401
|
Li Q, Zhou L, Li Y, Zhang D, Gao Y. Plant NIGT1/HRS1/HHO Transcription Factors: Key Regulators with Multiple Roles in Plant Growth, Development, and Stress Responses. Int J Mol Sci 2021; 22:ijms22168685. [PMID: 34445391 PMCID: PMC8395448 DOI: 10.3390/ijms22168685] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
The NIGT1/HRS1/HHO transcription factor (TF) family is a new subfamily of the G2-like TF family in the GARP superfamily and contains two conserved domains: the Myb-DNA binding domain and the hydrophobic and globular domain. Some studies showed that NIGT1/HRS1/HHO TFs are involved in coordinating the absorption and utilization of nitrogen and phosphorus. NIGT1/HRS1/HHO TFs also play an important role in plant growth and development and in the responses to abiotic stresses. This review focuses on recent advances in the structural characteristics of the NIGT1/HRS1/HHO TF family and discusses how the roles and functions of the NIGT1/HRS1/HHO TFs operate in terms of in plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Qian Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Luyan Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yuhong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China;
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (Q.L.); (L.Z.); (D.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87997217
| |
Collapse
|
402
|
Lu L, Qanmber G, Li J, Pu M, Chen G, Li S, Liu L, Qin W, Ma S, Wang Y, Chen Q, Liu Z. Identification and Characterization of the ERF Subfamily B3 Group Revealed GhERF13.12 Improves Salt Tolerance in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:705883. [PMID: 34434208 PMCID: PMC8382128 DOI: 10.3389/fpls.2021.705883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 06/12/2023]
Abstract
The APETALA2 (AP2)/ethylene response factor plays vital functions in response to environmental stimulus. The ethylene response factor (ERF) subfamily B3 group belongs to the AP2/ERF superfamily and contains a single AP2/ERF domain. Phylogenetic analysis of the ERF subfamily B3 group genes from Arabdiposis thaliana, Gossypium arboreum, Gossypium hirsutum, and Gossypium raimondii made it possible to divide them into three groups and showed that the ERF subfamily B3 group genes are conserved in cotton. Collinearity analysis identified172 orthologous/paralogous gene pairs between G. arboreum and G. hirsutum; 178 between G. hirsutum and G. raimondii; and 1,392 in G. hirsutum. The GhERF subfamily B3 group gene family experienced massive gene family expansion through either segmental or whole genome duplication events, with most genes showing signature compatible with the action of purifying selection during evolution. Most G. hirsutum ERF subfamily B3 group genes are responsive to salt stress. GhERF13.12 transgenic Arabidopsis showed enhanced salt stress tolerance and exhibited regulation of related biochemical parameters and enhanced expression of genes participating in ABA signaling, proline biosynthesis, and ROS scavenging. In addition, the silencing of the GhERF13.12 gene leads to increased sensitivity to salt stress in cotton. These results indicate that the ERF subfamily B3 group had remained conserved during evolution and that GhERF13.12 induces salt stress tolerance in Arabidopsis and cotton.
Collapse
Affiliation(s)
- Lili Lu
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Li
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mengli Pu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Guoquan Chen
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Shengdong Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ye Wang
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
403
|
Mochdia K, Tamaki S. Transcription Factor-Based Genetic Engineering in Microalgae. PLANTS 2021; 10:plants10081602. [PMID: 34451646 PMCID: PMC8399792 DOI: 10.3390/plants10081602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Sequence-specific DNA-binding transcription factors (TFs) are key components of gene regulatory networks. Advances in high-throughput sequencing have facilitated the rapid acquisition of whole genome assembly and TF repertoires in microalgal species. In this review, we summarize recent advances in gene discovery and functional analyses, especially for transcription factors in microalgal species. Specifically, we provide examples of the genome-scale identification of transcription factors in genome-sequenced microalgal species and showcase their application in the discovery of regulators involved in various cellular functions. Herein, we highlight TF-based genetic engineering as a promising framework for designing microalgal strains for microalgal-based bioproduction.
Collapse
Affiliation(s)
- Keiichi Mochdia
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama 244-0813, Japan
- RIKEN Baton Zone Program, Tsurumi-ku, Yokohama 230-0045, Japan;
- School of Information and Data Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
- Correspondence: ; Tel.: +81-045-503-9111
| | - Shun Tamaki
- RIKEN Baton Zone Program, Tsurumi-ku, Yokohama 230-0045, Japan;
| |
Collapse
|
404
|
Li T, Lian H, Li H, Xu Y, Zhang H. HY5 regulates light-responsive transcription of microRNA163 to promote primary root elongation in Arabidopsis seedlings. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1437-1450. [PMID: 33860639 DOI: 10.1111/jipb.13099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) play key roles in the post-transcriptional regulation of gene expression in plants. Many miRNAs are responsive to environmental signals. Light is the first environmental signal perceived by plants after emergence from the soil. However, less is known about the roles and regulatory mechanism of miRNAs in response to light signal. Here, using small RNA sequencing, we determined that miR163 is significantly rapidly induced by light signaling in Arabidopsis thaliana seedlings. The light-inducible response of miR163 functions genetically downstream of LONG HYPOCOTYL 5 (HY5), a central positive regulator of photomorphogenesis. HY5 directly binds to the two G/C-hybrid elements in the miR163 promoter with unequal affinity; one of these elements, which is located next to the transcription start site, plays a major role in light-induced expression of miR163. Overexpression of miR163 rescued the defective primary root elongation of hy5 seedlings without affecting lateral root growth, whereas overexpressing of miR163 target PXMT1 inhibited primary root elongation. These findings provide insight into understanding the post-transcriptional regulation of root photomorphogenesis mediated by the HY5-miR163-PXMT1 network.
Collapse
Affiliation(s)
- Tao Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongmei Lian
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haojie Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yufang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huiyong Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
405
|
Zhu X, Wang B, Wei X. Genome wide identification and expression pattern analysis of the GRAS family in quinoa. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:948-962. [PMID: 34092279 DOI: 10.1071/fp21017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
GRAS, a key transcription factor in plant growth and development, has not yet been reported in quinoa. Therefore, this study used the latest quinoa genomic data to identify and analyse GRAS genes in quinoa: 52 GRAS genes were identified in quinoa, these being unevenly distributed on 19 chromosomes. Fragment duplication and tandem duplication events were the main reasons for the expansion of the GRAS gene family in quinoa. Protein sequence analysis showed that there were some differences in amino acid numbers and isoelectric points amongst different subfamilies, and the main secondary structures were α-helix and random coil. The CqGRAS gene was divided into 14 subfamilies based on results from phylogenetic analysis. The genes located in the same subfamily had similar gene structures, conserved motifs, and three-level models. Promoter region analysis showed that the GRAS family genes contained multiple homeostasis elements that responded to hormones and adversity. GO enrichment indicated that CqGRAS genes were involved in biological processes, cell components, and molecular functions. By analysing the expression of CqGRAS genes in different tissues and different treatments, it was found that GRAS genes had obvious differential expression in different tissues and stress, which indicates that GRAS genes had tissue or organ expression specificity and thus might play an important role in response to stress. These results laid a foundation for further functional research on the GRAS gene family in quinoa.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; and Corresponding author.
| |
Collapse
|
406
|
Zumajo-Cardona C, Ambrose BA. Deciphering the evolution of the ovule genetic network through expression analyses in Gnetum gnemon. ANNALS OF BOTANY 2021; 128:217-230. [PMID: 33959756 PMCID: PMC8324035 DOI: 10.1093/aob/mcab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The ovule is a synapomorphy of all seed plants (gymnosperms and angiosperms); however, there are some striking differences in ovules among the major seed plant lineages, such as the number of integuments or the orientation of the ovule. The genetics involved in ovule development have been well studied in the model species Arabidopsis thaliana, which has two integuments and anatropous orientation. This study is approached from what is known in arabidopsis, focusing on the expression patterns of homologues of four genes known to be key for the proper development of the integuments in arabidopsis: AINTEGUMENTA (ANT), BELL1, (BEL1), KANADIs (KANs) and UNICORN (UCN). METHODS We used histology to describe the morphoanatomical development from ovules to seeds in Gnetum gnemon. We carried out spatiotemporal expression analyses in G. gnemon, a gymnosperm, which has a unique ovule morphology with an integument covering the nucellus, two additional envelopes where the outermost becomes fleshy as the seed matures, and an orthotropous orientation. KEY RESULTS Our anatomical and developmental descriptions provide a framework for expression analyses in the ovule of G. gnemon. Our expression results show that although ANT, KAN and UCN homologues are expressed in the inner integument, their spatiotemporal patterns differ from those found in angiosperms. Furthermore, all homologues studied here are expressed in the nucellus, revealing major differences in seed plants. Finally, no expression of the studied homologues was detected in the outer envelopes. CONCLUSIONS Altogether, these analyses provide significant comparative data that allows us to better understand the functional evolution of these gene lineages, providing a compelling framework for evolutionary and developmental studies of seeds. Our findings suggest that these genes were most likely recruited from the sporangium development network and became restricted to the integuments of angiosperm ovules.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA
- The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- The Graduate Center, City University of New York, New York, NY, USA
- For correspondence. E-mail
| |
Collapse
|
407
|
The Genetic Regulation of Secondary Metabolic Pathways in Response to Salinity and Drought as Abiotic Stresses. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Global development has generated a plethora of unfavorable and adverse environmental factors for the living organisms in the ecosystem. Plants are sessile organisms, and they are crucial to sustain life on earth. Since plants are sessile, they face a great number of environmental challenges related to abiotic stresses, such as temperature fluctuation, drought, salinity, flood and metal contamination. Salinity and drought are considered major abiotic stresses that negatively affect the plants’ growth and production of useful content. However, plants have evolved various molecular mechanisms to increase their tolerance to these environmental stresses. There is a whole complex system of communication (cross-talk) through massive signaling cascades that are activated and modulated in response to salinity and drought. Secondary metabolites are believed to play significant roles in the plant’s response and resistance to salinity and drought stress. Until recently, attempts to unravel the biosynthetic pathways were limited mainly due to the inadequate plant genomics resources. However, recent advancements in generating high-throughput “omics” datasets, computational tools and functional genomics approach integration have aided in the elucidation of biosynthetic pathways of many plant bioactive metabolites. This review gathers comprehensive knowledge of plants’ complex system that is involved in the response and resistance to salinity and water deficit stresses as abiotic stress. Additionally, it offers clues in determining the genes involved in this complex and measures its activity. It covers basic information regarding the signaling molecules involved in salinity and drought resistance and how plant hormones regulate the cross-talking mechanism with emphasis on transcriptional activity. Moreover, it discusses many studies that illustrate the relationship between salinity and drought and secondary metabolite production. Furthermore, several transcriptome analysis research papers of medicinal plants are illustrated. The aim of this review is to be a key for any researcher that is aspiring to study the relationship between salinity and drought stresses and secondary metabolite production at the transcriptome and transcription level.
Collapse
|
408
|
Taketa S, Hattori M, Takami T, Himi E, Sakamoto W. Mutations in a�Golden2-Like�Gene Cause Reduced Seed Weight in�Barley�albino lemma 1�Mutants. PLANT & CELL PHYSIOLOGY 2021; 62:447-457. [PMID: 33439257 DOI: 10.1093/pcp/pcab001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
The albino lemma 1 (alm1) mutants of barley (Hordeum vulgare L.) exhibit obvious chlorophyll-deficient hulls. Hulls are seed-enclosing tissues on the spike, consisting of the lemma and palea. The alm1 phenotype is also expressed in the pericarp, culm nodes and basal leaf sheaths, but leaf blades and awns are normal green. A single recessive nuclear gene controls tissue-specific alm1 phenotypic expression. Positional cloning revealed that the ALM1 gene encodes a Golden 2-like (GLK) transcription factor, HvGLK2, belonging to the GARP subfamily of Myb transcription factors. This finding was validated by genetic evidence indicating that all 10 alm1 mutants studied had a lesion in functionally important regions of HvGLK2, including the three alpha-helix domains, an AREAEAA motif and the GCT box. Transmission electron microscopy revealed that, in lemmas of the alm1.g mutant, the chloroplasts lacked thylakoid membranes, instead of stacked thylakoid grana in wild-type chloroplasts. Compared with wild type, alm1.g plants showed similar levels of leaf photosynthesis but reduced spike photosynthesis by 34%. The alm1.g mutant and the alm1.a mutant showed a reduction in 100-grain weight by 15.8% and 23.1%, respectively. As in other plants, barley has HvGLK2 and a paralog, HvGLK1. In flag leaves and awns, HvGLK2 and HvGLK1 are expressed at moderate levels, but in hulls, HvGLK1 expression was barely detectable compared with HvGLK2. Barley alm1/Hvglk2 mutants exhibit more severe phenotypes than glk2 mutants of other plant species reported to date. The severe alm1 phenotypic expression in multiple tissues indicates that HvGLK2 plays some roles that are nonredundant with HvGLK1.
Collapse
Affiliation(s)
- Shin Taketa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Momoko Hattori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
409
|
Yu H, Ma Y, Lu Y, Yue J, Ming R. Expression profiling of the Dof gene family under abiotic stresses in spinach. Sci Rep 2021; 11:14429. [PMID: 34257328 PMCID: PMC8277872 DOI: 10.1038/s41598-021-93383-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
DNA-binding with one finger (Dof) are plant-specific transcription factors involved in numerous pathways of plant development, such as abiotic stresses responses. Although genome-wide analysis of Dof genes has been performed in many species, but these genes in spinach have not been analyzed yet. We performed a genome-wide analysis and characterization of Dof gene family in spinach (Spinacia oleracea L.). Twenty-two Dof genes were identified and classified into four groups with nine subgroups, which was further corroborated by gene structure and motif analyses. Ka/Ks analysis revealed that SoDofs were subjected to purifying selection. Using cis-acting elements analysis, SoDofs were involved in plant growth and development, plant hormones, and stress responses. Expression profiling demonstrated that SoDofs expressed in leaf and inflorescence, and responded to cold, heat, and drought stresses. SoDof22 expressed the highest level in male flowers and under cold stress. These results provided a genome-wide analysis of SoDof genes, their gender- and tissue-specific expression, and response to abiotic stresses. The knowledge and resources gained from these analyses will benefit spinach improvement.
Collapse
Affiliation(s)
- Hongying Yu
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yaying Ma
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yijing Lu
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
410
|
Amirbakhtiar N, Ismaili A, Ghaffari MR, Mirdar Mansuri R, Sanjari S, Shobbar ZS. Transcriptome analysis of bread wheat leaves in response to salt stress. PLoS One 2021; 16:e0254189. [PMID: 34242309 PMCID: PMC8270127 DOI: 10.1371/journal.pone.0254189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in response to salinity stress to identify salinity stress-responsive genes and mechanisms. More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500 platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference genome for different samples. The data analysis led to the identification of 98819 genes, including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs) were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes. Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcription factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK signaling might be involved in salt tolerance. The expression patterns of nine DEGs were investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and susceptible cultivars, respectively. The obtained results were consistent with changes in transcript abundance found by RNA-sequencing in the tolerant cultivar. The results presented here could be utilized for salt tolerance enhancement in wheat through genetic engineering or molecular breeding.
Collapse
Affiliation(s)
- Nazanin Amirbakhtiar
- Plant Production and Genetic Engineering Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
- National Plant Gene Bank of Iran, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ahmad Ismaili
- Plant Production and Genetic Engineering Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohammad-Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Sepideh Sanjari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
411
|
Lin J, Liu D, Wang X, Ahmed S, Li M, Kovinich N, Sui S. Transgene CpNAC68 from Wintersweet ( Chimonanthus praecox) Improves Arabidopsis Survival of Multiple Abiotic Stresses. PLANTS 2021; 10:plants10071403. [PMID: 34371606 PMCID: PMC8309309 DOI: 10.3390/plants10071403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
The NAC (NAM, ATAFs, CUC) family of transcription factors (TFs) play a pivotal role in regulating all processes of the growth and development of plants, as well as responses to biotic and abiotic stresses. Yet, the functions of NACs from non-model plant species remains largely uncharacterized. Here, we characterized the stress-responsive effects of a NAC gene isolated from wintersweet, an ornamental woody plant that blooms in winter when temperatures are low. CpNAC68 is clustered in the NAM subfamily. Subcellular localization and transcriptional activity assays demonstrated a nuclear protein that has transcription activator activities. qRT-PCR analyses revealed that CpNAC68 was ubiquitously expressed in old flowers and leaves. Additionally, the expression of CpNAC68 is induced by disparate abiotic stresses and hormone treatments, including drought, heat, cold, salinity, GA, JA, and SA. Ectopic overexpression of CpNAC68 in Arabidopsis thaliana enhanced the tolerance of transgenic plants to cold, heat, salinity, and osmotic stress, yet had no effect on growth and development. The survival rate and chlorophyll amounts following stress treatments were significantly higher than wild type Arabidopsis, and were accompanied by lower electrolyte leakage and malondialdehyde (MDA) amounts. In conclusion, our study demonstrates that CpNAC68 can be used as a tool to enhance plant tolerance to multiple stresses, suggesting a role in abiotic stress tolerance in wintersweet.
Collapse
Affiliation(s)
- Jie Lin
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
| | - Xia Wang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
| | - Sajjad Ahmed
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
| | - Nik Kovinich
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
- Correspondence: (N.K.); (S.S.); Tel.: +1-416-736-2100 (N.K.); +86-23-6825-0086 (S.S.)
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (J.L.); (D.L.); (X.W.); (M.L.)
- Correspondence: (N.K.); (S.S.); Tel.: +1-416-736-2100 (N.K.); +86-23-6825-0086 (S.S.)
| |
Collapse
|
412
|
Fan Y, Yan J, Lai D, Yang H, Xue G, He A, Guo T, Chen L, Cheng XB, Xiang DB, Ruan J, Cheng J. Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 2021; 22:509. [PMID: 34229611 PMCID: PMC8259154 DOI: 10.1186/s12864-021-07848-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background GRAS, an important family of transcription factors, have played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. Since the sequencing of the sorghum genome, a plethora of genetic studies were mainly focused on the genomic information. The indepth identification or genome-wide analysis of GRAS family genes, especially in Sorghum bicolor, have rarely been studied. Results A total of 81 SbGRAS genes were identified based on the S. bicolor genome. They were named SbGRAS01 to SbGRAS81 and grouped into 13 subfamilies (LISCL, DLT, OS19, SCL4/7, PAT1, SHR, SCL3, HAM-1, SCR, DELLA, HAM-2, LAS and OS4). SbGRAS genes are not evenly distributed on the chromosomes. According to the results of the gene and motif composition, SbGRAS members located in the same group contained analogous intron/exon and motif organizations. We found that the contribution of tandem repeats to the increase in sorghum GRAS members was slightly greater than that of fragment repeats. By quantitative (q) RT-PCR, the expression of 13 SbGRAS members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. We further investigated the relationship between DELLA genes, GAs and grain development in S. bicolor. The paclobutrazol treatment significantly increased grain weight, and affected the expression levels of all DELLA subfamily genes. SbGRAS03 is the most sensitive to paclobutrazol treatment, but also has a high response to abiotic stresses. Conclusions Collectively, SbGRAs play an important role in plant development and response to abiotic stress. This systematic analysis lays the foundation for further study of the functional characteristics of GRAS genes of S. bicolor. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07848-z.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Jun Yan
- School of Food and Biological engineering, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Tianrong Guo
- Chengdu Institute of Food Inspection, 610030, Chengdu, People's Republic of China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, 618200, Mianzhu, People's Republic of China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, 626001, Kangding, People's Republic of China
| | - Da-Bing Xiang
- School of Food and Biological engineering, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China.
| |
Collapse
|
413
|
Geng H, Wang M, Gong J, Xu Y, Ma S. An Arabidopsis expression predictor enables inference of transcriptional regulators for gene modules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:597-612. [PMID: 33974299 DOI: 10.1111/tpj.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The regulation of gene expression by transcription factors (TFs) has been studied for a long time, but no model that can accurately predict transcriptome profiles based on TF activities currently exists. Here, we developed a computational approach, named EXPLICIT (Expression Prediction via Log-linear Combination of Transcription Factors), to construct a universal predictor for Arabidopsis to predict the expression of 29 182 non-TF genes using 1678 TFs. When applied to RNA-Seq samples from diverse tissues, EXPLICIT generated accurate predicted transcriptomes correlating well with actual expression, with an average correlation coefficient of 0.986. After recapitulating the quantitative relationships between TFs and their target genes, EXPLICIT enabled downstream inference of TF regulators for genes and gene modules functioning in diverse plant pathways, including those involved in suberin, flavonoid, glucosinolate metabolism, lateral root, xylem, secondary cell wall development or endoplasmic reticulum stress response. Our approach showed a better ability to recover the correct TF regulators when compared with existing plant tools, and provides an innovative way to study transcriptional regulation.
Collapse
Affiliation(s)
- Haiying Geng
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Meng Wang
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Jiazhen Gong
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Shisong Ma
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- School of Data Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
414
|
Han Z, Shang X, Shao L, Wang Y, Zhu X, Fang W, Ma Y. Meta-analysis of the effect of expression of MYB transcription factor genes on abiotic stress. PeerJ 2021; 9:e11268. [PMID: 34164229 PMCID: PMC8194419 DOI: 10.7717/peerj.11268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Background MYB proteins are a large group of transcription factors. The overexpression of MYB genes has been reported to improve abiotic stress tolerance in plant. However, due to the variety of plant species studied and the types of gene donors/recipients, along with different experimental conditions, it is difficult to interpret the roles of MYB in abiotic stress tolerance from published data. Methods Using meta-analysis approach, we investigated the plant characteristics involved in cold, drought, and salt stress in MYB-overexpressing plants and analyzed the degrees of influence on plant performance by experimental variables. Results The results show that two of the four measured plant parameters in cold-stressed plants, two of the six in drought-stressed, and four of the 13 in salt-stressed were significantly impacted by MYB overexpression by 22% or more, and the treatment medium, donor/recipient species, and donor type significantly influence the effects of MYB-overexpression on drought stress tolerance. Also, the donor/recipient species, donor type, and stress duration all significantly affected the extent of MYB-mediated salt stress tolerance. In summary, this study compiles and analyzes the data across studies to help us understand the complex interactions that dictate the efficacy of heterologous MYB expression designed for improved abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lingxia Shao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
415
|
Wang J, Wang Z, Jia C, Miao H, Zhang J, Liu J, Xu B, Jin Z. Genome-Wide Identification and Transcript Analysis of TCP Gene Family in Banana (Musa acuminata L.). Biochem Genet 2021; 60:204-222. [PMID: 34156635 DOI: 10.1007/s10528-021-10100-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) gene family has versatile functions in diverse aspects of plants. However, less research on banana TCPs was done comprehensively. Accordingly, 48 banana TCP genes were characterized on aspects of gene structure, conserved motifs, phylogenetic relationship, and expression patterns. Members of the MaTCP gene family were unevenly distributed among 11 chromosomes and purification selection was the driving force of the MaTCP gene family. Gene duplication analysis indicated that segmental duplication is the major contributor to family expansion. Promoter analysis showed that MaTCPs might be involved in banana growth, development, and abiotic stress responses. Further, the expression of 12 MaTCPs was analyzed by real-time quantitative RT-PCR, and the protein interaction analysis showed that MaPCF10 and MaPCF13 may have an important function in banana fruit development and ripening. These results lay the foundation for further study of the functions of TCP genes in banana.
Collapse
Affiliation(s)
- Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresource, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresource, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China. .,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresource, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China. .,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresource, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101, China.
| |
Collapse
|
416
|
Li Z, Wang G, Liu X, Wang Z, Zhang M, Zhang J. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics 2021; 22:456. [PMID: 34139993 PMCID: PMC8212459 DOI: 10.1186/s12864-021-07799-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background The dehydration-responsive element-binding proteins (DREBs) are important transcription factors that interact with a DRE/CRT (C-repeat) sequence and involve in response to multiple abiotic stresses in plants. Modern sugarcane are hybrids from the cross between Saccharum spontaneum and Saccharum officinarum, and the high sugar content is considered to the attribution of S. officinaurm, while the stress tolerance is attributed to S. spontaneum. To understand the molecular and evolutionary characterization and gene functions of the DREBs in sugarcane, based on the recent availability of the whole genome information, the present study performed a genome-wide in silico analysis of DREB genes and transcriptome analysis in the polyploidy S. spontaneum. Results Twelve DREB1 genes and six DREB2 genes were identified in S. spontaneum genome and all proteins contained a conserved AP2/ERF domain. Eleven SsDREB1 allele genes were assumed to be originated from tandem duplications, and two of them may be derived after the split of S. spontaneum and the proximal diploid species sorghum, suggesting tandem duplication contributed to the expansion of DREB1-type genes in sugarcane. Phylogenetic analysis revealed that one DREB2 gene was lost during the evolution of sugarcane. Expression profiling showed different SsDREB genes with variable expression levels in the different tissues, indicating seven SsDREB genes were likely involved in the development and photosynthesis of S. spontaneum. Furthermore, SsDREB1F, SsDREB1L, SsDREB2D, and SsDREB2F were up-regulated under drought and cold condition, suggesting that these four genes may be involved in both dehydration and cold response in sugarcane. Conclusions These findings demonstrated the important role of DREBs not only in the stress response, but also in the development and photosynthesis of S. spontaneum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07799-5.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224051, China
| | - Xihui Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Jisen Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
417
|
Han T, Yan J, Xiang Y, Zhang A. Phosphorylation of ZmNAC84 at Ser-113 enhances the drought tolerance by directly modulating ZmSOD2 expression in maize. Biochem Biophys Res Commun 2021; 567:86-91. [PMID: 34146906 DOI: 10.1016/j.bbrc.2021.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play vital roles in response to multiple abiotic stresses. Our previous study has demonstrated that ZmNAC84, a maize NAC transcription factor, enhanced the drought tolerance by increasing abscisic acid (ABA)-induced antioxidant enzyme activities of APX and SOD, and Ser-113, a key phosphorylation site, of ZmNAC84 played an important role in this process. However, the target gene of ZmNAC84 in this process is still unknown. Here, we found that ZmNAC84 only regulated the luciferase activity driven by ZmSOD2 promoter in tobacco. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay showed that ZmNAC84 directly bound to the CACGTG motif of ZmSOD2 promoter. Furthermore, phosphorylation of ZmNAC84 at Ser-113 up-regulated the ZmSOD2 expression by enhancing the DNA binding ability of ZmNAC84 to ZmSOD2 promoter and improved the drought tolerance. Taken together, our results demonstrate that ZmNAC84 directly regulates ZmSOD2 expression to enhance drought tolerance and Ser-113 of ZmNAC84 is crucial in this process.
Collapse
Affiliation(s)
- Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
418
|
Feng Z, Li M, Li Y, Yang X, Wei H, Fu X, Ma L, Lu J, Wang H, Yu S. Comprehensive identification and expression analysis of B-Box genes in cotton. BMC Genomics 2021; 22:439. [PMID: 34118883 PMCID: PMC8196430 DOI: 10.1186/s12864-021-07770-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND B-BOX (BBX) proteins are zinc-finger transcription factors with one or two BBX domains and sometimes a CCT domain. These proteins play an essential role in regulating plant growth and development, as well as in resisting abiotic stress. So far, the BBX gene family has been widely studied in other crops. However, no one has systematically studied the BBX gene in cotton. RESULTS In the present study, 17, 18, 37 and 33 BBX genes were detected in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively, via genome-wide identification. Phylogenetic analysis showed that all BBX genes were divided into 5 main categories. The protein motifs and exon/intron structures showed that each group of BBX genes was highly conserved. Collinearity analysis revealed that the amplification of BBX gene family in Gossypium spp. was mainly through segmental replication. Nonsynonymous (Ka)/ synonymous (Ks) substitution ratios indicated that the BBX gene family had undergone purification selection throughout the long-term natural selection process. Moreover, transcriptomic data showed that some GhBBX genes were highly expressed in floral organs. The qRT-PCR results showed that there were significant differences in GhBBX genes in leaves and shoot apexes between early-maturing materials and late-maturing materials at most periods. Yeast two-hybrid results showed that GhBBX5/GhBBX23 and GhBBX8/GhBBX26 might interact with GhFT. Transcriptome data analysis and qRT-PCR verification showed that different GhBBX genes had different biological functions in abiotic stress and phytohormone response. CONCLUSIONS Our comprehensive analysis of BBX in G. hirsutum provided a basis for further study on the molecular role of GhBBXs in regulating flowering and cotton resistance to abiotic stress.
Collapse
Affiliation(s)
- Zhen Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Mengyu Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Xu Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| |
Collapse
|
419
|
Fan Y, Yang H, Lai D, He A, Xue G, Feng L, Chen L, Cheng XB, Ruan J, Yan J, Cheng J. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 2021; 22:415. [PMID: 34090335 PMCID: PMC8178921 DOI: 10.1186/s12864-021-07652-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Basic helix-loop-helix (bHLH) is a superfamily of transcription factors that is widely found in plants and animals, and is the second largest transcription factor family in eukaryotes after MYB. They have been shown to be important regulatory components in tissue development and many different biological processes. However, no systemic analysis of the bHLH transcription factor family has yet been reported in Sorghum bicolor. RESULTS We conducted the first genome-wide analysis of the bHLH transcription factor family of Sorghum bicolor and identified 174 SbbHLH genes. Phylogenetic analysis of SbbHLH proteins and 158 Arabidopsis thaliana bHLH proteins was performed to determine their homology. In addition, conserved motifs, gene structure, chromosomal spread, and gene duplication of SbbHLH genes were studied in depth. To further infer the phylogenetic mechanisms in the SbbHLH family, we constructed six comparative syntenic maps of S. bicolor associated with six representative species. Finally, we analyzed the gene-expression response and tissue-development characteristics of 12 typical SbbHLH genes in plants subjected to six different abiotic stresses. Gene expression during flower and fruit development was also examined. CONCLUSIONS This study is of great significance for functional identification and confirmation of the S. bicolor bHLH superfamily and for our understanding of the bHLH superfamily in higher plants.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Liang Feng
- Chengdu Food and Drug Inspection Institute, Chengdu, 610000, P.R. China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, Mianzhu, 618200, P.R. China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, Kangding, 626001, P.R. China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China.
| |
Collapse
|
420
|
Huang S, Zhu S, Kumar P, MacMicking JD. A phase-separated nuclear GBPL circuit controls immunity in plants. Nature 2021; 594:424-429. [PMID: 34040255 PMCID: PMC8478157 DOI: 10.1038/s41586-021-03572-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a central paradigm for understanding how membraneless organelles compartmentalize diverse cellular activities in eukaryotes1-3. Here we identify a superfamily of plant guanylate-binding protein (GBP)-like GTPases (GBPLs) that assemble LLPS-driven condensates within the nucleus to protect against infection and autoimmunity. In Arabidopsis thaliana, two members of this family-GBPL1 and GBPL3-undergo phase-transition behaviour to control transcriptional responses as part of an allosteric switch that is triggered by exposure to biotic stress. GBPL1, a pseudo-GTPase, sequesters catalytically active GBPL3 under basal conditions but is displaced by GBPL3 LLPS when it enters the nucleus following immune cues to drive the formation of unique membraneless organelles termed GBPL defence-activated condensates (GDACs) that we visualized by in situ cryo-electron tomography. Within these mesoscale GDAC structures, native GBPL3 directly bound defence-gene promoters and recruited specific transcriptional coactivators of the Mediator complex and RNA polymerase II machinery to massively reprogram host gene expression for disease resistance. Together, our study identifies a GBPL circuit that reinforces the biological importance of phase-separated condensates, in this case, as indispensable players in plant defence.
Collapse
Affiliation(s)
- Shuai Huang
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Shiwei Zhu
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pradeep Kumar
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - John D. MacMicking
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Correspondence and requests for materials should be addressed to J.D.M.,
| |
Collapse
|
421
|
Kumar V, Singh D, Majee A, Singh S, Asif MH, Sane AP, Sane VA. Identification of tomato root growth regulatory genes and transcription factors through comparative transcriptomic profiling of different tissues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1173-1189. [PMID: 34177143 PMCID: PMC8212336 DOI: 10.1007/s12298-021-01015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Tomato is an economically important vegetable crop and a model for development and stress response studies. Although studied extensively for understanding fruit ripening and pathogen responses, its role as a model for root development remains less explored. In this study, an Illumina-based comparative differential transcriptomic analysis of tomato root with different aerial tissues was carried out to identify genes that are predominantly expressed during root growth. Sequential comparisons revealed ~ 15,000 commonly expressed genes and ~ 3000 genes of several classes that were mainly expressed or regulated in roots. These included 1069 transcription factors (TFs) of which 100 were differentially regulated. Prominent amongst these were members of families encoding Zn finger, MYB, ARM, bHLH, AP2/ERF, WRKY and NAC proteins. A large number of kinases, phosphatases and F-box proteins were also expressed in the root transcriptome. The major hormones regulating root growth were represented by the auxin, ethylene, JA, ABA and GA pathways with root-specific expression of certain components. Genes encoding carbon metabolism and photosynthetic components showed reduced expression while several protease inhibitors were amongst the most highly expressed. Overall, the study sheds light on genes governing root growth in tomato and provides a resource for manipulation of root growth for plant improvement. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01015-0.
Collapse
Affiliation(s)
- Vinod Kumar
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Deepika Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Integral University, Lucknow, 226026 India
| | - Adity Majee
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Shikha Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Mehar Hasan Asif
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aniruddha P. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
422
|
Dai JH, Hu AQ, Zhang JS, Liao WH, Ma HY, Wu JZ, Yu Y, Cao SJ. NF-YB-Mediated Active Responses of Plant Growth under Salt and Temperature Stress in Eucalyptus grandis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1107. [PMID: 34072675 PMCID: PMC8227622 DOI: 10.3390/plants10061107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor NF-YB (nuclear factor-YB) family is a subfamily of the nuclear factor Y (NF-Y), which plays an important role in regulating plant growth, development and participates in various stress responses. Although the NF-Y family has been studied in many species, it is still obscure in Eucalyptus grandis. In this study, 23 EgNF-YB genes in eucalyptus were identified and unevenly distributed on 11 chromosomes. Phylogenetic analysis showed the EgNF-YB genes were divided into two clades, LEC-1 type and non-LEC1 type. The evolution of distinct clades was relatively conservative, the gene structures were analogous, and the differences of genetic structures among clades were small. The expression profiles showed that the distinct EgNF-YB genes were highly expressed in diverse tissues, and EgNF-YB4/6/13/19/23 functioned in response to salinity, heat and cold stresses. Our study characterized the phylogenetic relationship, gene structures and expression patterns of EgNF-YB gene family and investigated their potential roles in abiotic stress responses, which provides solid foundations for further functional analysis of NF-YB genes in eucalyptus.
Collapse
Affiliation(s)
- Jia-Hao Dai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - An-Qi Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Jia-Shuo Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Hua-Yan Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Jin-Zhang Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Yuan Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| |
Collapse
|
423
|
Qin M, Zhang B, Gu G, Yuan J, Yang X, Yang J, Xie X. Genome-Wide Analysis of the G2-Like Transcription Factor Genes and Their Expression in Different Senescence Stages of Tobacco ( Nicotiana tabacum L.). Front Genet 2021; 12:626352. [PMID: 34135936 PMCID: PMC8202009 DOI: 10.3389/fgene.2021.626352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Golden2-like (GLK) transcription factors play important roles in regulating chloroplast growth, development, and senescence in plants. In this study, a total of 89 NtGLK genes (NtGLK1-NtGLK89) were identified in the tobacco genome and were classified into 10 subfamilies with variable numbers of exons and similar structural organizations based on the gene structure and protein motif analyses. Twelve segmental duplication pairs of NtGLK genes were identified in the genome. These NtGLK genes contain two conserved helix regions related to the HLH structure, and the sequences of the first helix region are less conserved than that of the second helix motif. Cis-regulatory elements of the NtGLK promoters were widely involved in light responsiveness, hormone treatment, and physiological stress. Moreover, a total of 206 GLK genes from tomato, tobacco, maize, rice, and Arabidopsis were retrieved and clustered into eight subgroups. Our gene expression analysis indicated that NtGLK genes showed differential expression patterns in tobacco leaves at five senescence stages. The expression levels of six NtGLK genes in group C were reduced, coinciding precisely with the increment of the degree of senescence, which might be associated with the function of leaf senescence of tobacco. Our results have revealed valuable information for further functional characterization of the GLK gene family in tobacco.
Collapse
Affiliation(s)
- Mingyue Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, United States
| | - Xuanshong Yang
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
424
|
Rezaei Cherati S, Shanmugam S, Pandey K, Khodakovskaya MV. Whole-Transcriptome Responses to Environmental Stresses in Agricultural Crops Treated with Carbon-Based Nanomaterials. ACS APPLIED BIO MATERIALS 2021; 4:4292-4301. [DOI: 10.1021/acsabm.1c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Sudha Shanmugam
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Kamal Pandey
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
- University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Mariya V. Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|
425
|
Zaheri B, Morse D. Assessing nucleic acid binding activity of four dinoflagellate cold shock domain proteins from Symbiodinium kawagutii and Lingulodinium polyedra. BMC Mol Cell Biol 2021; 22:27. [PMID: 33964870 PMCID: PMC8106185 DOI: 10.1186/s12860-021-00368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dinoflagellates have a generally large number of genes but only a small percentage of these are annotated as transcription factors. Cold shock domain (CSD) containing proteins (CSPs) account for roughly 60% of these. CSDs are not prevalent in other eukaryotic lineages, perhaps suggesting a lineage-specific expansion of this type of transcription factors in dinoflagellates, but there is little experimental data to support a role for dinoflagellate CSPs as transcription factors. Here we evaluate the hypothesis that dinoflagellate CSPs can act as transcription factors by binding double-stranded DNA in a sequence dependent manner. Results We find that both electrophoretic mobility shift assay (EMSA) competition experiments and selection and amplification binding (SAAB) assays indicate binding is not sequence specific for four different CSPs from two dinoflagellate species. Competition experiments indicate all four CSPs bind to RNA better than double-stranded DNA. Conclusion Dinoflagellate CSPs do not share the nucleic acid binding properties expected for them to function as bone fide transcription factors. We conclude the transcription factor complement of dinoflagellates is even smaller than previously thought suggesting that dinoflagellates have a reduced dependance on transcriptional control compared to other eukaryotes. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00368-4.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke Est, Université de Montréal, Montréal, H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke Est, Université de Montréal, Montréal, H1X 2B2, Canada.
| |
Collapse
|
426
|
ATHB2 is a negative regulator of germination in Arabidopsis thaliana seeds. Sci Rep 2021; 11:9688. [PMID: 33958633 PMCID: PMC8102570 DOI: 10.1038/s41598-021-88874-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
The germination timing of seeds is of the utmost adaptive importance for plant populations. Light is one of the best characterized factors promoting seed germination in several species. The germination is also finely regulated by changes in hormones levels, mainly those of gibberellin (GA) and abscisic acid (ABA). Here, we performed physiological, pharmacological, and molecular analyses to uncover the role of ATHB2, an HD-ZIP II transcription factor, in germination of Arabidopsis seeds. Our study demonstrated that ATHB2 is a negative regulator and sustains the expression of transcription factors to block germination promoted by light. Besides, we found that ATHB2 increases ABA sensitivity. Moreover, ABA and auxin content in athb2-2 mutant is higher than wild-type in dry seeds, but the differences disappeared during the imbibition in darkness and the first hours of exposition to light, respectively. Some ABA and light transcription factors are up-regulated by ATHB2, such as ABI5, ABI3, XERICO, SOMNUS and PIL5/PIF1. In opposition, PIN7, an auxin transport, is down-regulated. The role of ATHB2 as a repressor of germination induced by light affecting the gemination timing, could have differential effects on the establishment of seedlings altering the competitiveness between crops and weeds in the field.
Collapse
|
427
|
Yi JW, Wang Y, Ma XS, Zhang JQ, Zhao ML, Huang XM, Li JG, Hu GB, Wang HC. LcERF2 modulates cell wall metabolism by directly targeting a UDP-glucose-4-epimerase gene to regulate pedicel development and fruit abscission of litchi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:801-816. [PMID: 33595139 DOI: 10.1111/tpj.15201] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Elucidating the biochemical and molecular basis of premature abscission in fruit crops should help develop strategies to enhance fruit set and yield. Here, we report that LcERF2 contributes to differential abscission rates and responses to ethylene in Litchi chinensis (litchi). Reduced LcERF2 expression in litchi was observed to reduce fruit abscission, concurrent with enhanced pedicel growth and increased levels of hexoses, particularly galactose, as well as pectin abundance in the cell wall. Ecoptic expression of LcERF2 in Arabidopsis thaliana caused enhanced petal abscission, together with retarded plant growth and reduced pedicel galactose and pectin contents. Transcriptome analysis indicated that LcERF2 modulates the expression of genes involved in cell wall modification. Yeast one-hybrid, dual-luciferase reporter and electrophoretic mobility shift assays all demonstrated that a UDP-glucose-4-epimerase gene (LcUGE) was the direct downstream target of LcERF2. This result was further supported by a significant reduction in the expression of the A. thaliana homolog AtUGE2-4 in response to LcERF2 overexpression. Significantly reduced pedicel diameter and enhanced litchi fruit abscission were observed in response to LcUGE silencing. We conclude that LcERF2 mediates fruit abscission by orchestrating cell wall metabolism, and thus pedicel growth, in part by repressing the expression of LcUGE.
Collapse
Affiliation(s)
- Jun-Wen Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiao-Sha Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jie-Qiong Zhang
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling, 408100, People's Republic of China
| | - Ming-Lei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Guo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hui-Cong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling, 408100, People's Republic of China
| |
Collapse
|
428
|
Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). PLANTA 2021; 253:114. [PMID: 33934247 DOI: 10.1007/s00425-021-03618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/26/2021] [Indexed: 05/27/2023]
Abstract
Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Renkun Tang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Benhong Wu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| |
Collapse
|
429
|
Cai K, Liu H, Chen S, Liu Y, Zhao X, Chen S. Genome-wide identification and analysis of class III peroxidases in Betula pendula. BMC Genomics 2021; 22:314. [PMID: 33932996 PMCID: PMC8088069 DOI: 10.1186/s12864-021-07622-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. RESULTS We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. CONCLUSIONS The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.
Collapse
Affiliation(s)
- Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Huixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
430
|
Ejaz M, Bencivenga S, Tavares R, Bush M, Sablowski R. ARABIDOPSIS THALIANA HOMEOBOX GENE 1 controls plant architecture by locally restricting environmental responses. Proc Natl Acad Sci U S A 2021; 118:e2018615118. [PMID: 33888582 PMCID: PMC8092594 DOI: 10.1073/pnas.2018615118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diversity and environmental plasticity of plant growth results from variations of repetitive modules, such as the basic shoot units made of a leaf, axillary bud, and internode. Internode elongation is regulated both developmentally and in response to environmental conditions, such as light quality, but the integration of internal and environmental signals is poorly understood. Here, we show that the compressed rosette growth habit of Arabidopsis is maintained by the convergent activities of the organ boundary gene ARABIDOPSIS THALIANA HOMEOBOX GENE 1 (ATH1) and of the gibberellin-signaling DELLA genes. Combined loss of ATH1 and DELLA function activated stem development during the vegetative phase and changed the growth habit from rosette to caulescent. Chromatin immunoprecipitation high-throughput sequencing and genetic analysis indicated that ATH1 and the DELLA gene REPRESSOR OF GA1-3 (RGA) converge on the regulation of light responses, including the PHYTOCHROME INTERACTING FACTORS (PIF) pathway, and showed that the ATH1 input is mediated in part by direct activation of BLADE ON PETIOLE (BOP1 and BOP2) genes, whose products destabilize PIF proteins. We conclude that an organ-patterning gene converges with hormone signaling to spatially restrict environmental responses and establish a widespread type of plant architecture.
Collapse
Affiliation(s)
- Mahwish Ejaz
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Stefano Bencivenga
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Rafael Tavares
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Max Bush
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| |
Collapse
|
431
|
Chen C, Li Y, Zhang H, Ma Q, Wei Z, Chen J, Sun Z. Genome-Wide Analysis of the RAV Transcription Factor Genes in Rice Reveals Their Response Patterns to Hormones and Virus Infection. Viruses 2021; 13:v13050752. [PMID: 33922971 PMCID: PMC8146320 DOI: 10.3390/v13050752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The RAV family is part of the B3 superfamily and is one of the most abundant transcription factor families in plants. Members have highly conserved B3 or AP2 DNA binding domains. Although the RAV family genes of several species have been systematically identified from genome-wide studies, there has been no comprehensive study to identify rice RAV family genes. Here, we identified 15 genes of the RAV family in the rice genome and analyzed their phylogenetic relationships, gene structure, conserved domains, and chromosomal distribution. Based on domain similarity and phylogenetic topology, rice RAV transcription factors were phylogenetically clustered into four groups. qRT-PCR analyses showed that expression of these RAV genes was significantly up-regulated or down-regulated by plant hormone treatments, including BL, NAA, IAA, MeJA, and SA. Most of the rice RAV genes were dramatically down-regulated in response to rice stripe virus (RSV) and mostly up-regulated in response to Southern rice black-streaked dwarf virus (SRBSDV). These results suggest that the rice RAV genes are involved in diverse signaling pathways and in varied responses to virus infection.
Collapse
|
432
|
Song X, Li N, Guo Y, Bai Y, Wu T, Yu T, Feng S, Zhang Y, Wang Z, Liu Z, Lin H. Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. FORESTRY RESEARCH 2021; 1:7. [PMID: 39524510 PMCID: PMC11524223 DOI: 10.48130/fr-2021-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2024]
Abstract
Simple sequence repeats (SSRs) are popular and important molecular markers that exist widely in plants. Here, we conducted a comprehensive identification and comparative analysis of SSRs in 14 tree species. A total of 16, 298 SSRs were identified from 429, 449 genes, and primers were successfully designed for 99.44% of the identified SSRs. Our analysis indicated that tri-nucleotide SSRs were the most abundant, with an average of ~834 per species. Functional enrichment analysis by combining SSR-containing genes in all species, revealed 50 significantly enriched terms, with most belonging to transcription factor families associated with plant development and abiotic stresses such as Myeloblastosis_DNA-bind_4 (Myb_DNA-bind_4), APETALA2 (AP2), and Fantastic Four meristem regulator (FAF). Further functional enrichment analysis showed that 48 terms related to abiotic stress regulation and floral development were significantly enriched in ten species, whereas no significantly enriched terms were found in four species. Interestingly, the largest number of enriched terms was detected in Citrus sinensis (L.) Osbeck, accounting for 54.17% of all significantly enriched functional terms. Finally, we analyzed AP2 and trihelix gene families (Myb_DNA-bind_4) due to their significant enrichment in SSR-containing genes. The results indicated that whole-genome duplication (WGD) and whole genome triplication (WGT) might have played major roles in the expansion of the AP2 gene family but only slightly affected the expansion of the trihelix gene family during evolution. In conclusion, the identification and comprehensive characterization of SSR markers will greatly facilitate future comparative genomics and functional genomics studies.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nan Li
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuanyuan Guo
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yun Bai
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Wu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shuyan Feng
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yu Zhang
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhiyuan Wang
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhuo Liu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
433
|
Singh S, Kudapa H, Garg V, Varshney RK. Comprehensive analysis and identification of drought-responsive candidate NAC genes in three semi-arid tropics (SAT) legume crops. BMC Genomics 2021; 22:289. [PMID: 33882825 PMCID: PMC8059324 DOI: 10.1186/s12864-021-07602-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/11/2021] [Indexed: 01/24/2023] Open
Abstract
Background Chickpea, pigeonpea, and groundnut are the primary legume crops of semi-arid tropics (SAT) and their global productivity is severely affected by drought stress. The plant-specific NAC (NAM - no apical meristem, ATAF - Arabidopsis transcription activation factor, and CUC - cup-shaped cotyledon) transcription factor family is known to be involved in majority of abiotic stresses, especially in the drought stress tolerance mechanism. Despite the knowledge available regarding NAC function, not much information is available on NAC genes in SAT legume crops. Results In this study, genome-wide NAC proteins – 72, 96, and 166 have been identified from the genomes of chickpea, pigeonpea, and groundnut, respectively, and later grouped into 10 clusters in chickpea and pigeonpea, while 12 clusters in groundnut. Phylogeny with well-known stress-responsive NACs in Arabidopsis thaliana, Oryza sativa (rice), Medicago truncatula, and Glycine max (soybean) enabled prediction of putative stress-responsive NACs in chickpea (22), pigeonpea (31), and groundnut (33). Transcriptome data revealed putative stress-responsive NACs at various developmental stages that showed differential expression patterns in the different tissues studied. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression patterns of selected stress-responsive, Ca_NAC (Cicer arietinum - 14), Cc_NAC (Cajanus cajan - 15), and Ah_NAC (Arachis hypogaea - 14) genes using drought-stressed and well-watered root tissues from two contrasting drought-responsive genotypes of each of the three legumes. Based on expression analysis, Ca_06899, Ca_18090, Ca_22941, Ca_04337, Ca_04069, Ca_04233, Ca_12660, Ca_16379, Ca_16946, and Ca_21186; Cc_26125, Cc_43030, Cc_43785, Cc_43786, Cc_22429, and Cc_22430; Ah_ann1.G1V3KR.2, Ah_ann1.MI72XM.2, Ah_ann1.V0X4SV.1, Ah_ann1.FU1JML.2, and Ah_ann1.8AKD3R.1 were identified as potential drought stress-responsive candidate genes. Conclusion As NAC genes are known to play role in several physiological and biological activities, a more comprehensive study on genome-wide identification and expression analyses of the NAC proteins have been carried out in chickpea, pigeonpea and groundnut. We have identified a total of 21 potential drought-responsive NAC genes in these legumes. These genes displayed correlation between gene expression, transcriptional regulation, and better tolerance against drought. The identified candidate genes, after validation, may serve as a useful resource for molecular breeding for drought tolerance in the SAT legume crops. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07602-5.
Collapse
Affiliation(s)
- Sadhana Singh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Vanika Garg
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
434
|
Exogenous EBR Ameliorates Endogenous Hormone Contents in Tomato Species under Low-Temperature Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7040084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Low-temperature stress is a type of abiotic stress that limits plant growth and production in both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide (EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxidant enzyme activity, and transcription of several cold-responsive genes, under low-temperature stress (9 °C) in two different tomato species (cold-sensitive and cold-tolerant species). Results indicated that the treatment with exogenous EBR increases the content of gibberellic acid (GA3) and indole-3-acetic acid (IAA), whose accumulation is reduced by low temperatures in cold-sensitive species. Furthermore, the combination or contribution of BR and abscisic acid (ABA) as a synergetic interaction was recognized between BR and ABA in response to low temperatures. The content of malondialdehyde (MDA) and proline was significantly increased in both species, in response to low-temperature stress; however, EBR treatment did not affect the MDA and proline content. Moreover, in the present study, the effect of EBR application was different in the tomato species under low-temperature stress, which increased the catalase (CAT) activity in the cold-tolerant species and increased the glutathione peroxidase (GPX) activity in the cold-sensitive species. Furthermore, expression levels of cold-responsive genes were influenced by low-temperature stress and EBR treatment. Overall, our findings revealed that a low temperature causes oxidative stress while EBR treatment may decrease the reactive oxygen species (ROS) damage into increasing antioxidant enzymes, and improve the growth rate of the tomato by affecting auxin and gibberellin content. This study provides insight into the mechanism by which BRs regulate stress-dependent processes in tomatoes, and provides a theoretical basis for promoting cold resistance of the tomato.
Collapse
|
435
|
Khan I, Khan S, Zhang Y, Zhou J. Genome-wide analysis and functional characterization of the Dof transcription factor family in rice (Oryza sativa L.). PLANTA 2021; 253:101. [PMID: 33856565 DOI: 10.1007/s00425-021-03627-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Exhaustive searches of the rice genome have revealed 30 different potential OsDof (Oryza sativa DNA binding with One Finger) genes. Their subcellular localization, phylogenetic relationship, conserved motifs identification, chromosomal allocation, expression patterns, and interaction networks were analyzed. The Dof (DNA binding with One Finger) family of transcription factors represents a particular class of plant-specific transcriptional regulators, contain a highly conserved region of 50-52 amino acids (Dof domain) and involved in various plant developmental processes and response to various environmental stresses. Few (Oryza sativa) OsDof genes have been demonstrated previously for their biological functions but there is no comprehensive study on most of the Dof genes of rice. In the current study, exhaustive searches of the rice genome revealed 30 different potential OsDof genes, and then their subcellular localization, phylogenetic relationship, conserved motifs identification, chromosomal allocation, expression patterns, and interaction networks were analyzed. Phylogenetic analysis of Dof proteins in rice showed that they are distributed in 4 groups. By genome-wide observation of gene expression profiles, we found that OsDof genes showed significant variances in expression levels in different tissues across multiple developmental stages. Protein-protein correlation network analysis, shows a statically significant overlap of some OsDofs, suggesting their similar functions and a high degree of co-expression. The Dof family transcription factors have been reported for their involvement in the regulation of various gene expression processes in rice but still, most of the Dof genes are not characterized for their specific physiological functions. This study revealed useful information and clues about predicting the potential roles of OsDofs in rice by combining their genome-wide characterization, expression profiling, protein-protein interactions, and for further studies to develop high-quality rice varieties.
Collapse
Affiliation(s)
- Ibrahim Khan
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, K.P, Pakistan.
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
436
|
Kumari S, Kanth BK, Ahn JY, Kim JH, Lee GJ. Genome-Wide Transcriptomic Identification and Functional Insight of Lily WRKY Genes Responding to Botrytis Fungal Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:776. [PMID: 33920859 PMCID: PMC8071302 DOI: 10.3390/plants10040776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 05/25/2023]
Abstract
Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes-LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12-were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.
Collapse
Affiliation(s)
- Shipra Kumari
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
| | - Bashistha Kumar Kanth
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
| | - Ju young Ahn
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| | - Jong Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
437
|
Joo H, Baek W, Lim CW, Lee SC. Post-translational Modifications of bZIP Transcription Factors in Abscisic Acid Signaling and Drought Responses. Curr Genomics 2021; 22:4-15. [PMID: 34045920 PMCID: PMC8142349 DOI: 10.2174/1389202921999201130112116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 11/22/2022] Open
Abstract
Under drought stress, plants have developed various mechanisms to survive in the reduced water supply, of which the regulation of stress-related gene expression is responsible for several transcription factors. The basic leucine zippers (bZIPs) are one of the largest and most diverse transcription factor families in plants. Among the 10 Arabidopsis bZIP groups, group A bZIP transcription factors function as a positive or negative regulator in ABA signal transduction and drought stress response. These bZIP transcription factors, which are involved in the drought response, have also been isolated in various plant species such as rice, pepper, potato, and maize. Recent studies have provided substantial evidence that many bZIP transcription factors undergo the post-translational modifications, through which the regulation of their activity or stability affects plant responses to various intracellular or extracellular stimuli. This review aims to address the modulation of the bZIP proteins in ABA signaling and drought responses through phosphorylation, ubiquitination and sumoylation.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
438
|
Yang Z, Nie G, Feng G, Han J, Huang L, Zhang X. Genome-wide identification, characterization, and expression analysis of the NAC transcription factor family in orchardgrass (Dactylis glomerata L.). BMC Genomics 2021; 22:178. [PMID: 33711917 PMCID: PMC7953825 DOI: 10.1186/s12864-021-07485-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
Background Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season perennial forage grasses that is widely cultivated in the world and is highly tolerant to stressful conditions. However, little is known about the mechanisms underlying this tolerance. The NAC (NAM, ATAF1/2, and CUC2) transcription factor family is a large plant-specific gene family that actively participates in plant growth, development, and response to abiotic stress. At present, owing to the absence of genomic information, NAC genes have not been systematically studied in orchardgrass. The recent release of the complete genome sequence of orchardgrass provided a basic platform for the investigation of DgNAC proteins. Results Using the recently released orchardgrass genome database, a total of 108 NAC (DgNAC) genes were identified in the orchardgrass genome database and named based on their chromosomal location. Phylogenetic analysis showed that the DgNAC proteins were distributed in 14 subgroups based on homology with NAC proteins in Arabidopsis, including the orchardgrass-specific subgroup Dg_NAC. Gene structure analysis suggested that the number of exons varied from 1 to 15, and multitudinous DgNAC genes contained three exons. Chromosomal mapping analysis found that the DgNAC genes were unevenly distributed on seven orchardgrass chromosomes. For the gene expression analysis, the expression levels of DgNAC genes in different tissues and floral bud developmental stages were quite different. Quantitative real-time PCR analysis showed distinct expression patterns of 12 DgNAC genes in response to different abiotic stresses. The results from the RNA-seq data revealed that orchardgrass-specific NAC exhibited expression preference or specificity in diverse abiotic stress responses, and the results indicated that these genes may play an important role in the adaptation of orchardgrass under different environments. Conclusions In the current study, a comprehensive and systematic genome-wide analysis of the NAC gene family in orchardgrass was first performed. A total of 108 NAC genes were identified in orchardgrass, and the expression of NAC genes during plant growth and floral bud development and response to various abiotic stresses were investigated. These results will be helpful for further functional characteristic descriptions of DgNAC genes and the improvement of orchardgrass in breeding programs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07485-6.
Collapse
Affiliation(s)
- Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Jiating Han
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
439
|
Identification, classification, and characterization of AP2/ERF superfamily genes in Masson pine (Pinus massoniana Lamb.). Sci Rep 2021; 11:5441. [PMID: 33686110 PMCID: PMC7940494 DOI: 10.1038/s41598-021-84855-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) play crucial regulatory roles in controlling the expression of the target genes in plants. APETALA2/Ethylene-responsive factors (AP2/ERF) are part of a large superfamily of plant-specific TFs whose members are involved in the control of plant metabolism, development and responses to various biotic and abiotic stresses. However, the AP2/ERF superfamily has not been identified systematically in Masson pine (Pinus massoniana), which is one of the most important conifer in southern China. Therefore, we performed systematic identification of the AP2/ERF superfamily using transcriptome sequencing data from Masson pine. In the current study, we obtained 88 members of the AP2/ERF superfamily. All PmAP2/ERF members could be classified into 3 main families, AP2 (7 members), RAV (7 members), ERF (73 members) families, and a soloist protein. Subcellular localization assays suggested that two members of PmAP2/ERF were nuclear proteins. Based on pine wood nematode (PWN) inoculated transcriptome and qPCR analysis, we found that many members of PmAP2/ERF could respond to PWN inoculation and PWN related treatment conditions in vitro. In general, members of the AP2/ERF superfamily play an important role in the response of Masson pine responds to PWN. Furthermore, the roles of the AP2/ERF superfamily in other physiological activities of Masson pine remain to be further studied.
Collapse
|
440
|
Liu R, Wu M, Liu HL, Gao YM, Chen J, Yan HW, Xiang Y. Genome-wide identification and expression analysis of the NF-Y transcription factor family in Populus. PHYSIOLOGIA PLANTARUM 2021; 171:309-327. [PMID: 32134494 DOI: 10.1111/ppl.13084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
In the past few years, many studies have reported that the transcription factor Nuclear Factor Y (NF-Y) gene family plays important roles in embryonic development, photosynthesis, flowering time regulation and stress response, in various plants. Although the NF-Y gene family has been systematically studied in many species, little is known about NF-Y genes in Populus. In this study, the NF-Y gene family in the Populus genome was identified and its structural characteristics were described. Fifty-two NF-Y genes were authenticated in the Populus trichocarpa genome and categorized into three subfamilies (NF-YA/B/C) by phylogenetic analysis. Chromosomal localization of these genes revealed that they were distributed randomly across 17 of the 19 chromosomes. Segmental duplication played a vital role in the amplification of Populus NF-Y gene family. Moreover, microsynteny analysis indicated that, among Populus trichocarpa, Arabidopsis thaliana, Vitis vinifera and Carica papaya, NF-Y duplicated regions were more conserved between Populus trichocarpa and Vitis vinifera. Redundant stress-related cis-elements were also found in the promoters of most 13 NF-YA genes and their expression levels varied widely following drought, salt, ABA and cold treatments. Subcellular localization experiments in tobacco showed that PtNF-YA3 was localized in nucleus and cytomembrane, while PtNF-YA4 was only in the nucleus in tobacco. According to the transcriptional activity experiments, neither of them had transcriptional activity in yeast. In summary, a comprehensive analysis of the Populus NF-Y gene family was performed to establish a theoretical basis for further functional studies on this family.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huan-Long Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ya-Meng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Han-Wei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
441
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
442
|
Brian L, Warren B, McAtee P, Rodrigues J, Nieuwenhuizen N, Pasha A, David KM, Richardson A, Provart NJ, Allan AC, Varkonyi-Gasic E, Schaffer RJ. A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC PLANT BIOLOGY 2021; 21:121. [PMID: 33639842 PMCID: PMC7913447 DOI: 10.1186/s12870-021-02894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.
Collapse
Affiliation(s)
- Lara Brian
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Peter McAtee
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Jessica Rodrigues
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Asher Pasha
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Karine M David
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Annette Richardson
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 121 Keri Downs Road, Kerikeri, 0294, New Zealand
| | - Nicholas J Provart
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand.
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 55 Old Mill Road, Motueka, 7198, New Zealand.
| |
Collapse
|
443
|
Genome-wide identification and function characterization of GATA transcription factors during development and in response to abiotic stresses and hormone treatments in pepper. J Appl Genet 2021; 62:265-280. [PMID: 33624251 DOI: 10.1007/s13353-021-00618-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/03/2023]
Abstract
Pepper (Capsicum annuum L.) is an economically important vegetable crop whose production and quality are severely reduced under adverse environmental stress conditions. The GATA transcription factors belonging to type IV zinc-finger proteins, play a significant role in regulating light morphogenesis, nitrate assimilation, and organ development in plants. However, the functional characteristics of GATA gene family during development and in response to environmental stresses have not yet been investigated in pepper. In this study, a total of 28 pepper GATA (CaGATA) genes were identified. To gain an overview of the CaGATAs, we analyzed their chromosomal distribution, gene structure, conservative domains, cis-elements, phylogeny, and evolutionary relationship. We divided 28 CaGATAs into four groups distributed on 10 chromosomes, and identified 7 paralogs in CaGATA family of pepper and 35 orthologous gene pairs between CaGATAs and Arabidopsis GATAs (AtGATAs). The results of promoter cis-element analysis and the quantitative real-time PCR (qRT-PCR) analysis revealed that CaGATA genes were involved in regulating the plant growth and development and the responses to various abiotic stresses and hormone treatments in pepper. Tissue-specific expression analysis showed that most CaGATA genes were preferentially expressed in flower buds, flowers, and leaves. Several CaGATA genes, especially CaGATA14, were significantly regulated under multiple abiotic stresses, and CaGATA21 and CaGATA27 were highly responsive to phytohormone treatments. Taken together, our results lay a foundation for the biological function analysis of GATA gene family in pepper.
Collapse
|
444
|
TaAP2-15, An AP2/ERF Transcription Factor, Is Positively Involved in Wheat Resistance to Puccinia striiformis f. sp. tritici. Int J Mol Sci 2021; 22:ijms22042080. [PMID: 33669850 PMCID: PMC7923241 DOI: 10.3390/ijms22042080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
AP2 transcription factors play a crucial role in plant development and reproductive growth, as well as response to biotic and abiotic stress. However, the role of TaAP2-15, in the interaction between wheat and the stripe fungus, Puccinia striiformis f. sp. tritici (Pst), remains elusive. In this study, we isolated TaAP2-15 and characterized its function during the interaction. TaAP2-15 was localized in the nucleus of wheat and N. benthamiana. Silencing of TaAP2-15 by barley stripe mosaic virus (BSMV)-mediated VIGS (virus-induced gene silencing) increased the susceptibility of wheat to Pst accompanied by enhanced growth of the pathogen (number of haustoria, haustorial mother cells and hyphal length). We confirmed by quantitative real-time PCR that the transcript levels of pathogenesis-related genes (TaPR1 and TaPR2) were down-regulated, while reactive oxygen species (ROS)-scavenging genes (TaCAT3 and TaFSOD3D) were induced accompanied by reduced accumulation of H2O2. Furthermore, we found that TaAP2-15 interacted with a zinc finger protein (TaRZFP34) that is a homolog of OsRZFP34 in rice. Together our findings demonstrate that TaAP2-15 is positively involved in resistance of wheat to the stripe rust fungus and provides new insights into the roles of AP2 in the host-pathogen interaction.
Collapse
|
445
|
Belalcazar HM, Hendricks EL, Zamurrad S, Liebl FLW, Secombe J. The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction. Cell Rep 2021; 34:108753. [PMID: 33596422 PMCID: PMC7945993 DOI: 10.1016/j.celrep.2021.108753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the genes encoding the lysine demethylase 5 (KDM5) family of histone demethylases are observed in individuals with intellectual disability (ID). Despite clear evidence linking KDM5 function to neurodevelopmental pathways, how this family of proteins impacts transcriptional programs to mediate synaptic structure and activity remains unclear. Using the Drosophila larval neuromuscular junction (NMJ), we show that KDM5 is required presynaptically for neuroanatomical development and synaptic function. The Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, which is expected to be diminished by many ID-associated alleles, is required for appropriate synaptic morphology and neurotransmission. The activity of the C5HC2 zinc finger is also required, as an ID-associated mutation in this motif reduces NMJ bouton number, increases bouton size, and alters microtubule dynamics. KDM5 therefore uses demethylase-dependent and independent mechanisms to regulate NMJ structure and activity, highlighting the complex nature by which this chromatin modifier carries out its neuronal gene-regulatory programs.
Collapse
Affiliation(s)
- Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Emily L Hendricks
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
446
|
Wang Y, Zhai Z, Sun Y, Feng C, Peng X, Zhang X, Xiao Y, Zhou X, Wang W, Jiao J, Li T. Genome-Wide Identification of the B- BOX Genes that Respond to Multiple Ripening Related Signals in Sweet Cherry Fruit. Int J Mol Sci 2021; 22:ijms22041622. [PMID: 33562756 PMCID: PMC7914455 DOI: 10.3390/ijms22041622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.
Collapse
|
447
|
A transcriptomic analysis of sugarcane response to Leifsonia xyli subsp. xyli infection. PLoS One 2021; 16:e0245613. [PMID: 33529190 PMCID: PMC7853508 DOI: 10.1371/journal.pone.0245613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Sugarcane ratoon stunting disease (RSD) caused by Leifsonia xyli subsp. xyli (Lxx) is a common destructive disease that occurs around the world. Lxx is an obligate pathogen of sugarcane, and previous studies have reported some physiological responses of RSD-affected sugarcane. However, the molecular understanding of sugarcane response to Lxx infection remains unclear. In the present study, transcriptomes of healthy and Lxx-infected sugarcane stalks and leaves were studied to gain more insights into the gene activity in sugarcane in response to Lxx infection. RNA-Seq analysis of healthy and diseased plants transcriptomes identified 107,750 unigenes. Analysis of these unigenes showed a large number of differentially expressed genes (DEGs) occurring mostly in leaves of infected plants. Sugarcane responds to Lxx infection mainly via alteration of metabolic pathways such as photosynthesis, phytohormone biosynthesis, phytohormone action-mediated regulation, and plant-pathogen interactions. It was also found that cell wall defense pathways and protein phosphorylation/dephosphorylation pathways may play important roles in Lxx pathogeneis. In Lxx-infected plants, significant inhibition in photosynthetic processes through large number of differentially expressed genes involved in energy capture, energy metabolism and chloroplast structure. Also, Lxx infection caused down-regulation of gibberellin response through an increased activity of DELLA and down-regulation of GID1 proteins. This alteration in gibberellic acid response combined with the inhibition of photosynthetic processes may account for the majority of growth retardation occurring in RSD-affected plants. A number of genes associated with plant-pathogen interactions were also differentially expressed in Lxx-infected plants. These include those involved in secondary metabolite biosynthesis, protein phosphorylation/dephosphorylation, cell wall biosynthesis, and phagosomes, implicating an active defense response to Lxx infection. Considering the fact that RSD occurs worldwide and a significant cause of sugarcane productivity, a better understanding of Lxx resistance-related processes may help develop tools and technologies for producing RSD-resistant sugarcane varieties through conventional and/or molecular breeding.
Collapse
|
448
|
Cui X, Deng J, Huang C, Tang X, Li X, Li X, Lu J, Zhang Z. Transcriptomic Analysis of the Anthocyanin Biosynthetic Pathway Reveals the Molecular Mechanism Associated with Purple Color Formation in Dendrobium Nestor. Life (Basel) 2021; 11:113. [PMID: 33540822 PMCID: PMC7912934 DOI: 10.3390/life11020113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/14/2023] Open
Abstract
Dendrobium nestor is a famous orchid species in the Orchidaceae family. There is a diversity of flower colorations in the Dendrobium species, but knowledge of the genes involved and molecular mechanism underlying the flower color formation in D. nestor is less studied. Therefore, we performed transcriptome profiling using Illumina sequencing to facilitate thorough studies of the purple color formation in petal samples collected at three developmental stages, namely-flower bud stage (F), half bloom stage (H), and full bloom stage (B) in D. nestor. In addition, we identified key genes and their biosynthetic pathways as well as the transcription factors (TFs) associated with purple flower color formation. We found that the phenylpropanoid-flavonoid-anthocyanin biosynthesis genes such as phenylalanine ammonia lyase, chalcone synthase, anthocyanidin synthase, and UDP-flavonoid glucosyl transferase, were largely up-regulated in the H and B samples as compared to the F samples. This upregulation might partly account for the accumulation of anthocyanins, which confer the purple coloration in these samples. We further identified several differentially expressed genes related to phytohormones such as auxin, ethylene, cytokinins, salicylic acid, brassinosteroid, and abscisic acid, as well as TFs such as MYB and bHLH, which might play important roles in color formation in D. nestor flower. Sturdy upregulation of anthocyanin biosynthetic structural genes might be a potential regulatory mechanism in purple color formation in D. nestor flowers. Several TFs were predicted to regulate the anthocyanin genes through a K-mean clustering analysis. Our study provides valuable resource for future studies to expand our understanding of flower color development mechanisms in D. nestor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiashi Lu
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.C.); (J.D.); (C.H.); (X.T.); (X.L.); (X.L.)
| | - Zibin Zhang
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.C.); (J.D.); (C.H.); (X.T.); (X.L.); (X.L.)
| |
Collapse
|
449
|
Yang H, Sun Y, Wang H, Zhao T, Xu X, Jiang J, Li J. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC PLANT BIOLOGY 2021; 21:72. [PMID: 33530947 PMCID: PMC7856819 DOI: 10.1186/s12870-021-02848-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/21/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND APETALA2/ethylene responsive factor (AP2/ERF) transcription factors are a plant-specific family of transcription factors and one of the largest families of transcription factors. Ethylene response factors (ERF) regulate plant growth, development, and responses to biotic and abiotic stress. In a previous study, the ERF2 gene was significantly upregulated in both resistant and susceptible tomato cultivars in response to Stemphylium lycopersici. The main purpose of this study was to systematically analyze the ERF family and to explore the mechanism of ERF2 in tomato plants resisting pathogen infection by the Virus-induced Gene Silencing technique. RESULTS In this experiment, 134 ERF genes were explored and subjected to bioinformatic analysis and divided into twelve groups. The spatiotemporal expression characteristics of ERF transcription factor gene family in tomato were diverse. Combined with RNA-seq, we found that the expression of 18 ERF transcription factors increased after inoculation with S. lycopersici. In ERF2-silenced plants, the susceptible phenotype was observed after inoculation with S. lycopersici. The hypersensitive response and ROS production were decreased in the ERF2-silenced plants. Physiological analyses showed that the superoxide dismutase, peroxidase and catalase activities were lower in ERF2-silenced plants than in control plants, and the SA and JA contents were lower in ERF2-silenced plants than in control plants after inoculation with S. lycopersici. Furthermore, the results indicated that ERF2 may directly or indirectly regulate Pto, PR1b1 and PR-P2 expression and enhance tomato resistance. CONCLUSIONS In this study, we identified and analyzed members of the tomato ERF family by bioinformatics methods and classified, described and analyzed these genes. Subsequently, we used VIGS technology to significantly reduce the expression of ERF2 in tomatoes. The results showed that ERF2 had a positive effect on tomato resistance to S. lycopersici. Interestingly, ERF2 played a key role in multiple SA, JA and ROS signaling pathways to confer resistance to invasion by S. lycopersici. In addition, ERF2 may directly or indirectly regulate Pto, PR1b1 and PR-P2 expression and enhance tomato resistance to S. lycopersici. In summary, this study provides gene resources for breeding for disease resistance in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yaoguang Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Hexuan Wang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
450
|
Wang Z, Wang Y, Tong Q, Xu G, Xu M, Li H, Fan P, Li S, Liang Z. Transcriptomic analysis of grapevine Dof transcription factor gene family in response to cold stress and functional analyses of the VaDof17d gene. PLANTA 2021; 253:55. [PMID: 33523295 DOI: 10.1007/s00425-021-03574-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/16/2021] [Indexed: 05/11/2023]
Abstract
Dof genes enhance cold tolerance in grapevine and VaDof17d is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides. DNA-binding with one finger (Dof) proteins comprise a large family that plays important roles in the regulation of abiotic stresses. No in-depth analysis of Dof genes has been performed in the grapevine. In this study, we analyzed a total of 25 putative Dof genes in grapevine at genomic and transcriptomic levels, compiled expression profiles of 11 selected VaDof genes under cold stress and studied the potential function of the VaDof17d gene in grapevine calli. The 25 Dof proteins can be classified into four phylogenetic groups. RNA-seq and qRT-PCR results demonstrated that a total of 11 VaDof genes responded to cold stress. Comparative mRNA sequencing of 35S::VaDof17d grape calli showed that VaDof17d was tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GolS) and raffinose synthase genes. We found that the Dof17d-ED (CRISPR/Cas9-mediated mutagenesis of Dof17d-ED) mutant had low cold tolerance with a decreased RFOs level during cold stress. These results formed the fundamental knowledge for further analysis of the biological roles of Dof genes in the grapevine's adaption to cold stresses.
Collapse
Affiliation(s)
- Zemin Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Tong
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meilong Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- State Key Laboratory of the Seedling Bioengineering, Yinchuan, 750004, People's Republic of China
| | - Huayang Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- China Wine Industry Technology Institute, Yinchuan, 750021, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China.
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|