351
|
Liu Z, Xiong T, Zhao Y, Qiu B, Chen H, Kang X, Yang J. Genome-wide characterization and analysis of Golden 2-Like transcription factors related to leaf chlorophyll synthesis in diploid and triploid Eucalyptus urophylla. FRONTIERS IN PLANT SCIENCE 2022; 13:952877. [PMID: 35968152 PMCID: PMC9366356 DOI: 10.3389/fpls.2022.952877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 05/02/2023]
Abstract
Golden 2-Like (GLK) transcription factors play a crucial role in chloroplast development and chlorophyll synthesis in many plant taxa. To date, no systematic analysis of GLK transcription factors in tree species has been conducted. In this study, 40 EgrGLK genes in the Eucalyptus grandis genome were identified and divided into seven groups based on the gene structure and motif composition. The EgrGLK genes were mapped to 11 chromosomes and the distribution of genes on chromosome was uneven. Phylogenetic analysis of GLK proteins between E. grandis and other species provided information for the high evolutionary conservation of GLK genes among different species. Prediction of cis-regulatory elements indicated that the EgrGLK genes were involved in development, light response, and hormone response. Based on the finding that the content of chlorophyll in mature leaves was the highest, and leaf chlorophyll content of triploid Eucalyptus urophylla was higher than that of the diploid control, EgrGLK expression pattern in leaves of triploid and diploid E. urophylla was examined by means of transcriptome analysis. Differential expression of EgrGLK genes in leaves of E. urophylla of different ploidies was consistent with the trend in chlorophyll content. To further explore the relationship between EgrGLK expression and chlorophyll synthesis, co-expression networks were generated, which indicated that EgrGLK genes may have a positive regulatory relationship with chlorophyll synthesis. In addition, three EgrGLK genes that may play an important role in chlorophyll synthesis were identified in the co-expression networks. And the prediction of miRNAs targeting EgrGLK genes showed that miRNAs might play an important role in the regulation of EgrGLK gene expression. This research provides valuable information for further functional characterization of GLK genes in Eucalyptus.
Collapse
Affiliation(s)
- Zhao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Tao Xiong
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | | | - Bingfa Qiu
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Hao Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- *Correspondence: Jun Yang,
| |
Collapse
|
352
|
Blanco E, Curci PL, Manconi A, Sarli A, Zuluaga DL, Sonnante G. R2R3-MYBs in Durum Wheat: Genome-Wide Identification, Poaceae-Specific Clusters, Expression, and Regulatory Dynamics Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:896945. [PMID: 35795353 PMCID: PMC9252425 DOI: 10.3389/fpls.2022.896945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
MYB transcription factors (TFs) represent one of the biggest TF families in plants, being involved in various specific plant processes, such as responses to biotic and abiotic stresses. The implication of MYB TFs in the tolerance mechanisms to abiotic stress is particularly interesting for crop breeding, since environmental conditions can negatively affect growth and productivity. Wheat is a worldwide-cultivated cereal, and is a major source of plant-based proteins in human food. In particular, durum wheat plays an important role in global food security improvement, since its adaptation to hot and dry conditions constitutes the base for the success of wheat breeding programs in future. In the present study, a genome-wide identification of R2R3-MYB TFs in durum wheat was performed. MYB profile search and phylogenetic analyses based on homology with Arabidopsis and rice MYB TFs led to the identification of 233 R2R3-TdMYB (Triticum durum MYB). Three Poaceae-specific MYB clusters were detected, one of which had never been described before. The expression of eight selected genes under different abiotic stress conditions, revealed that most of them responded especially to salt and drought stress. Finally, gene regulatory network analyses led to the identification of 41 gene targets for three TdR2R3-MYBs that represent novel candidates for functional analyses. This study provides a detailed description of durum wheat R2R3-MYB genes and contributes to a deeper understanding of the molecular response of durum wheat to unfavorable climate conditions.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- *Correspondence: Emanuela Blanco,
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Pasquale Luca Curci,
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy
| | - Adele Sarli
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Diana Lucia Zuluaga
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Gabriella Sonnante,
| |
Collapse
|
353
|
Mishra S, Sahu G, Shaw BP. Insight into the cellular and physiological regulatory modulations of Class-I TCP9 to enhance drought and salinity stress tolerance in cowpea. PHYSIOLOGIA PLANTARUM 2022; 174:e13542. [PMID: 34459503 DOI: 10.1111/ppl.13542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors are potent growth and developmental regulators in plants, also responsive to various hormonal and environmental stimuli. In this study, we primarily focused on the functional role of TCP9, a nuclear-localised Class-I TCP transcription factor in a drought and heat-tolerant legume crop, cowpea (Vigna unguiculata). Under drought stress, a higher protein expression level of TCP9 was observed in the leaves of the drought-tolerant cowpea cultivar Pusa Komal as compared to the drought-sensitive cultivar TVu-7778. Further, overexpression of VuTCP9 resulted in reduced cell and stomata size, aperture length and width while cell and overall stomatal density in the 35S::VuTCP9 transgenic cowpea lines increased. Phenotypic alterations, such as reduced leaf size and vigour, altered seed coats displaying extension pattern similar to the 'Watson pattern' and delayed senescence were prominent in the transgenic lines. Under normal conditions, the gas exchange and fluorescence measurements indicated reduction in transpiration rate (E), stomatal conductance (gs ) and photosynthetic efficiency (Φ PSII). However, water usage efficiency (WUE) remained unaltered in the transgenic lines as compared to the wild-type (WT) plants. Furthermore, the transgenic lines displayed higher tolerance to oxidative, drought and salinity stress, maintained relatively higher relative water content and lower occurrence of H2 O2 , as compared to the WT plants. Genes related to the jasmonic acid biosynthesis, stomatal development and abiotic stress responsiveness, such as TTG1, NAC25, SPCH and GRP1, increased and LOX2 decreased significantly in the transgenic lines.
Collapse
Affiliation(s)
- Sagarika Mishra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
354
|
Liu J, Mehari TG, Xu Y, Umer MJ, Hou Y, Wang Y, Peng R, Wang K, Cai X, Zhou Z, Liu F. GhGLK1 a Key Candidate Gene From GARP Family Enhances Cold and Drought Stress Tolerance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:759312. [PMID: 34992618 PMCID: PMC8725998 DOI: 10.3389/fpls.2021.759312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Drought and low-temperature stresses are the most prominent abiotic stresses affecting cotton. Wild cotton being exposed to harsh environments has more potential to cope with both biotic and abiotic stresses. Exploiting wild cotton material to induce resistant germplasm would be of greater interest. The candidate gene was identified in the BC2F2 population among Gossypium tomentosum and Gossypium hirsutum as wild male donor parent noted for its drought tolerance and the recurrent parent and a high yielding but drought susceptible species by genotyping by sequencing (GBS) mapping. Golden2-like (GLK) gene, which belongs to the GARP family, is a kind of plant-specific transcription factor (TF) that was silenced by virus-induced gene silencing (VIGS). Silencing of GhGLK1 in cotton results in more damage to plants under drought and cold stress as compared with wild type (WT). The overexpression of GhGLK1 in Arabidopsis thaliana showed that the overexpressing plants showed more adaptability than the WT after drought and cold treatments. The results of trypan blue and 3,3'-diaminobenzidine (DAB) staining showed that after drought and cold treatment, the leaf damage in GhGLK1 overexpressed plants was less as compared with the WT, and the ion permeability was also lower. This study suggested that the GhGLK1 gene may be involved in the regulation of drought and cold stress response in cotton. Our current research findings add significantly to the existing knowledge of cold and drought stress tolerance in cotton.
Collapse
Affiliation(s)
- Jiangna Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
355
|
Synthetic Strigolactone GR24 Improves Arabidopsis Somatic Embryogenesis through Changes in Auxin Responses. PLANTS 2021; 10:plants10122720. [PMID: 34961192 PMCID: PMC8704308 DOI: 10.3390/plants10122720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Somatic embryogenesis in Arabidopsis encompasses an induction phase requiring auxin as the inductive signal to promote cellular dedifferentiation and formation of the embryogenic tissue, and a developmental phase favoring the maturation of the embryos. Strigolactones (SLs) have been categorized as a novel group of plant hormones based on their ability to affect physiological phenomena in plants. The study analyzed the effects of synthetic strigolactone GR24, applied during the induction phase, on auxin response and formation of somatic embryos. The expression level of two SL biosynthetic genes, MOREAXILLARY GROWTH 3 and 4 (MAX3 and MAX4), which are responsible for the conversion of carotene to carotenal, increased during the induction phase of embryogenesis. Arabidopsis mutant studies indicated that the somatic embryo number was inhibited in max3 and max4 mutants, and this effect was reversed by applications of GR24, a synthetic strigolactone, and exacerbated by TIS108, a SL biosynthetic inhibitor. The transcriptional studies revealed that the regulation of GR24 and TIS108 on somatic embryogenesis correlated with changes in expression of AUXIN RESPONSIVE FACTORs 5, 8, 10, and 16, known to be required for the production of the embryogenic tissue, as well as the expression of WUSCHEL (WUS) and Somatic Embryogenesis Receptor-like Kinase 1 (SERK1), which are markers of cell dedifferentiation and embryogenic tissue formation. Collectively, this work demonstrated the novel role of SL in enhancing the embryogenic process in Arabidopsis and its requirement for inducing the expression of genes related to auxin signaling and production of embryogenic tissue.
Collapse
|
356
|
Genome-Wide Identification of the MYB Gene Family in Cymbidiumensifolium and Its Expression Analysis in Different Flower Colors. Int J Mol Sci 2021; 22:ijms222413245. [PMID: 34948043 PMCID: PMC8706735 DOI: 10.3390/ijms222413245] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
MYB transcription factors of plants play important roles in flavonoid synthesis, aroma regulation, floral organ morphogenesis, and responses to biotic and abiotic stresses. Cymbidium ensifolium is a perennial herbaceous plant belonging to Orchidaceae, with special flower colors and high ornamental value. In this study, a total of 136 CeMYB transcription factors were identified from the genome of C. ensifolium, including 27 1R-MYBs, 102 R2R3-MYBs, 2 3R-MYBs, 2 4R-MYBs, and 3 atypical MYBs. Through phylogenetic analysis in combination with MYB in Arabidopsis thaliana, 20 clusters were obtained, indicating that these CeMYBs may have a variety of biological functions. The 136 CeMYBs were distributed on 18 chromosomes, and the conserved domain analysis showed that they harbored typical amino acid sequence repeats. The motif prediction revealed that multiple conserved elements were mostly located in the N-terminal of CeMYBs, suggesting their functions to be relatively conserved. CeMYBs harbored introns ranging from 0 to 13 and contained a large number of stress- and hormone-responsive cis-acting elements in the promoter regions. The subcellular localization prediction demonstrated that most of CeMYBs were positioned in the nucleus. The analysis of the CeMYBs expression based on transcriptome data showed that CeMYB52, and CeMYB104 of the S6 subfamily may be the key genes leading to flower color variation. The results lay a foundation for the study of MYB transcription factors of C. ensifolium and provide valuable information for further investigations of the potential function of MYB genes in the process of anthocyanin biosynthesis.
Collapse
|
357
|
Transcriptomic Analysis Reveals Regulatory Networks for Osmotic Water Stress and Rewatering Response in the Leaves of Ginkgo biloba. FORESTS 2021. [DOI: 10.3390/f12121705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To elucidate the transcriptomic regulation mechanisms that underlie the response of Ginkgo biloba to dehydration and rehydration, we used ginkgo saplings exposed to osmotically driven water stress and subsequent rewatering. When compared with a control group, 137, 1453, 1148, and 679 genes were differentially expressed in ginkgo leaves responding to 2, 6, 12, and 24 h of water deficit, and 796 and 1530 genes were differentially expressed responding to 24 and 48 h of rewatering. Upregulated genes participated in the biosynthesis of abscisic acid, eliminating reactive oxygen species (ROS), and biosynthesis of flavonoids and bilobalide, and downregulated genes were involved in water transport and cell wall enlargement in water stress-treated ginkgo leaves. Under rehydration conditions, the genes associated with water transport and cell wall enlargement were upregulated, and the genes that participated in eliminating ROS and the biosynthesis of flavonoids and bilobalide were downregulated in the leaves of G. biloba. Furthermore, the weighted gene coexpression networks were established and correlated with distinct water stress and rewatering time-point samples. Hub genes that act as key players in the networks were identified. Overall, these results indicate that the gene coexpression networks play essential roles in the transcriptional reconfiguration of ginkgo leaves in response to water stress and rewatering.
Collapse
|
358
|
Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y, Yang S, Gong Z, Qi J. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. THE PLANT CELL 2021; 33:3675-3699. [PMID: 34469582 PMCID: PMC8643689 DOI: 10.1093/plcell/koab221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 05/30/2023]
Abstract
Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.
Collapse
Affiliation(s)
- Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingpeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA
| | - Guangxing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanhui Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengchang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Bian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Science, Hebei University, Baoding 071002, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
359
|
Bai G, Yang DH, Chao P, Yao H, Fei M, Zhang Y, Chen X, Xiao B, Li F, Wang ZY, Yang J, Xie H. Genome-wide identification and expression analysis of NtbHLH gene family in tobacco ( Nicotiana tabacum) and the role of NtbHLH86 in drought adaptation. PLANT DIVERSITY 2021; 43:510-522. [PMID: 35024520 PMCID: PMC8720692 DOI: 10.1016/j.pld.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
The bHLH transcription factors play pivotal roles in plant growth and development, production of secondary metabolites and responses to various environmental stresses. Although the bHLH genes have been well studied in model plant species, a comprehensive investigation of the bHLH genes is required for tobacco with newly obtained high-quality genome. In the present study, a total of 309 NtbHLH genes were identified and can be divided into 23 subfamilies. The conserved amino acids which are essential for their function were predicted for the NtbHLH proteins. Moreover, the NtbHLH genes were conserved during evolution through analyzing the gene structures and conserved motifs. A total of 265 NtbHLH genes were localized in the 24 tobacco chromosomes while the remained 44 NtbHLH genes were mapped to the scaffolds due to the complexity of tobacco genome. Moreover, transcripts of NtbHLH genes were obviously tissue-specific expressed from the gene-chip data from 23 tobacco tissues, and expressions of 20 random selected NtbHLH genes were further confirmed by quantitative real-time PCR, indicating their potential functions in the plant growth and development. Importantly, overexpressed NtbHLH86 gene confers improve drought tolerance in tobacco indicating that it might be involved in the regulation of drought stress. Therefore, our findings here provide a valuable information on the characterization of NtbHLH genes and further investigation of their functions in tobacco.
Collapse
Affiliation(s)
- Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Peijian Chao
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - Heng Yao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - MingLiang Fei
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Yihan Zhang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Xuejun Chen
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Bingguang Xiao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Feng Li
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - Zhen-Yu Wang
- Institute ofBioengineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China
| | - Jun Yang
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
360
|
Aamir M, Karmakar P, Singh VK, Kashyap SP, Pandey S, Singh BK, Singh PM, Singh J. A novel insight into transcriptional and epigenetic regulation underlying sex expression and flower development in melon (Cucumis melo L.). PHYSIOLOGIA PLANTARUM 2021; 173:1729-1764. [PMID: 33547804 DOI: 10.1111/ppl.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Melon (Cucumis melo L.) is an important cucurbit and has been considered as a model plant for studying sex determination. The four most common sexual morphotypes in melon are monoecious (A-G-M), gynoecious (--ggM-), andromonoecious (A-G-mm), and hermaphrodite (--ggmm). Sex expression in melons is complex, as the genes and associated networks that govern the sex expression are not fully explored. Recently, RNA-seq transcriptomic profiling, ChIP-qPCR analysis integrated with gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathways predicted the differentially expressed genes including sex-specific ACS and ACO genes, in regulating the sex-expression, phytohormonal cross-talk, signal transduction, and secondary metabolism in melons. Integration of transcriptional control through genetic interaction in between the ACS7, ACS11, and WIP1 in epistatic or hypostatic manner, along with the recruitment of H3K9ac and H3K27me3, epigenetically, overall determine sex expression. Alignment of protein sequences for establishing phylogenetic evolution, motif comparison, and protein-protein interaction supported the structural conservation while presence of the conserved hydrophilic and charged residues across the diverged evolutionary group predicted the functional conservation of the ACS protein. Presence of the putative cis-binding elements or DNA motifs, and its further comparison with DAP-seq-based cistrome and epicistrome of Arabidopsis, unraveled strong ancestry of melons with Arabidopsis. Motif comparison analysis also characterized putative genes and transcription factors involved in ethylene biosynthesis, signal transduction, and hormonal cross-talk related to sex expression. Overall, we have comprehensively reviewed research findings for a deeper insight into transcriptional and epigenetic regulation of sex expression and flower development in melons.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Pradip Karmakar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Sudhakar Pandey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Binod Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Jagdish Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| |
Collapse
|
361
|
Bansal J, Gupta K, Rajkumar MS, Garg R, Jain M. Draft genome and transcriptome analyses of halophyte rice Oryza coarctata provide resources for salinity and submergence stress response factors. PHYSIOLOGIA PLANTARUM 2021; 173:1309-1322. [PMID: 33215706 DOI: 10.1111/ppl.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 05/24/2023]
Abstract
Oryza coarctata is a wild relative of rice that has adapted to diverse ecological environments, including high salinity and submergence. Thus, it can provide an important resource for discovering candidate genes/factors involved in tolerance to these stresses. Here, we report a draft genome assembly of 573 Mb comprised of 8877 scaffolds with N50 length of 205 kb. We predicted a total of 50,562 protein-coding genes, of which a significant fraction was found to be involved in secondary metabolite biosynthesis and hormone signal transduction pathways. Several salinity and submergence stress-responsive protein-coding and long noncoding RNAs involved in diverse biological processes were identified using RNA-sequencing data. Based on small RNA sequencing, we identified 168 unique miRNAs and 3219 target transcripts (coding and noncoding) involved in several biological processes, including abiotic stress responses. Further, whole genome bisulphite sequencing data analysis revealed at least 19%-48% methylcytosines in different sequence contexts and the influence of methylation status on gene expression. The genome assembly along with other datasets have been made publicly available at http://ccbb.jnu.ac.in/ory-coar. Altogether, we provide a comprehensive genomic resource for understanding the regulation of salinity and submergence stress responses and identification of candidate genes/factors involved for functional genomics studies.
Collapse
Affiliation(s)
- Juhi Bansal
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Noida, India
| | - Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Noida, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
362
|
Induction of HOXA3 by PRRSV inhibits IFN-I response through negatively regulation of HO-1 transcription. J Virol 2021; 96:e0186321. [PMID: 34851144 DOI: 10.1128/jvi.01863-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons (IFN-I) play a key role in the host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating type I interferons (IFN-I) production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-β) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that deficiency of HOXA3 promoted the HO-1-IRF3 interaction, and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, leads the pork industry worldwide to significant economic losses. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 to the virus field for the first time and provides new insights into PRRSV immune evasion mechanism.
Collapse
|
363
|
Djeghdir I, Chefdor F, Bertheau L, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Depierreux C, Larcher M, Lamblin F, Héricourt F, Glévarec G, Oudin A, Carpin S. Evaluation of type-B RR dimerization in poplar: A mechanism to preserve signaling specificity? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111068. [PMID: 34763861 DOI: 10.1016/j.plantsci.2021.111068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Plants possess specific signaling pathways, such as the MultiStep Phosphorelay (MSP), which is involved in cytokinin and ethylene sensing, and light, drought or osmotic stress sensing. These MSP comprise histidine-aspartate kinases (HKs) as receptors, histidine phosphotransfer (HPts) proteins acting as phosphorelay proteins, and response regulators (RRs), some of which act as transcription factors (type-B RRs). In previous studies, we identified partners of the poplar osmosensing signaling pathway, composed of two HKs, three main HPts, and six type-B RRs. To date, it is unresolved as to how cytokinin or osmotic stress signal specificity is achieved in the MSP in order to generate specific responses. Here, we present a large-scale interaction study of poplar type-B RR dimerization. Using the two-hybrid assay, we were able to show the homodimerization of type-B RRs, the heterodimerization of duplicated type-B RRs, and surprisingly, a lack of interaction between some type-B RRs belonging to different duplicates. The lack of interaction of the duplicates RR12-14 and RR18-19, which are involved in the osmosensing pathway has been confirmed by BiFC experiments. This study reveals, for the first time, an overview of type-B RR dimerization in poplar and makes way for the hypothesis that signal specificity for cytokinin or osmotic stress could be in part due to the fact that it is impossible for specific type-B RRs to heterodimerize.
Collapse
Affiliation(s)
- I Djeghdir
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Chefdor
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - L Bertheau
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - P Lemos Cruz
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - G Glévarec
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - A Oudin
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - S Carpin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France.
| |
Collapse
|
364
|
Yang X, Guo T, Li J, Chen Z, Guo B, An X. Genome-wide analysis of the MYB-related transcription factor family and associated responses to abiotic stressors in Populus. Int J Biol Macromol 2021; 191:359-376. [PMID: 34534587 DOI: 10.1016/j.ijbiomac.2021.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
MYB proteins are one of the most abundant transcription factor families in the plant kingdom. Evidence has increasingly revealed that MYB-related proteins function in diverse plant biological processes. However, little is known about the genome-wide characterization and functions of MYB-related proteins in Populus, an important model and commercial tree species. In this study, 152 PtrMYBRs were identified and unevenly located on 19 Populus chromosomes. A phylogenetic analysis divided them into six major subgroups, supported by conserved gene organization, consensus motifs, and protein domain architecture. Promoter assessment and gene ontology classification results indicated that the MYB-related family is likely involved in plant development and responses to various environmental stressors. The Populus MYB-related family members showed various expression patterns in different tissues and stress conditions, implying their crucial roles in the development and stress responses in Populus. Co-expression analyses revealed that Populus MYB-related genes might participate in the regulation of antioxidant defense system and various signaling pathways in response to stress. The three-dimensional structures of different subgroup of Populus MYB-related proteins further provided functional information at the proteomic level. These findings provide valuable information for a prospective functional dissection of MYB-related proteins and genetic improvement of Populus.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ting Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Zhong Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bin Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Shanxi Academy of Forest Sciences, Taiyuan, Shanxi 030012, China
| | - Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
365
|
Zhao Z, Shuang J, Li Z, Xiao H, Liu Y, Wang T, Wei Y, Hu S, Wan S, Peng R. Identification of the Golden-2-like transcription factors gene family in Gossypium hirsutum. PeerJ 2021; 9:e12484. [PMID: 34820202 PMCID: PMC8603818 DOI: 10.7717/peerj.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/22/2021] [Indexed: 01/19/2023] Open
Abstract
Background Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response. Methods In this study, the potential function of GLK family genes in Gossypium hirsutum was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction. Gene expression of nine key genes were analyzed by qRT-PCR experiments. Results Herein, we identified a total of 146 GhGLK genes in Gossypium hirsutum, which were unevenly distributed on each of the chromosomes. There were significant differences in the number and location of genes between the At sub-genome and the Dt sub-genome. According to the phylogenetic analysis, they were divided into ten subgroups, each of which had very similar number and structure of exons and introns. Some cis-regulatory elements were identified through promoter analysis, including five types of elements related to abiotic stress response, five types of elements related to phytohormone and five types of elements involved in growth and development. Based on public transcriptome data analysis, we identified nine key GhGLKs involved in salt, cold, and drought stress. The qRT-PCR results showed that these genes had different expression patterns under these stress conditions, suggesting that GhGLK genes played an important role in abiotic stress response. This study laid a theoretical foundation for the screening and functional verification of genes related to stress resistance of GLK gene family in cotton.
Collapse
Affiliation(s)
- Zilin Zhao
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| | - Jiaran Shuang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, China
| | - Huimin Xiao
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Tao Wang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Shoulin Hu
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Sumei Wan
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Renhai Peng
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| |
Collapse
|
366
|
Ding X, Zhang T, Ma L. Rapidly evolving genetic features for desert adaptations in Stipagrostis pennata. BMC Genomics 2021; 22:846. [PMID: 34814836 PMCID: PMC8609760 DOI: 10.1186/s12864-021-08124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stipagrostis pennata is distributed in the mobile and semi-mobile sand dunes which can adapt well to extreme environments such as drought and high temperature. It is a pioneer plant species with potential for stabilizing sand dunes and ecological restoration. It can settle on moving sand dunes earlier than other desert plants. It can effectively improve the stability of sand dunes and help more plants settle down and increase plant diversity. However, despite its important ecological value, the genetic resources available for this species are limited. RESULTS We used single-molecule real-time sequencing technology to obtain the complete full-length transcriptome of Stipagrostis pennata, including 90,204 unigenes with an average length of 2624 bp. In addition, the 5436 transcription factors identified in these unigenes are rich in stress resistance genes, such as MYB-related, C3H, bHLH, GRAS and HSF, etc., which may play a role in adapting to desert drought and strong wind stress. Intron retention events are abundant alternative splicing events. Stipagrostis pennata has experienced stronger positive selection, accelerating the fixation of advantageous variants. Thirty-eight genes, such as CPP/TSO1-like gene, have evolved rapidly and may play a role in material transportation, flowering and seed formation. CONCLUSIONS The present study captures the complete full-length transcriptome of Stipagrostis pennata and reveals its rapid evolution. The desert adaptation in Stipagrostis pennata is reflected in the regulation of gene expression and the adaptability of gene function. Our findings provide a wealth of knowledge for the evolutionary adaptability of desert grass species.
Collapse
Affiliation(s)
- Xixu Ding
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China
| | - Tingting Zhang
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China.
| | - Lei Ma
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China.
| |
Collapse
|
367
|
Manivannan A, Han K, Lee SY, Lee HE, Hong JP, Kim J, Lee YR, Lee ES, Kim DS. Genome-Wide Analysis of MYB10 Transcription Factor in Fragaria and Identification of QTLs Associated with Fruit Color in Octoploid Strawberry. Int J Mol Sci 2021; 22:ijms222212587. [PMID: 34830464 PMCID: PMC8620777 DOI: 10.3390/ijms222212587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The genus Fragaria encompass fruits with diverse colors influenced by the distribution and accumulation of anthocyanin. Particularly, the fruit colors of strawberries with different ploidy levels are determined by expression and natural variations in the vital structural and regulatory genes involved in the anthocyanin pathway. Among the regulatory genes, MYB10 transcription factor is crucial for the expression of structural genes in the anthocyanin pathway. In the present study, we performed a genome wide investigation of MYB10 in the diploid and octoploid Fragaria species. Further, we identified seven quantitative trait loci (QTLs) associated with fruit color in octoploid strawberry. In addition, we predicted 20 candidate genes primarily influencing the fruit color based on the QTL results and transcriptome analysis of fruit skin and flesh tissues of light pink, red, and dark red strawberries. Moreover, the computational and transcriptome analysis of MYB10 in octoploid strawberry suggests that the difference in fruit colors could be predominantly influenced by the expression of MYB10 from the F. iinumae subgenome. The outcomes of the present endeavor will provide a platform for the understanding and tailoring of anthocyanin pathway in strawberry for the production of fruits with aesthetic colors.
Collapse
|
368
|
Sielemann J, Wulf D, Schmidt R, Bräutigam A. Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana. Nat Commun 2021; 12:6549. [PMID: 34772949 PMCID: PMC8590021 DOI: 10.1038/s41467-021-26819-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding gene expression will require understanding where regulatory factors bind genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not predictive, since a genome contains many more binding sites than are actually bound and transcription factors of the same family share similar DNA-binding motifs. Traditionally, these motifs only depict sequence but neglect DNA shape. Since shape may contribute non-linearly and combinational to binding, machine learning approaches ought to be able to better predict transcription factor binding. Here we show that a random forest machine learning approach, which incorporates the 3D-shape of DNA, enhances binding prediction for all 216 tested Arabidopsis thaliana transcription factors and improves the resolution of differential binding by transcription factor family members which share the same binding motif. We observed that DNA shape features were individually weighted for each transcription factor, even if they shared the same binding sequence. Methods to predict transcription factor binding sites typically focus on sequence motifs without considering DNA shape. Here the authors use a random forest machine learning approach that incorporates DNA shape and improves binding site prediction for Arabidopsis thaliana transcription factors.
Collapse
Affiliation(s)
- Janik Sielemann
- Computational Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615, Bielefeld, Germany.,Computational Biology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Donat Wulf
- Computational Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615, Bielefeld, Germany.,Computational Biology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Romy Schmidt
- Plant Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Andrea Bräutigam
- Computational Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615, Bielefeld, Germany. .,Computational Biology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany. .,Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
369
|
Liu J, Meng Q, Xiang H, Shi F, Ma L, Li Y, Liu C, Liu Y, Su B. Genome-wide analysis of Dof transcription factors and their response to cold stress in rice (Oryza sativa L.). BMC Genomics 2021; 22:800. [PMID: 34742240 PMCID: PMC8572462 DOI: 10.1186/s12864-021-08104-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Rice (Oryza sativa L.) is a food crop for humans worldwide. However, temperature has an effect during the vegetative and reproductive stages. In high-latitude regions where rice is cultivated, cold stress is a major cause of yield loss and plant death. Research has identified a group of plant-specific transcription factors, DNA binding with one zinc fingers (DOFs), with a diverse range of functions, including stress signaling and stress response during plant growth. The aim of this study was to identify Dof genes in two rice subspecies, indica and japonica, and screen for Dof genes that may be involved in cold tolerance during plant growth. Results A total of 30 rice Dofs (OsDofs) were identified using bioinformatics and genome-wide analyses and phylogenetically analyzed. The 30 OsDOFs were classified into six subfamilies, and 24 motifs were identified based on protein sequence alignment. The chromosome locations of OsDofs were determined and nine gene duplication events were identified. A joint phylogenetic analysis was performed on DOF protein sequences obtained from four monocotyledon species to examine the evolutionary relationship of DOF proteins. Expression profiling of OsDofs from two japonica cultivars (Longdao5, which is cold-tolerant, and Longjing11, which is cold-sensitive) revealed that OsDof1 and OsDof19 are cold-inducible genes. We examined the seed setting rates in OsDof1- and OsDof19-overexpression and RNAi lines and found that OsDof1 showed a response to cold stress. Conclusions Our investigation identified OsDof1 as a potential target for genetic breeding of rice with enhanced cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08104-0.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Qinglin Meng
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China.
| | - Hongtao Xiang
- Institute of Farming and Cultivation, Heilongjiang Academy of Agricultural Sciences, 150086, Harbin, China
| | - Fengmei Shi
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Ligong Ma
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Yichu Li
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Chunlai Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Yu Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Baohua Su
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| |
Collapse
|
370
|
Unravelling the Molecular Regulation Mechanisms of Slow Ripening Trait in Prunus persica. PLANTS 2021; 10:plants10112380. [PMID: 34834743 PMCID: PMC8623733 DOI: 10.3390/plants10112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Fruit development is a complex process that involves the interplay of cell division, expansion, and differentiation. As a model to study fruit development, nectarines incapable of ripening were described as slow ripening. Slow ripening fruits remained firm and exhibited no rise in CO2 or ethylene production rates for one month or more at 20 °C. Different studies suggest that this trait is controlled by a single gene (NAC072). Transcriptome analysis between normal and slow ripening fruits showed a total of 157, 269, 976, and 5.224 differentially expressed genes in each fruit developmental stage analyzed (T1, T2, T3, and T7, respectively), and no expression of NAC072 was found in the slow ripening individuals. Using this transcriptomic information, we identified a correlation of NAC072 with auxin-related genes and two genes associated with terpene biosynthesis. On the other hand, significant differences were observed in hormonal biosynthetic pathways during fruit development between the normal and slow ripening individuals (gibberellin, ethylene, jasmonic acid and abscisic acid). These results suggest that the absence of NAC072 by the direct or indirect expression control of auxins or terpene-related genes prevents normal peach fruit development.
Collapse
|
371
|
Huang X, Ou S, Li Q, Luo Y, Lin H, Li J, Zhu M, Wang K. The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene CsPPO1 in Tea Plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:739951. [PMID: 34804087 PMCID: PMC8600361 DOI: 10.3389/fpls.2021.739951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polyphenol oxidase (PPO) plays a role in stress response, secondary metabolism, and other physiological processes during plant growth and development, and is also a critical enzyme in black tea production. However, the regulatory mechanisms of PPO genes and their activity in tea plants are still unclear. In this study, we measured PPO activity in two different tea cultivars, Taoyuandaye (TYDY) and Bixiangzao (BXZ), which are commonly used to produce black tea and green tea, respectively. The expression pattern of CsPPO1 was assessed and validated via transcriptomics and quantitative polymerase chain reaction in both tea varieties. In addition, we isolated and identified an R2R3-MYB transcription factor CsMYB59 that may regulate CsPPO1 expression. CsMYB59 was found to be a nuclear protein, and its expression in tea leaves was positively correlated with CsPPO1 expression and PPO activity. Transcriptional activity analysis showed that CsMYB59 was a transcriptional activator, and the dual-luciferase assay indicated that CsMYB59 could activate the expression of CsPPO1 in tobacco leaves. In summary, our study demonstrates that CsMYB59 represents a transcriptional activator in tea plants and may mediate the regulation of PPO activity by activating CsPPO1 expression. These findings provide novel insights into the regulatory mechanism of PPO gene in Camellia sinensis, which might help to breed tea cultivars with high PPO activity.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuqiong Ou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Qin Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yong Luo
- School of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou, China
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
372
|
Wu Y, Li T, Cheng Z, Zhao D, Tao J. R2R3-MYB Transcription Factor PlMYB108 Confers Drought Tolerance in Herbaceous Peony ( Paeonia lactiflora Pall.). Int J Mol Sci 2021; 22:11884. [PMID: 34769317 PMCID: PMC8584830 DOI: 10.3390/ijms222111884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The MYB transcription factor (TF) is crucial for plant growth, development, and response to abiotic stress, but it is rarely reported in the herbaceous peony (Paeonia lactiflora Pall.). Here, an MYB TF gene was isolated, and based on our prior mRNA data from P. lactiflora samples, it was treated with drought stress (DS). Its complete cDNA structure was 1314 bp, which encoded 291 amino acids (aa). Furthermore, using sequence alignment analysis, we demonstrated that PlMYB108 was an R2R3-MYB TF. We also revealed that PlMYB108 was primarily localized in the nucleus. Its levels rose during DS, and it was positively correlated with drought tolerance (DT) in P. lactiflora. In addition, when PlMYB108 was overexpressed in tobacco plants, the flavonoid content, antioxidant enzyme activities, and photosynthesis were markedly elevated. Hence, the transgenic plants had stronger DT with a higher leaf water content and lower H2O2 accumulation compared to the wild-type (WT) plants. Based on these results, PlMYB108 is a vital gene that serves to increase flavonoid accumulation, reactive oxygen species (ROS), scavenging capacity, and photosynthesis to confer DT. The results would provide a genetic resource for molecular breeding to enhance plant DT.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Tingting Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Jun Tao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| |
Collapse
|
373
|
Zhang L, Song Y, Liu K, Gong F. The tomato Mediator subunit MED8 positively regulates plant response to Botrytis cinerea. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153533. [PMID: 34601339 DOI: 10.1016/j.jplph.2021.153533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Mediator complex acts as a bridge between specific transcription factors and the RNA polymerase II transcriptional machinery and plays a central role in plant immunity. Biological induction of plant resistance against pathogens requires endogenous hormone jasmonic acid (JA) and involves profound transcriptional changes controlled by the key transcription factor MYC2. Arabidopsis thaliana Mediator subunit 25 (AtMED25) regulates JA-dependent defense response through interacting with MYC2. Here, we report that the tomato (Solanum lycopersicum, Sl) Mediator subunit 8 (SlMED8) is another essential component in JA-dependent defense response. The transcript levels of SlMED8 could not be affected by treatment with MeJA, SA, ABA, and mechanical wounding. Yeast two-hybrid assays showed that SlMED8 could interact with itself, SlMYC2, and SlMED25, respectively. In addition, ectopic overexpression of SlMED8 complemented the late flowering and pathogen hypersensitivity phenotypes of Arabidopsis med8 mutant. Overexpression of SlMED8 rendered transgenic plants higher tolerance to necrotrophic pathogen Botrytis cinerea. Meanwhile, SlMED8 antisense plants displayed compromised resistance to Botrytis cinerea. Consistent with this, differential expression levels of several JA-responsive genes were detected within the transgenic plants. Overall, our results identified an important control point in the regulation of the JA signaling pathway within the transcriptional machinery.
Collapse
Affiliation(s)
- Lili Zhang
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Yunpeng Song
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Kaige Liu
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Fanrong Gong
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
374
|
Li J, Li X, Han P, Liu H, Gong J, Zhou W, Shi B, Liu A, Xu L. Genome-wide investigation of bHLH genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L. Int J Biol Macromol 2021; 189:72-83. [PMID: 34411617 DOI: 10.1016/j.ijbiomac.2021.08.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors play important roles in many processes such as plant growth, metabolism and response to biotic/abiotic stresses. Sunflower (Helianthus annuus) is a major oil crop, cultivated throughout the world. However, no systematic characterization of bHLH gene members in sunflower (HabHLH) and their functions involved in drought, cadmium tolerance and Orobanche cumana resistance has been reported yet. In this study, 183 HabHLH genes were identified and named according to their chromosomal locations. We classified these proteins into 21 subfamilies by phylogenetic tree analysis. Subsequently, DNA-binding patterns, sequence analysis, duplication analysis and gene structures were analyzed. All of the HabHLH genes were randomly distributed on 17 chromosomes, and 10 pairs of tandem duplicated genes and one pair of segmental duplicated genes were detected in the HabHLH family. Among the duplicated gene pairs, eight pairs of HabHLH genes suffer from positive selection. Moreover, qRT-PCR results revealed significant up-regulated expression of HabHLH024 gene in response to both abiotic (cadmium, drought) and biotic (Orobanche cumana) stresses, suggesting its important functions in response to different stresses. Therefore, HabHLH024 would be the potential candidate gene for the sunflower tolerance breeding.
Collapse
Affiliation(s)
- Juanjuan Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peng Han
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, WA 6009, Australia
| | - Jianchuan Gong
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Bixian Shi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
375
|
Fan Y, Lai D, Yang H, Xue G, He A, Chen L, Feng L, Ruan J, Xiang D, Yan J, Cheng J. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in foxtail millet (Setaria italica L.). BMC Genomics 2021; 22:778. [PMID: 34717536 PMCID: PMC8557513 DOI: 10.1186/s12864-021-08095-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
Background Members of the basic helix-loop-helix (bHLH) transcription factor family perform indispensable functions in various biological processes, such as plant growth, seed maturation, and abiotic stress responses. However, the bHLH family in foxtail millet (Setaria italica), an important food and feed crop, has not been thoroughly studied. Results In this study, 187 bHLH genes of foxtail millet (SibHLHs) were identified and renamed according to the chromosomal distribution of the SibHLH genes. Based on the number of conserved domains and gene structure, the SibHLH genes were divided into 21 subfamilies and two orphan genes via phylogenetic tree analysis. According to the phylogenetic tree, the subfamilies 15 and 18 may have experienced stronger expansion in the process of evolution. Then, the motif compositions, gene structures, chromosomal spread, and gene duplication events were discussed in detail. A total of sixteen tandem repeat events and thirty-eight pairs of segment duplications were identified in bHLH family of foxtail millet. To further investigate the evolutionary relationship in the SibHLH family, we constructed the comparative syntenic maps of foxtail millet associated with representative monocotyledons and dicotyledons species. Finally, the gene expression response characteristics of 15 typical SibHLH genes in different tissues and fruit development stages, and eight different abiotic stresses were analysed. The results showed that there were significant differences in the transcription levels of some SibHLH members in different tissues and fruit development stages, and different abiotic stresses, implying that SibHLH members might have different physiological functions. Conclusions In this study, we identified 187 SibHLH genes in foxtail millet and further analysed the evolution and expression patterns of the encoded proteins. The findings provide a comprehensive understanding of the bHLH family in foxtail millet, which will inform further studies on the functional characteristics of SibHLH genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08095-y.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, People's Republic of China.,School of Food and Biological engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, Mianzhu, 618200, People's Republic of China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610030, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Dabing Xiang
- School of Food and Biological engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Jun Yan
- School of Food and Biological engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, People's Republic of China.
| |
Collapse
|
376
|
An Evolutionary Analysis of B-Box Transcription Factors in Strawberry Reveals the Role of FaBBx28c1 in the Regulation of Flowering Time. Int J Mol Sci 2021; 22:ijms222111766. [PMID: 34769196 PMCID: PMC8583817 DOI: 10.3390/ijms222111766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Flowering connects vegetative and generative developmental phases and plays a significant role in strawberry production. The mechanisms that regulate strawberry flowering time are unclear. B-box transcription factors (BBXs) play important roles in the flowering time regulation of plants. Nevertheless, BBXs in octoploid cultivated strawberry (Fragaria ananassa) and their functions in flowering time regulation have not been identified. Here, we identified 51 FaBBXs from cultivated strawberry and 16 FvBBXs from diploid wild strawberry (Fragaria vesca), which were classified into five groups according to phylogenetic analysis. Further evolutionary analysis showed that whole-genome duplication or segmental duplication is a crucial factor that leads to the expansion of the BBX gene family in two strawberry species. Moreover, some loss and acquisition events of FaBBX genes were identified in the genome of cultivated strawberry that could have affected traits of agronomic interest, such as fruit quality. The promoters of FaBBX genes showed an enrichment in light-responsive, cis-regulatory elements, with 16 of these genes showing changes in their transcriptional activity in response to blue light treatment. On the other hand, FaBBX28c1, whose transcriptional activity is reduced in response to blue light, showed a delay in flowering time in Arabidopsis transgenic lines, suggesting its role in the regulation of flowering time in cultivated strawberry. Our results provide new evolutionary insight into the BBX gene family in cultivated strawberry and clues regarding their function in flowering time regulation in plants.
Collapse
|
377
|
Islam MQ, Hasan MN, Hoque H, Jewel NA, Bhuiyan MFH, Prodhan SH. Characterization of transcription factor MYB59 and expression profiling in response to low K + and NO 3- in indica rice (Oryza sativa L.). J Genet Eng Biotechnol 2021; 19:167. [PMID: 34704216 PMCID: PMC8548439 DOI: 10.1186/s43141-021-00248-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/18/2021] [Indexed: 11/11/2022]
Abstract
Background Nitrogen and potassium are crucial supplements for plant development and growth. Plants can detect potassium and nitrate ions in soils and in like way, they modify root-to-shoot transport of these ions to adjust the conveyance among roots and shoots. Transcription factor MYB59 plays essential roles in numerous physiological processes inclusive of hormone response, abiotic stress tolerance, plant development, and metabolic regulation. In this study, we retrieved 56 MYB59 proteins from different plant species. Multiple sequence alignment, phylogenetic tree, conserved motif, chromosomal localization, and cis-regulatory elements of the retrieved sequences were analyzed. Gene structure, protein 3D structure, and DNA binding of OsMYB59 indica were also predicted. Finally, we characterized OsMYB59 and its function under low K+/NO3− conditions in Oryza sativa subsp. indica. Results Data analysis showed that MYB59s from various groups separated in terms of conserved functional domains and gene structure, where members of genus Oryza clustered together. Plants showed reduced height and yellowish appearance when grown on K+ and NO3− deficient medium. Quantitative real-time PCR uncovered that the OsMYB59 reacted to abiotic stresses where its expression was increased in BRRI dhan56 but decreased in other varieties on K+ deficient medium. In addition, OsMYB59 transcript level increased on NO3− deficient medium. Conclusions Our results can help to explain the biological functions of indica rice MYB59 protein and gave a theoretical premise to additionally describe its biological roles in response to abiotic stresses particularly drought. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00248-6.
Collapse
Affiliation(s)
- Md Qamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Hammadul Hoque
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Fahmid Hossain Bhuiyan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
378
|
Cheng Z, Luan Y, Meng J, Sun J, Tao J, Zhao D. WRKY Transcription Factor Response to High-Temperature Stress. PLANTS 2021; 10:plants10102211. [PMID: 34686020 PMCID: PMC8541500 DOI: 10.3390/plants10102211] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature.
Collapse
Affiliation(s)
- Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Yuting Luan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Jiasong Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
- Correspondence: ; Tel.: +86-514-87997219; Fax: +86-514-87347537
| |
Collapse
|
379
|
Li K, Duan L, Zhang Y, Shi M, Chen S, Yang M, Ding Y, Peng Y, Dong Y, Yang H, Li Z, Zhang L, Fan Y, Ren M. Genome-wide identification and expression profile analysis of trihelix transcription factor family genes in response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 2021; 22:738. [PMID: 34649496 PMCID: PMC8515681 DOI: 10.1186/s12864-021-08000-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Abstract
Background Transcription factors, including trihelix transcription factors, play vital roles in various growth and developmental processes and in abiotic stress responses in plants. The trihelix gene has been systematically studied in some dicots and monocots, including Arabidopsis, tomato, chrysanthemum, soybean, wheat, corn, rice, and buckwheat. However, there are no related studies on sorghum. Results In this study, a total of 40 sorghum trihelix (SbTH) genes were identified based on the sorghum genome, among which 34 were located in the nucleus, 5 in the chloroplast, 1 (SbTH38) in the cytoplasm, and 1 (SbTH23) in the extracellular membrane. Phylogenetic analysis of the SbTH genes and Arabidopsis and rice trihelix genes indicated that the genes were clustered into seven subfamilies: SIP1, GTγ, GT1, GT2, SH4, GTSb8, and orphan genes. The SbTH genes were located in nine chromosomes and none on chromosome 10. One pair of tandem duplication gene and seven pairs of segmental duplication genes were identified in the SbTH gene family. By qPCR, the expression of 14 SbTH members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. Except for the leaves in which the genes were upregulated after only 2 h exposure to high temperature, the 12 SbTH genes were significantly upregulated in the stems of sorghum seedlings after 24 h under the other abiotic stress conditions. Among the selected genes, SbTH10/37/39 were significantly upregulated, whereas SbTH32 was significantly downregulated under different stress conditions. Conclusions In this study, we identified 40 trihelix genes in sorghum and found that gene duplication was the main force driving trihelix gene evolution in sorghum. The findings of our study serve as a basis for further investigation of the functions of SbTH genes and providing candidate genes for stress-resistant sorghum breeding programmes and increasing sorghum yield. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08000-7.
Collapse
Affiliation(s)
- Kuiyin Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China.,College of Agriculture, Anshun University, Anshun, 561000, People's Republic of China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yubo Zhang
- College of Agriculture, Anshun University, Anshun, 561000, People's Republic of China
| | - Miaoxiao Shi
- College of Agriculture, Anshun University, Anshun, 561000, People's Republic of China
| | - Songshu Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanqing Ding
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, People's Republic of China
| | - Yashu Peng
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yabing Dong
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zhenhua Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China.,Guizhou Branch of National Wheat Improvement Center of Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Liyi Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, People's Republic of China
| | - Yu Fan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China. .,Guizhou Branch of National Wheat Improvement Center of Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China.
| |
Collapse
|
380
|
Islam K, Rawoof A, Ahmad I, Dubey M, Momo J, Ramchiary N. Capsicum chinense MYB Transcription Factor Genes: Identification, Expression Analysis, and Their Conservation and Diversification With Other Solanaceae Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:721265. [PMID: 34721453 PMCID: PMC8548648 DOI: 10.3389/fpls.2021.721265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
381
|
A C2H2-Type Zinc-Finger Protein from Millettia pinnata, MpZFP1, Enhances Salt Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms221910832. [PMID: 34639173 PMCID: PMC8509772 DOI: 10.3390/ijms221910832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
C2H2 zinc finger proteins (ZFPs) play important roles in plant development and response to abiotic stresses, and have been studied extensively. However, there are few studies on ZFPs in mangroves and mangrove associates, which represent a unique plant community with robust stress tolerance. MpZFP1, which is highly induced by salt stress in the mangrove associate Millettia pinnata, was cloned and functionally characterized in this study. MpZFP1 protein contains two zinc finger domains with conserved QALGGH motifs and targets to the nucleus. The heterologous expression of MpZFP1 in Arabidopsis increased the seeds' germination rate, seedling survival rate, and biomass accumulation under salt stress. The transgenic plants also increased the expression of stress-responsive genes, including RD22 and RD29A, and reduced the accumulation of reactive oxygen species (ROS). These results indicate that MpZFP1 is a positive regulator of plant responses to salt stress due to its activation of gene expression and efficient scavenging of ROS.
Collapse
|
382
|
Liu Z, Li Y, Zhu J, Ma W, Li Z, Bi Z, Sun C, Bai J, Zhang J, Liu Y. Genome-Wide Identification and Analysis of the NF-Y Gene Family in Potato ( Solanum tuberosum L.). Front Genet 2021; 12:739989. [PMID: 34603398 PMCID: PMC8484916 DOI: 10.3389/fgene.2021.739989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a ubiquitous transcription factor in eukaryotes, which is composed of three subunits (NF-YA, NF-YB, and NF-YC). NF-Y has been identified as a key regulator of multiple pathways in plants. Although the NF-Y gene family has been identified in many plants, it has not been reported in potato (Solanum tuberosum). In the present study, a total of 41 NF-Y proteins in potato (StNF-Ys) were identified, including 10 StNF-YA, 22 StNF-YB, and nine StNF-YC subunits, and their distribution on chromosomes, gene structure, and conserved motif was analyzed. A synteny analysis indicated that 14 and 38 pairs of StNF-Y genes were orthologous to Arabidopsis and tomato (Solanum lycopersicum), respectively, and these gene pairs evolved under strong purifying selection. In addition, we analyzed the expression profiles of NF-Y genes in different tissues of double haploid (DM) potato, as well as under abiotic stresses and hormone treatments by RNA-seq downloaded from the Potato Genome Sequencing Consortium (PGSC) database. Furthermore, we performed RNA-seq on white, red, and purple tuber skin and flesh of three potato cultivars at the tuber maturation stage to identify genes that might be involved in anthocyanin biosynthesis. These results provide valuable information for improved understanding of StNF-Y gene family and further functional analysis of StNF-Y genes in fruit development, abiotic stress tolerance, and anthocyanin biosynthesis in potato.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jinyong Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjing Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
383
|
Ahmad HM, Rahman MU, Ahmar S, Fiaz S, Azeem F, Shaheen T, Ijaz M, Anwer Bukhari S, Khan SA, Mora-Poblete F. Comparative genomic analysis of MYB transcription factors for cuticular wax biosynthesis and drought stress tolerance in Helianthus annuus L. Saudi J Biol Sci 2021; 28:5693-5703. [PMID: 34588881 PMCID: PMC8459054 DOI: 10.1016/j.sjbs.2021.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Sunflower is an important oil-seed crop in Pakistan, it is mainly cultivated in the spring season. It is severely affected by drought stress resulting in lower yield. Cuticular wax acts as the first defense line to protect plants from drought stress condition. It seals the aerial parts of plants and reduce the water loss from leaf surfaces. Various myeloblastosis (MYB) transcription factors (TFs) are involved in biosynthesis of epicuticular waxes under drought-stress. However, less information is available for MYB, TFs in drought stress and wax biosynthesis in sunflower. We used different computational tools to compare the Arabidopsis MYB, TFs involved in cuticular wax biosynthesis and drought stress tolerance with sunflower genome. We identified three putative MYB genes (MYB16, MYB94 and MYB96) in sunflower along with their seven homologs in Arabidopsis. Phylogenetic association of MYB TFs in Arabidopsis and sunflower indicated strong conservation of TFs in plant species. From gene structure analysis, it was observed that intron and exon organization was family-specific. MYB TFs were unevenly distributed on sunflower chromosomes. Evolutionary analysis indicated the segmental duplication of the MYB gene family in sunflower. Quantitative Real-Time PCR revealed the up-regulation of three MYB genes under drought stress. The gene expression of MYB16, MYB94 and MYB96 were found many folds higher in experimental plants than control. The present study provided the first insight into MYB TFs family's characterization in sunflower under drought stress conditions and wax biosynthesis TFs.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Mahmood-ur Rahman
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
- Corresponding authors.
| | - Sunny Ahmar
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca 3465548, Chile
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620 Khyber Pakhtunkhwa, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Munazza Ijaz
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | | | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, The University of Haripur, 22620 Khyber Pakhtunkhwa, Pakistan
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca 3465548, Chile
- Corresponding authors.
| |
Collapse
|
384
|
Ma L, Liu Z, Cheng Z, Gou J, Chen J, Yu W, Wang P. Identification and Application of BhAPRR2 Controlling Peel Colour in Wax Gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2021; 12:716772. [PMID: 34659288 PMCID: PMC8517133 DOI: 10.3389/fpls.2021.716772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/26/2021] [Indexed: 05/24/2023]
Abstract
Peel color is an important factor affecting commodity quality in vegetables; however, the genes controlling this trait remain unclear in wax gourd. Here, we used two F2 genetic segregation populations to explore the inheritance patterns and to clone the genes associated with green and white skin in wax gourd. The F2 and BC1 trait segregation ratios were 3:1 and 1:1, respectively, and the trait was controlled by nuclear genes. Bulked segregant analysis of both F2 plants revealed peaks on Chr5 exceeding the confidence interval. Additionally, 6,244 F2 plants were used to compress the candidate interval into a region of 179 Kb; one candidate gene, Bch05G003950 (BhAPRR2), encoding two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2), which is involved in the regulation of peel color, was present in this interval. Two bases (GA) present in the coding sequence of BhAPRR2 in green-skinned wax gourd were absent from white-skinned wax gourd. The latter contained a frameshift mutation, a premature stop codon, and lacked 335 residues required for the protein functional region. The chlorophyll content and BhAPRR2 expression were significantly higher in green-skinned than in white-skinned wax gourd. Thus, BhAPRR2 may regulate the peel color of wax gourd. This study provides a theoretical foundation for further studies of the mechanism of gene regulation for the fruit peel color of wax gourd.
Collapse
Affiliation(s)
- Lianlian Ma
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhengguo Liu
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhikui Cheng
- College of Agriculture, Guangxi University, Nanning, China
| | - Jiquan Gou
- College of Agriculture, Guangxi University, Nanning, China
| | - Jieying Chen
- College of Agriculture, Guangxi University, Nanning, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Nanning, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
385
|
Emerging roles of NAC transcription factor in medicinal plants: progress and prospects. 3 Biotech 2021; 11:425. [PMID: 34567930 DOI: 10.1007/s13205-021-02970-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Transcriptional factors act as mediators in regulating stress response in plants from signal perception to processing the directed gene expression. WRKY, MYB, AP2/ERF, etc. are some of the major families of transcription factors known to mediate stress mechanisms in plants by regulating the production of secondary metabolites. NAC domain-containing proteins are among these large transcription factors families in plants. These proteins play impulsive roles in plant growth, development, and various abiotic as well as biotic stresses. They are involved in regulating the different signaling pathways of plant hormones that direct a plant's immunity against pathogens, thereby affecting their immune responses. However, their role in stress regulation or defence mechanism in plants through the secondary metabolite biosynthesis pathway is studied for very few cases. Emerging concern over the requirement of medicinal plants for the production of biocompatible drugs and antibiotics, the study of these vast, affecting proteins should be focused to improve their qualitative and quantitative production further. In medicinal plants, phytochemicals and secondary metabolites are the major biochemicals that impose antimicrobial and other medicinal properties in these plants. This review compiles the NAC transcription factors reported in selected medicinal plants and their possible roles in different mechanisms. Further, the comprehensive understanding of the molecular mechanism, genetic engineering, and regulation responses of NAC TFs in medicinal plants, can lead to improvement in stress response, immunity, and production of usable secondary metabolites.
Collapse
|
386
|
Ai G, Zhu H, Fu X, Liu J, Li T, Cheng Y, Zhou Y, Yang K, Pan W, Zhang H, Wu Z, Dong S, Xia Y, Wang Y, Xia A, Wang Y, Dou D, Jing M. Phytophthora infection signals-induced translocation of NAC089 is required for endoplasmic reticulum stress response-mediated plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:67-80. [PMID: 34374485 DOI: 10.1111/tpj.15425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 05/23/2023]
Abstract
Plants deploy various immune receptors to recognize pathogen-derived extracellular signals and subsequently activate the downstream defense response. Recently, increasing evidence indicates that the endoplasmic reticulum (ER) plays a part in the plant defense response, known as ER stress-mediated immunity (ERSI), that halts pathogen infection. However, the mechanism for the ER stress response to signals of pathogen infection remains unclear. Here, we characterized the ER stress response regulator NAC089, which was previously reported to positively regulate programed cell death (PCD), functioning as an ERSI regulator. NAC089 translocated from the ER to the nucleus via the Golgi in response to Phytophthora capsici culture filtrate (CF), which is a mixture of pathogen-associated molecular patterns (PAMPs). Plasma membrane localized co-receptor BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) was required for the CF-mediated translocation of NAC089. The nuclear localization of NAC089, determined by the NAC domain, was essential for immune activation and PCD. Furthermore, NAC089 positively contributed to host resistance against the oomycete pathogen P. capsici and the bacteria pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We also proved that NAC089-mediated immunity is conserved in Nicotiana benthamiana. Together, we found that PAMP signaling induces the activation of ER stress in plants, and that NAC089 is required for ERSI and plant resistance against pathogens.
Collapse
Affiliation(s)
- Gan Ai
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai Zhu
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowei Fu
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Liu
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianli Li
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Cheng
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zhou
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Yang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiye Pan
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huanxin Zhang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zishan Wu
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Saiyu Dong
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeqiang Xia
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai Xia
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daolong Dou
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maofeng Jing
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
387
|
Gong J, Zeng Y, Meng Q, Guan Y, Li C, Yang H, Zhang Y, Ampomah-Dwamena C, Liu P, Chen C, Deng X, Cheng Y, Wang P. Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6274-6290. [PMID: 34125891 DOI: 10.1093/jxb/erab283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/11/2021] [Indexed: 05/29/2023]
Abstract
Carotenoids play vital roles in the coloration of plant tissues and organs, particularly fruits; however, the regulation of carotenoid metabolism in fruits during ripening is largely unknown. Here, we show that red light promotes fruit coloration by inducing accelerated degreening and carotenoid accumulation in kumquat fruits. Transcriptome profiling revealed that a NAC (NAM/ATAF/CUC2) family transcription factor, FcrNAC22, is specifically induced in red light-irradiated fruits. FcrNAC22 localizes to the nucleus, and its gene expression is up-regulated as fruits change color. Results from dual luciferase, yeast one-hybrid assays and electrophoretic mobility shift assays indicate that FcrNAC22 directly binds to, and activates the promoters of three genes encoding key enzymes in the carotenoid metabolic pathway. Moreover, FcrNAC22 overexpression in citrus and tomato fruits as well as in citrus callus enhances expression of most carotenoid biosynthetic genes, accelerates plastid conversion into chromoplasts, and promotes color change. Knock down of FcrNAC22 expression in transiently transformed citrus fruits attenuates fruit coloration induced by red light. Taken together, our results demonstrate that FcrNAC22 is an important transcription factor that mediates red light-induced fruit coloration via up-regulation of carotenoid metabolism.
Collapse
Affiliation(s)
- Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiunan Meng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajie Guan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengyang Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Ping Liu
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
388
|
Ueda Y, Sakuraba Y, Yanagisawa S. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis. PLANT & CELL PHYSIOLOGY 2021; 62:573-581. [PMID: 33508134 DOI: 10.1093/pcp/pcab010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Homeostasis of phosphorus (P), an essential macronutrient, is vital for plant growth under diverse environmental conditions. Although plants acquire P from the soil as inorganic phosphate (Pi), its availability is generally limited. Therefore, plants employ mechanisms involving various Pi transporters that facilitate efficient Pi uptake against a steep concentration gradient across the plant-soil interface. Among the different types of Pi transporters in plants, some members of the PHOSPHATE TRANSPORTER 1 (PHT1) family, present in the plasma membrane of root epidermal cells and root hairs, are chiefly responsible for Pi uptake from the rhizosphere. Therefore, accurate regulation of PHT1 expression is crucial for the maintenance of P homeostasis. Previous investigations positioned the Pi-dependent posttranslational regulation of PHOSPHATE STARVATION RESPONSE 1 (PHR1) transcription factor activity at the center of the regulatory mechanism controlling PHT1 expression and P homeostasis; however, recent studies indicate that several other factors also regulate the expression of PHT1 to modulate P acquisition and sustain P homeostasis against environmental fluctuations. Together with PHR1, several transcription factors that mediate the availability of other nutrients (such as nitrogen and zinc), light, and stress signals form an intricate transcriptional network to maintain P homeostasis under highly diverse environments. In this review, we summarize this intricate transcriptional network for the maintenance of P homeostasis under different environmental conditions, with a main focus on the mechanisms identified in Arabidopsis.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686 Japan
| | - Yasuhito Sakuraba
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
389
|
Zhuang W, Shu X, Lu X, Wang T, Zhang F, Wang N, Wang Z. Genome-wide analysis and expression profiles of PdeMYB transcription factors in colored-leaf poplar (Populus deltoids). BMC PLANT BIOLOGY 2021; 21:432. [PMID: 34556053 PMCID: PMC8459500 DOI: 10.1186/s12870-021-03212-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/06/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND MYB transcription factors, comprising one of the largest transcription factor families in plants, play many roles in secondary metabolism, especially in anthocyanin biosynthesis. However, the functions of the PdeMYB transcription factor in colored-leaf poplar remain elusive. RESULTS In the present study, genome-wide characterization of the PdeMYB genes in colored-leaf poplar (Populus deltoids) was conducted. A total of 302 PdeMYB transcription factors were identified, including 183 R2R3-MYB, five R1R2R3-MYB, one 4R-MYB, and 113 1R-MYB transcription factor genes. Genomic localization and paralogs of PdeMYB genes mapped 289 genes on 19 chromosomes, with collinearity relationships among genes. The conserved domain, gene structure, and evolutionary relationships of the PdeMYB genes were also established and analyzed. The expression levels of PdeMYB genes were obtained from previous data in green leaf poplar (L2025) and colored leaf poplar (QHP) as well as our own qRT-PCR analysis data in green leaf poplar (L2025) and colored leaf poplar (CHP), which provide valuable clues for further functional characterization of PdeMYB genes. CONCLUSIONS The above results provide not only comprehensive insights into the structure and functions of PdeMYB genes but also provide candidate genes for the future improvement of leaf colorization in Populus deltoids.
Collapse
Affiliation(s)
- Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xinya Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
390
|
Aakanksha, Yadava SK, Yadav BG, Gupta V, Mukhopadhyay A, Pental D, Pradhan AK. Genetic Analysis of Heterosis for Yield Influencing Traits in Brassica juncea Using a Doubled Haploid Population and Its Backcross Progenies. FRONTIERS IN PLANT SCIENCE 2021; 12:721631. [PMID: 34603351 PMCID: PMC8481694 DOI: 10.3389/fpls.2021.721631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2024]
Abstract
The exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in Brassica juncea by using a doubled haploid (DH) mapping population derived from F1 between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions. In total, 695 additive QTL were detected for the 14 traits in the three trials using five data sets, with overdominance observed to be the predominant type of effect in determining the expression of heterotic QTL. The results indicated that the design in the present study was efficient for identifying common QTL across multiple trials and populations, which constitute a valuable resource for marker-assisted selection and further research. In addition, a total of 637 epistatic loci were identified, and it was concluded that epistasis among loci without detectable main effects plays an important role in controlling heterosis in yield of B. juncea.
Collapse
Affiliation(s)
- Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Bal Govind Yadav
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Arundhati Mukhopadhyay
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
391
|
Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Res 2021; 31:23-42. [PMID: 34524604 DOI: 10.1007/s11248-021-00284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Nitrogen (N) as a macronutrient is an important determinant of plant growth. The excessive usage of chemical fertilizers is increasing environmental pollution; hence, the improvement of crop's nitrogen use efficiency (NUE) is imperative for sustainable agriculture. N uptake, transportation, assimilation, and remobilization are four important determinants of plant NUE. Oryza sativa L. (rice) is a staple food for approximately half of the human population, around the globe and improvement in rice yield is pivotal for rice breeders. The N transporters, enzymes indulged in N assimilation, and several transcription factors affect the rice NUE and subsequent yield. Although, a couple of improvements have been made regarding rice NUE, the knowledge about regulatory mechanisms operating NUE is scarce. The current review provides a precise knowledge of how rice plants detect soil N and how this detection is translated into the language of responses that regulate the growth. Additionally, the transcription factors that control N-associated genes in rice are discussed in detail. This mechanistic insight will help the researchers to improve rice yield with minimized use of chemical fertilizers.
Collapse
|
392
|
Zhang T, Cui Z, Li Y, Kang Y, Song X, Wang J, Zhou Y. Genome-Wide Identification and Expression Analysis of MYB Transcription Factor Superfamily in Dendrobium catenatum. Front Genet 2021; 12:714696. [PMID: 34512725 PMCID: PMC8427673 DOI: 10.3389/fgene.2021.714696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Dendrobium catenatum is an important traditional Chinese medicine and naturally grows on tree trunks and cliffs, where it can encounter diverse environmental stimuli. MYB transcription factors are widely involved in response to abiotic stresses. However, the MYB gene family has not yet been systematically cataloged in D. catenatum. In this study, a total of 133 MYB proteins were identified in D. catenatum, including 32 MYB-related, 99 R2R3-MYB, 1 3R-MYB, and 1 4R-MYB proteins. Phylogenetic relationships, conserved motifs, gene structures, and expression profiles in response to abiotic stresses were then analyzed. Phylogenetic analysis revealed MYB proteins in D. catenatum could be divided into 14 subgroups, which was supported by the conserved motif compositions and gene structures. Differential DcMYB gene expression and specific responses were analyzed under drought, heat, cold, and salt stresses using RNA-seq and validated by qRT-PCR. Forty-two MYB genes were differentially screened following exposure to abiotic stresses. Five, 12, 11, and 14 genes were specifically expressed in response to drought, heat, cold, and salt stress, respectively. This study identified candidate MYB genes with possible roles in abiotic tolerance and established a theoretical foundation for molecular breeding of D. catenatum.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Zheng Cui
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yuqian Kang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Xiqiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jian Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
393
|
Jamshidi Kandjani O, Rahbar-Shahrouziasl M, Alizadeh AA, Hamzeh-Mivehroud M, Dastmalchi S. Identification of Novel Mutations in Arabidopsis thaliana DOF 4.2 Coding Gene. Adv Pharm Bull 2021; 11:557-563. [PMID: 34513631 PMCID: PMC8421617 DOI: 10.34172/apb.2021.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: DOF (DNA-binding with One Finger) proteins are plant-specific transcription factors which mediate numerous biological processes. The purpose of the current study is to report new naturally occurring mutations in the gene encoding for one of the members of DOF proteins named DOF 4.2. Methods: The expression of zinc finger domain of DOF 4.2 (DOF 4.2-ZF) was investigated by first synthesis of cDNA library using different parts of Arabidopsis thaliana plant. Then the coding sequence for zinc finger domain of DOF 4.2 protein was prepared using nested PCR experiment and cloned into pGEX-6P-1 expression vector. Finally, the prepared construct was used for protein expression. Furthermore, molecular dynamics (MD) simulation was carried out to predict DNA binding affinity of DOF 4.2-ZF using AMBER package. Results: For the first time a new variant of DOF 4.2-ZF protein with three mutations was detected. One of the mutations is silent while the other two mutations lead to amino acid replacement (S18G) as well as introduction of a stop codon ultimately resulting in a truncated protein production. In order to investigate whether the truncated form is able to recognize DNA binding motif, MD simulations were carried out and the results showed that the chance of binding of DOF 4.2-ZF protein to cognate DNA in its truncated form is very low. Conclusion: The findings demonstrated that the observed mutations adversely affect the DNA binding ability of the truncated form of DOF4.2 if it is expressed in the mutant variant of A. thaliana used in this study.
Collapse
Affiliation(s)
| | - Mahdieh Rahbar-Shahrouziasl
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
394
|
Warsi MK, Howladar SM, Alsharif MA. Regulon: An overview of plant abiotic stress transcriptional regulatory system and role in transgenic plants. BRAZ J BIOL 2021; 83:e245379. [PMID: 34495147 DOI: 10.1590/1519-6984.245379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.
Collapse
Affiliation(s)
- M K Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - S M Howladar
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - M A Alsharif
- Architecture Department, Faculty of Engineering. Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
395
|
Dabas P, Dhingra Y, Sweta K, Chakrabarty M, Singhal R, Tyagi P, Behera PM, Dixit A, Bhattacharjee S, Sharma N. Arabidopsis thaliana possesses two novel ELL associated factor homologs. IUBMB Life 2021; 73:1115-1130. [PMID: 34089218 DOI: 10.1002/iub.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/06/2022]
Abstract
Transcription elongation is one of the key steps at which RNA polymerase II-directed expression of protein-coding genes is regulated in eukaryotic cells. Different proteins have been shown to control this process, including the ELL/EAF family. ELL Associated Factors (EAFs) were first discovered in a yeast two-hybrid screen as interaction partners of the human ELL (Eleven nineteen Lysine-rich Leukemia) transcription elongation factor. Subsequently, they have been identified in different organisms, including Schizosaccharomyces pombe. However, no homolog(s) of EAF has as yet been characterized from plants. In the present work, we identified EAF orthologous sequences in different plants and have characterized two novel Arabidopsis thaliana EAF homologs, AtEAF-1 (At1g71080) and AtEAF-2 (At5g38050). Sequence analysis showed that both AtEAF-1 and AtEAF-2 exhibit similarity with its S. pombe EAF counterpart. Moreover, both Arabidopsis thaliana and S. pombe EAF orthologs share conserved sequence characteristic features. Computational tools also predicted a high degree of disorder in regions towards the carboxyl terminus of these EAF proteins. We demonstrate that AtEAF-2, but not AtEAF-1 functionally complements growth deficiencies of Schizosaccharomyces pombe eaf mutant. We also show that only AtEAF-1 displays transactivation potential resembling the S. pombe EAF ortholog. Subsequent expression analysis in A. thaliana showed that both homologs were expressed at varying levels during different developmental stages and in different tissues tested in the study. Individual null-mutants of either AtEAF-1 or AtEAF-2 are developmentally normal implying their functional redundancy. Taken together, our results provide first evidence that A. thaliana also possesses functional EAF proteins, suggesting an evolutionary conservation of these proteins across organisms.
Collapse
Affiliation(s)
- Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Yukti Dhingra
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Mohima Chakrabarty
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Ritwik Singhal
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Prasidhi Tyagi
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | | | | | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and plant resistance, Regional Center of Biotechnology, NCR-Biotech Science Cluster, Gurgaon-Faridabad Expressway, Faridabad, Haryana, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| |
Collapse
|
396
|
Guo HJ, Wang LJ, Wang C, Guo DZ, Xu BH, Guo XQ, Li H. Identification of an Apis cerana zinc finger protein 41 gene and its involvement in the oxidative stress response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21830. [PMID: 34288081 DOI: 10.1002/arch.21830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Zinc finger proteins (ZFPs) are a class of transcription factors that contain zinc finger domains and play important roles in growth, aging, and responses to abiotic and biotic stresses. These proteins activate or inhibit gene transcription by binding to single-stranded DNA or RNA and through RNA/DNA bidirectional binding and protein-protein interactions. However, few studies have focused on the oxidation resistance functions of ZFPs in insects, particularly Apis cerana. In the current study, we identified a ZFP41 gene from A. cerana, AcZFP41, and verified its function in oxidative stress responses. Real-time quantitative polymerase chain reaction showed that the transcription level of AcZFP41 was upregulated to different degrees during exposure to oxidative stress, including that induced by extreme temperature, UV radiation, or pesticides. In addition, the silencing of AcZFP41 led to changes in the expression patterns of some known antioxidant genes. Moreover, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and glutathione S-transferase (GST) in AcZFP41-silenced honeybees were higher than those in a control group. In summary, the data indicate that AcZFP41 is involved in the oxidative stress response. The results provide a theoretical basis for further studies of zinc finger proteins and improve our understanding of the antioxidant mechanisms of honeybees.
Collapse
Affiliation(s)
- Hui-Juan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - De-Zheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Xing-Qi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
397
|
Kumar S, Ruggles A, Logan S, Mazarakis A, Tyson T, Bates M, Grosse C, Reed D, Li Z, Grimwood J, Schmutz J, Saski C. Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. PLANTS 2021; 10:plants10091775. [PMID: 34579308 PMCID: PMC8472754 DOI: 10.3390/plants10091775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Somatic embryogenesis-mediated plant regeneration is essential for the genetic manipulation of agronomically important traits in upland cotton. Genotype specific recalcitrance to regeneration is a primary challenge in deploying genome editing and incorporating useful transgenes into elite cotton germplasm. In this study, transcriptomes of a semi-recalcitrant cotton (Gossypium hirsutum L.) genotype ‘Coker312’ were analyzed at two critical stages of somatic embryogenesis that include non-embryogenic callus (NEC) and embryogenic callus (EC) cells, and the results were compared to a non-recalcitrant genotype ‘Jin668’. We discovered 305 differentially expressed genes in Coker312, whereas, in Jin668, about 6-fold more genes (2155) were differentially expressed. A total of 154 differentially expressed genes were common between the two genotypes. Gene enrichment analysis of the upregulated genes identified functional categories, such as lipid transport, embryo development, regulation of transcription, sugar transport, and vitamin biosynthesis, among others. In Coker312 EC cells, five major transcription factors were highly upregulated: LEAFY COTYLEDON 1 (LEC1), WUS-related homeobox 5 (WOX5), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and WRKY2. In Jin668, LEC1, BABY BOOM (BBM), FUS3, and AGAMOUS-LIKE15 (AGL15) were highly expressed in EC cells. We also found that gene expression of these embryogenesis genes was typically higher in Jin668 when compared to Coker312. We conclude that significant differences in the expression of the above genes between Coker312 and Jin668 may be a critical factor affecting the regenerative ability of these genotypes.
Collapse
Affiliation(s)
- Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Ashleigh Ruggles
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Sam Logan
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Alora Mazarakis
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Thomas Tyson
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Matthew Bates
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Clayton Grosse
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - David Reed
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
- Correspondence: ; Tel.: +1-864-656-6929
| |
Collapse
|
398
|
Kim M, Xi H, Park S, Yun Y, Park J. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes. Sci Rep 2021; 11:16578. [PMID: 34400697 PMCID: PMC8367991 DOI: 10.1038/s41598-021-95940-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. We identified 262 GATA genes (389 GATA TFs) from seven Populus genomes using the pipeline of GATA-TFDB. Alternative splicing forms of Populus GATA genes exhibit dynamics of GATA gene structures including partial or full loss of GATA domain and additional domains. Subfamily III of Populus GATA genes display lack CCT and/or TIFY domains. 21 Populus GATA gene clusters (PCs) were defined in the phylogenetic tree of GATA domains, suggesting the possibility of subfunctionalization and neofunctionalization. Expression analysis of Populus GATA genes identified the five PCs displaying tissue-specific expression, providing the clues of their biological functions. Amino acid patterns of Populus GATA motifs display well conserved manner of Populus GATA genes. The five Populus GATA genes were predicted as membrane-bound GATA TFs. Biased chromosomal distributions of GATA genes of three Populus species. Our comparative analysis approaches of the Populus GATA genes will be a cornerstone to understand various plant TF characteristics including evolutionary insights.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Hong Xi
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Suhyeon Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Yunho Yun
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Jongsun Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
| |
Collapse
|
399
|
Singh K, Chandra A. DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00840-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
400
|
Huang J, Zhang Q, He Y, Liu W, Xu Y, Liu K, Xian F, Li J, Hu J. Genome-Wide Identification, Expansion Mechanism and Expression Profiling Analysis of GLABROUS1 Enhancer-Binding Protein (GeBP) Gene Family in Gramineae Crops. Int J Mol Sci 2021; 22:ijms22168758. [PMID: 34445464 PMCID: PMC8395763 DOI: 10.3390/ijms22168758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
The GLABROUS1 enhancer-binding protein (GeBP) gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the GeBP gene family is available in the case of the Gramineae crops. Here, 125 GeBP genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis. Evolutionary analyses showed that whole genome duplication (WGD) and segmental duplication play important roles in the expansion of the GeBP gene family. The various gene structures and protein motifs revealed that the GeBP genes play diverse functions in plants. In addition, the expression profile analysis of the GeBP genes showed that 13 genes expressed in all tested organs and stages of development in rice, with especially high levels of expression in the leaf, palea, and lemma. Furthermore, the hormone- and metal-induced expression patterns showed that the expression levels of most genes were affected by various biotic stresses, implying that the GeBP genes had an important function in response to various biotic stresses. Furthermore, we confirmed that OsGeBP11 and OsGeBP12 were localized to the nucleus through transient expression in the rice protoplast, indicating that GeBPs function as transcription factors to regulate the expression of downstream genes. This study provides a comprehensive understanding of the origin and evolutionary history of the GeBP genes family in Gramineae, and will be helpful in a further functional characterization of the GeBP genes.
Collapse
Affiliation(s)
- Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Qiannan Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Yurong He
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Wei Liu
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, UK;
| | - Yanghong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200000, China;
| | - Kejia Liu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Fengjun Xian
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Junde Li
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
- Correspondence:
| |
Collapse
|