401
|
Sullivan JA, Shirasu K, Deng XW. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 2004; 4:948-58. [PMID: 14631355 DOI: 10.1038/nrg1228] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A tightly regulated and highly specific system for the degradation of individual proteins is essential for the survival of all organisms. In eukaryotes, this is achieved by the tagging of proteins with ubiquitin and their subsequent recognition and degradation by the 26S proteasome. In plants, genetic analysis has identified many genes that regulate developmental pathways. Subsequent analysis of these genes has implicated ubiquitin and the 26S proteasome in the control of diverse developmental processes, and indicates that proteolysis is a crucial regulatory step throughout the life cycle of plants.
Collapse
Affiliation(s)
- James A Sullivan
- Deptartment of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208104, 165 Prospect Street, New Haven, Connecticut 06520-8104, USA
| | | | | |
Collapse
|
402
|
Rhoads DM, Vanlerberghe GC. Mitochondria-Nucleus Interactions: Evidence for Mitochondrial Retrograde Communication in Plant Cells. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
403
|
Métraux JP, Durner J. The Role of Salicylic Acid and Nitric Oxide in Programmed Cell Death and Induced Resistance. ECOLOGICAL STUDIES 2004. [DOI: 10.1007/978-3-662-08818-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
404
|
Alfano JR, Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:385-414. [PMID: 15283671 DOI: 10.1146/annurev.phyto.42.040103.110731] [Citation(s) in RCA: 510] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many phytopathogenic bacteria inject virulence effector proteins into plant cells via a Hrp type III secretion system (TTSS). Without the TTSS, these pathogens cannot defeat basal defenses, grow in plants, produce disease lesions in hosts, or elicit the hypersensitive response (HR) in nonhosts. Pathogen genome projects employing bioinformatic methods to identify TTSS Hrp regulon promoters and TTSS pathway targeting signals suggest that phytopathogenic Pseudomonas, Xanthomonas, and Ralstonia spp. harbor large arsenals of effectors. The Hrp TTSS employs customized cytoplasmic chaperones, conserved export components in the bacterial envelope (also used by the TTSS of animal pathogens), and a more specialized set of TTSS-secreted proteins to deliver effectors across the plant cell wall and plasma membrane. Many effectors can act as molecular double agents that betray the pathogen to plant defenses in some interactions and suppress host defenses in others. Investigations of the functions of effectors within plant cells have demonstrated the plasma membrane and nucleus as subcellular sites for several effectors, revealed some effectors to possess cysteine protease or protein tyrosine phosphatase activity, and provided new clues to the coevolution of bacterium-plant interactions.
Collapse
Affiliation(s)
- James R Alfano
- The Plant Science Initiative and the Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, 68588-0660, USA.
| | | |
Collapse
|
405
|
Molecular Evolution of the Endocrine System. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
406
|
Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T. Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:820-9. [PMID: 14675447 DOI: 10.1046/j.1365-313x.2003.01923.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyamines (PAs) play important roles in cell proliferation, growth and environmental stress responses of all living organisms. In this study, we examine whether these compounds act as signal mediators. Spermine (Spm) specifically activated protein kinases of tobacco leaves, which were identified as salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), using specific antibodies. Upon Spm treatment, upregulation of WIPK, but not SIPK, was observed. Spm-induced mitogen-activated protein kinases (MAPKs) activation and WIPK upregulation were prevented upon pre-treatment with antioxidants and Ca2+ channel blockers. Additionally, Spm specifically stimulated expression of the alternative oxidase (AOX) gene, which was disrupted by these antioxidants and Ca2+ channel blockers. Bongkrekic acid (BK), an inhibitor of the opening of mitochondrial permeability transition (PT) pores, suppressed MAPKs activation and accumulation of WIPK and AOX mRNA. Our data collectively suggest that Spm causes mitochondrial dysfunction via a signalling pathway in which reactive oxygen species and Ca2+ influx are involved. As a result, the phosphorylation activities of the two MAPK enzymes SIPK and WIPK are stimulated.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
407
|
Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:905-17. [PMID: 14675454 DOI: 10.1046/j.1365-313x.2003.01944.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tomato Pto kinase confers resistance to the causative agent of bacterial speck disease, Pseudomonas syringae pv. tomato, by recognizing the pathogen effector proteins AvrPto or AvrPtoB. Pto-mediated resistance requires multiple signal transduction pathways and has been shown to activate many defense responses including an oxidative burst, rapid changes in the expression of over 400 genes, and localized cell death. We have tested the role in Pto-mediated resistance in tomato of a set of 21 genes from other species known to be involved in defense-related signaling. Expression of each gene was suppressed by virus-induced gene silencing (VIGS) and the effect on disease symptoms and bacterial growth during the tomato-Pseudomonas incompatible interaction was determined. We found that Pto-mediated resistance was compromised by silencing of genes encoding two mitogen-activated protein (MAP) kinase kinases, MEK1 and MEK2, two MAP kinases, NTF6 and wound-induced protein kinase (WIPK), a key regulator of systemic acquired resistance (SAR), NPR1, and two transcription factors, TGA1a and TGA2.2. A lesser impact on Pto-mediated resistance was observed in plants silenced for RAR1 and COI1. The identification of nine genes that play a role in resistance to bacterial speck disease both advances our knowledge of Pto signal transduction and demonstrates the conservation of many defense signaling components among diverse plant species.
Collapse
Affiliation(s)
- Sophia K Ekengren
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853-1801, USA
| | | | | | | | | |
Collapse
|
408
|
Nühse TS, Boller T, Peck SC. A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J Biol Chem 2003; 278:45248-54. [PMID: 12949074 DOI: 10.1074/jbc.m307443200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo pulse labeling of suspension-cultured Arabidopsis cells with [32P]orthophosphate allows a systematic analysis of dynamic changes in protein phosphorylation. Here, we use this technique to investigate signal transduction events at the plant plasma membrane triggered upon perception of microbial elicitors of defense responses, using as a model elicitor flg22, a peptide corresponding to the most conserved domain of bacterial flagellin. We demonstrate that two-dimensional gel electrophoresis in conjunction with mass spectrometry is a suitable tool for the identification of intrinsic membrane proteins, and we show that among them a syntaxin, AtSyp122, is phosphorylated rapidly in response to flg22. Although incorporation of radioactive phosphate into the protein only occurs significantly after elicitation, immunoblot analysis after two-dimensional gel separation indicates that the protein is also phosphorylated prior to elicitation. These results indicate that flg22 elicits either an increase in the rate of turnover of phosphate or an additional de novo phosphorylation event. In vitro, phosphorylation of AtSyp122 is calcium-dependent. In vitro phosphorylated peptides separated by two-dimensional thin layer chromatography comigrate with two of the three in vivo phosphopeptides, indicating that this calcium-dependent phosphorylation is biologically relevant. These results indicate a regulatory link between elicitor-induced calcium fluxes and the rapid phosphorylation of a syntaxin. Because syntaxins are known to be important in membrane fusion and exocytosis, we hypothesize that one of the functions of the calcium signal is to stimulate exocytosis of defense-related proteins and compounds.
Collapse
Affiliation(s)
- Thomas S Nühse
- Friedrich-Miescher Institute of Biomedical Research, 4002 Basel, Switzerland
| | | | | |
Collapse
|
409
|
Abstract
Plants in the field exposed to ambient solar ultraviolet-B (UV-B) radiation (280-320 nm) often show an increased resistance to herbivorous insects compared with control plants grown under filters that exclude the UV-B component of solar radiation. This corresponds with a significant overlap in gene expression between the UV-B and the wounding/herbivory response. Furthermore, wound-responsive signaling components such as mitogen-activated protein kinases are activated by UV-B. A mechanistic explanation for these overlaps might be that UV-B co-opts cell surface receptors for defense signals such as systemin and oligosaccharide elicitors in a ligand-independent manner.
Collapse
Affiliation(s)
- Johannes Stratmann
- University of South Carolina, Department of Biological Sciences, Coker Life Science Building, Columbia, SC 29208, USA.
| |
Collapse
|
410
|
Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2003; 4:383-91. [PMID: 20569398 DOI: 10.1046/j.1364-3703.2003.00186.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
SUMMARY Mitogen-activated protein kinases (MAPKs) play pivotal roles in the signal transduction pathway of plant defence responses against pathogens. A search for MAPK-interacting proteins revealed an interaction between a Nicotiana benthamiana MAPK, SIPK (NbSIPK) and cytosolic Hsp90 (NbHsp90c-1) in yeast two-hybrid assay. To study the function of Hsp90 in disease resistance, we silenced NbHsp90c-1 in N. benthamiana by virus-induced gene silencing (VIGS) with Potato virus X (PVX). NbHsp90c-1 silenced plants exhibited: (1) a stunted phenotype, (2) no hypersensitive response (HR) development after infiltration with the Phytophthora infestans protein INF1 and a non-host pathogen Pseudomonas cichorii that normally triggers HR in N. benthamiana, (3) compromised non-host resistance to P. cichorii, and (4) consistently reduced transcription levels of PR (pathogenesis related) protein genes. Similar phenotypes were observed also for plants in which a cytosolic Hsp70 (NbHsp70c-1), a gene for another class of molecular chaperon, was silenced. Hsp90 was isolated as a MAPK-interacting protein in yeast two-hybrid assay, therefore we tested the effect of NbHsp90c-1 silencing as well as NbHsp70c-1 silencing on the HR development caused by infiltration of a hyperactive potato MAPKK (StMEK1(DD)). No difference in the timing or extent of HR was found among NbHsp90c-1 silenced, NbHsp70c-1 silenced and control plants. This result indicates that observed impairment of INF1- and P. cichorii-mediated HR development in NbHsp90c-1 silenced and NbHsp70c-1 silenced plants was not caused by the abrogation in MAPK function downstream of active MAPKK that leads to HR. These findings suggest essential roles of Hsp90 and Hsp70 in plant defence signal transduction pathway upstream or independent of the MAPK cascade.
Collapse
Affiliation(s)
- H Kanzaki
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | | | | | | | | | | | | | | |
Collapse
|
411
|
Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. PLANT PHYSIOLOGY 2003; 132:1961-72. [PMID: 12913152 PMCID: PMC181281 DOI: 10.1104/pp.103.023176] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Revised: 04/07/2003] [Accepted: 05/09/2003] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are known to transduce plant defense signals, but the downstream components of the MAPK have as yet not been elucidated. Here, we report an MAPK from rice (Oryza sativa), BWMK1, and a transcription factor, OsEREBP1, phosphorylated by the kinase. The MAPK carries a TDY phosphorylation motif instead of the more common TEY motif in its kinase domain and has an unusually extended C-terminal domain that is essential to its kinase activity and translocation to the nucleus. The MAPK phosphorylates OsEREBP1 that binds to the GCC box element (AGCCGCC) of the several basic pathogenesis-related gene promoters, which in turn enhances DNA-binding activity of the factor to the cis element in vitro. Transient co-expression of the BWMK1 and OsEREBP1 in Arabidopsis protoplasts elevates the expression of the beta-glucuronidase reporter gene driven by the GCC box element. Furthermore, transgenic tobacco (Nicotiana tabacum) plants overexpressing BWMK1 expressed many pathogenesis-related genes at higher levels than wild-type plants with an enhanced resistance to pathogens. These findings suggest that MAPKs contribute to plant defense signal transduction by phosphorylating one or more transcription factors.
Collapse
Affiliation(s)
- Yong Hwa Cheong
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Genet Genomics 2003; 269:583-91. [PMID: 12838412 DOI: 10.1007/s00438-003-0872-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Accepted: 05/06/2003] [Indexed: 11/29/2022]
Abstract
Activation of two mitogen-activated protein kinases (MAPKs), wound-induced protein kinase (WIPK) and salicylic acid-induced protein kinase (SIPK), is one of the earliest responses that occur in tobacco plants that have been wounded, treated with pathogen-derived elicitors or challenged with avirulent pathogens. We isolated cDNAs for these MAPKs (NbWIPKand NbSIPK) from Nicotiana benthamiana. The function of NbWIPK and NbSIPK in mediating the hypersensitive response (HR) triggered by infiltration with INF1 protein (the major elicitin secreted by Phytophthora infestans), and the defense response to an incompatible bacterial pathogen (Pseudomonas cichorii), was investigated by employing virus-induced gene silencing (VIGS) to inhibit expression of the WIPK and SIPK genes in N. benthamiana. Silencing of WIPK or SIPK, or both genes simultaneously, resulted in reduced resistance to P. cichorii, but no change was observed in the timing or extent of HR development after treatment with INF1.
Collapse
Affiliation(s)
- P C Sharma
- Department of Agricultural Botany, Ch. Charan Singh University, 250004 Meerut, India
| | | | | | | | | | | |
Collapse
|
413
|
Rudd JJ, Osman K, Franklin FCH, Franklin-Tong VE. Activation of a putative MAP kinase in pollen is stimulated by the self-incompatibility (SI) response. FEBS Lett 2003; 547:223-7. [PMID: 12860418 DOI: 10.1016/s0014-5793(03)00710-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) operate downstream of receptor-ligand interactions, playing a pivotal role in responses to extracellular signals. The self-incompatibility (SI) response in Papaver rhoeas L. triggers a Ca2+-dependent signalling cascade resulting in inhibition of incompatible pollen. We have investigated the possible involvement of MAPKs in SI. We report the enhanced activation of a 56 kDa protein kinase (p56) in SI-induced pollen and provide evidence that p56 has MAPK activity. This provides an important advance in our understanding of the SI response. We believe this is the first direct biochemical demonstration of activation of a MAPK during SI.
Collapse
Affiliation(s)
- Jason J Rudd
- School of Biosciences, The University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | | | | | | |
Collapse
|
414
|
Espinosa A, Guo M, Tam VC, Fu ZQ, Alfano JR. The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol Microbiol 2003; 49:377-87. [PMID: 12828636 DOI: 10.1046/j.1365-2958.2003.03588.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The bacterial plant pathogen Pseudomonas syringae possesses a type III protein secretion system that delivers many virulence proteins into plant cells. A subset of these proteins (called Avr proteins) is recognized by the plant's innate immune system and triggers defences. One defence-associated response is the hypersensitive response (HR), a programmed cell death (PCD) of plant tissue. We have previously identified HopPtoD2 as a type III secreted protein from P. s. pv. tomato DC3000. Sequence analysis revealed that an N-terminal domain shared homology with AvrPphD and a C-terminal domain was similar to protein tyrosine phosphatases (PTPs). We demonstrated that purified HopPtoD2 possessed PTP activity and this activity required a conserved catalytic Cys residue (Cys(378)). Interestingly, HopPtoD2 was capable of suppressing the HR elicited by an avirulent P. syringae strain on Nicotiana benthamiana. HopPtoD2 derivatives that lacked Cys(378) no longer suppressed the HR indicating that HR suppression required PTP activity. A constitutively active MAPK kinase, called NtMEK2DD, is capable of eliciting an HR-like cell death when transiently expressed in tobacco. When NtMEK2DD and HopPtoD2 were co-delivered into plant cells, the HR was suppressed indicating that HopPtoD2 acts downstream of NtMEK2DD. DC3000 hopPtoD2 mutants were slightly reduced in their ability to multiply in planta and displayed an enhanced ability to elicit an HR. The identification of HopPtoD2 as a PTP and a PCD suppressor suggests that the inactivation of MAPK pathways is a virulence strategy utilized by bacterial plant pathogens.
Collapse
Affiliation(s)
- Avelina Espinosa
- Plant Science Initiative, University of Nebraska--Lincoln, NE 68588-0660, USA
| | | | | | | | | |
Collapse
|
415
|
Gupta R, Luan S. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. PLANT PHYSIOLOGY 2003; 132:1149-52. [PMID: 12857797 PMCID: PMC1540326 DOI: 10.1104/pp.103.020792] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Rajeev Gupta
- Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
416
|
Bretz JR, Mock NM, Charity JC, Zeyad S, Baker CJ, Hutcheson SW. A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection. Mol Microbiol 2003; 49:389-400. [PMID: 12828637 DOI: 10.1046/j.1365-2958.2003.03616.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas syringae strains translocate effector proteins into host cells via the hrp-encoded type III protein secretion system (TTSS) to facilitate pathogenesis in susceptible plants. However, the mechanisms by which pathogenesis is favoured by these effectors are not well understood. Individual strains express multiple effectors with apparently distinct activities that are co-ordinately regulated by the alternative sigma factor HrpL. Genes for several effectors were identified in the P. syringae pv. tomato DC3000 genome using a promoter trap assay to identify HrpL-dependent promoters. In addition to orthologues of avrPphE and hrpW, an unusual allele of avrPphD was detected that carried an IS52 insertion. Using this avrPphD::IS52 allele as a probe, a wild-type allele of avrPphD, hopPtoD1, and a chimeric homologue were identified in the DC3000 genome. This chimeric homologue, identified as HopPtoD2 in the annotated DC3000 genome, consisted of an amino terminal secretion domain similar to that of AvrPphD fused to a potential protein tyrosine phosphatase domain. Culture filtrates of strains expressing HopPtoD2 were able to dephosphorylate pNPP and two phosphotyrosine peptides. HopPtoD2 was shown to be translocated into Arabidopsis thaliana cells via the hrp-encoded TTSS. A DeltahopPtoD2 mutant of DC3000 exhibited strongly reduced virulence in Arabidopsis thaliana. Ectopic expression of hopPtoD2 in P. syringae Psy61 that lacks a native hopPtoD2 orthologue delayed the development of several defence-associated responses including programmed cell death, active oxygen production and transcription of the pathogenesis-related gene PR1. The results indicate that HopPtoD2 is a translocated effector with protein tyrosine phosphatase activity that modulates plant defence responses.
Collapse
Affiliation(s)
- James R Bretz
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
417
|
Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Somerville SC, Maclean DJ. Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. PLANT PHYSIOLOGY 2003; 132:999-1010. [PMID: 12805628 PMCID: PMC167038 DOI: 10.1104/pp.103.021683] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 02/26/2003] [Accepted: 03/13/2003] [Indexed: 05/17/2023]
Abstract
Pathogen challenge can trigger an integrated set of signal transduction pathways, which ultimately leads to a state of "high alert," otherwise known as systemic or induced resistance in tissue remote to the initial infection. Although large-scale gene expression during systemic acquired resistance, which is induced by salicylic acid or necrotizing pathogens has been previously reported using a bacterial pathogen, the nature of systemic defense responses triggered by an incompatible necrotrophic fungal pathogen is not known. We examined transcriptional changes that occur during systemic defense responses in Arabidopsis plants inoculated with the incompatible fungal pathogen Alternaria brassicicola. Substantial changes (2.00-fold and statistically significant) were demonstrated in distal tissue of inoculated plants for 35 genes (25 up-regulated and 10 down-regulated), and expression of a selected subset of systemically expressed genes was confirmed using real-time quantitative polymerase chain reaction. Genes with altered expression in distal tissue included those with putative functions in cellular housekeeping, indicating that plants modify these vital processes to facilitate a coordinated response to pathogen attack. Transcriptional up-regulation of genes encoding enzymes functioning in the beta-oxidation pathway of fatty acids was particularly interesting. Transcriptional up-regulation was also observed for genes involved in cell wall synthesis and modification and genes putatively involved in signal transduction. The results of this study, therefore, confirm the notion that distal tissue of a pathogen-challenged plant has a heightened preparedness for subsequent pathogen attacks.
Collapse
Affiliation(s)
- Peer M Schenk
- Cooperative Research Centre for Tropical Plant Protection, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Rudrabhatla P, Rajasekharan R. Mutational analysis of stress-responsive peanut dual specificity protein kinase. Identification of tyrosine residues involved in regulation of protein kinase activity. J Biol Chem 2003; 278:17328-35. [PMID: 12624102 DOI: 10.1074/jbc.m300024200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported that Arachis hypogaea serine/threonine/tyrosine (STY) protein kinase is developmentally regulated and is induced by abiotic stresses (Rudrabhatla, P., and Rajasekharan, R. (2002) Plant Physiol. 130, 380-390). Other than MAPKs, the site of tyrosine phosphorylation has not been documented for any plant kinases. To study the role of tyrosines in the phosphorylation of STY protein kinase, four conserved tyrosine residues were sequentially substituted with phenylalanine and expressed as histidine fusion proteins. Mass spectrometry experiments showed that STY protein kinase autophosphorylated within the predicted kinase ATP-binding motif, activation loop, and an additional site in the C terminus. The protein kinase activity was abolished by substitution of Tyr(297) with Phe in the activation loop between subdomains VII and VIII. In addition, replacing Tyr(148) in the ATP-binding motif and Tyr(317) in the C-terminal domain with Phe not only obliterated the ability of the STY protein kinase protein to be phosphorylated, but also inhibited histone phosphorylation, suggesting that STY protein kinase is phosphorylated at multiple sites. Replacing Tyr(213) in the Thr-Glu-Tyr sequence motif with Phe resulted in a 4-fold increase in autophosphorylation and 2.8-fold increase in substrate phosphorylation activities. Mutants Y148F, Y297F, and Y317F displayed dramatically lower phosphorylation efficiency (k(cat)/K(m)) with ATP and histone, whereas mutant Y213F showed increased phosphorylation. Our results suggest that autophosphorylation of Tyr(148), Tyr(213), Tyr(297), and Tyr(317) is important for the regulation of STY protein kinase activity. Our study reveals the first example of Thr-Glu-Tyr domain-mediated autoinhibition of kinases.
Collapse
Affiliation(s)
- Parvathi Rudrabhatla
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
419
|
Tripathy S, Kleppinger-Sparace K, Dixon RA, Chapman KD. N-acylethanolamine signaling in tobacco is mediated by a membrane-associated, high-affinity binding protein. PLANT PHYSIOLOGY 2003; 131:1781-91. [PMID: 12692337 PMCID: PMC166934 DOI: 10.1104/pp.102.014936] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Revised: 10/22/2002] [Accepted: 01/03/2003] [Indexed: 05/18/2023]
Abstract
N-Acylethanolamines (NAEs) are fatty acid derivatives found as minor constituents of animal and plant tissues, and their levels increase 10- to 50-fold in tobacco (Nicotiana tabacum) leaves treated with fungal elicitors. Infiltration of tobacco leaves with submicromolar to micromolar concentrations of N-myristoylethanolamine (NAE 14:0) resulted in an increase in relative phenylalanine ammonia-lyase (PAL) transcript abundance within 8 h after infiltration, and this PAL activation was reduced after co-infiltration with cannabinoid receptor antagonists (AM 281 and SR 144528). A saturable, high-affinity specific binding activity for [(3)H]NAE 14:0 was identified in suspension-cultured tobacco cells and in microsomes from tobacco leaves (apparent K(d) of 74 and 35 nM, respectively); cannabinoid receptor antagonists reduced or eliminated specific [(3)H]NAE 14:0 binding, consistent with the physiological response. N-Oleoylethanolamine activated PAL2 expression in leaves and diminished [(3)H]NAE 14:0 binding in microsomes, whereas N-linoleoylethanolamine did not activate PAL2 expression in leaves, and did not affect [(3)H]NAE 14:0 binding in microsomes. The nonionic detergent dodecylmaltoside solubilized functional [(3)H]NAE 14:0-binding activity from tobacco microsomal membranes. The dodecylmaltoside-solubilized NAE-binding activity retained similar, but not identical, binding properties to the NAE-binding protein(s) in intact tobacco microsomes. Additionally, high-affinity saturable NAE-binding proteins were identified in microsomes isolated from Arabidopsis and Medicago truncatula tissues, indicating the general prevalence of these binding proteins in plant membranes. We propose that plants possess an NAE-signaling pathway with functional similarities to the "endocannabinoid" pathway of animal systems and that this pathway, in part, participates in xylanase elicitor perception in tobacco.
Collapse
Affiliation(s)
- Swati Tripathy
- Department of Biological Sciences, University of North Texas, Denton 76203, USA
| | | | | | | |
Collapse
|
420
|
Liu Y, Jin H, Yang KY, Kim CY, Baker B, Zhang S. Interaction between two mitogen-activated protein kinases during tobacco defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:149-60. [PMID: 12694591 DOI: 10.1046/j.1365-313x.2003.01709.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant mitogen-activated protein kinases (MAPKs) represented by tobacco wounding-induced protein kinase (WIPK) have unique regulation at the level of transcription in response to stresses. By using transcriptional and translational inhibitors, it has been shown previously that WIPK gene expression and de novo protein synthesis are required for the high-level activity of WIPK in cells treated with elicitins from Phytophthora spp. However, regulation of WIPK expression and the role(s) of WIPK in plant disease resistance are unknown. In this report, we demonstrate that WIPK gene transcription is regulated by phosphorylation and de-phosphorylation events. Interestingly, salicylic acid-induced protein kinase (SIPK) was identified as the kinase involved in regulating WIPK gene expression based on both gain-of-function and loss-of-function analyses. This finding revealed an additional level of interaction between SIPK and WIPK, which share an upstream MAPKK, NtMEK2. Depending on whether WIPK shares its downstream targets with SIPK, it could either function as a positive feed-forward regulator of SIPK or initiate a new pathway. Consistent with the first scenario, co-expression of WIPK with the active mutant of NtMEK2 leads to accelerated hypersensitive response (HR)-like cell death in which SIPK also plays a role. Mutagenesis analysis revealed that the conserved common docking domain in WIPK is required for its function. Together with prior reports that (i) WIPK is activated in NN tobacco infected with tobacco mosaic virus, and (ii) PVX virus-induced gene silencing of WIPK attenuated N gene-mediated resistance, we concluded that WIPK plays a positive role in plant disease resistance, possibly through accelerating the pathogen-induced HR cell death.
Collapse
Affiliation(s)
- Yidong Liu
- Department of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, 65211, USA
| | | | | | | | | | | |
Collapse
|
421
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionary conserved from unicellular to complex eukaryotic organisms, and constitute one of the major signalling pathways involved in regulating a wide range of cellular activities from growth and development to cell death. MAPKs of rice (Oryza sativa L.), the most important of all food crops and an established monocot plant research model, have seen considerable progress mainly on their identification and characterization during the past one year alone. These studies have provided new information on the response and regulation of rice MAPKs, in particular on their possible role/function in the rice self-defense pathways. It is believed that further work on MAPK cascades in rice will widen our understanding of the MAPK signalling pathways, and may lead to the establishment of a biological model on this critical early signalling event in monocots. In this review, we bring together all the recent developments in rice MAPKs and discuss their significance and future direction in light of the present data and the progress made in dicot model plants.
Collapse
Affiliation(s)
- Ganesh K Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB), GPO Box 8207, Kathmandu, Nepal.
| | | | | |
Collapse
|
422
|
Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. THE PLANT CELL 2003; 15:745-59. [PMID: 12615946 PMCID: PMC150027 DOI: 10.1105/tpc.008714] [Citation(s) in RCA: 458] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2002] [Accepted: 12/21/2002] [Indexed: 05/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in mediating stress responses in eukaryotic organisms. However, little is known about the role of MAPKs in modulating the interaction of defense pathways activated by biotic and abiotic factors. In this study, we have isolated and functionally characterized a stress-responsive MAPK gene (OsMAPK5) from rice. OsMAPK5 is a single-copy gene but can generate at least two differentially spliced transcripts. The OsMAPK5 gene, its protein, and kinase activity were inducible by abscisic acid as well as various biotic (pathogen infection) and abiotic (wounding, drought, salt, and cold) stresses. To determine its biological function, we generated and analyzed transgenic rice plants with overexpression (using the 35S promoter of Cauliflower mosaic virus) or suppression (using double-stranded RNA interference [dsRNAi]) of OsMAPK5. Interestingly, suppression of OsMAPK5 expression and its kinase activity resulted in the constitutive expression of pathogenesis-related (PR) genes such as PR1 and PR10 in the dsRNAi transgenic plants and significantly enhanced resistance to fungal (Magnaporthe grisea) and bacterial (Burkholderia glumae) pathogens. However, these same dsRNAi lines had significant reductions in drought, salt, and cold tolerance. By contrast, overexpression lines exhibited increased OsMAPK5 kinase activity and increased tolerance to drought, salt, and cold stresses. These results strongly suggest that OsMAPK5 can positively regulate drought, salt, and cold tolerance and negatively modulate PR gene expression and broad-spectrum disease resistance.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Amino Acid Sequence
- Cold Temperature
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Disasters
- Fungi/growth & development
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Immunity, Innate/genetics
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Oryza/enzymology
- Oryza/genetics
- Oryza/microbiology
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Chloride/pharmacology
- Stress, Mechanical
Collapse
Affiliation(s)
- Lizhong Xiong
- Department of Plant Pathology and Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | |
Collapse
|
423
|
Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:719-31. [PMID: 12609044 DOI: 10.1046/j.1365-313x.2003.01664.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The active defense of plants against pathogens often includes rapid and localized cell death known as hypersensitive response (HR). Protein phosphorylation and dephosphorylation are implicated in this event based on studies using protein kinase and phosphatase inhibitors. Recent transient gain-of-function studies demonstrated that the activation of salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two tobacco mitogen-activated protein kinases (MAPKs) by their upstream MAPK kinase (MAPKK), NtMEK2 leads to HR-like cell death. Here, we report that the conserved kinase interaction motif (KIM) in MAPKKs is required for NtMEK2 function. Mutation of the conserved basic amino acids in this motif, or the deletion of N-terminal 64 amino acids containing this motif significantly compromised or abolished the ability of NtMEK2DD to activate SIPK/WIPK in vivo. These mutants were also defective in interacting with SIPK and WIPK, suggesting protein-protein interaction is required for the functional integrity of this MAPK cascade. To eliminate Agrobacterium that is known to activate a number of defense responses in transient transformation experiments, we generated permanent transgenic plants. Induction of NtMEK2DD expression by dexamethasone induced HR-like cell death in both T1 and T2 plants. In addition, by using PVX-induced gene silencing, we demonstrated that the suppression of all three known components in the NtMEK2-SIPK/WIPK pathway attenuated N gene-mediated TMV resistance. Together with previous report that SIPK and WIPK are activated by TMV in a gene-for-gene-dependent manner, we conclude that NtMEK2-SIPK/WIPK pathway plays a positive role in N gene-mediated resistance, possibly through regulating HR cell death.
Collapse
Affiliation(s)
- Hailing Jin
- Department of Plant and Microbial Biology, University of California, Berkeley & Plant Gene Expression Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA
| | | | | | | | | | | |
Collapse
|
424
|
Kroj T, Rudd JJ, Nürnberger T, Gäbler Y, Lee J, Scheel D. Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J Biol Chem 2003; 278:2256-64. [PMID: 12426314 DOI: 10.1074/jbc.m208200200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants are continuously exposed to attack by potential phytopathogens. Disease prevention requires pathogen recognition and the induction of a multifaceted defense response. We are studying the non-host disease resistance response of parsley to the oomycete, Phytophthora sojae using a cell culture-based system. Receptor-mediated recognition of P. sojae may be achieved through a thirteen amino acid peptide sequence (Pep-13) present within an abundant cell wall transglutaminase. Following recognition of this elicitor molecule, parsley cells mount a defense response, which includes the generation of reactive oxygen species (ROS) and transcriptional activation of genes encoding pathogenesis-related (PR) proteins or enzymes involved in the synthesis of antimicrobial phytoalexins. Treatment of parsley cells with the NADPH oxidase inhibitor, diphenylene iodonium (DPI), blocked both Pep-13-induced phytoalexin production and the accumulation of transcripts encoding enzymes involved in their synthesis. In contrast, DPI treatment had no effect upon Pep-13-induced PR gene expression, suggesting the existence of an oxidative burst-independent mechanism for the transcriptional activation of PR genes. The use of specific antibodies enabled the identification of three parsley mitogen-activated protein kinases (MAPKs) that are activated within the signal transduction pathway(s) triggered following recognition of Pep-13. Other environmental challenges failed to activate these kinases in parsley cells, suggesting that their activation plays a key role in defense signal transduction. Moreover, by making use of a protoplast co-transfection system overexpressing wild-type and loss-of-function MAPK mutants, we show an essential role for post-translational phosphorylation and activation of MAPKs for oxidative burst-independent PR promoter activation.
Collapse
Affiliation(s)
- Thomas Kroj
- Department of Stress and Developmental Biology, Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
425
|
Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Heu S, Park SY, Lee YH, Jwa NS. Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun 2003; 300:868-76. [PMID: 12559953 DOI: 10.1016/s0006-291x(02)02944-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade(s) is important for plant defense/stress responses. Though MAPKs have been identified and characterized in rice (Oryza sativa L.), a monocot cereal crop research model, the first upstream component of the kinase cascade, namely MAPK kinase kinase (MAPKKK) has not yet been identified. Here we report the cloning of a novel rice gene encoding a MAPKKK, OsEDR1, designated based on its homology with the Arabidopsis MAPKKK, AtEDR1. OsEDR1, a single copy gene in the genome of rice, encodes a predicted protein with molecular mass of 113046.13 and a pI of 9.03. Using our established two-week-old rice seedling in vitro model system, we show that OsEDR1 has a constitutive expression in seedling leaves and is further up-regulated within 15 min upon wounding by cut, treatment with the global signals jasmonic acid (JA), salicylic acid (SA), ethylene (ethephon, ET), abscisic acid, and hydrogen peroxide. In addition, protein phosphatase inhibitors, fungal elicitor chitosan, drought, high salt and sugar, and heavy metals also dramatically induce its expression. Moreover, OsEDR1 expression was altered by co-application of JA, SA, and ET, and required de novo synthesized protein factor(s) in its transient regulation. Furthermore, using an in vivo system we also show that OsEDR1 responds to changes in temperature and environmental pollutants-ozone and sulfur dioxide. Finally, OsEDR1 expression varied significantly in vegetative and reproductive tissues. These results suggest a role for OsEDR1 in defense/stress signalling pathways and development.
Collapse
Affiliation(s)
- Jung-A Kim
- Department of Molecular Biology, College of Natural Science, Sejong University, Seoul 143-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Abstract
Phosphorylation and dephosphorylation of a protein often serve as an "on-and-off" switch in the regulation of cellular activities. Recent studies demonstrate the involvement of protein phosphorylation in almost all signaling pathways in plants. A significant portion of the sequenced Arabidopsis genome encodes protein kinases and protein phosphatases that catalyze reversible phosphorylation. For optimal regulation, kinases and phosphatases must strike a balance in any given cell. Only a very small fraction of the thousands of protein kinases and phosphatases in plants has been studied experimentally. Nevertheless, the available results have demonstrated critical functions for these enzymes in plant growth and development. While serine/threonine phosphorylation is widely accepted as a predominant modification of plant proteins, the function of tyrosine phosphorylation, desptie its overwhelming importance in animal systems, had been largely neglected until recently when tyrosine phosphatases (PTPs) were characterized from plants. This review focuses on the structure, regulation, and function of protein phosphatases in higher plants.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
427
|
Durand-Tardif M, Pelletier G. [Contribution of cell and molecular biology and genetics to plant protection]. C R Biol 2003; 326:23-35. [PMID: 12741179 DOI: 10.1016/s1631-0691(03)00004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plants resist to the majority of their potential aggressors by opposing physical and chemical barriers: cell walls, secondary metabolites.... Phenomena of specific recognition between a plant variety and a pathovar induce on the one hand, a local (hypersensitive) reaction that tends to limit pathogen growth and, on the other hand, a cascade of signals that allows the activation of a non-specific general (systemic) resistance. The contribution of genetics to the fight against pathogens depends on the natural variability that comes from the co-evolution between plants and their aggressors. Many plant varieties resistant to one or several pathogens have been obtained and are cultivated. The use of biotechnology will facilitate the rapid generation of new, resistant cultivars and cultivars with multiple resistances. New methods in order to increase the efficiency and the durability of resistance are envisaged.
Collapse
Affiliation(s)
- Mylène Durand-Tardif
- Station de génétique et d'amélioration des plantes, Institut national de la recherche agronomique, Centre de Versailles, route de Saint-Cyr, 78026 Versailles, France.
| | | |
Collapse
|
428
|
Pedley KF, Martin GB. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:215-43. [PMID: 14527329 DOI: 10.1146/annurev.phyto.41.121602.143032] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Pto gene in tomato confers gene-for-gene resistance to Pseudomonas syringae pv. tomato, the causative agent of bacterial speck disease. Pto was first introgressed from a wild species of tomato into cultivated tomato varieties over 60 years ago and is now widely used to control speck disease. Cloning of the Pto gene revealed that it encodes a cytoplasmically localized serine-threonine protein kinase. The molecular basis of gene-for-gene recognition in this pathosystem is the direct physical interaction of the Pto kinase with either of two Pseudomonas effector proteins, AvrPto and AvrPtoB. Upon recognition of AvrPto or AvrPtoB, the Pto kinase acts in concert with Prf, a leucine-rich repeat-containing protein, to activate multiple signal transduction pathways. There has been much progress in understanding the evolutionary origin of the Pto gene, structural details about how the Pto kinase interacts with AvrPto and AvrPtoB, signaling steps downstream of Pto, and defense responses activated by the Pto pathway. Future work on this model system will focus on how the interaction of the Pto kinase with bacterial effector proteins activates signal transduction, defining the specific role of signaling components, and ultimately, determining which host defense responses are most responsible for inhibiting growth of the pathogen and suppressing symptoms of bacterial speck disease.
Collapse
Affiliation(s)
- Kerry F Pedley
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
429
|
Gatehouse JA. Plant resistance towards insect herbivores: a dynamic interaction. THE NEW PHYTOLOGIST 2002; 156:145-169. [PMID: 33873279 DOI: 10.1046/j.1469-8137.2002.00519.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plant defences against insect herbivores can be divided into 'static' or constitutive defences, and 'active' or induced defences, although the insecticidal compounds or proteins involved are often the same. Induced defences have aspects common to all plants, whereas the accumulation of constitutive defences is species-specific. Insect herbivores activate induced defences both locally and systemically by signalling pathways involving systemin, jasmonate, oligogalacturonic acid and hydrogen peroxide. Plants also respond to insect attack by producing volatiles, which can be used to deter herbivores, to communicate between parts of the plant, or between plants, to induce defence responses. Plant volatiles are also an important component in indirect defence. Herbivorous insects have adapted to tolerate plant defences, and such adaptations can also be constitutive or induced. Insects whose plant host range is limited are more likely to show constitutive adaptation to the insecticidal compounds they will encounter, whereas insects which feed on a wide range of plant species often use induced adaptations to overcome plant defences. Both plant defence and insect adaptation involve a metabolic cost, and in a natural system most plant-insect interactions involving herbivory reach a 'stand-off' where both host and herbivore survive but develop suboptimally. Contents Summary 145 I. Introduction 146 II. Accumulation of defensive compounds and induced resistance 146 III. Signalling pathways in wound-induced resistance 147 IV. Insect modulation of the wounding response 155 V. Insects which evade the wounding response 156 VI. Insect-induced emission of volatiles and tritrophic interactions 157 VII. Insect adaptation to plant defences 160 Conclusions 163 Acknowlegements 163 References 163.
Collapse
Affiliation(s)
- John A Gatehouse
- Department of Biological Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
430
|
Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A. Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 2002; 12:1767-72. [PMID: 12401172 DOI: 10.1016/s0960-9822(02)01217-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reasons for annual variability in the composition of phytoplankton assemblages are poorly understood but may include competition for resources and allelopathic interactions. We show that domination by the patch-forming dinoflagellate, Peridinium gatunense, or, alternatively, a bloom of a toxic cyanobacterium, Microcystis sp., in the Sea of Galilee may be accounted for by mutual density-dependent allelopathic interactions. Over the last 11 years, the abundance of these species in the lake displayed strong negative correlation. Laboratory experiments showed reciprocal, density-dependent, but nutrient-independent, inhibition of growth. Application of spent P. gatunense medium induced sedimentation and, subsequently, massive lysis of Microcystis cells within 24 hr, and sedimentation and lysis were concomitant with a large rise in the level of McyB, which is involved in toxin biosynthesis by Microcystis. P. gatunense responded to the presence of Microcystis by a species-specific pathway that involved a biphasic oxidative burst and activation of certain protein kinases. Blocking this recognition by MAP-kinase inhibitors abolished the biphasic oxidative burst and affected the fate (death or cell division) of the P. gatunense cells. We propose that patchy growth habits may confer enhanced defense capabilities, providing ecological advantages that compensate for the aggravated limitation of resources in the patch. Cross-talk via allelochemicals may explain the phytoplankton assemblage in the Sea of Galilee.
Collapse
Affiliation(s)
- Assaf Vardi
- Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
431
|
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
432
|
Abstract
Traditionally, reactive oxygen intermediates (ROIs) were considered to be toxic by-products of aerobic metabolism, which were disposed of using antioxidants. However, in recent years, it has become apparent that plants actively produce ROIs as signaling molecules to control processes such as programmed cell death, abiotic stress responses, pathogen defense and systemic signaling. Recent advances including microarray studies and the development of mutants with altered ROI-scavenging mechanisms provide new insights into how the steady-state level of ROIs are controlled in cells. In addition, key steps of the signal transduction pathway that senses ROIs in plants have been identified. These raise several intriguing questions about the relationships between ROI signaling, ROI stress and the production and scavenging of ROIs in the different cellular compartments.
Collapse
Affiliation(s)
- Ron Mittler
- Dept of Botany, Plant Sciences Institute, 353 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
433
|
Rudrabhatla P, Rajasekharan R. Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses. PLANT PHYSIOLOGY 2002; 130:380-90. [PMID: 12226517 PMCID: PMC166570 DOI: 10.1104/pp.005173] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Revised: 04/17/2002] [Accepted: 04/26/2002] [Indexed: 05/20/2023]
Abstract
Tyrosine (Tyr) phosphorylation represents an important biochemical mechanism to regulate many cellular processes. No Tyr kinase has been cloned so far in plants. Dual-specificity kinases are reported in plants and the function of these kinases remains unknown. A 1.7-kb cDNA that encodes serine/threonine/Tyr (STY) kinase was isolated by screening peanut (Arachis hypogaea) expression library using the anti-phospho-Tyr antibody. The histidine-tagged recombinant kinase histidine-6-STY predominantly autophosphorylated on Tyr and phosphorylated the histone primarily on threonine. Genomic DNA gel-blot analysis revealed that STY kinase is a member of a small multigene family. The transcript of STY kinase is accumulated in the mid-maturation stage of seed development, suggesting a role in the signaling of storage of seed reserves. The STY kinase mRNA expression, as well as kinase activity, markedly increased in response to cold and salt treatments; however, no change in the protein level was observed, suggesting a posttranslational activation mechanism. The activation of the STY kinase is detected after 12 to 48 h of cold and salt treatments, which indicates that the kinase may not participate in the initial response to abiotic stresses, but may play a possible role in the adaptive process to adverse conditions. The transcript levels and kinase activity were unaltered with abscisic acid treatment, suggesting an abscisic acid-independent cold and salt signaling pathway. Here, we report the first identification of a non-MAP kinase cascade dual-specificity kinase involved in abiotic stress and seed development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arachis/enzymology
- Arachis/genetics
- Arachis/growth & development
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Enzyme Activation/drug effects
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Phylogeny
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Chloride/pharmacology
- Stress, Mechanical
- Substrate Specificity
- Temperature
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Parvathi Rudrabhatla
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
434
|
Yalamanchili RD, Stratmann JW. Ultraviolet-B activates components of the systemin signaling pathway in Lycopersicon peruvianum suspension-cultured cells. J Biol Chem 2002; 277:28424-30. [PMID: 12034744 DOI: 10.1074/jbc.m203844200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the early responses of Lycopersicon peruvianum suspension-cultured cells to the polypeptide wound signal systemin are the alkalinization of the culture medium and the activation of a 48-kDa mitogen-activated protein kinase (MAPK). Here, we report that both responses are induced in the cells by exposure to ultraviolet-B (UV-B) radiation. Suramin, an inhibitor of systemin receptor function, strongly inhibited the UV-B-induced medium alkalinization and MAPK activity. The UV-B response was also reduced when cells were initially treated with systemin or the systemin antagonist Ala-17-systemin, which competitively inhibits binding of systemin to the systemin receptor. Cells that were initially treated with either UV-B or systemin exhibited a strongly reduced response to a subsequent elicitation with systemin. The desensitization was transient, reaching a maximum at 30-60 min after the initial treatment. Several hours later, depending on the initial UV-B dose or systemin concentration, the cells regained their initial responsiveness. When cells were irradiated with low doses of UV-B and subsequently treated with systemin, the UV-B response reached levels higher than the response without UV-B treatment. The data provide evidence for an involvement of the systemin receptor and/or systemin-responsive signaling elements in the UV-B response.
Collapse
Affiliation(s)
- Roopa Devi Yalamanchili
- Institution Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
435
|
Abstract
Phospholipid-derived molecules are emerging as novel second messengers in plant defence signalling. Recent research has begun to reveal the signals produced by the enzymes phospholipase C, phospholipase D and phospholipase A2 and their putative downstream targets. These include the activation of a MAP kinase cascade and triggering of an oxidative burst by phosphatidic acid; the regulation of ion channels and proton pumps by lysophospholipids and free fatty acids; and the conversion of free fatty acids into bioactive octadecanoids such as jasmonic acid.
Collapse
Affiliation(s)
- Ana M Laxalt
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
436
|
(Kazuya Ichimura et al.) MAPKG, Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC. Mitogen-activated protein kinase cascades in plants: a new nomenclature. TRENDS IN PLANT SCIENCE 2002; 7:301-8. [PMID: 12119167 DOI: 10.1016/s1360-1385(02)02302-6] [Citation(s) in RCA: 790] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.
Collapse
|
437
|
Agrawal GK, Rakwal R, Iwahashi H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 2002; 294:1009-16. [PMID: 12074577 DOI: 10.1016/s0006-291x(02)00571-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In search for components of MAPK (mitogen-activated protein kinase) cascades in rice (Oryza sativa L. cv. Nipponbare), we identified a single copy gene called OsMSRMK2 from jasmonic acid (JA) treated rice seedling leaf cDNA library. This gene has a conserved protein kinase domain, including a MAPK family signature, and encodes a 369 amino acid polypeptide with a predicted molecular mass of 42995.43 and a pI of 5.48. OsMSRMK2 did not show constitutive expression in leaves and was induced within 15 min in response to wounding by cut. Using in vitro system, we show that the expression of OsMSRMK2 mRNA was potently enhanced within 15 min by signalling molecules, protein phosphatase inhibitors, ultraviolet irradiation, fungal elicitor, heavy metals, high salt and sucrose, and drought. OsMSRMK2 expression was further modulated by co-application of JA, salicylic acid, and ethylene and required de novo synthesized protein factor(s) in its transient regulation. Moreover, high (37 degrees C) and low temperatures (12 degrees C) and environmental pollutants-ozone and sulfur dioxide-differentially regulate the OsMSRMK2 mRNA accumulation in leaves of intact plants. Present results demonstrating dramatic transcriptional and transient regulation of the OsMSRMK2 expression by diverse biotic/abiotic stresses, a first report for any rice (or plant) MAPK to date, suggest a role for OsMSRMK2 in rice defense/stress response pathways.
Collapse
Affiliation(s)
- Ganesh K Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB), GPO Box 8207, Kathmandu, Nepal.
| | | | | |
Collapse
|
438
|
Abstract
Oxidative stress arises from an imbalance between generation and elimination of reactive oxygen species, often leading to cell death. Genomic tools are expanding our understanding of the antioxidant defenses aerobes have evolved and the recently discovered role(s) of reactive oxygen species in signaling.
Collapse
Affiliation(s)
- John G Scandalios
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA.
| |
Collapse
|
439
|
Marathe R, Anandalakshmi R, Liu Y, Dinesh-Kumar SP. The tobacco mosaic virus resistance gene, N. MOLECULAR PLANT PATHOLOGY 2002; 3:167-72. [PMID: 20569323 DOI: 10.1046/j.1364-3703.2002.00110.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Summary In this mini review we discuss recent advances in the understanding of the N gene-mediated resistance to tobacco mosaic virus (TMV). The tobacco N gene belongs to toll-interleukin-1 receptor homology/nucleotide binding/leucine rich repeat (TIR-NB-LRR) class of resistance genes. It encodes two transcripts, N(S) and N(L), by alternative splicing, both of which are required to confer resistance to TMV. The structure-function analysis of the N gene indicates that the TIR, NB and LRR domains are indispensable for its function. The N gene response is elicited by the C-terminal helicase domain of the 126 kDa TMV replicase protein. Tobacco N gene can also confer resistance to TMV in heterologous plants like tomato and Nicotiana benthamiana. Recent studies on N-mediated signalling suggest that EDS1, Rar1 and NPR1 genes play an important role in TMV resistance. Finally, we discuss current status of the N-mediated signal transduction and speculate directions for future work to understand N-TMV interaction.
Collapse
Affiliation(s)
- Rajendra Marathe
- Department of Molecular, Cellular and Developmental Biology, OML 451, Yale University, PO Box 208104, New Haven, CT 06520-8104, USA
| | | | | | | |
Collapse
|
440
|
Kim SH, Palukaitis P, Park YI. Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex. EMBO J 2002; 21:2292-300. [PMID: 11980726 PMCID: PMC125983 DOI: 10.1093/emboj/21.9.2292] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 2a (polymerase) protein of cucumber mosaic virus (CMV) was shown to be phosphorylated both in vivo and in vitro. In vitro assays using 2a protein mutants and tobacco protein kinases showed that the 2a protein has at least three phosphorylation sites, one of which is located within the N-terminal 126 amino acid region. This region is essential and sufficient for interaction with the CMV 1a protein. When phosphorylated in vitro, the 2a protein N-terminal region failed to interact with the 1a protein. Since the 1a-2a interaction is essential for the replication of CMV, this suggests that phosphorylation of the N-terminal region of the 2a protein negatively modulates the interaction in vivo, and may have a regulatory role acting directly in viral infection.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Division of Life Sciences, and Graduate School of Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea and Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK Corresponding author e-mail:
| | - Peter Palukaitis
- Division of Life Sciences, and Graduate School of Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea and Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK Corresponding author e-mail:
| | - Young In Park
- Division of Life Sciences, and Graduate School of Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea and Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK Corresponding author e-mail:
| |
Collapse
|
441
|
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002; 415:977-83. [PMID: 11875555 DOI: 10.1038/415977a] [Citation(s) in RCA: 1747] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is remarkable conservation in the recognition of pathogen-associated molecular patterns (PAMPs) by innate immune responses of plants, insects and mammals. We developed an Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals. Here we identify a complete plant MAP kinase cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) and WRKY22/WRKY29 transcription factors that function downstream of the flagellin receptor FLS2, a leucine-rich-repeat (LRR) receptor kinase. Activation of this MAPK cascade confers resistance to both bacterial and fungal pathogens, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.
Collapse
Affiliation(s)
- Tsuneaki Asai
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Ren D, Yang H, Zhang S. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 2002; 277:559-65. [PMID: 11687590 DOI: 10.1074/jbc.m109495200] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid and localized programmed cell death, known as the hypersensitive response (HR) is frequently associated with plant disease resistance. In contrast to our knowledge about the regulation and execution of apoptosis in animal system, information about plant HR is limited. Recent studies implicated the mitogen-activated protein kinase (MAPK) cascade in regulating plant HR cell death as well as several other defense responses during incompatible interactions between plants and pathogens. Here, we report the generation of transgenic Arabidopsis plants that express the active mutants of AtMEK4 and AtMEK5, two closely related MAPK kinases under the control of a steroid-inducible promoter. Induction of the transgene expression by the application of dexamethasone, a steroid, leads to HR-like cell death, which is preceded by the activation of endogenous MAPKs and the generation of hydrogen peroxide. Both prolonged MAPK activation and reactive oxygen species generation have been implicated in the regulation of HR cell death induced by incompatible pathogens. As a result, we speculate that the prolonged activation of the MAPK pathway in cells could disrupt the redox balance, which leads to the generation of reactive oxygen species and eventually HR cell death.
Collapse
Affiliation(s)
- Dongtao Ren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|