401
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
402
|
Luo J, Zeng Q, Wu K, Lin Y. Fast reconstruction of non-uniform sampling multidimensional NMR spectroscopy via a deep neural network. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 317:106772. [PMID: 32589585 DOI: 10.1016/j.jmr.2020.106772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
Multidimensional nuclear magnetic resonance (NMR) spectroscopy is used to examine the chemical structures of the studied systems. Unfortunately, the application of NMR spectra is limited by their long acquisition time, especially for 3D, 4D, and higher dimensional spectra. Non-uniform sampling (NUS) has been widely recognized as a powerful tool to reduce the NMR experimental time. But the quality of NUS spectra depends on appropriate reconstruction algorithms. As an effective data processing method, deep learning has been widely used in many fields in recent years. In this work, a deep learning-based strategy for fast reconstruction of non-uniform sampling NMR spectra is proposed. In our experiments, the proposed deep neural network has better performance in removing artifacts and preserving weak peaks than typical convolutional neural networks of U-Net and DenseNet. Besides, a novel approach of generating training data is utilized to reduce the computational burden of neural networks, and thus training our network can be easier and faster than previous deep learning-based works. Compared with the two currently available methods, SMILE and hmsIST, our strategy can provide comparable reconstruction quality in terms of peak intensities and the fidelity of peak shape. The reconstruction time of our methods is also comparable to or faster than the two methods, especially for 3D spectra.
Collapse
Affiliation(s)
- Jie Luo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Ke Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China.
| |
Collapse
|
403
|
Jafarinia H, van der Giessen E, Onck PR. Phase Separation of Toxic Dipeptide Repeat Proteins Related to C9orf72 ALS/FTD. Biophys J 2020; 119:843-851. [PMID: 32730793 DOI: 10.1016/j.bpj.2020.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022] Open
Abstract
The expansion mutation in the C9orf72 gene is the most common known genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation can produce five dipeptide repeat proteins (DPRs), of which three are known to be toxic: poly-PR, poly-GR, and poly-GA. The toxicity of poly-GA is attributed to its aggregation in the cytoplasm, whereas for poly-PR and poly-GR, several toxicity pathways have been proposed. The toxicity of the DPRs has been shown to depend on their length, but the underlying molecular mechanism of this length dependence is not well understood. To address the possible role of phase separation in DPR toxicity, a one-bead-per-amino-acid (1BPA) coarse-grained molecular dynamics model is used to study the single-molecule and phase-separation properties of the DPRs. We find a strong dependence of the phase-separation behavior on both DPR length and concentration, with longer DPRs having a higher propensity to phase separate and form condensed phases with higher concentrations. The critical lengths required for phase separation (25 for poly-PR and 50 for poly-GA) are comparable to the toxicity threshold limit of 30 repeats found for the expansion mutation in patient cells, suggesting that phase separation could play an important role in DPR toxicity.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
404
|
Wang C, Duan Y, Duan G, Wang Q, Zhang K, Deng X, Qian B, Gu J, Ma Z, Zhang S, Guo L, Liu C, Fang Y. Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation. Mol Cell 2020; 79:443-458.e7. [PMID: 32649883 DOI: 10.1016/j.molcel.2020.06.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Despite the prominent role of TDP-43 in neurodegeneration, its physiological and pathological functions are not fully understood. Here, we report an unexpected role of TDP-43 in the formation of dynamic, reversible, liquid droplet-like nuclear bodies (NBs) in response to stress. Formation of NBs alleviates TDP-43-mediated cytotoxicity in mammalian cells and fly neurons. Super-resolution microscopy reveals distinct functions of the two RRMs in TDP-43 NB formation. TDP-43 NBs are partially colocalized with nuclear paraspeckles, whose scaffolding lncRNA NEAT1 is dramatically upregulated in stressed neurons. Moreover, increase of NEAT1 promotes TDP-43 liquid-liquid phase separation (LLPS) in vitro. Finally, we discover that the ALS-associated mutation D169G impairs the NEAT1-mediated TDP-43 LLPS and NB assembly, causing excessive cytoplasmic translocation of TDP-43 to form stress granules, which become phosphorylated TDP-43 cytoplasmic foci upon prolonged stress. Together, our findings suggest a stress-mitigating role and mechanism of TDP-43 NBs, whose dysfunction may be involved in ALS pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjia Duan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Duan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiangqiang Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Deng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beituo Qian
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
405
|
Cao Q, Boyer DR, Sawaya MR, Ge P, Eisenberg DS. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol 2020; 27:653-659. [PMID: 32541896 PMCID: PMC8579859 DOI: 10.1038/s41594-020-0435-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) functions as a glucose-regulating hormone but deposits as amyloid fibrils in more than 90% of patients with type II diabetes (T2D). Here we report the cryo-EM structure of recombinant full-length hIAPP fibrils. The fibril is composed of two symmetrically related protofilaments with ordered residues 14-37. Our hIAPP fibril structure (i) supports the previous hypothesis that residues 20-29 constitute the core of the hIAPP amyloid; (ii) suggests a molecular mechanism for the action of the hIAPP hereditary mutation S20G; (iii) explains why the six residue substitutions in rodent IAPP prevent aggregation; and (iv) suggests regions responsible for the observed hIAPP cross-seeding with β-amyloid. Furthermore, we performed structure-based inhibitor design to generate potential hIAPP aggregation inhibitors. Four of the designed peptides delay hIAPP aggregation in vitro, providing a starting point for the development of T2D therapeutics and proof of concept that the capping strategy can be used on full-length cryo-EM fibril structures.
Collapse
Affiliation(s)
- Qin Cao
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David R Boyer
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peng Ge
- California NanoSystem Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
406
|
Frank L, Rippe K. Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. J Mol Biol 2020; 432:4270-4286. [DOI: 10.1016/j.jmb.2020.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
|
407
|
Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. SCIENCE CHINA. LIFE SCIENCES 2020; 63:953-985. [PMID: 32548680 DOI: 10.1007/s11427-020-1702-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
Collapse
|
408
|
Sternburg EL, Karginov FV. Global Approaches in Studying RNA-Binding Protein Interaction Networks. Trends Biochem Sci 2020; 45:593-603. [DOI: 10.1016/j.tibs.2020.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
|
409
|
Abstract
The epididymal lumen contains a complex cystatin-rich nonpathological amyloid matrix with putative roles in sperm maturation and sperm protection. Given our growing understanding for the biological function of this and other functional amyloids, the problem still remains: how functional amyloids assemble including their initial transition to early oligomeric forms. To examine this, we developed a protocol for the purification of nondenatured mouse CRES, a component of the epididymal amyloid matrix, allowing us to examine its assembly to amyloid under conditions that may mimic those in vivo. Herein we use X-ray crystallography, solution-state NMR, and solid-state NMR to follow at the atomic level the assembly of the CRES amyloidogenic precursor as it progressed from monomeric folded protein to an advanced amyloid. We show the CRES monomer has a typical cystatin fold that assembles into highly branched amyloid matrices, comparable to those in vivo, by forming β-sheet assemblies that our data suggest occur via two distinct mechanisms: a unique conformational switch of a highly flexible disulfide-anchored loop to a rigid β-strand and by traditional cystatin domain swapping. Our results provide key insight into our understanding of functional amyloid assembly by revealing the earliest structural transitions from monomer to oligomer and by showing that some functional amyloid structures may be built by multiple and distinctive assembly mechanisms.
Collapse
|
410
|
Boatz JC, Piretra T, Lasorsa A, Matlahov I, Conway JF, van der Wel PCA. Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1. J Mol Biol 2020; 432:4722-4744. [PMID: 32598938 DOI: 10.1016/j.jmb.2020.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by expansion of the polyglutamine domain in the first exon of huntingtin (HttEx1). The extent of expansion correlates with disease progression and formation of amyloid-like protein deposits within the brain. The latter display polymorphism at the microscopic level, both in cerebral tissue and in vitro. Such polymorphism can dramatically influence cytotoxicity, leading to much interest in the conditions and mechanisms that dictate the formation of polymorphs. We examine conditions that govern HttEx1 polymorphism in vitro, including concentration and the role of the non-polyglutamine flanking domains. Using electron microscopy, we observe polymorphs that differ in width and tendency for higher-order bundling. Strikingly, aggregation yields different polymorphs at low and high concentrations. Narrow filaments dominate at low concentrations that may be more relevant in vivo. We dissect the role of N- and C-terminal flanking domains using protein with the former (httNT or N17) largely removed. The truncated protein is generated by trypsin cleavage of soluble HttEx1 fusion protein, which we analyze in some detail. Dye binding and solid-state NMR studies reveal changes in fibril surface characteristics and flanking domain mobility. Higher-order interactions appear facilitated by the C-terminal tail, while the polyglutamine forms an amyloid core resembling those of other polyglutamine deposits. Fibril-surface-mediated branching, previously attributed to secondary nucleation, is reduced in absence of httNT. A new model for the architecture of the HttEx1 filaments is presented and discussed in context of the assembly mechanism and biological activity.
Collapse
Affiliation(s)
- Jennifer C Boatz
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Talia Piretra
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - Irina Matlahov
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - James F Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Patrick C A van der Wel
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
411
|
Dregni AJ, Duan P, Hong M. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance. Biochemistry 2020; 59:2237-2248. [PMID: 32453948 PMCID: PMC7720860 DOI: 10.1021/acs.biochem.0c00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The microtubule-associated protein tau aggregates into distinct neurofibrillary tangles in brains afflicted with multiple neurodegenerative diseases such as Alzheimer's disease and corticobasal degeneration (CBD). The mechanism of tau misfolding and aggregation is poorly understood. Determining the structure, dynamics, and water accessibility of tau filaments may provide insight into the pathway of tau misfolding. Here, we investigate the hydration and dynamics of the β-sheet core of heparin-fibrillized 0N4R tau using solid-state nuclear magnetic resonance spectroscopy. This β-sheet core consists of the second and third microtubule-binding repeats, R2 and R3, respectively, which form a hairpin. Water-edited two-dimensional (2D) 13C-13C and 15N-13C correlation spectra show that most residues in R2 and R3 domains have low water accessibility, indicating that this hairpin is surrounded by other proteinaceous segments. However, a small number of residues, especially S285 and S316, are well hydrated compared to other Ser and Thr residues, suggesting that there is a small water channel in the middle of the hairpin. To probe whether water accessibility correlates with protein dynamics, we measured the backbone N-H dipolar couplings of the β-sheet core. Interestingly, residues in the fourth microtubule-binding repeat, R4, show rigid-limit N-H dipolar couplings, even though this domain exhibits weaker intensities in the 2D 15N-13C correlation spectra. These results suggest that the R4 domain participates in cross-β hydrogen bonding in some of the subunits but exhibits dynamic disorder in other subunits. Taken together, these hydration and dynamics data indicate that the R2-R3 hairpin of 0N4R tau is shielded from water by other proteinaceous segments on the exterior but contains a small water pore in the interior. This structural topology has various similarities with the CBD tau fibril structure but also shows specific differences. The disorder of the R4 domain and the presence of a small water channel in the heparin-fibrillized 4R tau have implications for the structure of tau fibrils in diseased brains.
Collapse
Affiliation(s)
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
412
|
Ning W, Guo Y, Lin S, Mei B, Wu Y, Jiang P, Tan X, Zhang W, Chen G, Peng D, Chu L, Xue Y. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res 2020; 48:D288-D295. [PMID: 31691822 PMCID: PMC7145660 DOI: 10.1093/nar/gkz1027] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
Here, we presented an integrative database named DrLLPS (http://llps.biocuckoo.cn/) for proteins involved in liquid–liquid phase separation (LLPS), which is a ubiquitous and crucial mechanism for spatiotemporal organization of various biochemical reactions, by creating membraneless organelles (MLOs) in eukaryotic cells. From the literature, we manually collected 150 scaffold proteins that are drivers of LLPS, 987 regulators that contribute in modulating LLPS, and 8148 potential client proteins that might be dispensable for the formation of MLOs, which were then categorized into 40 biomolecular condensates. We searched potential orthologs of these known proteins, and in total DrLLPS contained 437 887 known and potential LLPS-associated proteins in 164 eukaryotes. Furthermore, we carefully annotated LLPS-associated proteins in eight model organisms, by using the knowledge integrated from 110 widely used resources that covered 16 aspects, including protein disordered regions, domain annotations, post-translational modifications (PTMs), genetic variations, cancer mutations, molecular interactions, disease-associated information, drug-target relations, physicochemical property, protein functional annotations, protein expressions/proteomics, protein 3D structures, subcellular localizations, mRNA expressions, DNA & RNA elements, and DNA methylations. We anticipate DrLLPS can serve as a helpful resource for further analysis of LLPS.
Collapse
Affiliation(s)
- Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaping Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bin Mei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peiran Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weizhi Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guowei Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
413
|
Springhower CE, Rosen MK, Chook YM. Karyopherins and condensates. Curr Opin Cell Biol 2020; 64:112-123. [PMID: 32474299 DOI: 10.1016/j.ceb.2020.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Several aggregation-prone RNA-binding proteins, including FUS, EWS, TAF15, hnRNP A1, hnRNP A2, and TDP-43, are mutated in neurodegenerative diseases. The nuclear-cytoplasmic distribution of these proteins is controlled by proteins in the karyopherin family of nuclear transport factors (Kaps). Recent studies have shown that Kaps not only transport these proteins but also inhibit their self-association/aggregation, acting as molecular chaperones. This chaperone activity is impaired for disease-causing mutants of the RNA-binding proteins. Here, we review physical data on the mechanisms of self-association of several disease-associated RNA-binding proteins, through liquid-liquid phase separation and amyloid fiber formation. In each case, we relate these data to biophysical, biochemical, and cell biological data on the inhibition of self-association by Kaps. Our analyses suggest that Kaps may be effective chaperones because they contain large surfaces with diverse physical properties that enable them to engage multiple different regions of their cargo proteins, blocking self-association.
Collapse
Affiliation(s)
- Charis E Springhower
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
414
|
Lu J, Zhang S, Ma X, Jia C, Liu Z, Huang C, Liu C, Li D. Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation. J Biol Chem 2020; 295:7470-7480. [PMID: 32291284 PMCID: PMC7247300 DOI: 10.1074/jbc.ra119.012284] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Amyloid aggregation of pathological proteins is closely associated with a variety of neurodegenerative diseases, and α-synuclein (α-syn) deposition and Tau tangles are considered hallmarks of Parkinson's disease and Alzheimer's disease, respectively. Intriguingly, α-syn and Tau have been found to co-deposit in the brains of individuals with dementia and parkinsonism, suggesting a potential role of cross-talk between these two proteins in neurodegenerative pathologies. Here we show that monomeric α-syn and the two variants of Tau, Tau23 and K19, synergistically promote amyloid fibrillation, leading to their co-aggregation in vitro NMR spectroscopy experiments revealed that α-syn uses its highly negatively charged C terminus to directly interact with Tau23 and K19. Deletion of the C terminus effectively abolished its binding to Tau23 and K19 as well as its synergistic effect on promoting their fibrillation. Moreover, an S129D substitution of α-syn, mimicking C-terminal phosphorylation of Ser129 in α-syn, which is commonly observed in the brains of Parkinson's disease patients with elevated α-syn phosphorylation levels, significantly enhanced the activity of α-syn in facilitating Tau23 and K19 aggregation. These results reveal the molecular basis underlying the direct interaction between α-syn and Tau. We proposed that this interplay might contribute to pathological aggregation of α-syn and Tau in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinxia Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China
| | - Xiaojuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China; University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China; University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China; University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chengan Huang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China.
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
415
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
416
|
Abstract
Biological phase separation is known to be important for cellular organization, which has recently been extended to a new class of biomolecules that form liquid-like droplets coexisting with the surrounding cellular or extracellular environment. These droplets are termed membraneless organelles, as they lack a dividing lipid membrane, and are formed through liquid-liquid phase separation (LLPS). Elucidating the molecular determinants of phase separation is a critical challenge for the field, as we are still at the early stages of understanding how cells may promote and regulate functions that are driven by LLPS. In this review, we discuss the role that disorder, perturbations to molecular interactions resulting from sequence, posttranslational modifications, and various regulatory stimuli play on protein LLPS, with a particular focus on insights that may be obtained from simulation and theory. We finally discuss how these molecular driving forces alter multicomponent phase separation and selectivity.
Collapse
Affiliation(s)
- Gregory L Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA;
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA;
| |
Collapse
|
417
|
Pham QD, Carlström G, Lafon O, Sparr E, Topgaard D. Quantification of the amount of mobile components in intact stratum corneum with natural-abundance 13C solid-state NMR. Phys Chem Chem Phys 2020; 22:6572-6583. [PMID: 32159206 DOI: 10.1039/d0cp00079e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outermost layer of the skin is the stratum corneum (SC), which is mainly comprised of solid proteins and lipids. Minor amounts of mobile proteins and lipids are crucial for the macroscopic properties of the SC, including softness, elasticity and barrier function. Still this minor number of mobile components are not well characterized in terms of structure or amount. Conventional quantitative direct polarization (Q-DP) 13C solid-state NMR gives signal amplitudes proportional to concentrations, but fails to quantify the SC mobile components because of spectral overlap with the overwhelming signals from the solids. Spectral editing with the INEPT scheme suppresses the signals from solids, but also modulates the amplitudes of the mobile components depending on their values of the transverse relaxation times T2, scalar couplings JCH, and number of covalently bound hydrogens nH. This study describes a quantitative INEPT (Q-INEPT) method relying on systematic variation of the INEPT timing variables to estimate T2, JCH, nH, and amplitude for each of the resolved resonances from the mobile components. Q-INEPT is validated with a series of model systems containing molecules with different hydrophobicity and dynamics. For selected systems where Q-DP is applicable, the results of Q-INEPT and Q-DP are similar with respect to the linearity and uncertainty of the obtained molar ratios. Utilizing a reference compound with known concentration, we quantify the concentrations of mobile lipids and proteins within the mainly solid SC. By melting all lipids at high temperature, we obtain the total lipid concentration. These Q-INEPT results are the first steps towards a quantitative understanding of the relations between mobile component concentrations and SC macroscopic properties.
Collapse
Affiliation(s)
- Quoc Dat Pham
- Division of Physical Chemistry, Chemistry Department, Lund University, Lund, Sweden and Department of Food Technology, Lund University, Lund, Sweden
| | - Göran Carlström
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France and Institut Universitaire de France (IUF), Paris, France
| | - Emma Sparr
- Division of Physical Chemistry, Chemistry Department, Lund University, Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Chemistry Department, Lund University, Lund, Sweden
| |
Collapse
|
418
|
Siemer AB. Advances in studying protein disorder with solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 106:101643. [PMID: 31972419 PMCID: PMC7202078 DOI: 10.1016/j.ssnmr.2020.101643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/26/2023]
Abstract
Solution NMR is a key tool to study intrinsically disordered proteins (IDPs), whose importance for biological function is widely accepted. However, disordered proteins are not limited to solution and are also found in non-soluble systems such as fibrils and membrane proteins. In this Trends article, I will discuss how solid-state NMR can be used to study disorder in non-soluble proteins. Techniques based on dipolar couplings can study static protein disorder which either occurs naturally as e.g. in spider silk or can be induced by freeze trapping IDPs or unfolded proteins. In this case, structural ensembles are directly reflected by a static distribution of dihedral angels that can be determined by the distribution of chemical shifts or other methods. Techniques based on J-couplings can detect dynamic protein disorder under MAS. In this case, only average chemical shifts are measured but disorder can be characterized with a variety of data including secondary chemical shifts, relaxation rates, paramagnetic relaxation enhancements, or residual dipolar couplings. I describe both technical aspects and examples of solid-state NMR on protein disorder and end the article with a discussion of challenges and opportunities of this emerging field.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Univeristy of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
419
|
Yoshizawa T, Nozawa RS, Jia TZ, Saio T, Mori E. Biological phase separation: cell biology meets biophysics. Biophys Rev 2020; 12:519-539. [PMID: 32189162 PMCID: PMC7242575 DOI: 10.1007/s12551-020-00680-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Progress in development of biophysical analytic approaches has recently crossed paths with macromolecule condensates in cells. These cell condensates, typically termed liquid-like droplets, are formed by liquid-liquid phase separation (LLPS). More and more cell biologists now recognize that many of the membrane-less organelles observed in cells are formed by LLPS caused by interactions between proteins and nucleic acids. However, the detailed biophysical processes within the cell that lead to these assemblies remain largely unexplored. In this review, we evaluate recent discoveries related to biological phase separation including stress granule formation, chromatin regulation, and processes in the origin and evolution of life. We also discuss the potential issues and technical advancements required to properly study biological phase separation.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
420
|
Effect of additives on liquid droplets and aggregates of proteins. Biophys Rev 2020; 12:587-592. [PMID: 32166611 DOI: 10.1007/s12551-020-00682-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 01/12/2023] Open
Abstract
This review briefly summarizes the effect of additives on the formation of liquid droplets and aggregates of proteins. Proteins have the property of forming liquid droplets and aggregates both in vivo and in vitro. The liquid droplets of proteins are mainly stabilized by electrostatic and cation-π interactions, whereas the amorphous aggregates are mainly stabilized by hydrophobic interactions. Crowders usually stabilize liquid droplets, whereas ions and hexandiols destabilize the droplets. Additives such as kosmotropes, sugars, osmolytes, and crowders promote the formation of amorphous aggregates, whereas additives such as arginine and chaotropes can prevent the formation of amorphous aggregates. Further, amyloid has a different mechanism for its formation from amorphous aggregates because it is primarily stabilized by a cross-β structure. These systematic analyses of additives will provide clues to controlling protein aggregations and will aid the true understanding of the transition of proteins from liquid droplets and aggregates.
Collapse
|
421
|
Babinchak WM, Surewicz WK. Liquid-Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. J Mol Biol 2020; 432:1910-1925. [PMID: 32169484 DOI: 10.1016/j.jmb.2020.03.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) of proteins underlies the formation of membrane-less organelles. While it has been recognized for some time that these organelles are of key importance for normal cellular functions, a growing number of recent observations indicate that LLPS may also play a role in disease. In particular, numerous proteins that form toxic aggregates in neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Alzheimer's disease, were found to be highly prone to phase separation, suggesting that there might be a strong link between LLPS and the pathogenic process in these disorders. This review aims to assess the molecular basis of this link through exploration of the intermolecular interactions that underlie LLPS and aggregation and the underlying mechanisms facilitating maturation of liquid droplets into more stable assemblies, including so-called labile fibrils, hydrogels, and pathological amyloids. Recent insights into the structural basis of labile fibrils and potential mechanisms by which these relatively unstable structures could transition into more stable pathogenic amyloids are also discussed. Finally, this review explores how the environment of liquid droplets could modulate protein aggregation by altering kinetics of protein self-association, affecting folding of protein monomers, or changing aggregation pathways.
Collapse
Affiliation(s)
- W Michael Babinchak
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Witold K Surewicz
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
422
|
Abstract
TDP-43 is an essential RNA-binding protein that assembles into protein inclusions in >95% of cases of amyotrophic lateral sclerosis (ALS). A partially helical region in the predominantly disordered C-terminal domain harbors several mutations associated with ALS and is important for TDP-43 function and liquid–liquid phase separation. We directly demonstrate that this helical region undergoes large structural changes upon helix–helix dimerization and that point mutations can enhance helix–helix assembly. Furthermore, we demonstrate that these point variants can be used to control the material properties of phase-separated TDP-43 constructs in cells and can enhance TDP-43 RNA-splicing function. Therefore, engineered forms of the TDP-43 helical domain could be used to control in-cell phase separation, dynamic assembly, and function. Liquid–liquid phase separation (LLPS) is involved in the formation of membraneless organelles (MLOs) associated with RNA processing. The RNA-binding protein TDP-43 is present in several MLOs, undergoes LLPS, and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS). While some ALS-associated mutations in TDP-43 disrupt self-interaction and function, here we show that designed single mutations can enhance TDP-43 assembly and function via modulating helical structure. Using molecular simulation and NMR spectroscopy, we observe large structural changes upon dimerization of TDP-43. Two conserved glycine residues (G335 and G338) are potent inhibitors of helical extension and helix–helix interaction, which are removed in part by variants at these positions, including the ALS-associated G335D. Substitution to helix-enhancing alanine at either of these positions dramatically enhances phase separation in vitro and decreases fluidity of phase-separated TDP-43 reporter compartments in cells. Furthermore, G335A increases TDP-43 splicing function in a minigene assay. Therefore, the TDP-43 helical region serves as a short but uniquely tunable module where application of biophysical principles can precisely control assembly and function in cellular and synthetic biology applications of LLPS.
Collapse
|
423
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
424
|
Chen X, Chen M, Schafer NP, Wolynes PG. Exploring the interplay between fibrillization and amorphous aggregation channels on the energy landscapes of tau repeat isoforms. Proc Natl Acad Sci U S A 2020; 117:4125-4130. [PMID: 32029593 PMCID: PMC7049151 DOI: 10.1073/pnas.1921702117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Filaments made up of different isoforms of tau protein are associated with a variety of neurodegenerative diseases. Filaments made up of the 4R-tau isoform, which has four repeat regions (R1 to R4), are found in patients suffering from Alzheimer's disease, while filaments made of the 3R-tau isoform, which contains only three repeat units (R1, R3, and R4), are found in patients with Pick's disease (frontotemporal dementia). In this work, a predictive coarse-grained protein force field, the associative memory water-mediated structure and energy model (AWSEM), is used to study the energy landscapes of nucleation of the two different fibrils derived from patients with Pick's and Alzheimer's diseases. The landscapes for nucleating both fibril types contain amorphous oligomers leading to branched structures as well as prefibrillar oligomers. These two classes of oligomers differ in their structural details: The prefibrillar oligomers have more parallel in-register β-strands, which ultimately lead to amyloid fibrils, while the amorphous oligomers are characterized by a near random β-strand stacking, leading to a distinct amorphous phase. The landscape topography suggests that there must be significant structural reordering, or "backtracking," to transit from the amorphous aggregation channel to the fibrillization channel. Statistical mechanical perturbation theory allows us to evaluate the effects of changing concentration on the aggregation free-energy landscapes and to predict the effects of phosphorylation, which is known to facilitate the aggregation of tau repeats.
Collapse
Affiliation(s)
- Xun Chen
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Mingchen Chen
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Bioengineering, Rice University, Houston, TX 77005
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
425
|
Kuechler ER, Budzyńska PM, Bernardini JP, Gsponer J, Mayor T. Distinct Features of Stress Granule Proteins Predict Localization in Membraneless Organelles. J Mol Biol 2020; 432:2349-2368. [PMID: 32105731 DOI: 10.1016/j.jmb.2020.02.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Recently generated proteomic data provides unprecedented insight into stress granule composition and stands as fruitful ground for further analysis. Stress granules are stress-induced biological assemblies that are of keen interest due to being linked to both long-term cell viability and a variety of protein aggregation-based diseases. Herein, we compile recently published stress granule composition data, formed specifically through heat and oxidative stress, for both mammalian (Homo sapiens) and yeast (Saccharomyces cerevisiae) cells. Interrogation of the data reveals that stress granule proteins are enriched in features that favor protein liquid-liquid phase separation, being highly disordered, soluble, and abundant while maintaining a high level of protein-protein interactions under basal conditions. Furthermore, these "stress granuleomes" are shown to be enriched for multidomained, RNA-binding proteins with increased potential for post-translational modifications. Findings are consistent with the notion that stress granule formation is driven by protein liquid-liquid phase separation. Furthermore, stress granule proteins appear poised near solubility limits while possessing the ability to dynamically alter their phase behavior in response to external threat. Interestingly, several features, such as protein disorder, are more prominent among stress granule proteins that share homologs between yeast and mammalian systems also found within stress-induced foci. We culminate results from our stress granule analysis into novel predictors for granule incorporation and validate the mammalian predictor's performance against multiple types of membraneless condensates and by colocalization microscopy.
Collapse
Affiliation(s)
- Erich R Kuechler
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Paulina M Budzyńska
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan P Bernardini
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
426
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
427
|
Murthy AC, Fawzi NL. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy. J Biol Chem 2020; 295:2375-2384. [PMID: 31911439 PMCID: PMC7039561 DOI: 10.1074/jbc.rev119.009847] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a phenomenon that underlies membraneless compartmentalization of the cell. The underlying molecular interactions that underpin biomolecular LLPS have been of increased interest due to the importance of membraneless organelles in facilitating various biological processes and the disease association of several of the proteins that mediate LLPS. Proteins that are able to undergo LLPS often contain intrinsically disordered regions and remain dynamic in solution. Solution-state NMR spectroscopy has emerged as a leading structural technique to characterize protein LLPS due to the variety and specificity of information that can be obtained about intrinsically disordered sequences. This review discusses practical aspects of studying LLPS by NMR, summarizes recent work on the molecular aspects of LLPS of various protein systems, and discusses future opportunities for characterizing the molecular details of LLPS to modulate phase separation.
Collapse
Affiliation(s)
- Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912.
| |
Collapse
|
428
|
Zhuo XF, Wang J, Zhang J, Jiang LL, Hu HY, Lu JX. Solid-State NMR Reveals the Structural Transformation of the TDP-43 Amyloidogenic Region upon Fibrillation. J Am Chem Soc 2020; 142:3412-3421. [PMID: 32003979 DOI: 10.1021/jacs.9b10736] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TDP-43 is a primary pathological hallmark protein of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, which may exist in the form of amyloid inclusions in the cells of patients. In addition to serving as a biomarker for these diseases, TDP-43 can also directly trigger neurodegeneration. We previously determined the amyloidogenic core region of TDP-43 (residues 311-360) and showed by solution NMR that this region includes two α-helices [(321-330) and (335-343)] in solution. We suggested that the helix-to-sheet structural transformation initiates TDP-43 aggregation. In the present study, X-ray diffraction shows that TDP-43 (311-360) aggregates adopt a cross-β structure. Thioredoxin (Trx)-fused TDP-43 (311-360) can undergo liquid-liquid phase separation (LLPS) before fibrillation, suggesting that phase separation is an intermediate step before amyloid formation. Solid-state NMR (SSNMR), carried out to elucidate the structural changes of TDP-43 (311-360) at the atomic level, indicates five β-strands of the amyloids formed, with the major two β-strands contributed by the first helical region in the solution structure. The NMR evidence is also in support of the fibril having a parallel in-register conformation, implying a mechanism in which the helix-helix interactions in LLPS are converted into β-strand parallel lateral association upon fibrillation. Our studies have assigned many key interresidue interactions that contribute to the stability of the fibril, including F316 with I318 and Q327 and W334 with A325, A326, A329, and S332. SSNMR with 1H detection reveals a unique close interaction between the indole Nε1-Hε1 of W334 and the side-chain carbonyl of Q343. This interaction could be a very important factor in initiating TDP-43 (311-360) folding/misfolding in LLPS.
Collapse
Affiliation(s)
- Xiao-Feng Zhuo
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , People's Republic of China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science , Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai 200031 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jian Wang
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , People's Republic of China
| | - Jing Zhang
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , People's Republic of China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science , Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai 200031 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science , Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai 200031 , People's Republic of China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science , Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai 200031 , People's Republic of China
| | - Jun-Xia Lu
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , People's Republic of China
| |
Collapse
|
429
|
Li D, Liu C. Structural Diversity of Amyloid Fibrils and Advances in Their Structure Determination. Biochemistry 2020; 59:639-646. [PMID: 31967790 DOI: 10.1021/acs.biochem.9b01069] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein amyloid fibrils are originally identified as pathological entities in a variety of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Recent studies have revealed that amyloid fibrils also serve as functional protein assemblies to fulfill a wide range of biological functions. Deciphering the molecular basis underlying the assembly of amyloid fibrils is essential for understanding their biological and pathological functions. Here, we summarize recent advances in the atomic structure determination of amyloid fibrils formed by both amyloidogenic peptides and full-length proteins. Furthermore, we demonstrate the diversity of amyloid fibrils, with a primary focus on the reversible fibrils, in sequence composition, self-assembled architecture, and physiochemical and pathological properties. Finally, we raise questions that will be answered by the future study of amyloid fibril structure.
Collapse
Affiliation(s)
- Dan Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai 200030 , China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 201210 , China
| |
Collapse
|
430
|
Wi S, Frydman L. An Efficient, Robust New Scheme for Establishing Broadband Homonuclear Correlations in Biomolecular Solid State NMR. Chemphyschem 2020; 21:284-294. [DOI: 10.1002/cphc.201901071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory Tallahassee Florida 32304 USA
| | - Lucio Frydman
- National High Magnetic Field Laboratory Tallahassee Florida 32304 USA
- Department of Chemical and Biological Physics Weizmann Institute of Sciences Rehovot Israel
| |
Collapse
|
431
|
Murray DT, Tycko R. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2020; 59:364-378. [PMID: 31895552 DOI: 10.1021/acs.biochem.9b00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In aqueous solutions, the 214-residue low-complexity domain of the FUS protein (FUS-LC) is known to undergo liquid-liquid phase separation and also to self-assemble into amyloid-like fibrils. In previous work based on solid state nuclear magnetic resonance (ssNMR) methods, a structural model for the FUS-LC fibril core was developed, showing that residues 39-95 form the fibril core. Unlike fibrils formed by amyloid-β peptides, α-synuclein, and other amyloid-forming proteins, the FUS-LC core is largely devoid of purely hydrophobic amino acid side chains. Instead, the core-forming segment contains numerous hydroxyl-bearing residues, including 18 serines, six threonines, and eight tyrosines, suggesting that the FUS-LC fibril structure may be stabilized in part by inter-residue hydrogen bonds among side chain hydroxyl groups. Here we describe ssNMR measurements, performed on 2H,15N,13C-labeled FUS-LC fibrils, that provide new information about the interactions of hydroxyl-bearing residues with one another and with water. The ssNMR data support the involvement of specific serine, threonine, and tyrosine residues in hydrogen-bonding interactions. The data also reveal differences in hydrogen exchange rates with water for different side chain hydroxyl groups, providing information about solvent exposure and penetration of water into the FUS-LC fibril core.
Collapse
Affiliation(s)
- Dylan T Murray
- Department of Chemistry , University of California , Davis , California 95616-5271 , United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
432
|
Cascarina SM, Ross ED. Natural and pathogenic protein sequence variation affecting prion-like domains within and across human proteomes. BMC Genomics 2020; 21:23. [PMID: 31914925 PMCID: PMC6947906 DOI: 10.1186/s12864-019-6425-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Impaired proteostatic regulation of proteins with prion-like domains (PrLDs) is associated with a variety of human diseases including neurodegenerative disorders, myopathies, and certain forms of cancer. For many of these disorders, current models suggest a prion-like molecular mechanism of disease, whereby proteins aggregate and spread to neighboring cells in an infectious manner. The development of prion prediction algorithms has facilitated the large-scale identification of PrLDs among "reference" proteomes for various organisms. However, the degree to which intraspecies protein sequence diversity influences predicted prion propensity has not been systematically examined. RESULTS Here, we explore protein sequence variation introduced at genetic, post-transcriptional, and post-translational levels, and its influence on predicted aggregation propensity for human PrLDs. We find that sequence variation is relatively common among PrLDs and in some cases can result in relatively large differences in predicted prion propensity. Sequence variation introduced at the post-transcriptional level (via alternative splicing) also commonly affects predicted aggregation propensity, often by direct inclusion or exclusion of a PrLD. Finally, analysis of a database of sequence variants associated with human disease reveals a number of mutations within PrLDs that are predicted to increase prion propensity. CONCLUSIONS Our analyses expand the list of candidate human PrLDs, quantitatively estimate the effects of sequence variation on the aggregation propensity of PrLDs, and suggest the involvement of prion-like mechanisms in additional human diseases.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
433
|
Göbl C, Morris VK, van Dam L, Visscher M, Polderman PE, Hartlmüller C, de Ruiter H, Hora M, Liesinger L, Birner-Gruenberger R, Vos HR, Reif B, Madl T, Dansen TB. Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16 INK4A. Redox Biol 2020; 28:101316. [PMID: 31539802 PMCID: PMC6812003 DOI: 10.1016/j.redox.2019.101316] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 02/09/2023] Open
Abstract
The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-β sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils.
Collapse
Affiliation(s)
- Christoph Göbl
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Vanessa K Morris
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Loes van Dam
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands
| | - Marieke Visscher
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands
| | - Paulien E Polderman
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands
| | - Christoph Hartlmüller
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hesther de Ruiter
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands
| | - Manuel Hora
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Laura Liesinger
- Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria
| | - Ruth Birner-Gruenberger
- Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria
| | - Harmjan R Vos
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands
| | - Bernd Reif
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria; BioTechMed-Graz, Austria.
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands.
| |
Collapse
|
434
|
Dendooven T, Luisi BF, Bandyra KJ. RNA lifetime control, from stereochemistry to gene expression. Curr Opin Struct Biol 2019; 61:59-70. [PMID: 31869589 DOI: 10.1016/j.sbi.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Through the activities of various multi-component assemblies, protein-coding transcripts can be chaperoned toward protein synthesis or nudged into a funnel of rapid destruction. The capacity of these machine-like assemblies to tune RNA lifetime underpins the harmony of gene expression in all cells. Some of the molecular machines that mediate transcript turnover also contribute to on-the-fly surveillance of aberrant mRNAs and non-coding RNAs. How these dynamic assemblies distinguish functional RNAs from those that must be degraded is an intriguing puzzle for understanding the regulation of gene expression and dysfunction associated with disease. Recent data illuminate what the machines look like, and how they find, recognise and operate on transcripts to sculpt the dynamic regulatory landscape. This review captures current structural and mechanistic insights into the key enzymes and their effector assemblies that contribute to the fate-determining decision points for RNA in post-transcriptional control of genetic information.
Collapse
Affiliation(s)
- Tom Dendooven
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
435
|
Shenoy J, El Mammeri N, Dutour A, Berbon M, Saad A, Lends A, Morvan E, Grélard A, Lecomte S, Kauffmann B, Theillet FX, Habenstein B, Loquet A. Structural dissection of amyloid aggregates of TDP-43 and its C-terminal fragments TDP-35 and TDP-16. FEBS J 2019; 287:2449-2467. [PMID: 31782904 DOI: 10.1111/febs.15159] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
The TAR DNA-binding protein (TDP-43) self-assembles into prion-like aggregates considered to be the structural hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we use a combination of electron microscopy, X-ray fiber diffraction, Fourier-transform infrared spectroscopy analysis, and solid-state NMR spectroscopy to investigate the molecular organization of different TDP constructs, namely the full-length TDP-43 (1-414), two C-terminal fragments [TDP-35 (90-414) and TDP-16 (267-414)], and a C-terminal truncated fragment (TDP-43 ∆GaroS2), in their fibrillar state. Although the different protein constructs exhibit similar fibril morphology and a typical cross-β signature by X-ray diffraction, solid-state NMR indicates that TDP-43 and TDP-35 share the same polymorphic molecular structure, while TDP-16 encompasses a well-ordered amyloid core. We identified several residues in the so-called C-terminal GaroS2 (368-414) domain that participates in the rigid core of TDP-16 fibrils, underlining its importance during the aggregation process. Our findings demonstrate that C-terminal fragments can adopt a different molecular conformation in isolation or in the context of the full-length assembly, suggesting that the N-terminal domain and RRM domains play an important role in the TDP-43 amyloid transition.
Collapse
Affiliation(s)
- Jayakrishna Shenoy
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Nadia El Mammeri
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Antoine Dutour
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Mélanie Berbon
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Ahmad Saad
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Alons Lends
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Estelle Morvan
- Université de Bordeaux, CNRS, INSERM, UMS3033, Institut Européen de Chimie et Biologie (IECB), Pessac, France
| | - Axelle Grélard
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Sophie Lecomte
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, INSERM, UMS3033, Institut Européen de Chimie et Biologie (IECB), Pessac, France
| | - François-Xavier Theillet
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Birgit Habenstein
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Antoine Loquet
- CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France
| |
Collapse
|
436
|
François-Moutal L, Perez-Miller S, Scott DD, Miranda VG, Mollasalehi N, Khanna M. Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 2019; 12:301. [PMID: 31920533 PMCID: PMC6934062 DOI: 10.3389/fnmol.2019.00301] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - David D Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| |
Collapse
|
437
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
438
|
Ding X, Sun F, Chen J, Chen L, Tobin-Miyaji Y, Xue S, Qiang W, Luo SZ. Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation. J Mol Biol 2019; 432:467-483. [PMID: 31805282 DOI: 10.1016/j.jmb.2019.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
Abstract
The RNA-binding protein fused in sarcoma (FUS) forms physiological granules and pathological fibrils, which facilitate RNA functions and cause neurodegenerative diseases, respectively. Phosphorylation at Ser/Thr residues may regulate the functional assembly of FUS and prevent pathological aggregation in cells. However, the low-complexity nature of the FUS sequence makes it challenging to characterize how phosphorylation of specific sites within the core amyloid-forming segment affects aggregation. Taking advantage of the recently solved molecular structures of the fibrillar core of the FUS low-complexity (FUS-LC) domain, we systematically investigated the aggregation of repeated segments within the core. We identified a segment with a strong amyloid-forming tendency that induced the aggregation of FUS-LC domain in phase-separated liquid droplets and further seeded the aggregation of full-length FUS. The aggregation propensity and seeding ability of this amyloid-forming segment were modulated by site-specific phosphorylation. Solid-state nuclear magnetic resonance (NMR) spectroscopy and computational modeling implied that site-specific phosphorylation at Ser61 plays key roles in FUS assembly by disrupting both intra- and intermolecular interactions that maintain the amyloid core structure.
Collapse
Affiliation(s)
- Xiufang Ding
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuto Tobin-Miyaji
- Department of Chemistry, Binghamton University, State University of New York, Vestal, NY 13902, USA
| | - Song Xue
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Vestal, NY 13902, USA.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
439
|
Gabryelczyk B, Cai H, Shi X, Sun Y, Swinkels PJM, Salentinig S, Pervushin K, Miserez A. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides. Nat Commun 2019; 10:5465. [PMID: 31784535 PMCID: PMC6884462 DOI: 10.1038/s41467-019-13469-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) is involved in both intracellular membraneless organelles and extracellular tissues. Despite growing understanding of LLPS, molecular-level mechanisms behind this process are still not fully established. Here, we use histidine-rich squid beak proteins (HBPs) as model IDPs to shed light on molecular interactions governing LLPS. We show that LLPS of HBPs is mediated though specific modular repeats. The morphology of separated phases (liquid-like versus hydrogels) correlates with the repeats' hydrophobicity. Solution-state NMR indicates that LLPS is a multistep process initiated by deprotonation of histidine residues, followed by transient hydrogen bonding with tyrosine, and eventually by hydrophobic interactions. The microdroplets are stabilized by aromatic clustering of tyrosine residues exhibiting restricted molecular mobility in the nano-to-microsecond timescale according to solid-state NMR experiments. Our findings provide guidelines to rationally design pH-responsive peptides with LLPS ability for various applications, including bioinspired protocells and smart drug-delivery systems.
Collapse
Affiliation(s)
- Bartosz Gabryelczyk
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Hao Cai
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, NTU, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Sun
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Piet J M Swinkels
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
- Physical Chemistry and Soft Matter, Wageningen University, 6708 WE, Wageningen, Netherlands
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Department Materials Meet Life, EMPA, CH-9014, St-Gallen, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Konstantin Pervushin
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Ali Miserez
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore.
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
440
|
Peran I, Mittag T. Molecular structure in biomolecular condensates. Curr Opin Struct Biol 2019; 60:17-26. [PMID: 31790873 DOI: 10.1016/j.sbi.2019.09.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Evidence accumulated over the past decade provides support for liquid-liquid phase separation as the mechanism underlying the formation of biomolecular condensates, which include not only 'membraneless' organelles such as nucleoli and RNA granules, but additional assemblies involved in transcription, translation and signaling. Understanding the molecular mechanisms of condensate function requires knowledge of the structures of their constituents. Current knowledge suggests that structures formed via multivalent domain-motif interactions remain largely unchanged within condensates. Two different viewpoints exist regarding structures of disordered low-complexity domains within condensates; one argues that low-complexity domains remain largely disordered in condensates and their multivalency is encoded in short motifs called 'stickers', while the other argues that the sequences form cross-β structures resembling amyloid fibrils. We review these viewpoints and highlight outstanding questions that will inform structure-function relationships for biomolecular condensates.
Collapse
Affiliation(s)
- Ivan Peran
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
441
|
Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019; 176:419-434. [PMID: 30682370 DOI: 10.1016/j.cell.2018.12.035] [Citation(s) in RCA: 1750] [Impact Index Per Article: 291.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Evidence is now mounting that liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in cells. This realization has motivated major efforts to delineate the function of such biomolecular condensates in normal cells and their roles in contexts ranging from development to age-related disease. There is great interest in understanding the underlying biophysical principles and the specific properties of biological condensates with the goal of bringing insights into a wide range of biological processes and systems. The explosion of physiological and pathological contexts involving LLPS requires clear standards for their study. Here, we propose guidelines for rigorous experimental characterization of LLPS processes in vitro and in cells, discuss the caveats of common experimental approaches, and point out experimental and theoretical gaps in the field.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center, 01307 Dresden, Germany.
| | - Amy Gladfelter
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Tanja Mittag
- Department for Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
442
|
Fernandopulle M, Wang G, Nixon-Abell J, Qamar S, Balaji V, Morihara R, St George-Hyslop PH. Inherited and Sporadic Amyotrophic Lateral Sclerosis and Fronto-Temporal Lobar Degenerations arising from Pathological Condensates of Phase Separating Proteins. Hum Mol Genet 2019; 28:R187-R196. [PMID: 31595953 PMCID: PMC6872449 DOI: 10.1093/hmg/ddz162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Recent work on the biophysics of proteins with low complexity, intrinsically disordered domains that have the capacity to form biological condensates has profoundly altered the concepts about the pathogenesis of inherited and sporadic neurodegenerative disorders associated with pathological accumulation of these proteins. In the present review, we use the FUS, TDP-43 and A11 proteins as examples to illustrate how missense mutations and aberrant post-translational modifications of these proteins cause amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD).
Collapse
Affiliation(s)
- Michael Fernandopulle
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - GuoZhen Wang
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Varun Balaji
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3H2
| | - Ryuta Morihara
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3H2
| | - Peter H St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3H2
| |
Collapse
|
443
|
Strom AR, Brangwynne CP. The liquid nucleome - phase transitions in the nucleus at a glance. J Cell Sci 2019; 132:132/22/jcs235093. [PMID: 31754043 DOI: 10.1242/jcs.235093] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells organize membrane-less internal compartments through a process called liquid-liquid phase separation (LLPS) to create chemically distinct compartments, referred to as condensates, which emerge from interactions among biological macromolecules. These condensates include various cytoplasmic structures such as P-granules and stress granules. However, an even wider array of condensates subcompartmentalize the cell nucleus, forming liquid-like structures that range from nucleoli and Cajal bodies to nuclear speckles and gems. Phase separation provides a biophysical assembly mechanism underlying this non-covalent form of fluid compartmentalization and functionalization. In this Cell Science at a Glance article and the accompanying poster, we term these phase-separated liquids that organize the nucleus the liquid nucleome; we discuss examples of biological phase transitions in the nucleus, how the cell utilizes biophysical aspects of phase separation to form and regulate condensates, and suggest interpretations for the role of phase separation in nuclear organization and function.
Collapse
Affiliation(s)
- Amy R Strom
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
444
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
445
|
Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nat Struct Mol Biol 2019; 26:1044-1052. [PMID: 31695184 PMCID: PMC6907165 DOI: 10.1038/s41594-019-0322-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Deposits of amyloid fibrils of α-synuclein are the histological hallmarks of Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, with hereditary mutations in α-synuclein linked to the first two of these conditions. Seeing the changes to the structures of amyloid fibrils bearing these mutations may help to understand these diseases. To this end, we determined the cryo-EM structures of α-synuclein fibrils containing the H50Q hereditary mutation. We find that the H50Q mutation results in two previously unobserved polymorphs of α-synuclein: Narrow and Wide Fibrils, formed from either one or two protofilaments, respectively. These structures recapitulate conserved features of the wild-type fold but reveal new structural elements including a previously unobserved hydrogen bond network and surprising new protofilament arrangements. The structures of the H50Q polymorphs help to rationalize the faster aggregation kinetics, higher seeding capacity in biosensor cells, and greater cytotoxicity we observe for H50Q compared to wild-type α-synuclein.
Collapse
|
446
|
McAlary L, Plotkin SS, Yerbury JJ, Cashman NR. Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:262. [PMID: 31736708 PMCID: PMC6838634 DOI: 10.3389/fnmol.2019.00262] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/14/2019] [Indexed: 01/26/2023] Open
Abstract
The discovery that prion protein can misfold into a pathological conformation that encodes structural information capable of both propagation and inducing severe neuropathology has revolutionized our understanding of neurodegenerative disease. Many neurodegenerative diseases with a protein misfolding component are now classified as “prion-like” owing to the propagation of both symptoms and protein aggregation pathology in affected individuals. The neuromuscular disorder amyotrophic lateral sclerosis (ALS) is characterized by protein inclusions formed by either TAR DNA-binding protein of 43 kDa (TDP-43), Cu/Zn superoxide dismutase (SOD1), or fused in sarcoma (FUS), in both upper and lower motor neurons. Evidence from in vitro, cell culture, and in vivo studies has provided strong evidence to support the involvement of a prion-like mechanism in ALS. In this article, we review the evidence suggesting that prion-like propagation of protein aggregation is a primary pathomechanism in ALS, focusing on the key proteins and genes involved in disease (TDP-43, SOD1, FUS, and C9orf72). In each case, we discuss the evidence ranging from biophysical studies to in vivo examinations of prion-like spreading. We suggest that the idiopathic nature of ALS may stem from its prion-like nature and that elucidation of the specific propagating protein assemblies is paramount to developing effective therapies.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
447
|
Sequence variants of human tropoelastin affecting assembly, structural characteristics and functional properties of polymeric elastin in health and disease. Matrix Biol 2019; 84:68-80. [DOI: 10.1016/j.matbio.2019.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
|
448
|
Hui KK, Chen YK, Endo R, Tanaka M. Translation from the Ribosome to the Clinic: Implication in Neurological Disorders and New Perspectives from Recent Advances. Biomolecules 2019; 9:E680. [PMID: 31683805 PMCID: PMC6920867 DOI: 10.3390/biom9110680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
De novo protein synthesis by the ribosome and its multitude of co-factors must occur in a tightly regulated manner to ensure that the correct proteins are produced accurately at the right time and, in some cases, also in the proper location. With novel techniques such as ribosome profiling and cryogenic electron microscopy, our understanding of this basic biological process is better than ever and continues to grow. Concurrently, increasing attention is focused on how translational regulation in the brain may be disrupted during the progression of various neurological disorders. In fact, translational dysregulation is now recognized as the de facto pathogenic cause for some disorders. Novel mechanisms including ribosome stalling, ribosome-associated quality control, and liquid-liquid phase separation are closely linked to translational regulation, and may thus be involved in the pathogenic process. The relationships between translational dysregulation and neurological disorders, as well as the ways through which we may be able to reverse those detrimental effects, will be examined in this review.
Collapse
Affiliation(s)
- Kelvin K Hui
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Yi-Kai Chen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
449
|
Palikyras S, Papantonis A. Modes of phase separation affecting chromatin regulation. Open Biol 2019; 9:190167. [PMID: 31615334 PMCID: PMC6833219 DOI: 10.1098/rsob.190167] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
It has become evident that chromatin in cell nuclei is organized at multiple scales. Significant effort has been devoted to understanding the connection between the nuclear environment and the diverse biological processes taking place therein. A fundamental question is how cells manage to orchestrate these reactions, both spatially and temporally. Recent insights into phase-separated membraneless organelles may be the key for answering this. Of the two models that have been proposed for phase-separated entities, one largely depends on chromatin-protein interactions and the other on multivalent protein-protein and/or protein-RNA ones. Each has its own characteristics, but both would be able to, at least in part, explain chromatin and transcriptional organization. Here, we attempt to give an overview of these two models and their studied examples to date, before discussing the forces that could govern phase separation and prevent it from arising unrestrainedly.
Collapse
Affiliation(s)
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
450
|
Schmidt HB, Barreau A, Rohatgi R. Phase separation-deficient TDP43 remains functional in splicing. Nat Commun 2019; 10:4890. [PMID: 31653829 PMCID: PMC6814767 DOI: 10.1038/s41467-019-12740-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered regions (IDRs) are often fast-evolving protein domains of low sequence complexity that can drive phase transitions and are commonly found in many proteins associated with neurodegenerative diseases, including the RNA processing factor TDP43. Yet, how phase separation contributes to the physiological functions of TDP43 in cells remains enigmatic. Here, we combine systematic mutagenesis guided by evolutionary sequence analysis with a live-cell reporter assay of TDP43 phase dynamics to identify regularly-spaced hydrophobic motifs separated by flexible, hydrophilic segments in the IDR as a key determinant of TDP43 phase properties. This heuristic framework allows customization of the material properties of TDP43 condensates to determine effects on splicing function. Remarkably, even a mutant that fails to phase-separate at physiological concentrations can still efficiently mediate the splicing of a quantitative, single-cell splicing reporter and endogenous targets. This suggests that the ability of TDP43 to phase-separate is not essential for its splicing function.
Collapse
Affiliation(s)
| | - Ariana Barreau
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|