351
|
Ding Y, Zhao X, Zhao Z, Wang Y, Wu T, Yuan G, Liu JM. Strain-Manipulated Photovoltaic and Photoelectric Effects of the MAPbBr 3 Single Crystal. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52134-52139. [PMID: 36375893 DOI: 10.1021/acsami.2c13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead halide perovskite materials, such as MAPbBr3 and MAPbI3, show excellent semiconductor properties, and thus, they have attracted a lot of attention for applications in solar cells, photodetectors, etc. Here, a periodic strain can dynamically manipulate the build-in electric field (Ebi) of the depletion region with piezoelectricity at the Au/MAPbBr3 interface. As a result, the photovoltaic short-circuit current density (Jsc) and the open-circuit voltage (Voc) are increased by 670 and 82%, respectively, by applying an external strain upon an asymmetric solar-cell-like Au/MAPbBr3/Ga structure. Furthermore, the equivalent piezoelectric d33 values of ∼3.5 pC/N are confirmed in the Au/MAPbBr3/Au structure with both the sinusoidal strain and the 405 nm light illumination with 220 mW/cm2 upon one semitransparent Au electrode. This study not only proves that pressure can effectively enhance the energy conversion efficiency of the halide perovskite-based solar cells and light detectors but also supposes a multifunctional sensor, which can detect light intensity, sense dynamic pressure, explore accelerated speed, etc. simultaneously.
Collapse
Affiliation(s)
- Yecheng Ding
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, People's Republic of China
| | - Xuefeng Zhao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, People's Republic of China
| | - Zeen Zhao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, People's Republic of China
| | - Yaojin Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, People's Republic of China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales2052, Australia
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, People's Republic of China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing, Jiangsu210093, People's Republic of China
| |
Collapse
|
352
|
Naqvi FH, Ko JH. Structural Phase Transitions and Thermal Degradation Process of MAPbCl 3 Single Crystals Studied by Raman and Brillouin Scattering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15228151. [PMID: 36431635 PMCID: PMC9699233 DOI: 10.3390/ma15228151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 06/12/2023]
Abstract
Raman spectroscopy was applied to MAPbCl3 single crystals in a wide frequency range from 10 to 3500 cm-1 over a broad temperature range from -196 °C to 200 °C including both two structural phase transitions and a thermal degradation range. Low-frequency lattice modes of MAPbCl3 were revealed for the first time, which showed discontinuous anomalies along with the change in the number of Raman modes at the transition points of -114 °C and -110 °C. Several Raman modes related to the C-N stretching and MA rocking modes in addition to the lattice modes displayed temperature dependences similar to those of MAPbBr3 in both Raman shifts and half widths, indicating that the MA cation arrangement and H-halide bond interactions behave similarly in both systems during the phase transition. The substantial increase in the half widths of nearly all Raman modes especially suggests that the dynamic disorder caused by the free rotational motions of MA cations induces significant anharmonicity in the lattice and thus, reduces the phonon lifetimes. High-temperature Raman and Brillouin scattering measurements showed that the spectral features changed drastically at ~200 °C where the thermal decomposition of MAPbCl3 into PbCl2 began. This result exhibits that combined Raman and Brillouin spectroscopic techniques can be a useful tool in monitoring temperature-induced or temporal changes in lead-based halide perovskite materials.
Collapse
|
353
|
Hot-carrier tunable abnormal nonlinear absorption conversion in quasi-2D perovskite. Nat Commun 2022; 13:6935. [PMCID: PMC9663601 DOI: 10.1038/s41467-022-34705-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractControlling the high-power laser transmittance is built on the diverse manipulation of multiple nonlinear absorption (NLA) processes in the nonlinear optical (NLO) materials. According to standard saturable absorption (SA) and reverse saturable absorption (RSA) model adapted for traditional semiconductor materials, the coexistence of SA and RSA will result in SA induced transparency at low laser intensity, yet switch to RSA with pump fluence increasing. Here, we observed, in contrast, an unusual RSA to SA conversion in quasi-two-dimensional (2D) perovskite film with a low threshold around 2.6 GW cm−2. With ultrafast transient absorption (TA) spectra measurement, such abnormal NLA is attributed to the competition between excitonic absorption enhancement and non-thermalized carrier induced bleaching. TA singularity from non-thermalized “Fermi Sea” is observed in quasi-2D perovskite film, indicating an ultrafast carrier thermalization within 100 fs. Moreover, the comparative study between the 2D and 3D perovskites uncovers the crucial role of hot-carrier effect to tune the NLA response. The ultrafast carrier cooling of quasi-2D perovskite is pointed out as an important factor to realize such abnormal NLA conversion process. These results provide fresh insights into the NLA mechanisms in low-dimensional perovskites, which may pave a promising way to diversify the NLO material applications.
Collapse
|
354
|
Liu W, Shi T, Zhu J, Zhang Z, Li D, He X, Fan X, Meng L, Wang J, He R, Ge Y, Liu Y, Chu PK, Yu X. PbI 2 -DMSO Assisted In Situ Growth of Perovskite Wafers for Sensitive Direct X-Ray Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204512. [PMID: 36372541 PMCID: PMC9811467 DOI: 10.1002/advs.202204512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Although perovskite wafers with a scalable size and thickness are suitable for direct X-ray detection, polycrystalline perovskite wafers have drawbacks such as the high defect density, defective grain boundaries, and low crystallinity. Herein, PbI2 -DMSO powders are introduced into the MAPbI3 wafer to facilitate crystal growth. The PbI2 powders absorb a certain amount of DMSO to form the PbI2 -DMSO powders and PbI2 -DMSO is converted back into PbI2 under heating while releasing DMSO vapor. During isostatic pressing of the MAPbI3 wafer with the PbI2 -DMSO solid additive, the released DMSO vapor facilitates in situ growth in the MAPbI3 wafer with enhanced crystallinity and reduced defect density. A dense and compact MAPbI3 wafer with a high mobility-lifetime (µτ) product of 8.70 × 10-4 cm2 V-1 is produced. The MAPbI3 -based direct X-ray detector fabricated for demonstration shows a high sensitivity of 1.58 × 104 µC Gyair-1 cm-2 and a low detection limit of 410 nGyair s-1 .
Collapse
Affiliation(s)
- Wenjun Liu
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhou215123China
| | - Tongyu Shi
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiongtao Zhu
- Research Center for Medical Artificial IntelligenceShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhenyu Zhang
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Dong Li
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Xingchen He
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Xiongsheng Fan
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Lingqiang Meng
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Jiahong Wang
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Rui He
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yongshuai Ge
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Research Center for Medical Artificial IntelligenceShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yanliang Liu
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, KowloonHong KongChina
| | - Xue‐Feng Yu
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
355
|
Ekanayaka TK, Richmond D, McCormick M, Nandyala SR, Helfrich HC, Sinitskii A, Pikal JM, Ilie CC, Dowben PA, Yost AJ. Surface Versus Bulk State Transitions in Inkjet-Printed All-Inorganic Perovskite Quantum Dot Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3956. [PMID: 36432242 PMCID: PMC9697151 DOI: 10.3390/nano12223956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The anion exchange of the halides, Br and I, is demonstrated through the direct mixing of two pure perovskite quantum dot solutions, CsPbBr3 and CsPbI3, and is shown to be both facile and result in a completely alloyed single phase mixed halide perovskite. Anion exchange is also observed in an interlayer printing method utilizing the pure, unalloyed perovskite solutions and a commercial inkjet printer. The halide exchange was confirmed by optical absorption spectroscopy, photoluminescent spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy characterization and indicates that alloying is thermodynamically favorable, while the formation of a clustered alloy is not favored. Additionally, a surface-to-bulk photoemission core level transition is observed for the Cs 4d photoemission feature, which indicates that the electronic structure of the surface is different from the bulk. Time resolved photoluminescence spectroscopy indicates the presence of multiple excitonic decay features, which is argued to originate from states residing at surface and bulk environments.
Collapse
Affiliation(s)
- Thilini K. Ekanayaka
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Dylan Richmond
- Department of Physics, State University of New York-Oswego, Oswego, NY 13126, USA
| | - Mason McCormick
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Shashank R. Nandyala
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Halle C. Helfrich
- Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
- Department of Physics, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jon M. Pikal
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Carolina C. Ilie
- Department of Physics, State University of New York-Oswego, Oswego, NY 13126, USA
| | - Peter A. Dowben
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrew J. Yost
- Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
- Oklahoma Photovoltaic Research Institute, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
356
|
Chen L, Yoo JW, Hu M, Lee S, Seok SI. Intrinsic Phase Stability and Inherent Bandgap of Formamidinium Lead Triiodide Perovskite Single Crystals. Angew Chem Int Ed Engl 2022; 61:e202212700. [DOI: 10.1002/anie.202212700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Chen
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Jin Wook Yoo
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Manman Hu
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Seung‐Un Lee
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Sang Il Seok
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| |
Collapse
|
357
|
Ouyang Z, Yan L, You W, Moran AM. Probing drift velocity dispersion in MAPbI 3 photovoltaic cells with nonlinear photocurrent spectroscopy. J Chem Phys 2022; 157:174202. [DOI: 10.1063/5.0116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conventional time-of-flight (TOF) measurements yield charge carrier mobilities in photovoltaic cells with time resolution limited by the RC time constant of the device, which is on the order of 0.1–1 µs for the systems targeted in the present work. We have recently developed an alternate TOF method, termed nonlinear photocurrent spectroscopy (NLPC), in which carrier drift velocities are determined with picosecond time resolution by applying a pair of laser pulses to a device with an experimentally controlled delay time. In this technique, carriers photoexcited by the first laser pulse are “probed” by way of recombination processes involving carriers associated with the second laser pulse. Here, we report NLPC measurements conducted with a simplified experimental apparatus in which synchronized 40 ps diode lasers enable delay times up to 100 µs at 5 kHz repetition rates. Carrier mobilities of ∼0.025 cm2/V/s are determined for MAPbI3 photovoltaic cells with active layer thicknesses of 240 and 460 nm using this instrument. Our experiments and model calculations suggest that the nonlinear response of the photocurrent weakens as the carrier densities photoexcited by the first laser pulse trap and broaden while traversing the active layer of a device. Based on this aspect of the signal generation mechanism, experiments conducted with co-propagating and counter-propagating laser beam geometries are leveraged to determine a 60 nm length scale of drift velocity dispersion in MAPbI3 films. Contributions from localized states induced by thermal fluctuations are consistent with drift velocity dispersion on this length scale.
Collapse
Affiliation(s)
- Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
358
|
Wang J, Zhang Z, Liang J, Zheng Y, Wu X, Tian C, Huang Y, Zhou Z, Yang Y, Sun A, Chen Z, Chen CC. Bottom-Up Templated and Oriented Crystallization for Inverted Triple-Cation Perovskite Solar Cells with Stabilized Nickel-Oxide Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203886. [PMID: 36148856 DOI: 10.1002/smll.202203886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Inverted-structure perovskite solar cells (PSCs) are known for their superior device stability. However, based on nickel-oxide (NiOx ) substrate, disordered crystallization and bottom interface instability of perovskite film are still the main factors that compromise the power conversion efficiency (PCE) of PSCs. Here, 2D perovskite of thiomorpholine 1,1-dioxide lead iodide (Td2 PbI4 ) is introduced as a template to prepare 3D perovskite thin film with high crystal orientation and large grain size via a bottom-up growth method. By adding TdCl to the precursor solution, pre-crystallized 2D Td2 PbI4 seeds can accumulate at the bottom interface, lowering the barrier of nucleation, and templating the growth of 3D perovskite films with improved (100) orientation and reduced defects during crystallization. In addition, 2D Td2 PbI4 at the bottom interface also hinders the interfacial redox reaction and reduces the hole extraction barrier on the buried interface. Based on this, the Td-0.5 PSC achieves a PCE of 22.09% and an open-circuit voltage of 1.16 V. Moreover, Td-0.5 PSCs show extremely high stability, which retains 84% of its initial PCE after 500 h of continuous illumination under maximum power point operating conditions in N2 atmosphere. This work paves the way for performance improvement of inverted PSCs on NiOx substrate.
Collapse
Affiliation(s)
- Jianli Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhanfei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jianghu Liang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Ying Huang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhuang Zhou
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yajuan Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
359
|
Meng X, Ji S, Wang Q, Wang X, Bai T, Zhang R, Yang B, Li Y, Shao Z, Jiang J, Han K, Liu F. Organic-Inorganic Hybrid Cuprous-Based Metal Halides for Warm White Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203596. [PMID: 36068152 PMCID: PMC9631088 DOI: 10.1002/advs.202203596] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Indexed: 05/21/2023]
Abstract
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications.
Collapse
Affiliation(s)
- Xuan Meng
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Sujun Ji
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Qiujie Wang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Xiaochen Wang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Tianxin Bai
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of ScienceDalian116023P. R. China
| | - Yimeng Li
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101P. R. China
| | - Zhipeng Shao
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101P. R. China
| | - Junke Jiang
- ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226ENSCR, Université de RennesRennes 35700France
| | - Ke‐li Han
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of ScienceDalian116023P. R. China
| | - Feng Liu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| |
Collapse
|
360
|
Turedi B, Lintangpradipto MN, Sandberg OJ, Yazmaciyan A, Matt GJ, Alsalloum AY, Almasabi K, Sakhatskyi K, Yakunin S, Zheng X, Naphade R, Nematulloev S, Yeddu V, Baran D, Armin A, Saidaminov MI, Kovalenko MV, Mohammed OF, Bakr OM. Single-Crystal Perovskite Solar Cells Exhibit Close to Half A Millimeter Electron-Diffusion Length. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202390. [PMID: 36069995 DOI: 10.1002/adma.202202390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Single-crystal halide perovskites exhibit photogenerated-carriers of high mobility and long lifetime, making them excellent candidates for applications demanding thick semiconductors, such as ionizing radiation detectors, nuclear batteries, and concentrated photovoltaics. However, charge collection depreciates with increasing thickness; therefore, tens to hundreds of volts of external bias is required to extract charges from a thick perovskite layer, leading to a considerable amount of dark current and fast degradation of perovskite absorbers. However, extending the carrier-diffusion length can mitigate many of the anticipated issues preventing the practical utilization of perovskites in the abovementioned applications. Here, single-crystal perovskite solar cells that are up to 400 times thicker than state-of-the-art perovskite polycrystalline films are fabricated, yet retain high charge-collection efficiency in the absence of an external bias. Cells with thicknesses of 110, 214, and 290 µm display power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7%, respectively. The remarkable persistence of high PCEs, despite the increase in thickness, is a result of a long electron-diffusion length in those cells, which was estimated, from the thickness-dependent short-circuit current, to be ≈0.45 mm under 1 sun illumination. These results pave the way for adapting perovskite devices to optoelectronic applications in which a thick active layer is essential.
Collapse
Affiliation(s)
- Bekir Turedi
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Muhammad N Lintangpradipto
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Oskar J Sandberg
- Sustainable Advanced Materials (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Aren Yazmaciyan
- KAUST Solar Center (KSC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gebhard J Matt
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Abdullah Y Alsalloum
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Khulud Almasabi
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kostiantyn Sakhatskyi
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Xiaopeng Zheng
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rounak Naphade
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vishal Yeddu
- Department of Chemistry and Department of Electrical & Computer Engineering, Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Derya Baran
- KAUST Solar Center (KSC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ardalan Armin
- Sustainable Advanced Materials (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Makhsud I Saidaminov
- Department of Chemistry and Department of Electrical & Computer Engineering, Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Maksym V Kovalenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Omar F Mohammed
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
361
|
Xu J, Ma J, Gu Y, Li Y, Li Y, Shen H, Zhang Z, Ma Y. Progress of Metal Halide Perovskite Crystals From a Crystal Growth Point of View. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiayue Xu
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Jian Ma
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yankai Gu
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yang Li
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yasheng Li
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Hui Shen
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Zhijie Zhang
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yunfeng Ma
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
362
|
Xu M, Wang X, Weng J, Shen J, Hou Y, Zhang B. Ultraviolet-to-infrared broadband photodetector and imaging application based on a perovskite single crystal. OPTICS EXPRESS 2022; 30:40611-40625. [PMID: 36298991 DOI: 10.1364/oe.472249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The organic-inorganic hybrid perovskite CH3NH3PbBr3(MAPbBr3) has been well developed in the X-ray to visible light band due to its superior optoelectronic properties, but this material is rarely studied in the infrared band. In this paper, a UV-NIR broadband optical detector based on MAPbBr3 single crystal is studied, and the response range can reach the near-infrared region. In the visible light band, the optical response of the device is mainly caused by the photoelectric effect; in the near-infrared band, the optical response of the device is mainly caused by the thermal effect. The carrier response of MAPbBr3 material under different wavelengths of light was investigated using a non-contact measurement method (optical pump terahertz (THz) probe spectroscopy). This paper also builds a set of photoelectric sensor array components, and successfully realizes the conversion of optical image signals to electrical image signals in the visible light band and infrared band. The experimental results show that MAPbBr3 crystals provide a new possibility for UV-NIR broadband photodetectors.
Collapse
|
363
|
Chen YF, Luo ZM, Chiang CH, Wu CG. Multifunctional Ionic Fullerene Additive for Synergistic Boundary and Defect Healing of Tin Perovskite to Achieve High-Efficiency Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46603-46614. [PMID: 36218241 DOI: 10.1021/acsami.2c12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of new ionic fullerene derivatives (C60-RNH3-X; X = Cl, Br, or I) were designed especially for using as additives for tin perosvkite (TPsk, with chemical formula of FA0.98EDA0.01SnI3) to form TPsk-C60-RNH3-X bulk heterojunction (BHJ) films. Inverted tin-perovskite solar cells (TPSCs) based on BHJ TPsk-C60-RNH3-Br absorber achieved the highest power conversion efficiency up to 11.74% with very high FF of 73%, without current hysteresis and stable in a glovebox. The designed spherical ionic fullerene halide additive, sitting in the grain boundaries of the TPsk film, can not only improve the quality of the TPsk film and change the valence band energy to match better with the PEDOT:PSS hole transporter but also be a carrier transporting connector between tin-perovskite grains, the defects/traps passivation/healing agent by interacting with Sn2+ ions and filling the halogen vacancies. The functions of the ionic fullerene halide additive were revealed with XRD patterns, SEM images, element mapping, UPS spectra, infrared spectra, AFM, and SCLC data. Being able to passivate newly generated defects during device operation or sitting on the shelf is an important step to improve the long-term stability of TPSCs. If a passivation agent can move dynamically during cell operation or storage to heal the defects of perovskite, the instability problem of TPSCs can be alleviated. The spherical ionic fullerene halide could be one of the ideal passivation agents satisfying this purpose.
Collapse
|
364
|
Tan M, Li M, Pan W, Feng X, He Y, Liu J, Dong F, Wei H, Yang B. Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector. LIGHT, SCIENCE & APPLICATIONS 2022; 11:304. [PMID: 36257943 PMCID: PMC9579173 DOI: 10.1038/s41377-022-01000-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Quasi-2D perovskites have been demonstrated to be competitive materials in the photodetection fields due to the enhanced moisture stability by large organic cations. However, as the increasing demands of modern technology, it is still challenging to combine the flexibility with the capability of weak light detection in a low-cost way. Here, amides, carboxylic acids, and anhydrides groups-rich carbonized polymer dots (CPDs) were employed to fill in the perovskite grain boundaries, which can passivate the point defects of perovskite by coordinating with the unbonded Pb atoms, and reduce the leakage current. Weak light detection capability was demonstrated by directly resolving light with an intensity of 10.1 pW cm-2. More importantly, the stretchable polymer chains on CPDs strongly interact with perovskite ions through multiple supramolecular interactions, and extend the stretchable properties to the perovskite/CPDs composites, which can maintain the integral structure stability during the deformation of perovskite crystals and restricted any crack by releasing the film strain. Our fabricated devices show extraordinary flexible stability in the bending-dependent response tests. The viscoelasticity of CPDs improves the bending stability of the flexible quasi-2D perovskite photodetectors, and device performance shows no degradation after bending 10000 times, comparable or even outperforming the dominating flexible photodetectors.
Collapse
Affiliation(s)
- Mingrui Tan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Mingbian Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Wanting Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Xiaopeng Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yuhong He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Junjun Liu
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, 130012, Changchun, China
| | - Fengxia Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China.
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, 130012, Changchun, China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, 130012, Changchun, China
| |
Collapse
|
365
|
Xiao M, Xiang T, Kim D, Wang M, Zhang W, Ahmadi M, Li T, Wu X, Xu L, Chen P. Superior External Quantum Efficiency of LEDs via Quasi-2D Perovskite Crystals Implanted with Phenethylammonium Acetate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45352-45363. [PMID: 36178873 DOI: 10.1021/acsami.2c12048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The multiple quantum well structure of a quasi-two-dimensional (quasi-2D) perovskite leads to nonradiative Auger recombination (AR). This is due to high local carrier density in recombination centers, although the radiative recombination is improved by efficient energy transfer. In this study, we suppress the AR by introducing phenethylammonium acetate (PEAAc) into the quasi-2D PEA2Csn-1PbnBr3n+1 perovskite. The recombination centers of n ≥ 4 phases can be promoted because the COO- preferentially coordinates with Pb2+, inhibiting the fast formation of n = 1, 2, 3 phases with phenethylammonium anion (PEA+). Thus, the AR is suppressed due to the lower density of local charge carriers. To balance the AR suppression and decreasing binding energy in promoting the n ≥ 4 phases, the PEAAc:PEABr molar ratios are adjusted. At the optimal molar ratio, perovskite light-emitting diodes (PeLEDs) with a maximum luminescence of ∼29942 cd m-2 and a maximum external quantum efficiency of ∼20.2% are achieved. These results confirm the most efficient PeLEDs based on PEA2Csn-1PbnBr3n+1 without passivation. Moreover, the efficiency roll off is significantly mitigated with a high threshold of over 3.51 mA/cm2. This study develops high-efficiency PeLEDs with a low efficiency rolloff.
Collapse
Affiliation(s)
- Meiqin Xiao
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Ting Xiang
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Dohyung Kim
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Miaosheng Wang
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, People's Republic of China
| | - Mahshid Ahmadi
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Ting Li
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Xiaoyan Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, People's Republic of China
| | - Long Xu
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Ping Chen
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| |
Collapse
|
366
|
Shi L, Yuan H, Zhang Y, Sun X, Duan L, Li Q, Huang Z, Ban X, Zhang D. Novel C 3N 4-Assisted Bilateral Interface Engineering for Efficient and Stable Perovskite Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12390-12398. [PMID: 36179217 DOI: 10.1021/acs.langmuir.2c02191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
g-C3N4-assisted interface engineering has been developed as an effective method to improve the efficiency and stability of perovskite solar cells (PSCs). However, most of the reported works used g-C3N4-induced single-interface modification, which is difficult to passivate the bilateral interfaces of the perovskite layer at the same time. In this paper, we fabricated two kinds of C3N4 materials simultaneously (w-CN and y-CN) after the twice calcination of melamine and used them in the bilateral interface modification toward all-inorganic PSCs. The two kinds of C3N4 play different roles in different interface engineering. On the front interface, w-CN could optimize band level arrangement and improve the perovskite film quality, which contributes to the efficiency of the device. On the back interface, y-CN could also improve the film quality of the perovskite layer, accelerating the extraction of charge carriers. The champion efficiency of the CsPbIBr2-based device treated by the bilateral interface is significantly enhanced from 7.8 to 10.1%. Moreover, the modified perovskite film exhibits negligible degradation after 40 min of exposure in the ambient environment with a relative humidity of 70%, while the pristine perovskite film has a rapid degradation within 20 min.
Collapse
Affiliation(s)
- Linxing Shi
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - Haoyang Yuan
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - Yuanyuan Zhang
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - Xianggang Sun
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - Liangsheng Duan
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - Qile Li
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - Zengguang Huang
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| | - DongEn Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu222005, People's Republic of China
| |
Collapse
|
367
|
Duan C, Dai J. Improved p-i-n MAPbI 3 perovskite solar cells via the interface defect density suppression by PEABr passivation. OPTICS EXPRESS 2022; 30:38104-38114. [PMID: 36258381 DOI: 10.1364/oe.471489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) are promising candidates for next-generation photovoltaics due to their excellent optoelectronic properties and process compatibility. In this report, numerical simulations show the effect of perovskite surface defect density on the inverted MAPbI3 perovskite device. The Phenethylammonium bromide (PEABr) is introduced to passivate the MAPbI3 layer surface of the perovskite solar cell devices, PEA+ diffuses into the grain boundaries of the 3D perovskite to form 2D/3D hybrid structure during the thermal annealing process, thus improve the surface morphology and decrease the interface defects between MAPbI3 layer and PCBM layer. The power conversion efficiency (PCE) of the PSCs increased from 17.95% to 19.24% after PEABr treatment. In addition, the 2D/3D hybrid structure can also hinder the intrusion of water and oxygen, the stability of perovskite devices has been greatly improved.
Collapse
|
368
|
Shi R, Fang Q, Vasenko AS, Long R, Fang WH, Prezhdo OV. Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites. J Am Chem Soc 2022; 144:19137-19149. [PMID: 36206144 DOI: 10.1021/jacs.2c08627] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solar cells and optoelectronic devices are exposed to heat that degrades performance. Therefore, elucidating temperature-dependent charge carrier dynamics is essential for device optimization. Charge carrier lifetimes decrease with temperature in conventional semiconductors. The opposite, anomalous trend is observed in some experiments performed with MAPbI3 (MA = CH3NH3+) and other metal halide perovskites. Using ab initio quantum dynamics simulation, we establish the atomic mechanisms responsible for nonradiative electron-hole recombination in orthorhombic-, tetragonal-, and cubic MAPbI3. We demonstrate that structural disorder arising from the phase transitions is as important as the disorder due to heating in the same phase. The carrier lifetimes grow both with increasing temperature in the same phase and upon transition to the higher-temperature phases. The increased lifetime is rationalized by structural disorder that induces partial charge localization, decreases nonadiabatic coupling, and shortens quantum coherence. Inelastic and elastic electron-vibrational interactions exhibit opposite dependence on temperature and phase. The partial disorder and localization arise from thermal motions of both the inorganic lattice and the organic cations and depend significantly on the phase. The structural deformations induced by thermal fluctuations and phase transitions are on the same order as deformations induced by defects, and hence, thermal disorder plays a very important role. Since charge localization increases carrier lifetimes but inhibits transport, an optimal regime maximizing carrier diffusion can be designed, depending on phase, temperature, material morphology, and device architecture. The atomistic mechanisms responsible for the enhanced carrier lifetimes at elevated temperatures provide guidelines for the design of improved solar energy and optoelectronic materials.
Collapse
Affiliation(s)
- Ran Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Qiu Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | | | - Run Long
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California90089, United States
| |
Collapse
|
369
|
Liu C, Liu Z, Chen J, Tian Q, Wu L, Peng Z, Chen J. Photovoltaic Performance Improvement of All‐Inorganic CsPbBr
3
Perovskite Solar Cells by Antisolvent Assisted Crystallization. ChemistrySelect 2022. [DOI: 10.1002/slct.202202793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chang Liu
- Key Laboratory of Efficient and Clean Energy Utilization the Education Department of Hunan Province School of Energy & Power Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Zhuang Liu
- Key Laboratory of Efficient and Clean Energy Utilization the Education Department of Hunan Province School of Energy & Power Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jianlin Chen
- Key Laboratory of Efficient and Clean Energy Utilization the Education Department of Hunan Province School of Energy & Power Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Qiaoqiao Tian
- Key Laboratory of Efficient and Clean Energy Utilization the Education Department of Hunan Province School of Energy & Power Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Lin Wu
- Key Laboratory of Efficient and Clean Energy Utilization the Education Department of Hunan Province School of Energy & Power Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Zhuoyin Peng
- Key Laboratory of Efficient and Clean Energy Utilization the Education Department of Hunan Province School of Energy & Power Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jian Chen
- Key Laboratory of Efficient and Clean Energy Utilization the Education Department of Hunan Province School of Energy & Power Engineering Changsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
370
|
Massuyeau F, Broux T, Coulet F, Demessence A, Mesbah A, Gautier R. Perovskite or Not Perovskite? A Deep-Learning Approach to Automatically Identify New Hybrid Perovskites from X-ray Diffraction Patterns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203879. [PMID: 35963842 DOI: 10.1002/adma.202203879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Determining the crystal structure is a critical step in the discovery of new functional materials. This process is time consuming and requires extensive human expertise in crystallography. Here, a machine-learning-based approach is developed, which allows it to be determined automatically if an unknown material is of perovskite type from powder X-ray diffraction. After training a deep-learning model on a dataset of known compounds, the structure types of new unknown compounds can be predicted using their experimental powder X-ray diffraction patterns. This strategy is used to distinguish perovskite-type materials in a series of new hybrid lead halides. After validation, this approach is shown to accurately identify perovskites (accuracy of 92% with convolutional neural network). From the identification of the key features of the patterns used to discriminate perovskites versus nonperovskites, crystallographers can learn how to quickly identify low-dimensional perovskites from X-ray diffraction patterns.
Collapse
Affiliation(s)
- Florian Massuyeau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, F-44000, France
| | - Thibault Broux
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, F-44000, France
| | - Florent Coulet
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, F-44000, France
| | - Aude Demessence
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, F-69626, France
| | - Adel Mesbah
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, F-69626, France
| | - Romain Gautier
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, F-44000, France
| |
Collapse
|
371
|
Hu W, Si F, Yang Y, Xue H, Li W, Hu J, Tang F. Unveiling passivation roles of PEA+ in CsPbI2Br surface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
372
|
Zhao Z, Chen X, Li B, Zhao S, Niu L, Zhang Z, Chen Y. Spatial Regulation of Acceptor Units in Olefin-Linked COFs toward Highly Efficient Photocatalytic H 2 Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203832. [PMID: 35981892 PMCID: PMC9561862 DOI: 10.1002/advs.202203832] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Indexed: 05/19/2023]
Abstract
Covalent organic frameworks (COFs)-based photocatalysts have received growing attention for photocatalytic hydrogen (H2 ) production. One of the big challenges in the field is to find ways to promote energy/electron transfer and exciton dissociation. Addressing this challenge, herein, a series of olefin-linked 2D COFs is fabricated with high crystallinity, porosity, and robustness using a melt polymerization method without adding volatile organic solvents. It is found that regulation of the spatial distances between the acceptor units (triazine and 2, 2'-bipyridine) of COFs to match the charge carrier diffusion length can dramatically promote the exciton dissociation, hence leading to outstanding photocatalytic H2 evolution performance. The COF with the appropriate acceptor distance achieves exceptional photocatalytic H2 evolution with an apparent quantum yield of 56.2% at 475 nm, the second highest value among all COF photocatalysts and 70 times higher than the well-studied polymer carbon nitride. Various experimental and computation studies are then conducted to in-depth unveil the mechanism behind the enhanced performance. This study will provide important guidance for the design of highly efficient organic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Zhengfeng Zhao
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Xuepeng Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - BaoYing Li
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Shu Zhao
- Institute of Advanced Battery Materials and DevicesFaculty of Materials and ManufacturingBeijing University of TechnologyBeijing100124P. R. China
| | - Liwei Niu
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| |
Collapse
|
373
|
Cho K, Tahara H, Yamada T, Suzuura H, Tadano T, Sato R, Saruyama M, Hirori H, Teranishi T, Kanemitsu Y. Exciton-Phonon and Trion-Phonon Couplings Revealed by Photoluminescence Spectroscopy of Single CsPbBr 3 Perovskite Nanocrystals. NANO LETTERS 2022; 22:7674-7681. [PMID: 36121354 DOI: 10.1021/acs.nanolett.2c02970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead halide perovskite nanocrystals (NCs) have outstanding photoluminescence (PL) properties and excellent potential for light-emitting diodes and single-photon sources. Here, we report the multiple-peak structures originating from excitons, trions, and biexcitons in low-temperature PL spectra of single CsPbBr3 NCs. We found fine-structure splitting in the PL peaks of bright excitons and biexcitons and also in the longitudinal-optical (LO)-phonon replicas of excitons. LO-phonon replicas of trions are clearly observed under strong photoexcitation, which do not show fine-structure splitting. From size-dependent analyses of these replicas, we clarified that both exciton-phonon and trion-phonon couplings become larger for smaller NCs and the coupling strengths of trions are larger than those of excitons in large NCs. These behaviors can be explained by the spatial distributions of the electron and hole wave functions in the NCs. Our findings provide essential information on electron-phonon couplings in perovskites and for the design of high-purity single-photon sources.
Collapse
Affiliation(s)
- Kenichi Cho
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hirokazu Tahara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Takumi Yamada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hidekatsu Suzuura
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Terumasa Tadano
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideki Hirori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
374
|
Zhou Y, Parkes MA, Zhang J, Wang Y, Ruddlesden M, Fielding HH, Su L. Single-crystal organometallic perovskite optical fibers. SCIENCE ADVANCES 2022; 8:eabq8629. [PMID: 36149951 PMCID: PMC9506722 DOI: 10.1126/sciadv.abq8629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Semiconductors in their optical-fiber forms are desirable. Single-crystal organometallic halide perovskites have attractive optoelectronic properties and therefore are suitable fiber-optic platforms. However, single-crystal organometallic perovskite optical fibers have not been reported before due to the challenge of one-directional single-crystal growth in solution. Here, we report a solution-processed approach to continuously grow single-crystal organometallic perovskite optical fibers with controllable diameters and lengths. For single-crystal MAPbBr3 (MA = CH3NH3+) perovskite optical fiber made using our method, it demonstrates low transmission losses (<0.7 dB/cm), mechanical flexibilities (a bending radius down to 3.5 mm), and mechanical deformation-tunable photoluminescence in organometallic perovskites. Moreover, the light confinement provided by our organometallic perovskite optical fibers leads to three-photon absorption (3PA), in contrast with 2PA in bulk single crystals under the same experimental conditions. The single-crystal organometallic perovskite optical fibers have the potential in future optoelectronic applications.
Collapse
Affiliation(s)
- Yongfeng Zhou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Michael A. Parkes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Jinshuai Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Yufei Wang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Michael Ruddlesden
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Helen H. Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Lei Su
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
375
|
Li Y, Chen G, Zhao S, Liu C, Zhao N. Addressing gain-bandwidth trade-off by a monolithically integrated photovoltaic transistor. SCIENCE ADVANCES 2022; 8:eabq0187. [PMID: 36149950 PMCID: PMC9506725 DOI: 10.1126/sciadv.abq0187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The gain-bandwidth trade-off limits the development of high-performance photodetectors; i.e., the mutual restraint between the response speed and gain has intrinsically limited performance optimization of photomultiplication phototransistors and photodiodes. Here, we show that a monolithically integrated photovoltaic transistor can solve this dilemma. In this structure, the photovoltage generated by the superimposed perovskite solar cell, acting as a float gate, is amplified by the underlying metal oxide field-effect transistor. By eliminating deep-trap defects through processing optimization, we achieved devices with a maximum responsivity close to 6 × 104 A/W, a specific detectivity (D*) of 1.06 × 1013 Jones, and an f3dB of 1.2 MHz at a low driving voltage of 3 V. As a result, a record gain-bandwidth product is achieved. The device further exhibits the advantage in photoplethysmography detection with weak illuminations, where our device accurately detects the detailed features that are out of the capability of conventional photodetectors.
Collapse
Affiliation(s)
- Yuanzhe Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Guowei Chen
- The State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Techology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shenghe Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Chuan Liu
- The State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Techology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
376
|
Fan W, Deng K, Shen Y, Bai Y, Li L. Moisture‐Accelerated Precursor Crystallisation in Ambient Air for High‐Performance Perovskite Solar Cells toward Mass Production. Angew Chem Int Ed Engl 2022; 61:e202211259. [DOI: 10.1002/anie.202211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Fan
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology University of Science and Technology Beijing 100083 P. R. China
| | - Kaimo Deng
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 P. R. China
| | - Ying Shen
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 P. R. China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology University of Science and Technology Beijing 100083 P. R. China
| | - Liang Li
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 P. R. China
| |
Collapse
|
377
|
Feng M, Ye S, Guo Y, Sum TC. Intrinsic Carrier Diffusion in Perovskite Thin Films Uncovered by Transient Reflectance Spectroscopy. NANO LETTERS 2022; 22:7195-7202. [PMID: 35976688 DOI: 10.1021/acs.nanolett.2c02511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carrier diffusion and surface recombination are key processes influencing the performance of conventional semiconductor devices. However, the interplay of photon recycling together with these processes in halide perovskites obfuscates our understanding. Herein, we discern these inherent processes in a thin FAPbBr3 perovskite single crystal (PSC) utilizing a unique transient reflectance technique that allows accurate diffusion modeling with clear boundary conditions. Temperature-dependent measurements reveal the coexistence of shallow and deep traps at the surface. The inverse quadratic dependence of temperature on carrier mobility μ suggests an underlying scattering mechanism arising from the anharmonic deformation of the PbBr6 cage. Our findings ascertain the fundamental limits of the intrinsic surface recombination velocity (S) and carrier diffusion coefficient (D) in PSC samples. Importantly, these insights will help resolve the ongoing debate and clarify the ambiguity surrounding the contributions of photon recycling and carrier diffusion in perovskite optoelectronics.
Collapse
Affiliation(s)
- Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
378
|
Fan Z, Yin Y, Cai B, Ma Q, Liu Q, Liu X, Yinhua Lv, Zhang WH. Simultaneous achievement of defect passivation and carrier transport promotion by using emerald salt for methylammonium-free perovskite solar cells. Chem Sci 2022; 13:10512-10522. [PMID: 36277621 PMCID: PMC9473495 DOI: 10.1039/d2sc01804g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/12/2022] [Indexed: 01/24/2023] Open
Abstract
Defect passivation along with promoted charge transport is potentially an effective but seldom exploited strategy for high-performance perovskite solar cells (PSCs). Herein, the in situ defect passivation and carrier transport improvement are simultaneously realized by introducing a conductive polymer (i.e., emerald salt, ES) into the precursor solution of methylammonium (MA)-free perovskites. The interaction between ES and uncoordinated Pb2+ reduces defect density to suppress the non-radiative recombination. Moreover, ES can act as a "carrier driver" to promote the carrier transport due to its conductive feature, resulting in efficient PSC devices with a decent power conversion efficiency (PCE) of 23.0%, which is among the most efficient MA-free PSCs. The ES-based unencapsulated devices show superior stability, retaining 89.1% and 83.8% of their initial PCEs when subjected to 35 ± 5% relative humidity (RH) storage and 85 °C thermal aging for 1000 h, respectively. To further assess the large-area compatibility of our strategy, 5 × 5 cm2 mini modules were also fabricated, delivering an impressive efficiency of 19.3%. This work sheds light on the importance of conductive additives in boosting cell performance by playing multiple roles in passivating defects, retarding the moisture invasion, and enhancing and balancing charge transport.
Collapse
Affiliation(s)
- Zhenghui Fan
- Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road Chengdu 610200 China
| | - Yuan Yin
- College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences Baoji 721016 China
| | - Bing Cai
- Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road Chengdu 610200 China
| | - Qingshan Ma
- Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road Chengdu 610200 China
| | - Qianlong Liu
- Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road Chengdu 610200 China
| | - Xinhang Liu
- Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road Chengdu 610200 China
| | - Yinhua Lv
- Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road Chengdu 610200 China
| | - Wen-Hua Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road Chengdu 610200 China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University Kunming 650500 China
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University Changzhou 213164 P. R. China
| |
Collapse
|
379
|
Lin J, Guo Z, Sun N, Liu K, He S, Chen X, Zhao J, Liu Q, Yuan W. Improving the Chemical Stability of Narrow-Band Green-Emitting Manganese(II) Hybrid by Zn-Doping. Inorg Chem 2022; 61:15266-15272. [PMID: 36102177 DOI: 10.1021/acs.inorgchem.2c02598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid tetrahedral Mn(II)-based halides show great potential for narrow-band green emitters, which could be applied in the liquid crystal display field. However, the strategy to improve the chemical stability of tetrahedral Mn hybrids has not been fully investigated. Here, we demonstrate that Zn doping can be an effective route to significantly improve the stability of tetrahedral Mn hybrids under air conditions without compromising the luminous efficiency. A new bromide (ABI)2MnBr4 (ABI = 2-aminobenzimidazole) is synthesized, which exhibits a typical zero-dimensional structure with isolated [MnBr4]2- tetrahedra in the P1̅ space group. Under 450 nm excitation, a narrow-band green-emitting peak at 516 nm is observed with a full width at half maximum of 42 nm. It is indicated that spontaneous phase transition from the tetrahedral to octahedral motif occurs in this Mn hybrid driven by humidity, combined with the emission color change from green to red. Interestingly, this phase transition could be strongly suppressed by Zn doping with a very low doping amount (5%), leading to the significantly improved chemical stability of (ABI)2MnBr4 without reducing the photoluminescence quantum yield. Our work provides a simple and feasible strategy to enhance the chemical stability of the green-emitting (ABI)2MnBr4, and it may also be applicable for other tetrahedral Mn-based hybrids.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
380
|
He Z, Yu R, Song W, Gong Y, Li H, Tan Z. Bismuth Complex Controlled Morphology Evolution and CuSCN-Induced Transport Improvement Enable Efficient BiI 3 Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3121. [PMID: 36144909 PMCID: PMC9506543 DOI: 10.3390/nano12183121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Bismuth triiodide (BiI3) is a particularly promising absorber material for inorganic thin-film solar cells due to its merits of nontoxicity and low cost. However, one key factor that limits the efficiency of BiI3 solar cells is the film morphology, which is strongly correlated with the trap states of the BiI3 film. Herein, we report a coordination engineering strategy by using Lewis base dimethyl sulfoxide (DMSO) to induce the formation of a stable BiI3(DMSO)2 complex for controlling the morphology of BiI3 films. Density functional theory calculations further provide a theoretical framework for understanding the interaction of the BiI3(DMSO)2 complex with BiI3. The obtained BiI3(DMSO)2 complex could assist the fabrication of highly uniform and pinhole-free films with preferred crystallographic orientation. This high-quality film enables reduced trap densities, a suppressed charge recombination, and improved carrier mobility. In addition, the use of copper(I) thiocyanate (CuSCN) as a hole transport layer improves the charge transport, enabling the realization of solar cells with a record power conversion efficiency of 1.80% and a champion fill factor of 51.5%. Our work deepens the insights into controlling the morphology of BiI3 thin films through the coordination engineering strategy and paves the way toward further improving the photovoltaic performances of BiI3 solar cells.
Collapse
Affiliation(s)
- Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runnan Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wanrong Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhan’ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
381
|
Guan X, Lei Z, Yu X, Lin CH, Huang JK, Huang CY, Hu L, Li F, Vinu A, Yi J, Wu T. Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203311. [PMID: 35989093 DOI: 10.1002/smll.202203311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal-halide perovskites have drawn profuse attention during the past decade, owing to their excellent electrical and optical properties, facile synthesis, efficient energy conversion, and so on. Meanwhile, the development of information storage technologies and digital communications has fueled the demand for novel semiconductor materials. Low-dimensional perovskites have offered a new force to propel the developments of the memory field due to the excellent physical and electrical properties associated with the reduced dimensionality. In this review, the mechanisms, properties, as well as stability and performance of low-dimensional perovskite memories, involving both molecular-level perovskites and structure-level nanostructures, are comprehensively reviewed. The property-performance correlation is discussed in-depth, aiming to present effective strategies for designing memory devices based on this new class of high-performance materials. Finally, the existing challenges and future opportunities are presented.
Collapse
Affiliation(s)
- Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science, 398 Ruoshui Road, Suzhou, 215123, China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Feng Li
- School of Physics, Nano Institute, ACMM, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
382
|
Guan Y, Zhang C, Liu Z, Zhao Y, Ren A, Liang J, Hu F, Zhao YS. Single-Crystalline Perovskite p-n Junction Nanowire Arrays for Ultrasensitive Photodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203201. [PMID: 35801692 DOI: 10.1002/adma.202203201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Highly sensitive photodetectors play significant roles in modern optoelectronic integrated circuits. Constructing p-n junctions has been proven to be a particularly powerful approach to realizing sensitive photodetection due to their efficient carrier separation. Recently, p-n-junction photodetectors based on organic-inorganic hybrid perovskites, which combine favorable optoelectronic performance with facile processability, hold great potential in practical applications. So far, these devices have generally been made of polycrystalline films, which exhibit poor carrier-transport efficiency, impeding the further improvement of their photoresponsivities. Here, a type of ultrasensitive photodetector based on single-crystalline perovskite p-n-junction nanowire arrays is demonstrated. The single-crystalline perovskite p-n-junction nanowire arrays not only possess high crystallinity that enables efficient carrier transport but also form a built-in electric field facilitating effective carrier separation. As a result, the devices show excellent photosensitivity over a wide spectral range from 405 to 635 nm with an outstanding responsivity of 2.65 × 102 A W-1 at 532 nm. These results will provide new insights into the design and construction of high-performance photodetectors for practical optoelectronic applications.
Collapse
Affiliation(s)
- Yuwei Guan
- China College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Liu
- China College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yiman Zhao
- China College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Liang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengqin Hu
- China College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
383
|
Fan W, Deng K, Shen Y, Bai Y, Li L. Moisture Accelerated Precursor Crystallization in Ambient Air for High‐performance Perovskite Solar Cells toward Mass Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weili Fan
- University of Science and Technology Beijing Institute for Advanced Materials and Technology CHINA
| | - Kaimo Deng
- Soochow University School of Physical Science and Technology CHINA
| | - Ying Shen
- Soochow University School of Physical Science and Technology CHINA
| | - Yang Bai
- University of Science and Technology Beijing Institute for Advanced Materials and Technology CHINA
| | - Liang Li
- Soochow University No 1, Shizi street 215006 Suzhou CHINA
| |
Collapse
|
384
|
Dong S, Hu ZY, Wei P, Han J, Wang Z, Liu J, Su BL, Zhao D, Liu Y. All-Inorganic Perovskite Single-Crystal Photoelectric Anisotropy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204342. [PMID: 35891614 DOI: 10.1002/adma.202204342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Engineering surface structure can precisely and effectively tune the optoelectronic properties of halide perovskites, but are incredibly challenging. Herein, the design and fabrication of uniform all-inorganic CsPbBr3 cubic/tetrahedral single-crystals are reported with precise control of the (100) and (111) surface anisotropy, respectively. By combining with theoretical calculations, it is demonstrated that the preferred (100) surface engineering of the CsPbBr3 single-crystals enables a lowest surface bandgap energy (2.33 eV) and high-rate carrier mobility up to 241 μm2 V-1 s-1 , inherently boosting their light-harvesting and carrier-transport capability. Meanwhile, the polar (111) surface induces ≈0.16 eV upward surface-band bending and ultrahigh surface defect density of 1.49 × 1015 cm-3 , which is beneficial for enhancing surface-defects-catalyzed reactions. The work highlights the anisotropic surface engineering for boosting perovskite optoelectronic devices and beyond.
Collapse
Affiliation(s)
- Shunhong Dong
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhi-Yi Hu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Wei
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingru Han
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhao Wang
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Bao-Lian Su
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Laboratory of Inorganic Materials Chemistry, Department of Chemistry, University of Namur, 61 rue de Bruxelles, Namur, B-5000, Belgium
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yong Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
385
|
Li XZ, Aihemaiti N, Fang HH, Huang GY, Zhou YK, Wang XJ, Zhang Y, Xing R, Peng S, Bai B, Sun HB. Optical Visualization of Photoexcitation Diffusion in All-Inorganic Perovskite at High Temperature. J Phys Chem Lett 2022; 13:7645-7652. [PMID: 35959945 DOI: 10.1021/acs.jpclett.2c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-inorganic halide perovskites are promising candidates for optoelectronic and photovoltaic devices because of their good thermal stability and remarkable optoelectronic properties. Among those properties, carrier transport properties are critical as they inherently dominate the device performance. The transport properties of perovskites have been widely studied at room and lower temperatures, but their high-temperature (i.e., tens of degrees above room temperature) characteristics are not fully understood. Here, the photoexcitation diffusion is optically visualized by transient photoluminescence microscopy (TPLM), through which the temperature-dependent transport characteristics from room temperature to 80 °C are studied in all-inorganic CsPbBr3 single-crystalline microplates. We reveal the decreasing trend of diffusion coefficient and the almost unchanged trend of diffusion length when heating the sample to high temperature. The phonon scattering in combination with the variation of effective mass is proposed for the explanation of the temperature-dependent diffusion behavior.
Collapse
Affiliation(s)
- Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | | | - Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Guan-Yao Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yun-Ke Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yan Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Renhao Xing
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | | | - Benfeng Bai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
386
|
Zhang Z, Vogelbacher F, De J, Wang Y, Liao Q, Tian Y, Song Y, Li M. Directional Laser from Solution‐Grown Grating‐Patterned Perovskite Single‐Crystal Microdisks. Angew Chem Int Ed Engl 2022; 61:e202205636. [DOI: 10.1002/anie.202205636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zemin Zhang
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Beijing Advanced Innovation Center for Imaging Technology Capital Normal University Beijing 100048 China
| | - Florian Vogelbacher
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jianbo De
- Institute of Molecular Plus Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yang Wang
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Beijing Advanced Innovation Center for Imaging Technology Capital Normal University Beijing 100048 China
| | - Yang Tian
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Beijing Advanced Innovation Center for Imaging Technology Capital Normal University Beijing 100048 China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
387
|
Joshi RK, Bhandari SR, Ghimire MP. Structural stability, electronic, optical, and thermoelectric properties of layered perovskite Bi 2LaO 4I. RSC Adv 2022; 12:24156-24162. [PMID: 36128546 PMCID: PMC9403660 DOI: 10.1039/d2ra03859e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Layered perovskites are an interesting class of materials due to their possible applications in microelectronics and optoelectronics. Here, by means of density functional theory calculations, we investigated the structural, elastic, electronic, optical, and thermoelectric properties of the layered perovskite Bi2LaO4I within the parametrization of the standard generalized gradient approximation (GGA). The transport coefficients were evaluated by adopting Boltzmann semi-classical theory and a collision time approach. The calculated elastic constants were found to satisfy the Born criteria, indicating that Bi2LaO4I is mechanically stable. Taking into account spin-orbit coupling (SOC), the material was found to be a non-magnetic insulator, with an energy bandgap of 0.82 eV (within GGA+SOC), and 1.85 eV (within GGA+mBJ+SOC). The optical-property calculations showed this material to be optically active in the visible and ultraviolet regions, and that it may be a candidate for use in optoelectronic devices. Furthermore, this material is predicted to be a potential candidate for use in thermoelectric devices due to its large value of power factor, ranging from 2811 to 7326 μW m-1 K-2, corresponding to a temperature range of 300 K to 800 K.
Collapse
Affiliation(s)
- Radha K Joshi
- Central Department of Physics, Tribhuvan University Kathmandu Nepal
- Condensed Matter Physics Research Center (CMPRC) Butwal Rupandehi Nepal
| | - Shalika R Bhandari
- Central Department of Physics, Tribhuvan University Kathmandu Nepal
- Condensed Matter Physics Research Center (CMPRC) Butwal Rupandehi Nepal
- Leibniz IFW Dresden Helmholtzstr. 20 01069 Dresden Germany
| | | |
Collapse
|
388
|
Bao C, Gao F. Physics of defects in metal halide perovskites. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:096501. [PMID: 35763940 DOI: 10.1088/1361-6633/ac7c7a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Metal halide perovskites are widely used in optoelectronic devices, including solar cells, photodetectors, and light-emitting diodes. Defects in this class of low-temperature solution-processed semiconductors play significant roles in the optoelectronic properties and performance of devices based on these semiconductors. Investigating the defect properties provides not only insight into the origin of the outstanding performance of perovskite optoelectronic devices but also guidance for further improvement of performance. Defects in perovskites have been intensely studied. Here, we review the progress in defect-related physics and techniques for perovskites. We survey the theoretical and computational results of the origin and properties of defects in perovskites. The underlying mechanisms, functions, advantages, and limitations of trap state characterization techniques are discussed. We introduce the effect of defects on the performance of perovskite optoelectronic devices, followed by a discussion of the mechanism of defect treatment. Finally, we summarize and present key challenges and opportunities of defects and their role in the further development of perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Chunxiong Bao
- Department of Physics, Chemistry, and Biology, Linköping University, Sweden
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology, Linköping University, Sweden
| |
Collapse
|
389
|
Xue C, Huang H, Nishihara S, Biju V, Ren XM, Nakamura T. Inorganic Chain Mediated Excitonic Properties in One-Dimensional Lead Halide Hybrid Perovskites. J Phys Chem Lett 2022; 13:7405-7412. [PMID: 35927064 DOI: 10.1021/acs.jpclett.2c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semiconductors that emit intrinsic white light are considered next-generation lighting sources. Herein, the broadband emission of one-dimensional (1D) lead halide perovskites, TMAPbBr3-xIx (x = 0, 1, 1.5, 2, 3; TMA+ = tetramethylammonium), is systematically investigated. Lattice distortion causes the conversion of dark excitons to bright self-trapped excitons. Owing to its strongly localized exciton recombination and high absorption probability, TMAPbBr3 is the most viable in this family. A delocalized hole increases the nonradiative recombination rate of excitons in TMAPbBr3-xIx alloys. In 1D TMAPbBr3-xIx perovskites, the vibration mode of the Pb-X bond stretching of the PbX6 octahedra contributes more to the effect on exciton-phonon coupling than the mode of the X-Pb-X angle bending. Pb-X bond stretching and spontaneous polarization can tune exciton binding energy. This systematic study of excitonic behavior in 1D compounds relates the nature of ground states to the unknown excited states and provides the rational design of materials with stable and efficient broadband emission.
Collapse
Affiliation(s)
- Chen Xue
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hengming Huang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Sadafumi Nishihara
- Department of Chemistry and Center for Chiral Science, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
- JST, PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Takayoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
390
|
Yoon B, Park CS, Song HJ, Kwak J, Lee SS, Lee H. Perovskite solar cells integrated with blue cut-off filters for mitigating light-induced degradation. OPTICS EXPRESS 2022; 30:31367-31380. [PMID: 36242220 DOI: 10.1364/oe.465848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
The stability of methylammonium (MA)-based perovskite solar cells (PSCs) remains one of the most urgent issues that need to be addressed. Inherent weak binding forces between MAs and halides cause the perovskite structure to become unstable under exposure to various external environmental factors such as moisture, oxygen, ultraviolet radiation, and heat. In particular, the degradation of perovskite films under light exposure accelerates the deterioration of the device, mainly due to the migration of halide ions. In this study, we investigated the effect of light energy on the degradation of inverted PSCs by introducing red ( = 610-800 nm), green (500-590 nm), and blue (300-500 nm) light-pass filters. After 30 h, the inverted PSCs of blue-light-induced devices retained a power conversion efficiency (PCE) of 70%, while those of the green and red light-induced devices retained PCEs of 85% and 90%, respectively. Direct evidence of light-induced degradation was obtained by investigating morphological changes in the perovskite films and the amount of ion accumulation on the Ag electrode. This evidence highlights the varying effect of light with different energies on device degradation. Furthermore, to minimize light-induced device degradation, we designed two types of blue cut-off filters that can selectively block light ranging from = 400 to 500 nm, comprising a multilayered inorganic metasurface. An optical simulation was used to optimize the performance of the designed filters. By investigating the changes in the photovoltaic parameters and the amount of ion accumulation on the Ag electrode, we confirmed that integrating blue cut-off filters into PSCs greatly improved the operational lifetime of the devices.
Collapse
|
391
|
Song K, Fan Y, Liu J, Qi D, Lu N, Qin W. Carrier Separation Enhanced by High Angle Twist Grain Boundaries in Cesium Lead Bromide Perovskites. J Phys Chem Lett 2022; 13:7206-7212. [PMID: 35912980 DOI: 10.1021/acs.jpclett.2c01832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grain boundaries (GBs) have a profound impact on mechanical, chemical, and physical properties of polycrystalline materials. Comprehension of atomic and electronic structures of different GBs in materials can help to understand their impact on materials' properties. Here, with aberration-corrected scanning transmission electron microscopy (STEM), the atomic structure of a 90° twist GB s in CsPbBr3 is determined, and its impact on electron-hole pair separation is predicted. The 90° twist GB has a coherent interface and the same chemical composition as the bulk except for the lattice twist. Density functional theory (DFT) calculation results indicate that the twist GB has an electronic structure similar to that of the bulk CsPbBr3. An electronic potential at the GBs enhances the separation of photogenerated carriers and promotes the motion of electrons across the GBs. These results extend the understanding of atomic and electronic structure of GBs in halide perovskites and propose a potential strategy to eliminate the influence of GBs by GB engineering.
Collapse
Affiliation(s)
- Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yingcai Fan
- School of Physics, Shandong University, Jinan 250100, China
| | - Jiakai Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Dongqing Qi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ning Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei Qin
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
392
|
Electron Transport Layer-Free Ruddlesden–Popper Two-Dimensional Perovskite Solar Cells Enabled by Tuning the Work Function of Fluorine-Doped Tin Oxide Electrodes. CRYSTALS 2022. [DOI: 10.3390/cryst12081090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Organic–inorganic halide two-dimensional (2D) layered perovskites have been demonstrated to have better environmental stability than conventional three-dimensional perovskites. In this study, we investigate the fabrication of electron transport layer (ETL)-free Ruddlesden–Popper 2D perovskite solar cells (PSCs) by tuning the work function of a fluorine-doped tin oxide (FTO) electrode. With the deposition of polyethylenimine (PEIE) onto its surface, the work function of the FTO electrode could be raised from −4.72 to −4.08 eV, which is more suitable for electron extraction from the perovskite absorber. Using this technique, the ETL-free 2D PSCs exhibited an excellent power conversion efficiency (PCE) of 12.7% (on average), which is substantially higher than that of PSCs fabricated on a pristine FTO electrode (9.6%). Compared with the PSCs using TiO2, the ETL-free PSCs could be fabricated under a low processing temperature of 100 °C with excellent long-term stability. After 15 days, the FTO/PEIE-based ETL-free PSCs showed a PCE degradation of 16%, which is significantly lower than that of the TiO2-based case (29%). The best-performing PSC using a FTO/PEIE cathode showed a high PCE of 13.0%, with a small hysteresis degree of 2.3%.
Collapse
|
393
|
Liu C, Chen H, Lin P, Hu H, Meng Q, Xu L, Wang P, Wu X, Cui C. Optimized photoelectric characteristics of MAPbCl 3and MAPbBr 3composite perovskite single crystal heterojunction photodetector. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:405703. [PMID: 35896095 DOI: 10.1088/1361-648x/ac84bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
MAPbBr3single crystal (SC) thin layer was successfully grown on MAPbCl3SC substrate to form perovskite SC heterojunction. Planar structure electrodes are deposited by thermal evaporation on the surfaces of MAPbCl3, MAPbBr3, and SCs heterojunction, respectively to evaluate their photoelectric performance. The SC heterojunction device exhibits excellent unidirectional conductivity in the voltage-current curves. Meanwhile, the current-time curves prove that SC heterojunction devices can effectively utilize the advantages of MAPbCl3and MAPbBr3, possessing relatively low dark current (∼300 nA), which is comparable to the dark current of MAPbCl3, but very high photocurrent (∼3500 nA), which is equivalent to the photocurrent of MAPbBr3. Rather than the photocurrent overshot and decay occurring at the exposure of light illumination in the MAPbBr3device, the photocurrent is extremely stable without overshot and decay in the SC heterojunction device. The light-to-dark ratio of the SC heterojunction device is twice that of MAPbCl3device and three times that of MAPbBr3device. Furthermore, the detectivity of the heterojunction device reaches as high as∼7×1011 Jones, an order of magnitude higher than MAPbCl3and MAPbBr3. The excellent characteristics of SC heterojunction further expand the practical application prospect of perovskite materials.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hang Chen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Ping Lin
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Haihua Hu
- Zhejiang University City College, Hangzhou 310018, People's Republic of China
| | - Qingyu Meng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lingbo Xu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Peng Wang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoping Wu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Can Cui
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
394
|
Zohar A, Kulbak M, Turren-Cruz SH, Nayak PK, Kama A, Hagfeldt A, Snaith HJ, Hodes G, Cahen D. In Operando, Photovoltaic, and Microscopic Evaluation of Recombination Centers in Halide Perovskite-Based Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34171-34179. [PMID: 34460226 DOI: 10.1021/acsami.1c08675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The origin of the low densities of electrically active defects in Pb halide perovskite (HaP), a crucial factor for their use in photovoltaics, light emission, and radiation detection, remains a matter of discussion, in part because of the difficulty in determining these densities. Here, we present a powerful approach to assess the defect densities, based on electric field mapping in working HaP-based solar cells. The minority carrier diffusion lengths were deduced from the electric field profile, measured by electron beam-induced current (EBIC). The EBIC method was used earlier to get the first direct evidence for the n-i-p junction structure, at the heart of efficient HaP-based PV cells, and later by us and others for further HaP studies. This manuscript includes EBIC results on illuminated cell cross sections (in operando) at several light intensities to compare optoelectronic characteristics of different cells made by different groups in several laboratories. We then apply a simple, effective single-level defect model that allows deriving the densities (Nr) of the defect acting as recombination center. We find Nr ≈ 1 × 1013 cm-3 for mixed A cation lead bromide-based HaP films and ∼1 × 1014 cm-3 for MAPbBr3(Cl). As EBIC photocurrents are similar at the grain bulk and boundaries, we suggest that the defects are at the interfaces with selective contacts rather than in the HaP film. These results are relevant for photovoltaic devices as the EBIC responses distinguish clearly between high- and low-efficiency devices. The most efficient devices have n-i-p structures with a close-to-intrinsic HaP film, and the selective contacts then dictate the electric field strength throughout the HaP absorber.
Collapse
Affiliation(s)
- Arava Zohar
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Kulbak
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Silver H Turren-Cruz
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Institute of Advanced Materials (INAM), Jaume I University, Castelló de la Plana 12071, Spain
| | - Pabitra K Nayak
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Adi Kama
- Chemistry Department and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Anders Hagfeldt
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Henry J Snaith
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Gary Hodes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
- Chemistry Department and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
395
|
Bai T, Wang S, Bai L, Zhang K, Chu C, Yi L. Vacuum Evaporation of High-Quality CsPbBr 3 Thin Films for Efficient Light-Emitting Diodes. NANOSCALE RESEARCH LETTERS 2022; 17:69. [PMID: 35916940 PMCID: PMC9346046 DOI: 10.1186/s11671-022-03708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The all-inorganic lead halide perovskite has become a very promising optoelectronic material due to its excellent optical and electrical properties. Device performances are currently hindered by crystallinity of the films and environmental stability. Here, we adopted dual-source co-evaporation method to prepare CsPbBr3 films. By adjusting and controlling the co-evaporation ratio and substrate temperature, we obtained CsPbBr3 films with large grain sizes and uniform morphology. Films with smooth surfaces and large grains exhibit properties such as efficient photon capture, fast carrier transport, and suppressed ion migration. Therefore, in this paper, by refining the annealing conditions, the effects of annealing temperature and time on the films were studied in detail. The CsPbBr3 films were annealed under suitable annealing temperature and time in ambient air, and films with high quality and crystallinity and average grain size up to ~ 2.5 μm could maintain stability in ambient air for 130 days. The corresponding LEDs show the full width at half maximum (FWHM) of the green EL spectrum is as narrow as 18 nm, and the devices have a low turn-on voltage VT ~ 3 V and can work continuously for 12 h in ambient air.
Collapse
Affiliation(s)
- Tianxinyu Bai
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Shenwei Wang
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Liyuan Bai
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Kexin Zhang
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Chunyang Chu
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Lixin Yi
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
396
|
Gu N, Zhang P, Song L, Du P, Ning L, Buregeya Ingabire P, Chen W, Wang Y, Xiong J. When Aggregation‐Induced Emission Meets Perovskites: Efficient Defect‐Passivation and Charge‐Transfer for Ambient Fabrication of Perovskite Solar Cells. Chemistry 2022; 28:e202200850. [DOI: 10.1002/chem.202200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ningxia Gu
- College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Pengyun Zhang
- College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Lixin Song
- College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Pingfan Du
- College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Lei Ning
- College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | | | | | - Yijia Wang
- College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jie Xiong
- College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
397
|
He Y, Lin Z, Wang J, Zhang K, Xu X, Li Y, Huang X, Ma T, Xiao S, Yang S. A Heat-Liquefiable Solid Precursor for Ambient Growth of Perovskites with High Tunability, Performance and Stability. SMALL METHODS 2022; 6:e2200384. [PMID: 35676226 DOI: 10.1002/smtd.202200384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Halide perovskites are intensively studied for applications in optoelectronic devices because of their outstanding properties and relatively low cost. However, the common precursor solutions for perovskite fabrication are rather unstable in the presence of moisture and oxygen, limiting the large-scale low-cost production of perovskite. Herein, water is used counterintuitively to formulate an ambient stable perovskite precursor, which is peculiar in that it is solid at room temperature but becomes a liquid at 75 °C. The non-fluidity of the precursor stemmed from the water-assisted intermediate fiber assembly, conferring high damp air stability. Yet the heat-liquefiability made the precursor highly processible for perovskite growth, and when guided by polyvinyl pyrrolidone coordination with Pb2+ , the perovskite can preferentially grow along the [200] direction, significantly improving the film quality. To demonstrate the utility of the precursor, it has been used to fabricate self-driven halide perovskite photodetectors, which exhibited a low noise current of 2.0 × 10-14 A Hz-1/2 , a high specific detectivity up to 1.4 × 1013 Jones, and high stability of 20 days of operation with only < 5% external quantum efficiency decay. This type of solid-liquid convertible precursor opens up new opportunities for wider applications of perovskites.
Collapse
Affiliation(s)
- Yi He
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0135, Japan
| | - Zedong Lin
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, P. R. China
| | - Jian Wang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, P. R. China
| | - Kai Zhang
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Xiuwen Xu
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Yu Li
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Xianzhen Huang
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Tingli Ma
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0135, Japan
| | - Shuang Xiao
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, P. R. China
| |
Collapse
|
398
|
Temperature Dependence of Photochemical Degradation of MAPbBr3 Perovskite. COATINGS 2022. [DOI: 10.3390/coatings12081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The experimental results of X-ray diffraction (XRD), optical absorbance, scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) of the core levels and valence bands of MAPbBr3 (MA-CH3NH3+) perovskite before and after exposure to visible light for 700 h at temperatures of 10 and 60 °C are presented. It reveals that the light soaking at 60 °C induces the decomposition of MAPbBr3 perovskite accompanied with the decay of organic cation and the release of a PbBr2 phase as a degradation product whereas the photochemical degradation completely disappears while the aging temperature is decreased to 10 °C.
Collapse
|
399
|
Wang J, Yin WJ. Revisiting the Iodine Vacancy Surface Defects to Rationalize Passivation Strategies in Perovskite Solar Cells. J Phys Chem Lett 2022; 13:6694-6700. [PMID: 35848571 DOI: 10.1021/acs.jpclett.2c01815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Current knowledge on the nature of surface iodine vacancies (VI), which are important for the photovoltaic performance and stability of perovskite solar cells, is debatable. We investigated VI on a stable MAI-terminated CH3NH3PbI3 (MAPbI3) surface. First-principles calculations indicated the sensitivity of the atomic structure of surface VI to the charge states and locations on the surface layer. VI in the outermost layer are benign; however, those near the surface can be detrimental. Illumination can promote the diffusion of VI from the outermost layer into the bulk, making them detrimental. There are two mechanisms for the surface passivation of VI: (i) passivation in the second layer to eliminate deep-state VI and (ii) passivation in the outermost layer to inhibit VI diffusion upon illumination (working condition of solar cells). This work rationalizes contradictory reports on the surface properties of halide perovskites and proposes insights into their surface passivation to fabricate high-performing solar cells.
Collapse
Affiliation(s)
- Jing Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Wan-Jian Yin
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Light Industry Institute of Electrochemical Power Sources, Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
400
|
Cui Q, Bu N, Liu X, Li H, Xu Z, Song X, Zhao K, Liu SF. Efficient Eco-Friendly Flexible X-ray Detectors Based on Molecular Perovskite. NANO LETTERS 2022; 22:5973-5981. [PMID: 35819349 DOI: 10.1021/acs.nanolett.2c02071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Next-generation wearable electronics requires mechanical robustness. In addition to the previously reported eco-friendliness, low cost, and light weight of molecular perovskites, flexibility is also a desired merit for their practical use. Here we design a flexible X-ray detector based on a novel molecular perovskite, DABCO-CsBr3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium), which is the missing link between metal-free molecular perovskites A(NH4)X3 (A = divalent organic ammoniums) and conventional metal halide based ABX3 (B = divalent metal cations) perovskites. DABCO-CsBr3 inherits its band nature from A(NH4)X3, while it exhibits a stronger stopping power. DABCO-CsBr3 shows potential for high-performance ionizing radiation detectors due to low dark current, low ion migration, and an efficient mobility-lifetime (μτ) product. Finally, a molecular-perovskite-based flexible X-ray detector is demonstrated on the basis of the DABCO-CsBr3/poly(vinylidene fluoride) composite, with a sensitivity of 106.7 μC Gyair-1 cm-2. This work enriches the molecular perovskite family and highlights the promise of molecular perovskites for the next-generation eco-friendly and wearable optoelectronic devices.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei 230026, People's Republic of China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Nuo Bu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|