401
|
Reddy NM, Kleeberger SR, Kensler TW, Yamamoto M, Hassoun PM, Reddy SP. Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7264-71. [PMID: 19454723 PMCID: PMC2820248 DOI: 10.4049/jimmunol.0804248] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aberrant tissue repair and persistent inflammation following oxidant-mediated acute lung injury (ALI) can lead to the development and progression of various pulmonary diseases, but the mechanisms underlying these processes remain unclear. Hyperoxia is widely used in the treatment of pulmonary diseases, but the effects of this oxidant exposure in patients undergoing recovery from ALI are not clearly understood. Nrf2 has emerged as a crucial transcription factor that regulates oxidant stress through the induction of several detoxifying enzymes and other proteins. Using an experimental model of hyperoxia-induced ALI, we have examined the role of oxidant stress in resolving lung injury and inflammation. We found that when exposed to sublethal (72 h) hyperoxia, Nrf2-deficient, but not wild-type mice, succumbed to death during recovery. When both genotypes were exposed to a shorter period of hyperoxia-induced ALI (48 h), the lungs of Nrf2-deficient mice during recovery exhibited persistent cellular injury, impaired alveolar and endothelial cell regeneration, and persistent cellular infiltration by macrophages and lymphocytes. Glutathione (GSH) supplementation in Nrf2-deficient mice immediately after hyperoxia remarkably restored their ability to recover from hyperoxia-induced damage in a manner similar to that of wild-type mice. Thus, the results of the present study indicate that the Nrf2-regulated transcriptional response and, particularly GSH synthesis, is critical for lung tissue repair and the resolution of inflammation in vivo and suggests that a dysfunctional Nrf2-GSH pathway may compromise these processes in vivo.
Collapse
Affiliation(s)
- Narsa M Reddy
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Thomas W. Kensler
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Paul M Hassoun
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sekhar P Reddy
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
402
|
Wheeler DS, Zingarelli B, Wheeler WJ, Wong HR. Novel pharmacologic approaches to the management of sepsis: targeting the host inflammatory response. RECENT PATENTS ON INFLAMMATION & ALLERGY DRUG DISCOVERY 2009; 3:96-112. [PMID: 19519586 PMCID: PMC2754156 DOI: 10.2174/187221309788489779] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis is currently the 10(th) leading cause of death overall and accounts for significant healthcare expenditures in the developed world. There are now more deaths attributable to sepsis than coronary artery disease, stroke, or cancer, and it is widely believed that the incidence of sepsis and sepsis-related mortality will continue to rise. Based on these sobering statistics, there is great interest in identifying novel treatments for managing critically ill children and adults with sepsis. Unfortunately, to date, there have been very few successful therapeutic agents employed in the clinical setting. Despite these disappointing results, new therapeutic agents continue to be identified, and there is reason for optimism and hope for the future. Herein, we will briefly review several novel therapeutic adjuncts for the management of critically ill patients with sepsis. We will largely focus on those therapies that directly target the host inflammatory response, specifically those that result in activation of the transcription factor, nuclear factor (NF)-kappaB. We will also reference some of the patents recently filed that pertain to the host innate immune response and sepsis.
Collapse
Affiliation(s)
- Derek S Wheeler
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | | | | | |
Collapse
|
403
|
The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury. PLoS One 2009; 4:e5704. [PMID: 19479087 PMCID: PMC2682651 DOI: 10.1371/journal.pone.0005704] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 04/26/2009] [Indexed: 12/20/2022] Open
Abstract
Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2−/− or TLR2+/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-β in kidneys of TLR2−/− mice compared with TLR2+/+ animals. Although, the obstructed kidneys of TLR2−/− mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis.
Collapse
|
404
|
Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 2009; 86:557-66. [PMID: 19451397 DOI: 10.1189/jlb.1008647] [Citation(s) in RCA: 635] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is crucial for initiation and amplification of inflammatory responses. During this process, phagocytes are activated by PAMPs that are recognized by PRRs. Phagocytes are also activated by endogenous danger signals called alarmins or DAMPs via partly specific, partly common PRRs. Two members of the S100 protein family, S100A8 and S100A9, have been identified recently as important endogenous DAMPs. The complex of S100A8 and S100A9 (also called calprotectin) is actively secreted during the stress response of phagocytes. The association of inflammation and S100A8/S100A9 was discovered more than 20 years ago, but only now are the molecular mechanisms involved in danger signaling by extracellular S100A8/S100A9 beginning to emerge. Taking advantage of mice lacking the functional S100A8/S100A9 complex, these molecules have been identified as endogenous activators of TLR4 and have been shown to promote lethal, endotoxin-induced shock. Importantly, S100A8/S100A9 is not only involved in promoting the inflammatory response in infections but was also identified as a potent amplifier of inflammation in autoimmunity as well as in cancer development and tumor spread. This proinflammatory action of S100A8/S100A9 involves autocrine and paracrine mechanisms in phagocytes, endothelium, and other cells. As a net result, extravasation of leukocytes into inflamed tissues and their subsequent activation are increased. Thus, S100A8/S100A9 plays a pivotal role during amplification of inflammation and represents a promising new therapeutic target.
Collapse
Affiliation(s)
- Jan M Ehrchen
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
405
|
Campana L, Bosurgi L, Bianchi ME, Manfredi AA, Rovere-Querini P. Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. J Leukoc Biol 2009; 86:609-15. [DOI: 10.1189/jlb.0908576] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
406
|
Hansen KC, Kiemele L, Maller O, O'Brien J, Shankar A, Fornetti J, Schedin P. An in-solution ultrasonication-assisted digestion method for improved extracellular matrix proteome coverage. Mol Cell Proteomics 2009; 8:1648-57. [PMID: 19351662 DOI: 10.1074/mcp.m900039-mcp200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epithelial cell behavior is coordinated by the composition of the surrounding extracellular matrix (ECM); thus ECM protein identification is critical for understanding normal biology and disease states. Proteomic analyses of ECM proteins have been hindered by the insoluble and digestion-resistant nature of ECM. Here we explore the utility of combining rapid ultrasonication- and surfactant-assisted digestion for the detailed proteomics analysis of ECM samples. When compared with traditional overnight digestion, this optimized method dramatically improved the sequence coverage for collagen I, revealed the presence of hundreds of previously unidentified proteins in Matrigel, and identified a protein profile for ECM isolated from rat mammary glands that was substantially different from that found in Matrigel. In a three-dimensional culture assay to investigate epithelial cell-ECM interactions, mammary epithelial cells were found to undergo extensive branching morphogenesis when plated with mammary gland-derived matrix in comparison with Matrigel. Cumulatively these data highlight the tissue-specific nature of ECM composition and function and underscore the need for optimized techniques, such as those described here, for the proteomics characterization of ECM samples.
Collapse
Affiliation(s)
- Kirk C Hansen
- University of Colorado Cancer Center Proteomics and Mass Spectrometry Facility, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
407
|
Blay M, Espinel AE, Delgado MA, Baiges I, Bladé C, Arola L, Salvadó J. Isoflavone effect on gene expression profile and biomarkers of inflammation. J Pharm Biomed Anal 2009; 51:382-90. [PMID: 19410411 DOI: 10.1016/j.jpba.2009.03.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 11/18/2022]
Abstract
The use of high throughput techniques to find differences in gene expression profiles between related samples (transcriptomics) that underlie changes in physiological states can be applied in medicine, drug development and nutrition. Transcriptomics can be used to provide novel biomarkers of a future pathologic state and to study how bioactive food compounds or drugs can modulate them in the early stages. In this study, we examine the expression pattern in order to determine the effect of the pathological-inflammatory state on the RAW 264.7 cell model and to ascertain how isoflavones and their active functional metabolites alleviate the inflammatory burst and the extent of gene modulation due to the presence of polyphenols. Results demonstrated that genistein (20 microM) and equol (10 microM) significantly inhibited the overproduction of NO and PGE(2) induced by LPS plus INF-gamma when a pre-treatment was performed or when administered during activation. Daidzein, however, did not exert similar effects. Moreover, both isoflavone treatments regulated gene transcription of cytokines and inflammatory markers, among others. The transcriptomic changes provide clues firstly into defining a differential expression profile in inflammation in order to select putative biomarkers of the inflammatory process, and secondly into understanding the isoflavone action mechanism at the transcriptional level. In conclusion, isoflavone modulates the inflammatory response in activated macrophages by inhibiting NO and PGE(2) and by modulating the expression of key genes defined by transcriptomic profiling.
Collapse
Affiliation(s)
- M Blay
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | |
Collapse
|
408
|
Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 2009; 113:5650-9. [PMID: 19346498 DOI: 10.1182/blood-2008-09-176776] [Citation(s) in RCA: 331] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Using a bacterial pathogen-induced acute inflammation model in the skin, we defined the roles of local lymphatic vessels and draining lymph nodes (DLNs) in antigen clearance and inflammation resolution. At the peak day of inflammation, robust expansion of lymphatic vessels and profound infiltration of CD11b+/Gr-1+ macrophages into the inflamed skin and DLN were observed. Moreover, lymph flow and inflammatory cell migration from the inflamed skin to DLNs were enhanced. Concomitantly, the expression of lymphangiogenic growth factors such as vascular endothelial growth factor C (VEGF-C), VEGF-D, and VEGF-A were significantly up-regulated in the inflamed skin, DLNs, and particularly in enriched CD11b+ macrophages from the DLNs. Depletion of macrophages, or blockade of VEGF-C/D or VEGF-A, largely attenuated these phenomena, and produced notably delayed antigen clearance and inflammation resolution. Conversely, keratin 14 (K14)-VEGF-C transgenic mice, which have dense and enlarged lymphatic vessels in the skin dermis, exhibited accelerated migration of inflammatory cells from the inflamed skin to the DLNs and faster antigen clearance and inflammation resolution. Taken together, these results indicate that VEGF-C, -D, and -A derived from the CD11b+/Gr-1+ macrophages and local inflamed tissues play a critical role in promoting antigen clearance and inflammation resolution.
Collapse
|
409
|
Jurecka P, Irnazarow I, Stafford JL, Ruszczyk A, Taverne N, Belosevic M, Savelkoul HFJ, Wiegertjes GF. The induction of nitric oxide response of carp macrophages by transferrin is influenced by the allelic diversity of the molecule. FISH & SHELLFISH IMMUNOLOGY 2009; 26:632-638. [PMID: 18996204 DOI: 10.1016/j.fsi.2008.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/23/2008] [Accepted: 10/13/2008] [Indexed: 05/27/2023]
Abstract
The central role of transferrin (Tf) as an iron transporting protein has been extended by observations that modified versions of Tf also participate in the regulation of innate immunity. We report on the isolation of two carp Tf proteins (alleles D and G) to purity using rivanol precipitation and ion-exchange chromatography, and describe the activation of head kidney-derived carp macrophages by cleaved Tf. We demonstrate the superiority of the D-type over the G-type Tf in inducing nitric oxide (NO) and confirm previous observations that full-length Tf cannot induce NO in fish macrophages. We believe that cleaved Tf fragments should be considered to be "alarmins". We discuss the possibility that parasites such as Trypanoplasma borreli cleave Tf and use Tf fragments to their advantage by modulating the NO induction in carp macrophages.
Collapse
Affiliation(s)
- Patrycja Jurecka
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture, Gołysz, 43-520 Chybie, Poland
| | | | | | | | | | | | | | | |
Collapse
|
410
|
Li H, Ciric B, Yang J, Xu H, Fitzgerald DC, Elbehi M, Fonseca-Kelly Z, Yu S, Zhang GX, Rostami A. Intravenous tolerance modulates macrophage classical activation and antigen presentation in experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 208:54-60. [PMID: 19187972 PMCID: PMC2723950 DOI: 10.1016/j.jneuroim.2009.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/24/2008] [Accepted: 01/05/2009] [Indexed: 12/11/2022]
Abstract
Macrophages act as the first line of self defense by mounting an inflammatory response to antigen and as antigen presenting cells to initiate the adaptive immune response. Inhibition of macrophage activation is one of the possible approaches to modulate inflammation. Intravenous (i.v.) tolerance has proved to be an effective method for ameliorating experimental autoimmune diseases. Whether macrophages are involved in tolerance induction is still largely undefined. In the present study we found that i.v. tolerance induction resulted in lower B7.1, B7.2 and MHC class II molecules, and reduced phagocytosis by both peritoneal macrophages and adherent splenocytes. Macrophages from tolerized mice were associated with a significantly impaired response of MOG-sensitized T cells to MOG. Macrophages from tolerized mice produced low levels of pro-inflammatory molecules IL-12, TNF-alpha, IL-1beta, RANTES and MCP-1 and high levels of IL-10 and TGF-beta. Administration of anti-TGF-beta led to a reduction of IL-10 in tolerized mice. Thus, i.v. tolerance inhibits macrophage classical activation and APC function, increases macrophage alternative activation and IL-10 and TGF-beta production. These cytokines, in turn, induce enhanced production of IL-10 in macrophages in MOG i.v. mice.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Autoantigens/administration & dosage
- Autoantigens/immunology
- Autoantigens/metabolism
- Cells, Cultured
- Coculture Techniques
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Immune Tolerance
- Injections, Intravenous
- Macrophage Activation/immunology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Yang HZ, Cui B, Liu HZ, Chen ZR, Yan HM, Hua F, Hu ZW. Targeting TLR2 attenuates pulmonary inflammation and fibrosis by reversion of suppressive immune microenvironment. THE JOURNAL OF IMMUNOLOGY 2009; 182:692-702. [PMID: 19109203 DOI: 10.4049/jimmunol.182.1.692] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary fibrosis is a consequence of chronic lung injury and is associated with a high mortality. Despite the pathogenesis of pulmonary fibrosis remaining as an enigma, immune responses play a critical role in the deregulation of wound healing process after lung injury, which leads to fibrosis. Accumulating evidence argues the rationales for current treatments of pulmonary fibrosis using immunosuppressive agents such as corticosteroids. In this study, we report that bleomycin (BLM), a well-known fibrogenic agent functioning as a TLR2 agonist, induced the maturation of dendritic cells and release of cytokines. The BLM activation of TLR2 mediated a time-dependent alteration of immune responses in the lung. These responses resulted in an increase in the tissue-infiltrating proinflammatory cells and cytokines in the early period initially following BLM exposure and an increase in the tissue-infiltrating suppressive immune cells and factors during the later period following BLM exposure. TLR2 deficiency, however, reduced pulmonary inflammation, injury, and subsequently attenuated pulmonary fibrosis. Targeting TLR2 by a TLR2-neutralizing Ab not only markedly decreased animal death but also protected animals from the development of pulmonary fibrosis and reversed the established pulmonary fibrosis through regulating BLM-induced immunosuppressive microenvironments. Our studies suggest that TLR2 is a promising target for the development of therapeutic agents against pulmonary fibrosis and that eliminating immunosuppressive cells and factors via immunostimulants is a novel strategy for fibro-proliferative diseases. Moreover, combining BLM with an anti-TLR2 Ab or TLR2 antagonist for cancer therapy will improve the BLM therapeutic profile by enhancing anti-cancer efficacy and reducing systemic inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Hong-Zhen Yang
- Molecular Immunology and Pharmacology Laboratory, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan St. Beijing 100050, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
412
|
Melo RCN. Acute heart inflammation: ultrastructural and functional aspects of macrophages elicited by Trypanosoma cruzi infection. J Cell Mol Med 2009; 13:279-94. [PMID: 18624767 PMCID: PMC3823355 DOI: 10.1111/j.1582-4934.2008.00388.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/24/2008] [Indexed: 01/08/2023] Open
Abstract
The heart is the main target organ of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, a significant public health issue and still a major cause of morbidity and mortality in Latin America. During the acute disease, tissue damage in the heart is related to the intense myocardium parasitism. To control parasite multiplication, cells of the monocytic lineage are highly mobilized. In response to inflammatory and immune stimulation, an intense migration and extravasation of monocytes occurs from the bloodstream into heart. Monocyte differentiation leads to the formation of tissue phagocytosing macrophages, which are strongly activated and direct host defence. Newly elicited monocyte-derived macrophages both undergo profound physiological changes and display morphological heterogeneity that greatly differs from originally non-inflammatory macrophages, and underlie their functional activities as potent inflammatory cells. Thus, activated macrophages play a critical role in the outcome of parasite infection. This review covers functional and ultrastructural aspects of heart inflammatory macrophages triggered by the acute Chagas' disease, including recent discoveries on morphologically distinct, inflammation-related organelles, termed lipid bodies, which are actively formed in vivo within macrophages in response to T. cruzi infection. These findings are defining a broader role for lipid bodies as key markers of macrophage activation during innate immune responses to infectious diseases and attractive targets for novel anti-inflammatory therapies. Modulation of macrophage activation may be central in providing therapeutic benefits for Chagas' disease control.
Collapse
Affiliation(s)
- Rossana C N Melo
- Department of Biology, Federal University of Juiz de Fora, MG, Brazil.
| |
Collapse
|
413
|
Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages. Mol Immunol 2009; 46:576-86. [DOI: 10.1016/j.molimm.2008.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/19/2022]
|
414
|
Flohé SB, Flohé S, Schade FU. Invited review: deterioration of the immune system after trauma: signals and cellular mechanisms. Innate Immun 2009; 14:333-44. [PMID: 19039057 DOI: 10.1177/1753425908100016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Multiple trauma leads to a deterioration of the immune system. On the one hand, hyperinflammation mediates remote organ damage and may lead to multi-organ failure. On the other hand, immunosuppression develops and promotes an enhanced risk to acquire infectious complications after trauma. The mechanisms that underlie these opposing consequences of trauma are not yet completely understood. There is increasing evidence that endogenous danger signals that derive from destroyed tissues play a role in trauma-induced immune dysfunction. Here, we give an overview on the common animal models that are used to investigate trauma-induced pathology, potential signals and cellular mechanisms that support the imbalance between inflammation and counter-regulation after trauma.
Collapse
Affiliation(s)
- Stefanie B Flohé
- Surgical Research, Department of Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | | | | |
Collapse
|
415
|
Tzang BS, Chiu CC, Tsai CC, Lee YJ, Lu IJ, Shi JY, Hsu TC. Effects of human parvovirus B19 VP1 unique region protein on macrophage responses. J Biomed Sci 2009; 16:13. [PMID: 19272185 PMCID: PMC2653524 DOI: 10.1186/1423-0127-16-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/24/2009] [Indexed: 12/14/2022] Open
Abstract
Background Activity of secreted phospholipase A (sPLA2) has been implicated in a wide range of cellular responses. However, little is known about the function of human parvovirus B19-VP1 unique region (VP1u) with sPLA2 activity on macrophage. Methods To investigate the roles of B19-VP1u in response to macrophage, phospholipase A2 activity, cell migration assay, phagocytosis activity, metalloproteinase assay, RT-PCR and immunoblotting were performed. Results In the present study, we report that migration, phagocytosis, IL-6, IL-1β mRNA, and MMP9 activity are significantly increased in RAW264.7 cells by B19-VP1u protein with sPLA2 activity, but not by B19-VP1uD175A protein that is mutated and lacks sPLA2 activity. Additionally, significant increases of phosphorylated ERK1/2 and JNK proteins were detected in macrophages that were treated with B19-VP1u protein, but not when they were treated with B19-VP1uD175A protein. Conclusion Taken together, our experimental results suggest that B19-VP1u with sPLA2 activity affects production of IL-6, IL-1β mRNA, and MMP9 activity, possibly through the involvement of ERK1/2 and JNK signaling pathways. These findings could provide clues in understanding the role of B19-VP1u and its sPLA2 enzymatic activity in B19 infection and B19-related diseases.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
416
|
Abstract
Over the past three decades many techniques for expressing exogenous genes in a variety of cells and cell lines have been developed. Exogenous gene expression in macrophages has lagged behind that of other nonhematopioetic cells. There are many reasons for this, but most are due to technical difficulties associated with transfecting macrophages. As professional phagocytes, macrophages are endowed with many potent degradative enzymes that can disrupt nucleic acid integrity and make gene transfer into these cells an inefficient process. This is especially true of activated macrophages which undergo a dramatic change in their physiology following exposure to immune or inflammatory stimuli. Viral transduction of these cells has been hampered because macrophages are end-stage cells that generally do not divide; therefore, some of the vectors that depend on integration into a replicative genome have met with limited success. Furthermore, macrophages are quite responsive to "danger signals," and therefore several of the original viral vectors that were used for gene transfer induced potent anti-viral responses in these cells making these vectors inappropriate for gene delivery. Many of these difficulties have been largely overcome, and relatively high efficiency gene expression in primary human or murine macrophages is becoming more routine. In the present chapter we discuss some of the gene expression techniques that have met with success and review the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
417
|
Siqueira KZ, Campos Soares ÂMVD, Dias-Melicio LA, Calvi SA, Peraçoli MTS. Interleukin-6 treatment enhances human monocyte permissiveness forParacoccidioides brasiliensisgrowth by modulating cytokine production. Med Mycol 2009; 47:259-67. [DOI: 10.1080/13693780802244204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
418
|
Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FPT, Anderson AJ. Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci 2008; 28:13876-88. [PMID: 19091977 PMCID: PMC2680920 DOI: 10.1523/jneurosci.2823-08.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/29/2008] [Accepted: 10/24/2008] [Indexed: 02/08/2023] Open
Abstract
Although studies have suggested a role for the complement system in the pathophysiology of spinal cord injury (SCI), that role remains poorly defined. Additionally, the relative contribution of individual complement pathways in SCI is unknown. Our initial studies revealed that systemic complement activation was strongly influenced by genetic background and gender. Thus, to investigate the role of the classical complement pathway in contusion-induced SCI, male C1q knock-out (KO) and wild-type (WT) mice on a complement sufficient background (BUB) received a mild-moderate T9 contusion injury with the Infinite Horizon impactor. BUB C1q KO mice exhibited greater locomotor recovery compared with BUB WT mice (p<0.05). Improved recovery observed in BUB C1q KO mice was also associated with decreased threshold for withdrawal from a mild stimulus using von Frey filament testing. Surprisingly, quantification of microglia/macrophages (F4/80) by FACS analysis showed that BUB C1q KO mice exhibited a significantly greater percentage of macrophages in the spinal cord compared with BUB WT mice 3 d post-injury (p<0.05). However, this increased macrophage response appeared to be transient as stereological assessment of spinal cord tissue obtained 28 d post-injury revealed no difference in F4/80-positive cells between groups. Stereological assessment of spinal cord tissue showed that BUB C1q KO mice had reduced lesion volume and an increase in tissue sparing compared with BUB WT mice (p<0.05). Together, these data suggest that initiation of the classical complement pathway via C1q is detrimental to recovery after SCI.
Collapse
Affiliation(s)
- Manuel D. Galvan
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Sabina Luchetti
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Adrian M. Burgos
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Hal X. Nguyen
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Mitra J. Hooshmand
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Frank P. T. Hamers
- Rehabilitation Hospital “DE Hoogstraat,” Rudolf Magnus Institute of Neuroscience, 3583 TM Utrecht, The Netherlands
| | - Aileen J. Anderson
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| |
Collapse
|
419
|
Abstract
Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
Collapse
Affiliation(s)
- David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
420
|
Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int J Cardiol 2008; 130:147-58. [PMID: 18656272 PMCID: PMC2857604 DOI: 10.1016/j.ijcard.2008.04.059] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/13/2008] [Accepted: 04/04/2008] [Indexed: 12/11/2022]
Abstract
Following myocardial infarction (MI), circulating blood monocytes respond to chemotactic factors, migrate into the infarcted myocardium, and differentiate into macrophages. At the injury site, macrophages remove necrotic cardiac myocytes and apoptotic neutrophils; secrete cytokines, chemokines, and growth factors; and modulate phases of the angiogenic response. As such, the macrophage is a primary responder cell type that is involved in the regulation of post-MI wound healing at multiple levels. This review summarizes what is currently known about macrophage functions post-MI and borrows literature from other injury and inflammatory models to speculate on additional roles. Basic science and clinical avenues that remain to be explored are also discussed.
Collapse
Affiliation(s)
- Jessica M. Lambert
- Medical Student Research Stipend Program, UTHSCSA
- Department of Medicine, Division of Cardiology, University of Texas Health Science Center San Antonio, Texas 78229
| | - Elizabeth F. Lopez
- John Jay Science and Engineering Academy, University of Texas Health Science Center San Antonio, Texas 78229
- Department of Medicine, Division of Cardiology, University of Texas Health Science Center San Antonio, Texas 78229
| | - Merry L. Lindsey
- Department of Medicine, Division of Cardiology, University of Texas Health Science Center San Antonio, Texas 78229
| |
Collapse
|
421
|
Abstract
Our understanding of cell mediated immunity (CMI) has revealed the importance of activated macrophages as key immune effector cells. Over the past decade, we have come to realize that macrophages exhibit remarkable plasticity, and different populations of macrophages with distinct physiologies can develop in response to different stimuli. In fact, it is likely that the number of different macrophage populations that can arise may be as diverse as the activating stimuli that induce them. Some of these stimuli can instruct macrophages to kill microbes (classical activation), lay down extracellular matrix components to promote wound healing (alternative activation), or secrete anti-inflammatory cytokines to terminate inflammation (regulatory macrophages). New ways to biochemically identify these cells have led to a better understanding of the heterogeneity of activated macrophages. As our understanding of the various macrophage populations increases, so does the potential for therapeutic intervention based on targeting specific populations of activated macrophages.
Collapse
Affiliation(s)
- David M Mosser
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| | - Xia Zhang
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| |
Collapse
|
422
|
Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-κB pathway. Int Immunopharmacol 2008; 8:1264-71. [DOI: 10.1016/j.intimp.2008.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/28/2008] [Accepted: 05/06/2008] [Indexed: 11/22/2022]
|
423
|
Miller CM, Boulter NR, Ikin RJ, Smith NC. The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 2008; 39:23-39. [PMID: 18775432 DOI: 10.1016/j.ijpara.2008.08.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/07/2008] [Accepted: 08/11/2008] [Indexed: 01/17/2023]
Abstract
Toxoplasma gondii is a unique intracellular parasite. It can infect a variety of cells in virtually all warm-blooded animals. It has a worldwide distribution and, overall, around one-third of people are seropositive for the parasite, with essentially the entire human population being at risk of infection. For most people, T. gondii causes asymptomatic infection but the parasite can cause serious disease in the immunocompromised and, if contracted for the first time during pregnancy, can cause spontaneous abortion or congenital defects, which have a substantial emotional, social and economic impact. Toxoplasma gondii provokes one of the most potent innate, pro-inflammatory responses of all infectious disease agents. It is also a supreme manipulator of the immune response so that innate immunity to T. gondii is a delicate balance between the parasite and its host involving a coordinated series of cellular interactions involving enterocytes, neutrophils, dendritic cells, macrophages and natural killer cells. Underpinning these interactions is the regulation of complex molecular reactions involving Toll-like receptors, activation of signalling pathways, cytokine production and activation of anti-microbial effector mechanisms including generation of reactive nitrogen and oxygen intermediates.
Collapse
Affiliation(s)
- Catherine M Miller
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | | | | | | |
Collapse
|
424
|
Tranilast, an orally active anti-allergic drug, up-regulates the anti-inflammatory heme oxygenase-1 expression but down-regulates the pro-inflammatory cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW264.7 macrophages. Biochem Biophys Res Commun 2008; 371:361-5. [DOI: 10.1016/j.bbrc.2008.04.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/12/2008] [Indexed: 01/24/2023]
|
425
|
Jin X. Cellular and molecular basis of antibody-dependent enhancement in human dengue pathogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.4.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dengue fever is gaining increased attention as a major global health problem. It occurs annually in 50–100 million people in more than 100 countries, and places half a million people at risk of life-threatening diseases: dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). The pathogenic mechanisms causing DHF/DSS are not clearly understood. This article reviews cellular and molecular mechanisms that might be responsible for the initiation of the pathogenic processes, including hypotheses for DHF/DSS, dengue-permissive target cells, putative dengue receptors, neutralizing and enhancing antibodies to dengue virus, mechanisms of vascular plasma leakage, innate immune response in dengue infection and antibody-dependent enhancement of dengue infection. While reviewing the literature, the article also gives the author’s opinion on perceived areas of importance for future research in human dengue pathogenesis.
Collapse
Affiliation(s)
- Xia Jin
- Department of Medicine, Infectious Diseases Division, University of Rochester Medical Center, 601 Elmwood Avenue, Box 689, Room 3-5103, Rochester, NY 14642, USA
| |
Collapse
|
426
|
|
427
|
Herrington CS, Hall PA. Molecular and cellular themes in inflammation and immunology. J Pathol 2008; 214:123-5. [DOI: 10.1002/path.2303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
428
|
[Electrocardiographic findings during colonoscopy]. BIOMED RESEARCH INTERNATIONAL 1979; 2013:754802. [PMID: 23484152 PMCID: PMC3581278 DOI: 10.1155/2013/754802] [Citation(s) in RCA: 149] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wound healing constitutes a major health problem. The impaired healing is caused by complex factors such as abnormal keratinocyte and fibroblast migration, proliferation, differentiation, and apoptosis, abnormal macrophage polarization, impaired recruitment of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), and decreased vascularization. Diabetes-enhanced and prolonged expression of TNF-α also contributes to impaired healing. In this paper, we discuss the abnormal cell responses in diabetic wound healing and the contribution of TNF-α.
Collapse
|