar
- grid.17063.330000 0001 2157 2938University of Toronto, Toronto, Ontario Canada ,grid.494618.6Vector Institute, Toronto, Ontario Canada
| | - Jeff Wintersinger
- grid.17063.330000 0001 2157 2938University of Toronto, Toronto, Ontario Canada ,grid.494618.6Vector Institute, Toronto, Ontario Canada
| | - Kortine Kleinheinz
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, Heidelberg, Germany
| | - Ignacio Vázquez-García
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Cambridge, UK ,grid.5335.00000000121885934University of Cambridge, Cambridge, UK
| | - Kerstin Haase
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Lara Jerman
- grid.225360.00000 0000 9709 7726European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK ,grid.8954.00000 0001 0721 6013University of Ljubljana, Ljubljana, Slovenia
| | - Subhajit Sengupta
- grid.240372.00000 0004 0400 4439NorthShore University HealthSystem, Evanston, IL USA
| | - Geoff Macintyre
- grid.5335.00000000121885934Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Salem Malikic
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, British Columbia Canada ,grid.412541.70000 0001 0684 7796Vancouver Prostate Centre, Vancouver, British Columbia Canada
| | - Nilgun Donmez
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, British Columbia Canada ,grid.412541.70000 0001 0684 7796Vancouver Prostate Centre, Vancouver, British Columbia Canada
| | - Dimitri G. Livitz
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Marek Cmero
- grid.1008.90000 0001 2179 088XUniversity of Melbourne, Melbourne, Victoria Australia ,grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute, Melbourne, Victoria Australia
| | - Jonas Demeulemeester
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK ,grid.5596.f0000 0001 0668 7884University of Leuven, Leuven, Belgium
| | - Steven Schumacher
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Yu Fan
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xiaotong Yao
- grid.5386.8000000041936877XWeill Cornell Medicine, New York, NY USA ,grid.429884.b0000 0004 1791 0895New York Genome Center, New York, NY USA
| | - Juhee Lee
- grid.205975.c0000 0001 0740 6917University of California Santa Cruz, Santa Cruz, CA USA
| | - Matthias Schlesner
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul C. Boutros
- grid.17063.330000 0001 2157 2938University of Toronto, Toronto, Ontario Canada ,grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, Ontario Canada ,grid.19006.3e0000 0000 9632 6718University of California, Los Angeles, CA USA
| | - David D. Bowtell
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, Victoria Australia
| | - Hongtu Zhu
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Gad Getz
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA USA ,grid.32224.350000 0004 0386 9924Department of Pathology, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Marcin Imielinski
- grid.5386.8000000041936877XWeill Cornell Medicine, New York, NY USA ,grid.429884.b0000 0004 1791 0895New York Genome Center, New York, NY USA
| | - Rameen Beroukhim
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.65499.370000 0001 2106 9910Dana-Farber Cancer Institute, Boston, MA USA
| | - S. Cenk Sahinalp
- grid.412541.70000 0001 0684 7796Vancouver Prostate Centre, Vancouver, British Columbia Canada ,grid.411377.70000 0001 0790 959XIndiana University, Bloomington, IN USA
| | - Yuan Ji
- grid.240372.00000 0004 0400 4439NorthShore University HealthSystem, Evanston, IL USA ,grid.170205.10000 0004 1936 7822The University of Chicago, Chicago, IL USA
| | - Martin Peifer
- grid.6190.e0000 0000 8580 3777University of Cologne, Cologne, Germany
| | - Florian Markowetz
- grid.5335.00000000121885934Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ville Mustonen
- grid.7737.40000 0004 0410 2071University of Helsinki, Helsinki, Finland
| | - Ke Yuan
- grid.5335.00000000121885934Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK ,grid.8756.c0000 0001 2193 314XUniversity of Glasgow, Glasgow, UK
| | - Wenyi Wang
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Quaid D. Morris
- grid.17063.330000 0001 2157 2938University of Toronto, Toronto, Ontario Canada ,grid.494618.6Vector Institute, Toronto, Ontario Canada
| | | | - Paul T. Spellman
- grid.5288.70000 0000 9758 5690Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR USA
| | - David C. Wedge
- grid.4991.50000 0004 1936 8948Big Data Institute, University of Oxford, Oxford, UK ,grid.454382.c0000 0004 7871 7212Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Peter Van Loo
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK ,grid.5596.f0000 0001 0668 7884University of Leuven, Leuven, Belgium
| | | |
Collapse
|
381
|
Koyanagi YN, Suzuki E, Imoto I, Kasugai Y, Oze I, Ugai T, Iwase M, Usui Y, Kawakatsu Y, Sawabe M, Hirayama Y, Tanaka T, Abe T, Ito S, Komori K, Hanai N, Tajika M, Shimizu Y, Niwa Y, Ito H, Matsuo K. Across-Site Differences in the Mechanism of Alcohol-Induced Digestive Tract Carcinogenesis: An Evaluation by Mediation Analysis. Cancer Res 2020; 80:1601-1610. [PMID: 32005715 DOI: 10.1158/0008-5472.can-19-2685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/12/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
A genetic variant on aldehyde dehydrogenase 2 (ALDH2 rs671, Glu504Lys) contributes to carcinogenesis after alcohol consumption. Somewhat conversely, the ALDH2 Lys allele also confers a protective effect against alcohol-induced carcinogenesis by decreasing alcohol consumption due to acetaldehyde-related adverse effects. Here, we applied a mediation analysis to five case-control studies for head and neck, esophageal, stomach, small intestine, and colorectal cancers, with 4,099 cases and 6,065 controls, and explored the potentially heterogeneous impact of alcohol drinking on digestive tract carcinogenesis by decomposing the total effect of the ALDH2 Lys allele on digestive tract cancer risk into the two opposing effects of the carcinogenic effect (direct effect) and the protective effect (indirect effect mediated by drinking behavior). Alcohol was associated with an increased risk of most digestive tract cancers, but significant direct effects were observed only for upper gastrointestinal tract cancer risk, and varied substantially by site, with ORs (95% confidence interval) of 1.83 (1.43-2.36) for head and neck cancer, 21.15 (9.11-49.12) for esophageal cancer, and 1.65 (1.38-1.96) for stomach cancer. In contrast, a significant protective indirect effect was observed on risk for all cancers, except small intestine cancer. These findings suggest that alcohol is a major risk factor for digestive tract cancers, but its impact as a surrogate for acetaldehyde exposure appears heterogeneous by site. Meanwhile, the behavior-related effect of the ALDH2 Lys allele results in a decreased risk of most digestive tract cancers. SIGNIFICANCE: These findings support that genetic alcohol avoidance is a factor against alcohol-induced cancers.
Collapse
Affiliation(s)
- Yuriko N Koyanagi
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Research Institute, Nagoya, Aichi, Japan
| | - Etsuji Suzuki
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Issei Imoto
- Division of Molecular Genetics, Department of Preventive Medicine, Aichi Cancer Research Institute, Nagoya, Aichi, Japan
| | - Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Tomotaka Ugai
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Madoka Iwase
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yoshiaki Usui
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Research Institute, Nagoya, Aichi, Japan
| | - Yukino Kawakatsu
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Michi Sawabe
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Yutaka Hirayama
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Tsutomu Tanaka
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Tetsuya Abe
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Seiji Ito
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Koji Komori
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Masahiro Tajika
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Yasumasa Niwa
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Research Institute, Nagoya, Aichi, Japan.,Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan. .,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
382
|
Fabre MA, McKerrell T, Zwiebel M, Vijayabaskar MS, Park N, Wells PM, Rad R, Deloukas P, Small K, Steves CJ, Vassiliou GS. Concordance for clonal hematopoiesis is limited in elderly twins. Blood 2020; 135:269-273. [PMID: 31697828 PMCID: PMC6978156 DOI: 10.1182/blood.2019001807] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022] Open
Abstract
Although acquisition of leukemia-associated somatic mutations by 1 or more hematopoietic stem cells is inevitable with advancing age, its consequences are highly variable, ranging from clinically silent clonal hematopoiesis (CH) to leukemic progression. To investigate the influence of heritable factors on CH, we performed deep targeted sequencing of blood DNA from 52 monozygotic (MZ) and 27 dizygotic (DZ) twin pairs (aged 70-99 years). Using this highly sensitive approach, we identified CH (variant allele frequency ≥0.5%) in 62% of individuals. We did not observe higher concordance for CH within MZ twin pairs as compared with that within DZ twin pairs, or to that expected by chance. However, we did identify 2 MZ pairs in which both twins harbored identical rare somatic mutations, suggesting a shared cell of origin. Finally, in 3 MZ twin pairs harboring mutations in the same driver genes, serial blood samples taken 4 to 5 years apart showed substantial twin-to-twin variability in clonal trajectories. Our findings propose that the inherited genome does not exert a dominant influence on the behavior of adult CH and provide evidence that CH mutations may be acquired in utero.
Collapse
Affiliation(s)
- Margarete A Fabre
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Trust, Cambridge, United Kingdom
| | - Thomas McKerrell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Trust, Cambridge, United Kingdom
| | - Maximillian Zwiebel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- German Consortium for Translational Cancer Research (DKTK), Partnering Site Munich, Munich, Germany
| | - M S Vijayabaskar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Naomi Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Philippa M Wells
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, United Kingdom; and
| | - Roland Rad
- German Consortium for Translational Cancer Research (DKTK), Partnering Site Munich, Munich, Germany
| | - Panagiotis Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, United Kingdom; and
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, United Kingdom; and
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Trust, Cambridge, United Kingdom
| |
Collapse
|
383
|
von Loga K, Woolston A, Punta M, Barber LJ, Griffiths B, Semiannikova M, Spain G, Challoner B, Fenwick K, Simon R, Marx A, Sauter G, Lise S, Matthews N, Gerlinger M. Extreme intratumour heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer. Nat Commun 2020; 11:139. [PMID: 31949146 PMCID: PMC6965135 DOI: 10.1038/s41467-019-13915-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023] Open
Abstract
Mismatch repair deficient (dMMR) gastro-oesophageal adenocarcinomas (GOAs) show better outcomes than their MMR-proficient counterparts and high immunotherapy sensitivity. The hypermutator-phenotype of dMMR tumours theoretically enables high evolvability but their evolution has not been investigated. Here we apply multi-region exome sequencing (MSeq) to four treatment-naive dMMR GOAs. This reveals extreme intratumour heterogeneity (ITH), exceeding ITH in other cancer types >20-fold, but also long phylogenetic trunks which may explain the exquisite immunotherapy sensitivity of dMMR tumours. Subclonal driver mutations are common and parallel evolution occurs in RAS, PIK3CA, SWI/SNF-complex genes and in immune evasion regulators. MSeq data and evolution analysis of single region-data from 64 MSI GOAs show that chromosome 8 gains are early genetic events and that the hypermutator-phenotype remains active during progression. MSeq may be necessary for biomarker development in these heterogeneous cancers. Comparison with other MSeq-analysed tumour types reveals mutation rates and their timing to determine phylogenetic tree morphologies.
Collapse
Affiliation(s)
- Katharina von Loga
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Biomedical Research Centre, The Royal Marsden Hospital, London, SM2 5PT, United Kingdom
| | - Andrew Woolston
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Marco Punta
- Bioinformatics Core, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Louise J Barber
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Beatrice Griffiths
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Maria Semiannikova
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Georgia Spain
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Benjamin Challoner
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Kerry Fenwick
- Tumour Profiling Unit, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Institute of Pathology, University Hospital Fuerth, 90766, Fuerth, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stefano Lise
- Bioinformatics Core, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Nik Matthews
- Tumour Profiling Unit, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SW3 6JB, United Kingdom.
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, SW3 6JJ, United Kingdom.
| |
Collapse
|
384
|
Fujino T, Kitamura T. ASXL1 mutation in clonal hematopoiesis. Exp Hematol 2020; 83:74-84. [PMID: 31945396 DOI: 10.1016/j.exphem.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Recent advances in DNA sequencing technologies have enhanced our knowledge about several diseases. Coupled with easy accessibility to blood samples, hematology plays a leading role in understanding the process of carcinogenesis. Clonal hematopoiesis (CH) with somatic mutations is observed in at least 10% of people over 65 years of age, without apparent hematologic disorders. CH is associated with increased risk of hematologic malignancies, which is indicative of a pre-malignant condition. Therefore, a better understanding of CH will help elucidate the mechanism of multi-step tumorigenesis in the hematopoietic system. Somatic mutations of ASXL1 are frequently detected in CH and myeloid malignancies. Although ASXL1 does not have any catalytic activity, it is involved in multiple histone modifications including H3K4me3, H3K27me3, and H2AK119Ub, suggesting its function as a scaffolding protein. Most ASXL1 mutations detected in CH and myeloid malignancies are frameshift or nonsense mutations of the last exon, generating a C-terminally truncated protein. Deletion of Asxl1 or expression of mutant ASXL1 in mice alters histone modifications and facilitates aberrant gene expression, resulting in myeloid transformation. On the contrary, these mice exhibit impaired functioning of hematopoietic stem cells (HSCs), suggesting the negative effects of ASXL1 mutations on stem cell function. Thus, how ASXL1 mutations induce a clonal advantage of hematopoietic cells and subsequent CH development has not been elucidated. Here, we have reviewed the current literature that enhances our understanding of ASXL1, including its mutational landscape, function, and involvement of its mutation in pathogenesis of CH and myeloid malignancies. Finally, we discuss the potential causes of CH harboring ASXL1 mutations with our latest knowledge.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
385
|
Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun 2020; 11:73. [PMID: 31911629 PMCID: PMC6946829 DOI: 10.1038/s41467-019-13892-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events. Myelofibrosis is a myeloproliferative neoplasm. Here, the authors show the clonal evolution of myelofibrosis during JAK inhibitor therapy, revealing how the treatment results in an increase in clonal complexity and a gain of RAS pathway mutations.
Collapse
|
386
|
Harris KL, Myers MB, McKim KL, Elespuru RK, Parsons BL. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:152-175. [PMID: 31469467 PMCID: PMC6973253 DOI: 10.1002/em.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Kelly L. Harris
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials ScienceCDRH/OSEL, US Food and Drug AdministrationSilver SpringMaryland
| | - Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| |
Collapse
|
387
|
García-Nieto PE, Morrison AJ, Fraser HB. The somatic mutation landscape of the human body. Genome Biol 2019; 20:298. [PMID: 31874648 PMCID: PMC6930685 DOI: 10.1186/s13059-019-1919-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Somatic mutations in healthy tissues contribute to aging, neurodegeneration, and cancer initiation, yet they remain largely uncharacterized. RESULTS To gain a better understanding of the genome-wide distribution and functional impact of somatic mutations, we leverage the genomic information contained in the transcriptome to uniformly call somatic mutations from over 7500 tissue samples, representing 36 distinct tissues. This catalog, containing over 280,000 mutations, reveals a wide diversity of tissue-specific mutation profiles associated with gene expression levels and chromatin states. For example, lung samples with low expression of the mismatch-repair gene MLH1 show a mutation signature of deficient mismatch repair. In addition, we find pervasive negative selection acting on missense and nonsense mutations, except for mutations previously observed in cancer samples, which are under positive selection and are highly enriched in many healthy tissues. CONCLUSIONS These findings reveal fundamental patterns of tissue-specific somatic evolution and shed light on aging and the earliest stages of tumorigenesis.
Collapse
Affiliation(s)
- Pablo E García-Nieto
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Ashby J Morrison
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA.
| |
Collapse
|
388
|
Abstract
Between the 1930s and 1950s, scientists developed key principles of population genetics to try and explain the aging process. Almost a century later, these aging theories, including antagonistic pleiotropy and mutation accumulation, have been experimentally validated in animals. Although the theories have been much harder to test in humans despite research dating back to the 1970s, recent research is closing this evidence gap. Here we examine the strength of evidence for antagonistic pleiotropy in humans, one of the leading evolutionary explanations for the retention of genetic risk variation for non-communicable diseases. We discuss the analytical tools and types of data that are used to test for patterns of antagonistic pleiotropy and provide a primer of evolutionary theory on types of selection as a guide for understanding this mechanism and how it may manifest in other diseases. We find an abundance of non-experimental evidence for antagonistic pleiotropy in many diseases. In some cases, several studies have independently found corroborating evidence for this mechanism in the same or related sets of diseases including cancer and neurodegenerative diseases. Recent studies also suggest antagonistic pleiotropy may be involved in cardiovascular disease and diabetes. There are also compelling examples of disease risk variants that confer fitness benefits ranging from resistance to other diseases or survival in extreme environments. This provides increasingly strong support for the theory that antagonistic pleiotropic variants have enabled improved fitness but have been traded for higher burden of disease later in life. Future research in this field is required to better understand how this mechanism influences contemporary disease and possible consequences for their treatment.
Collapse
|
389
|
Heudobler D, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Gerner C, Pantziarka P, Ghibelli L, Reichle A. Anakoinosis: Correcting Aberrant Homeostasis of Cancer Tissue-Going Beyond Apoptosis Induction. Front Oncol 2019; 9:1408. [PMID: 31921665 PMCID: PMC6934003 DOI: 10.3389/fonc.2019.01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
The current approach to systemic therapy for metastatic cancer is aimed predominantly at inducing apoptosis of cancer cells by blocking tumor-promoting signaling pathways or by eradicating cell compartments within the tumor. In contrast, a systems view of therapy primarily considers the communication protocols that exist at multiple levels within the tumor complex, and the role of key regulators of such systems. Such regulators may have far-reaching influence on tumor response to therapy and therefore patient survival. This implies that neoplasia may be considered as a cell non-autonomous disease. The multi-scale activity ranges from intra-tumor cell compartments, to the tumor, to the tumor-harboring organ to the organism. In contrast to molecularly targeted therapies, a systems approach that identifies the complex communications networks driving tumor growth offers the prospect of disrupting or "normalizing" such aberrant communicative behaviors and therefore attenuating tumor growth. Communicative reprogramming, a treatment strategy referred to as anakoinosis, requires novel therapeutic instruments, so-called master modifiers to deliver concerted tumor growth-attenuating action. The diversity of biological outcomes following pro-anakoinotic tumor therapy, such as differentiation, trans-differentiation, control of tumor-associated inflammation, etc. demonstrates that long-term tumor control may occur in multiple forms, inducing even continuous complete remission. Accordingly, pro-anakoinotic therapies dramatically extend the repertoire for achieving tumor control and may activate apoptosis pathways for controlling resistant metastatic tumor disease and hematologic neoplasia.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna, Austria
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
- Anticancer Fund, Brussels, Belgium
| | - Lina Ghibelli
- Department Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
390
|
Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 2019; 577:254-259. [PMID: 31853059 DOI: 10.1038/s41586-019-1844-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
With ageing, normal human tissues experience an expansion of somatic clones that carry cancer mutations1-7. However, whether such clonal expansion exists in the non-neoplastic intestine remains unknown. Here, using whole-exome sequencing data from 76 clonal human colon organoids, we identify a unique pattern of somatic mutagenesis in the inflamed epithelium of patients with ulcerative colitis. The affected epithelium accumulates somatic mutations in multiple genes that are related to IL-17 signalling-including NFKBIZ, ZC3H12A and PIGR, which are genes that are rarely affected in colon cancer. Targeted sequencing validates the pervasive spread of mutations that are related to IL-17 signalling. Unbiased CRISPR-based knockout screening in colon organoids reveals that the mutations confer resistance to the pro-apoptotic response that is induced by IL-17A. Some of these genetic mutations are known to exacerbate experimental colitis in mice8-11, and somatic mutagenesis in human colon epithelium may be causally linked to the inflammatory process. Our findings highlight a genetic landscape that adapts to a hostile microenvironment, and demonstrate its potential contribution to the pathogenesis of ulcerative colitis.
Collapse
|
391
|
Franco I, Helgadottir HT, Moggio A, Larsson M, Vrtačnik P, Johansson A, Norgren N, Lundin P, Mas-Ponte D, Nordström J, Lundgren T, Stenvinkel P, Wennberg L, Supek F, Eriksson M. Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type. Genome Biol 2019; 20:285. [PMID: 31849330 PMCID: PMC6918713 DOI: 10.1186/s13059-019-1892-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The lifelong accumulation of somatic mutations underlies age-related phenotypes and cancer. Mutagenic forces are thought to shape the genome of aging cells in a tissue-specific way. Whole genome analyses of somatic mutation patterns, based on both types and genomic distribution of variants, can shed light on specific processes active in different human tissues and their effect on the transition to cancer. RESULTS To analyze somatic mutation patterns, we compile a comprehensive genetic atlas of somatic mutations in healthy human cells. High-confidence variants are obtained from newly generated and publicly available whole genome DNA sequencing data from single non-cancer cells, clonally expanded in vitro. To enable a well-controlled comparison of different cell types, we obtain single genome data (92% mean coverage) from multi-organ biopsies from the same donors. These data show multiple cell types that are protected from mutagens and display a stereotyped mutation profile, despite their origin from different tissues. Conversely, the same tissue harbors cells with distinct mutation profiles associated to different differentiation states. Analyses of mutation rate in the coding and non-coding portions of the genome identify a cell type bearing a unique mutation pattern characterized by mutation enrichment in active chromatin, regulatory, and transcribed regions. CONCLUSIONS Our analysis of normal cells from healthy donors identifies a somatic mutation landscape that enhances the risk of tumor transformation in a specific cell population from the kidney proximal tubule. This unique pattern is characterized by high rate of mutation accumulation during adult life and specific targeting of expressed genes and regulatory regions.
Collapse
Affiliation(s)
- Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Aldo Moggio
- Department of Medicine Huddinge, Integrated Cardio Metabolic Center, Karolinska Institutet, Huddinge, Sweden
| | - Malin Larsson
- Science for Life Laboratory, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Peter Vrtačnik
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Johansson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nina Norgren
- Science for Life Laboratory, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Pär Lundin
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics (DBB), Stockholm University, Stockholm, Sweden
| | - David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Johan Nordström
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | - Torbjörn Lundgren
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | - Peter Stenvinkel
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Renal Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Wennberg
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
392
|
Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 2019; 577:260-265. [PMID: 31853061 DOI: 10.1038/s41586-019-1856-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/08/2019] [Indexed: 01/28/2023]
Abstract
Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer1-3. However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.
Collapse
|
393
|
Krimmel-Morrison JD, Ghezelayagh TS, Lian S, Zhang Y, Fredrickson J, Nachmanson D, Baker KT, Radke MR, Hun E, Norquist BM, Emond MJ, Swisher EM, Risques RA. Characterization of TP53 mutations in Pap test DNA of women with and without serous ovarian carcinoma. Gynecol Oncol 2019; 156:407-414. [PMID: 31839337 DOI: 10.1016/j.ygyno.2019.11.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Pap tests hold promise as a molecular diagnostic for serous ovarian cancer, but previous studies reported limited sensitivity. Furthermore, the presence of somatic mutations in normal tissue is increasingly recognized as a challenge to the specificity of mutation-based cancer diagnostics. We applied an ultra-deep sequencing method with the goal of improving sensitivity and characterizing the landscape of low-frequency somatic TP53 mutations in Pap tests. METHODS We used CRISPR-DS to deeply sequence (mean Duplex depth ~3000×) the TP53 gene in 30 Pap tests from 21 women without cancer and 9 women with serous ovarian carcinoma with known TP53 driver mutations. Mutations were annotated and compared to those in the TP53 cancer database. RESULTS The tumor-derived mutation was identified in 3 of 8 Pap tests from women with ovarian cancer and intact tubes. In addition, 221 low-frequency (≲0.001) exonic TP53 mutations were identified in Pap tests from women with ovarian cancer (94 mutations) and without ovarian cancer (127 mutations). Many of these mutations resembled TP53 mutations found in cancer: they impaired protein activity, were predicted to be pathogenic, and clustered in exons 5 to 8 and hotspot codons. Cancer-like mutations were identified in all women but at higher frequency in women with ovarian cancer. CONCLUSIONS Pap tests have low sensitivity for ovarian cancer detection and carry abundant low-frequency TP53 mutations. These mutations are more frequently pathogenic in women with ovarian cancer. Determining whether low-frequency TP53 mutations in normal gynecologic tissues are associated with an increased cancer risk warrants further study.
Collapse
Affiliation(s)
- Jeffrey D Krimmel-Morrison
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Talayeh S Ghezelayagh
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Shenyi Lian
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Yuezheng Zhang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeanne Fredrickson
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Daniela Nachmanson
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Marc R Radke
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Enna Hun
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Barbara M Norquist
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Mary J Emond
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
394
|
Wang X, Cheng G, Zhang T, Deng L, Xu K, Xu X, Wang W, Zhou Z, Feng Q, Chen D, Bi N, Wang L. CHST15 promotes the proliferation of TE‑1 cells via multiple pathways in esophageal cancer. Oncol Rep 2019; 43:75-86. [PMID: 31746400 PMCID: PMC6908928 DOI: 10.3892/or.2019.7395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common type of esophageal cancer and is prevalent worldwide. Understanding the mechanisms underlying its formation and the search for more effective therapeutic strategies are critical due to the occurrence of chemotherapeutic drug resistance. The aim of the present study was to determine the functional relevance and therapeutic potential of carbohydrate sulfotransferase 15 (CHST15) in ESCC. CHST15 levels were measured in different ESCC cell lines and evaluated in ESCC tissues using tissue chip immunohistochemistry. Cell growth and apoptosis assays, 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assays, and clonogenic assays were conducted using TE‑1 cells and lenti‑shCHST15 virus constructs were used to investigate the function of CHST15 in cell proliferation and apoptosis. mRNA microarray analysis was performed to determine the underlying mechanism of CHST15 regulation in TE‑1 cell proliferation and apoptosis. The results showed that knockdown of CHST15 inhibited TE‑1 cell growth and proliferation, but induced cell apoptosis. CHST15 was more frequently detected in ESCC tissue compared with that in normal esophageal tissue. Microarray data analysis indicated that the inhibition of cell proliferation and activation of cell apoptosis in CHST15‑knockdown cells may be caused by altered CHST15/ILKAP/CCND1 and CHST15/RABL6/PMAIP1 signaling axes, respectively.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guowei Cheng
- Department of Radiotherapy, Huanxing Tumor Hospital, Beijing 100023, P.R. China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wenqing Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zongmei Zhou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qinfu Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Dongfu Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
395
|
A high-resolution landscape of mutations in the BCL6 super-enhancer in normal human B cells. Proc Natl Acad Sci U S A 2019; 116:24779-24785. [PMID: 31748270 DOI: 10.1073/pnas.1914163116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The super-enhancers (SEs) of lineage-specific genes in B cells are off-target sites of somatic hypermutation. However, the inability to detect sufficient numbers of mutations in normal human B cells has precluded the generation of a high-resolution mutational landscape of SEs. Here we captured and sequenced 12 B cell SEs at single-nucleotide resolution from 10 healthy individuals across diverse ethnicities. We detected a total of approximately 9,000 subclonal mutations (allele frequencies <0.1%); of these, approximately 8,000 are present in the BCL6 SE alone. Within the BCL6 SE, we identified 3 regions of clustered mutations in which the mutation frequency is ∼7 × 10-4 Mutational spectra show a predominance of C > T/G > A and A > G/T > C substitutions, consistent with the activities of activation-induced-cytidine deaminase (AID) and the A-T mutator, DNA polymerase η, respectively, in mutagenesis in normal B cells. Analyses of mutational signatures further corroborate the participation of these factors in this process. Single base substitution signatures SBS85, SBS37, and SBS39 were found in the BCL6 SE. While SBS85 is a denoted signature of AID in lymphoid cells, the etiologies of SBS37 and SBS39 are unknown. Our analysis suggests the contribution of error-prone DNA polymerases to the latter signatures. The high-resolution mutation landscape has enabled accurate profiling of subclonal mutations in B cell SEs in normal individuals. By virtue of the fact that subclonal SE mutations are clonally expanded in B cell lymphomas, our studies also offer the potential for early detection of neoplastic alterations.
Collapse
|
396
|
Abstract
DNA repair pathways permit some damage, leading to mutagenesis but not always cancer
Collapse
Affiliation(s)
- Serena Nik-Zainal
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
- Academic Laboratory of Medical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Benjamin A Hall
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
397
|
Abstract
Cancer stem cells (CSC) are a subpopulation of tumor cells that have superior capacities of self-renewal, metastatic dissemination, and chemoresistance. These characteristics resemble, to some extent, the outcome of certain biological processes, including epithelial-mesenchymal transition (EMT), autophagy, and cellular stress response. Indeed, it has been shown that the stimuli that induce these processes and CSC are overlapping, and CSC and tumor cells that underwent EMT or autophagy are much alike. However, as the cross talk between CSC, EMT, autophagy, and cellular stress is further explored, these processes are also found to have an opposing role in CSC, depending on the condition and status of cells. This contextual effect is likely due to overwhelming reliance on CSC markers for their identification, and/or discrepancies in recognition of CSC as a particular cell population or cellular state. In this review, we summarize how EMT, autophagy, and cellular stress response are tied or unwound with CSC. We also discuss the current view of CSC theory evolved from the emphasis of heterogenicity and plasticity of CSC.
Collapse
Affiliation(s)
- Kai-Feng Hung
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ting Yang
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
398
|
Reiter JG, Baretti M, Gerold JM, Makohon-Moore AP, Daud A, Iacobuzio-Donahue CA, Azad NS, Kinzler KW, Nowak MA, Vogelstein B. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer 2019; 19:639-650. [PMID: 31455892 PMCID: PMC6816333 DOI: 10.1038/s41568-019-0185-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Genetic intratumoural heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. Here, we review the different forms of genetic heterogeneity in cancer and re-analyse the extent of genetic heterogeneity within seven types of untreated epithelial cancers, with particular regard to its clinical relevance. We find that the homogeneity of predicted functional mutations in driver genes is the rule rather than the exception. In primary tumours with multiple samples, 97% of driver-gene mutations in 38 patients were homogeneous. Moreover, among metastases from the same primary tumour, 100% of the driver mutations in 17 patients were homogeneous. With a single biopsy of a primary tumour in 14 patients, the likelihood of missing a functional driver-gene mutation that was present in all metastases was 2.6%. Furthermore, all functional driver-gene mutations detected in these 14 primary tumours were present among all their metastases. Finally, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These analyses indicate that the cells within the primary tumours that gave rise to metastases are genetically homogeneous with respect to functional driver-gene mutations, and we suggest that future efforts to develop combination therapies have the potential to be curative.
Collapse
Affiliation(s)
- Johannes G Reiter
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Marina Baretti
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey M Gerold
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA
| | - Alvin P Makohon-Moore
- The David M. Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adil Daud
- University of California, San Francisco, San Francisco, CA, USA
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nilofer S Azad
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Mathematics, Harvard University, Cambridge, MA, USA.
| | - Bert Vogelstein
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
399
|
Kure S, Ishino K, Kudo M, Wada R, Saito M, Nagaoka R, Sugitani I, Naito Z. Incidence of BRAF V600E mutation in patients with papillary thyroid carcinoma: a single-institution experience. J Int Med Res 2019; 47:5560-5572. [PMID: 31533501 PMCID: PMC6862924 DOI: 10.1177/0300060519873481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/12/2019] [Indexed: 11/25/2022] Open
Abstract
Objective Papillary thyroid carcinoma (PTC) accounts for 95% of all thyroid carcinomas. PTC is an epithelial tumor characterized by the proliferation of follicular cells with distinctive nuclear features, and is heterogeneous in terms of its carcinogenesis and behavior. PTC has been associated with several genetic abnormalities, of which the BRAF V600E mutation is the most common. However, reported incidences of this mutation have varied depending on the patient background, population size, or methods. In this study, we investigated the incidence of BRAF V600E mutation and its relationships with clinicopathological characteristics in patients with PTC. Methods Surgical specimens were obtained from 40 patients with PTC who underwent surgery at Nippon Medical School Hospital between 2009 and 2017. DNA from exon 15 of the BRAF gene was extracted and amplified by polymerase chain reaction, followed by direct sequencing. Results The frequency of BRAF V600E mutation increased with age. However, there were no correlations between BRAF V600E mutation and other clinicopathological features including sex, Hashimoto disease, family history of thyroid disease, tumor size, pathological T stage, pathological N stage, lymphovascular invasion, extrathyroidal extension, and metastasis. Conclusions This study demonstrated that PTCs harboring the BRAF V600E mutation increased in an age-dependent manner.
Collapse
Affiliation(s)
- Shoko Kure
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Ryuichi Wada
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Marie Saito
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Ryuta Nagaoka
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Iwao Sugitani
- Department of Endocrine Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
400
|
Korenjak M, Zavadil J. Experimental identification of cancer driver alterations in the era of pan-cancer genomics. Cancer Sci 2019; 110:3622-3629. [PMID: 31594033 PMCID: PMC6890429 DOI: 10.1111/cas.14210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Rapidly accumulating data from large-scale cancer genomics studies have been generating important information about genes and their somatic alterations underlying cell transformation, cancer onset and tumor progression. However, these events are usually defined by using computational techniques, whereas the understanding of their actual functional roles and impact typically warrants validation by experimental means. Critical information has been obtained from targeted genetic perturbation (gene knockout) studies conducted in animals, yet these investigations are cost-prohibitive and time-consuming. In addition, the 3R principles (replacement, reduction, refinement) have been set in place to reduce animal use burden and are increasingly observed in many areas of biomedical research. Consequently, the focus has shifted to new designs of innovative cell-based experimental models of cell immortalization and transformation in which the critical cancer driver events can be introduced by mutagenic insult and studied functionally, at the level of critical phenotypic readouts. From these efforts, primary cell-based selective barrier-bypass models of cell immortalization have emerged as an attractive system that allows studies of the functional relevance of acquired mutations as well as their role as candidate cancer driver events. In this review, we provide an overview of various experimental systems linking carcinogen exposure-driven cell transformation with the study of cancer driver events. We further describe the advantages and disadvantages of the currently available cell-based models while outlining future directions for in vitro modeling and functional testing of cancer driver events.
Collapse
Affiliation(s)
- Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|