1
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
2
|
Plata-Gómez AB, Ho PC. Age- and diet-instructed metabolic rewiring of the tumor-immune microenvironment. J Exp Med 2025; 222:e20241102. [PMID: 40214641 PMCID: PMC11987706 DOI: 10.1084/jem.20241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The tumor-immune microenvironment (TIME) plays a critical role in tumor development and metastasis, as it influences the evolution of tumor cells and fosters an immunosuppressive state by intervening the metabolic reprogramming of infiltrating immune cells. Aging and diet significantly impact the metabolic reprogramming of the TIME, contributing to cancer progression and immune evasion. With aging, immune cell function declines, leading to a proinflammatory state and metabolic alterations such as increased oxidative stress and mitochondrial dysfunction, which compromise antitumor immunity. Similarly, dietary factors, particularly high-fat and high-sugar diets, promote metabolic shifts, creating a permissive TIME by fostering tumor-supportive immune cell phenotypes while impairing the tumoricidal activity of immune cells. In contrast, dietary restrictions have been shown to restore immune function by modulating metabolism and enhancing antitumor immune responses. Here, we discuss the intricate interplay between aging, diet, and metabolic reprogramming in shaping the TIME, with a particular focus on T cells, and highlight therapeutic strategies targeting these pathways to empower antitumor immunity.
Collapse
Affiliation(s)
- Ana Belén Plata-Gómez
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Charalambous H, Brown C, Vogazianos P, Katsaounou K, Nikolaou E, Stylianou I, Papageorgiou E, Vraxnos D, Aristodimou A, Chi J, Costeas P, Shammas C, Apidianakis Y, Antoniades A. Dysbiosis in the Gut Microbiome of Pembrolizumab-Treated Non-Small Lung Cancer Patients Compared to Healthy Controls Characterized Through Opportunistic Sampling. Thorac Cancer 2025; 16:e70075. [PMID: 40356191 PMCID: PMC12069221 DOI: 10.1111/1759-7714.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The gut microbiome influences the host immune system, cancer development and progression, as well as the response to immunotherapy during cancer treatment. Here, we analyse the composition of the gut bacteriome in metastatic Non-Small Cell Lung Cancer (NSCLC) patients receiving Pembrolizumab immunotherapy within a prospective maintenance trial through opportunistic sampling during treatment. METHODS The gut microbiome profiles of NSCLC patients were obtained from stool samples collected during Pembrolizumab treatment and analysed with 16S rRNA metagenomics sequencing. Patient profiles were compared to a group of healthy individuals of matching ethnic group, age, sex, BMI and comorbidities. RESULTS A significant decrease in the treated patients was observed in two prominent bacterial families of the phylum Firmicutes, Lachnospiraceae and Ruminoccocaceae, which comprised 31.6% and 21.8% of the bacteriome in the healthy group but only 10.9% and 14.2% in the treated patient group, respectively. Species within the Lachnospiraceae and Ruminococcaceae families are known to break down undigested carbohydrates generating short chain fatty acids (SCFA), such as butyrate, acetate and propionate as their major fermentation end-products, which have been implicated in modifying host immune responses. In addition, a significant increase of the Bacteroidacaeae family (Bacteroidetes phylum) was observed from 10.7% in the healthy group to 23.3% in the treated patient group. Moreover, and in agreement with previous studies, a decrease in the Firmicutes to Bacteroidetes ratio in the metastatic NSCLC Pembrolizumab-treated patients was observed. CONCLUSION The observed differences indicate dysbiosis and a compromised intestinal health status in the metastatic NSCLC Pembrolizumab-treated patients. This data could inform future studies of immunotherapy treatment responses and modulation of the gut microbiome to minimise dysbiosis prior or concurrent to treatment. TRIAL REGISTRATION SWIPE Trial (NCT02705820).
Collapse
MESH Headings
- Humans
- Gastrointestinal Microbiome/drug effects
- Dysbiosis/chemically induced
- Dysbiosis/microbiology
- Dysbiosis/pathology
- Male
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/microbiology
- Female
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/microbiology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/adverse effects
- Middle Aged
- Aged
- Prospective Studies
- Case-Control Studies
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
| | | | - Paris Vogazianos
- Stremble Ventures LtdLimassolCyprus
- European University CyprusEngomiCyprus
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025; 7:895-917. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
5
|
Fan Y, Li Y, Gu X, Chen N, Chen Y, Fang C, Wang Z, Yin Y, Deng H, Dai L. Intestinal metabolites in colitis-associated carcinogenesis: Building a bridge between host and microbiome. Chin Med J (Engl) 2025:00029330-990000000-01527. [PMID: 40287783 DOI: 10.1097/cm9.0000000000003430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Indexed: 04/29/2025] Open
Abstract
ABSTRACT Microbial-derived metabolites are important mediators of host-microbial interactions. In recent years, the role of intestinal microbial metabolites in colorectal cancer has attracted considerable attention. These metabolites, which can be derived from bacterial metabolism of dietary substrates, modification of host molecules such as bile acids, or directly from bacteria, strongly influence the progression of colitis-associated cancer (CAC) by regulating inflammation and immune response. Here, we review how microbiome metabolites short-chain fatty acids (SCFAs), secondary bile acids, polyamines, microbial tryptophan metabolites, and polyphenols are involved in the tumorigenesis and development of CAC through inflammation and immunity. Given the heated debate on the metabolites of microbiota in maintaining gut homeostasis, serving as tumor molecular markers, and affecting the efficacy of immune checkpoint inhibitors in recent years, strategies for the prevention and treatment of CAC by targeting intestinal microbial metabolites are also discussed in this review.
Collapse
Affiliation(s)
- Yating Fan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yang Li
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangshuai Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Ye Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Chao Fang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ziqiang Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Yin
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Delzenne NM, Bindels LB, Neyrinck AM, Walter J. The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer. Nat Rev Microbiol 2025; 23:225-238. [PMID: 39390291 DOI: 10.1038/s41579-024-01108-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Cruz-Lebrón A, Faiez TS, Hess MM, Sfanos KS. Diet and the microbiome as mediators of prostate cancer risk, progression, and therapy response. Urol Oncol 2025; 43:209-220. [PMID: 39757039 DOI: 10.1016/j.urolonc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
Complex relationships between the human microbiome and cancer are increasingly recognized for cancer sites that harbor commensal microbial communities such as the gut, genitourinary tract, and skin. For organ sites that likely do not contain commensal microbiota, there is still a substantial capacity for the human-associated microbiota to influence disease etiology across the cancer spectrum. We propose such a relationship for prostate cancer, the most commonly diagnosed cancer in males in the United States. This review explores the current evidence for a role for the urinary and gut microbiota in prostate cancer risk, via both direct interactions (prostate infections) and long-distance interactions such as via the metabolism of procarcinogenic or anticarcinogenic dietary metabolites. We further explore a newly recognized role of the gut microbiota in mediating cancer treatment response or resistance either via production of androgens and/or procarcinogenic metabolites or via direct metabolism of anticancer drugs that are used to treat advanced disease. Overall, we present the current state of knowledge relating to how the human microbiome mediates prostate cancer risk, progression, and therapy response, as well as suggest future research directions for the field.
Collapse
Affiliation(s)
- Angélica Cruz-Lebrón
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Megan M Hess
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
8
|
Guo Y, Dong W, Sun D, Zhao X, Huang Z, Liu C, Sheng Y. Bacterial metabolites: Effects on the development of breast cancer and therapeutic efficacy (Review). Oncol Lett 2025; 29:210. [PMID: 40070782 PMCID: PMC11894516 DOI: 10.3892/ol.2025.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Evidence suggests that various gut metabolites significantly impact breast cancer (BC) and its treatment. However, the underlying mechanisms remain poorly understood and require further investigation. In the present study, the current literature was reviewed to evaluate the roles of microbial metabolites in the development of BC and its response to treatment. Microbial metabolites, including secondary bile acids, short-chain fatty acids, amino acid metabolites, lipopolysaccharide, nisin and pyocyanin, serve crucial roles in the BC microenvironment. Microbial metabolites promote BC invasion, metastasis and recurrence by facilitating cellular movement, epithelial-mesenchymal transition, cancer stem cell function and diapedesis. Furthermore, certain metabolites, such as trimethylamine N-oxide and L-norvaline, can alter the pharmacokinetics of chemotherapeutic drugs. The present review highlights the possible involvement of microbial metabolites and bacteriocins in BC carcinogenesis, development and metastasis. These metabolites could provide new insights for BC treatment strategies and are considered potential therapeutic targets.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Wenyan Dong
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Dezheng Sun
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xiang Zhao
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhiping Huang
- Department of Hepatobiliary Surgery and Organ Transplantation, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, Guangdong 51000, P.R. China
| | - Chaoqian Liu
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yuan Sheng
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
9
|
Kuehnast T, Kumpitsch C, Mohammadzadeh R, Weichhart T, Moissl‐Eichinger C, Heine H. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. FEBS J 2025; 292:1316-1329. [PMID: 38555566 PMCID: PMC11927051 DOI: 10.1111/febs.17123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.
Collapse
Affiliation(s)
- Torben Kuehnast
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Christina Kumpitsch
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Rokhsareh Mohammadzadeh
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Thomas Weichhart
- Institute of Medical GeneticsMedical University of ViennaAustria
| | - Christine Moissl‐Eichinger
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
- BioTechMed GrazAustria
| | - Holger Heine
- Research Center Borstel – Leibniz Lung CenterDivision of Innate Immunity, Airway Research Center North (ARCN), German Center for Lung Research (DZL)BorstelGermany
| |
Collapse
|
10
|
Zhu Q, Zhang R, Zhao Z, Xie T, Sui X. Harnessing phytochemicals: Innovative strategies to enhance cancer immunotherapy. Drug Resist Updat 2025; 79:101206. [PMID: 39933438 DOI: 10.1016/j.drup.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment, but therapeutic ineffectiveness-driven by the tumor microenvironment and immune evasion mechanisms-continues to limit its clinical efficacy. This challenge underscores the need to explore innovative approaches, such as multimodal immunotherapy. Phytochemicals, bioactive compounds derived from plants, have emerged as promising candidates for overcoming these barriers due to their immunomodulatory and antitumor properties. This review explores the synergistic potential of phytochemicals in enhancing immunotherapy by modulating immune responses, reprogramming the tumor microenvironment, and reducing immunosuppressive factors. Integrating phytochemicals with conventional immunotherapy strategies represents a novel approach to mitigating resistance and enhancing therapeutic outcomes. For instance, nab-paclitaxel has shown the potential in overcoming resistance to immune checkpoint inhibitors, while QS-21 synergistically enhances the efficacy of tumor vaccines. Furthermore, we highlight recent advancements in leveraging nanotechnology to engineer phytochemicals for improved bioavailability and targeted delivery. These innovations hold great promise for optimizing the clinical application of phytochemicals. However, further large-scale clinical studies are crucial to fully integrate these compounds into immunotherapeutic regimens effectively.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
11
|
L'Orphelin J, Dompmartin A, Dréno B. The Skin Microbiome: A New Key Player in Melanoma, From Onset to Metastatic Stage. Pigment Cell Melanoma Res 2025; 38:e13224. [PMID: 40016867 PMCID: PMC11868406 DOI: 10.1111/pcmr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
The skin microbiome plays a crucial role in maintaining skin health, defending the body against harmful pathogens, and interacting with melanoma. The composition of the skin microbiome can be affected by factors like age, gender, ethnicity, lifestyle, diet, and UV exposure. Certain bacteria like Staphylococcus and Veillonella are important for wound healing, while Cutibacterium acnes can play a role in dermatoses. UV radiation alters the skin microbiome, originates a "UV-resistome" and can lead to skin cancer initiation. Specifically, Staphylococcus epidermidis has shown protective effects against skin cancer, whereas Cutibacterium acnes can induce apoptosis in melanocytes postirradiation. The microbiome also interacts with melanoma treatment, affecting responses to immune checkpoint inhibitors. Strategies like bacteriotherapy, involving the manipulation of the gut microbiome but also the skin microbiome (with the gut-skin axis or through topical treatment) could improve treatment outcomes and show promise in melanoma therapy. Understanding the complex interplay between the skin microbiome, UV exposure, and melanoma development is crucial for developing personalized therapeutic approaches. Investigation into the skin microbiome and its potential role in melanoma progression continues to be an exciting area of research with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Jean‐Matthieu L'Orphelin
- Unicaen, Inserm U1086 AnticipeNormandie UnivCaenFrance
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Anne Dompmartin
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Brigitte Dréno
- Inserm, Cnrs, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001Nantes UniversitéNantesFrance
| |
Collapse
|
12
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
13
|
Cote AL, Munger CJ, Ringel AE. Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions. Cell Rep 2025; 44:115234. [PMID: 39862435 DOI: 10.1016/j.celrep.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors. We also examine how metabolic diseases influence cancer progression, metastasis, and treatment. Finally, we consider how metabolic interventions can be deployed to improve immunotherapy. The overall goal is to highlight how metabolic heterogeneity in the human population shapes the immune response to cancer.
Collapse
Affiliation(s)
- Andrea L Cote
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Chad J Munger
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Jiang SS, Kang ZR, Chen YX, Fang JY. The gut microbiome modulate response to immunotherapy in cancer. SCIENCE CHINA. LIFE SCIENCES 2025; 68:381-396. [PMID: 39235561 DOI: 10.1007/s11427-023-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 09/06/2024]
Abstract
Gut microbiota have been reported to play an important role in the occurrence and development of malignant tumors. Currently, clinical studies have identified specific gut microbiota and its metabolites associated with efficacy of immunotherapy in multiple types of cancers. Preclinical investigations have elucidated that gut microbiota modulate the antitumor immunity and affect the efficacy of cancer immunotherapy. Certain microbiota and its metabolites may favorably remodel the tumor microenvironment by engaging innate and/or adaptive immune cells. Understanding how the gut microbiome interacts with cancer immunotherapy opens new avenues for improving treatment strategies. Fecal microbial transplants, probiotics, dietary interventions, and other strategies targeting the microbiota have shown promise in preclinical studies to enhance the immunotherapy. Ongoing clinical trials are evaluating these approaches. This review presents the recent advancements in understanding the dynamic interplay among the host immunity, the microbiome, and cancer immunotherapy, as well as strategies for modulating the microbiome, with a view to translating into clinical applications.
Collapse
Affiliation(s)
- Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
15
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
16
|
Lim MY, Hong S, Nam YD. Understanding the role of the gut microbiome in solid tumor responses to immune checkpoint inhibitors for personalized therapeutic strategies: a review. Front Immunol 2025; 15:1512683. [PMID: 39840031 PMCID: PMC11747443 DOI: 10.3389/fimmu.2024.1512683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Immunotherapy, especially immune checkpoint inhibitor (ICI) therapy, has yielded remarkable outcomes for some patients with solid cancers, but others do not respond to these treatments. Recent research has identified the gut microbiota as a key modulator of immune responses, suggesting that its composition is closely linked to responses to ICI therapy in cancer treatment. As a result, the gut microbiome is gaining attention as a potential biomarker for predicting individual responses to ICI therapy and as a target for enhancing treatment efficacy. In this review, we discuss key findings from human observational studies assessing the effect of antibiotic use prior to ICI therapy on outcomes and identifying specific gut bacteria associated with favorable and unfavorable responses. Moreover, we review studies investigating the possibility of patient outcome prediction using machine learning models based on gut microbiome data before starting ICI therapy and clinical trials exploring whether gut microbiota modulation, for example via fecal microbiota transplantation or live biotherapeutic products, can improve results of ICI therapy in patients with cancer. We also briefly discuss the mechanisms through which the gut microbial-derived products influence immunotherapy effectiveness. Further research is necessary to fully understand the complex interactions between the host, gut microbiota, and immunotherapy and to develop personalized strategies that optimize responses to ICI therapy.
Collapse
Affiliation(s)
- Mi Young Lim
- Personalized Diet Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Seungpyo Hong
- Department of Molecular Biology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Young-Do Nam
- Personalized Diet Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
17
|
Radoš L, Golčić M, Mikolašević I. The Relationship Between the Modulation of Intestinal Microbiota and the Response to Immunotherapy in Patients with Cancer. Biomedicines 2025; 13:96. [PMID: 39857680 PMCID: PMC11761299 DOI: 10.3390/biomedicines13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The intestinal microbiota is an important part of the human body, and its composition can affect the effectiveness of immunotherapy. In the last few years, the modulation of intestinal microbiota in order to improve the effectiveness of immunotherapy has become a current topic in the scientific community, but there is a lack of research in this area. In this review, the goal was to analyze the current relevant literature related to the modulation of intestinal microbiota and the effectiveness of immunotherapy in the treatment of cancer. The effects of antibiotics, probiotics, diet, and fecal microbial transplantation were analyzed separately. It was concluded that the use of antibiotics, especially broad-spectrum types or larger quantities, causes dysbiosis of the intestinal microbiota, which can reduce the effectiveness of immunotherapy. While dysbiosis could be repaired by probiotics and thus improve the effectiveness of immunotherapy, the use of commercial probiotics without evidence of intestinal dysbiosis has not yet been sufficiently tested to confirm its safety for cancer for immunotherapy-treated cancer patients. A diet consisting of sufficient amounts of fiber, as well as a diet with higher salt content positively correlates with the success of immunotherapy. Fecal transplantation is a safe and realistic adjuvant option for the treatment of cancer patients with immunotherapy, but more clinical trials are necessary. Modulating the microbiota composition indeed changes the effectiveness of immunotherapy, but in the future, more human studies should be organized to precisely determine the types and procedures of microbiota modulation.
Collapse
Affiliation(s)
- Laura Radoš
- Department for Emergency Medicine of Primorsko-Goranska County, 51000 Rijeka, Croatia;
| | - Marin Golčić
- Clinic for Tumors, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia;
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Clinic for Tumors, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia;
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
18
|
Zhang Y, Chen X, Chen R, Li L, Ju Q, Qiu D, Wang Y, Jing P, Chang N, Wang M, Zhang J, Chen Z, Wang K. Lower respiratory tract microbiome dysbiosis impairs clinical responses to immune checkpoint blockade in advanced non-small-cell lung cancer. Clin Transl Med 2025; 15:e70170. [PMID: 39794303 PMCID: PMC11726686 DOI: 10.1002/ctm2.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Gut microbiome on predicting clinical responses to immune checkpoint inhibitors (ICIs) has been discussed in detail for decades, while microecological features of the lower respiratory tract within advanced non-small-cell lung cancer (NSCLC) are still relatively vague. METHODS During this study, 26 bronchoalveolar lavage fluids (BALF) from advanced NSCLC participants who received immune checkpoint inhibitor monotherapy were performed 16S rRNA sequencing and untargeted metabolome sequencing to identify differentially abundant microbes and metabolic characteristics. Additionally, inflammatory cytokines and chemokines were also launched in paired BALF and serum samples by immunoassays to uncover their underlying correlations. The omics data were separately analyzed and integrated by using multiple correlation coefficients. Multiplex immunohistochemical staining was then used to assess the immune cell infiltration after immune checkpoint blockade therapy. RESULTS Lower respiratory tract microbiome diversity favoured preferred responses to ICIs. Microbial markers demonstrated microbial diversity overweight a single strain in favoured response to ICI therapy, where Bacillus matters. Sphingomonas and Sediminibacterium were liable to remodulate lipid and essential amino acid degradations to embrace progression after immunotherapies. Microbiome-derived metabolites reshaped the immune microenvironment in the lower respiratory tract by releasing inflammatory cytokines and chemokines, which was partially achieved by metabolite-mediated tumoral inflammatory products and reduction of CD8+ effective T cells and M1 phenotypes macrophages in malignant lesions. CONCLUSIONS This study provided a microecological landscape of the lower respiratory tract with advanced NSCLC to ICI interventions and presented a multidimensional perspective with favoured outcomes that may improve the predictive capacity of the localized microbiome in clinical practices. HIGHLIGHTS Alterations of the lower respiratory tract microbiome indicate different clinical responses to ICB within advanced NSCLC. Reduced microbial diversity of lower respiratory tracts impairs anti-tumoral performances. Microbe-derived metabolites perform as a dominant regulator to remodify the microecological environment in lower respiratory tracts. Multi-omics sequencings of the lower respiratory tract possess the potential to predict the long-term clinical responses to ICB among advanced NSCLC.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Xiang Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Ruo Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| | - Ling Li
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| | - Qing Ju
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Dan Qiu
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Yuan Wang
- Department of MicrobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Peng‐Yu Jing
- Department of Thoracic SurgeryThe Second Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Ning Chang
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Min Wang
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Jian Zhang
- Department of Pulmonary and Critical Care of MedicineThe First Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| | - Ke Wang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anChina
| |
Collapse
|
19
|
Funayama E, Hosonuma M, Tajima K, Isobe J, Baba Y, Murayama M, Narikawa Y, Toyoda H, Tsurui T, Maruyama Y, Sasaki A, Amari Y, Yamazaki Y, Nakashima R, Uchiyama J, Nakano R, Shida M, Sasaki A, Udaka Y, Oguchi T, Sambe T, Kobayashi S, Tsuji M, Kiuchi Y, Kim YG, Wada S, Tsunoda T, Akiyama M, Nobe K, Kuramasu A, Yoshimura K. Oral administration of Bifidobacterium longum and Bifidobacterium infantis ameliorates cefcapene pivoxil-induced attenuation of anti-programmed cell death protein-1 antibody action in mice. Biomed Pharmacother 2025; 182:117749. [PMID: 39719740 DOI: 10.1016/j.biopha.2024.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/26/2024] Open
Abstract
Gut bacteria play pivotal roles in the antitumor effects of immune checkpoint inhibitors (ICIs). However, antimicrobial therapy, often necessary for infections in cancer patients, can reduce the efficacy of ICIs. The potential of probiotics to restore ICI efficacy remains uncertain. This study evaluated the effects of Bifidobacterium longum and Bifidobacterium infantis (BLBI) in a CT-26 subcutaneous tumor mouse model treated with anti-programmed cell death protein 1 antibody (αPD-1) and cefcapene pivoxil (CFPN-PI). BALB/c mice received daily oral gavage of CFPN-PI for 5 days before tumor inoculation, followed by weekly αPD-1 administration and tumor growth monitoring. BLBI was administered via ad libitum feeding, mixed in powdered feed. Gut microbiota composition and fecal short-chain fatty acid concentrations were assessed, along with gene expression and immune cell populations in the tumor microenvironment, using quantitative RT-PCR and flow cytometry, respectively. CFPN-PI alone increased tumor growth and attenuated the antitumor effect of αPD-1. In contrast, BLBI inhibited CFPN-PI-induced tumor growth and improved the efficacy of αPD-1. Probiotic treatment increased the stool propionic acid concentration and the number of tumor-infiltrating conventional type 1 dendritic cells. Relative decreases in Bacteroides and Lachnospiraceae _NK4A136_group species and relative increases in Muribaculaceae and Unclassified_f_Oscillospiraceae species correlated with an improved αPD-1 response. These results suggest that probiotic administration may be a new therapeutic strategy to rescue the attenuated efficacy of ICIs in patients with cancer who require antimicrobial therapy.
Collapse
Affiliation(s)
- Eiji Funayama
- Department of Pharmacology, Showa University Graduate School of Pharmacy, Tokyo, Japan; Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Masahiro Hosonuma
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Division of Medical Oncology, Department of Medicine, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Kohei Tajima
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Junya Isobe
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuta Baba
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Masakazu Murayama
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yoichiro Narikawa
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Toyoda
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Department of Orthopedic Surgery, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Tsurui
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Division of Medical Oncology, Department of Medicine, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Maruyama
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Aya Sasaki
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Department of Surgery, Toho University Ohashi Medical Center
| | - Yasunobu Amari
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan; Department of Otolaryngology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Yoshitaka Yamazaki
- Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Toxicology, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Rie Nakashima
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Jun Uchiyama
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Ryota Nakano
- Department of Physiology, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Midori Shida
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Akiko Sasaki
- Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Udaka
- Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Tatsunori Oguchi
- Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Sambe
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yuji Kiuchi
- Pharmacological Research Center, Showa University, Tokyo, Japan; Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Satoshi Wada
- Division of Medical Oncology, Department of Medicine, Showa University Graduate School of Medicine, Tokyo, Japan; Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Akiyama
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Koji Nobe
- Department of Pharmacology, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Atsuo Kuramasu
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan; Division of Medical Oncology, Department of Medicine, Showa University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Onuselogu DA, Benz S, Mitra S. How Have Massively Parallel Sequencing Technologies Furthered Our Understanding of Oncogenesis and Cancer Progression? Methods Mol Biol 2025; 2866:265-286. [PMID: 39546208 DOI: 10.1007/978-1-0716-4192-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Massively parallel sequencing technologies have been a boon to many fields of biological science, including oncology. Cancer is an umbrella term for many diseases featuring abnormal cellular growth due to genetic and epigenetic aberrations. Advances in sequencing technology allow for interrogation of the DNA and RNA of cancer cells and other cells in the tumor microenvironment down to a single-base resolution. However, these strides come after a rich history of ground-breaking biological assays, like the discovery of the Philadelphia chromosome in the context of leukemia. Many specific genetic and epigenetic modifications have been implicated in oncogenesis, cancer progression, and response to treatment. Sequencing technologies have also helped to associate populations of bacteria in the microbiome to cancer development and prognosis. However, all this new information, especially when procured via high-throughput methods, comes at the cost of being more computationally and staff-resource intensive. There is also more risk to the privacy of the individuals with sequenced genomes. Notwithstanding, the overall benefit of sequencing technologies can greatly outweigh the risks with careful advancements and continued focus on the goal: helping those affected by cancer via precision medicine. Cancer biology has been and will continue to be elucidated by sequencing innovations in ways unimaginable without it.
Collapse
Affiliation(s)
| | - Saskia Benz
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Suparna Mitra
- Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
21
|
Song P, Peng Z, Guo X. Gut microbial metabolites in cancer therapy. Trends Endocrinol Metab 2025; 36:55-69. [PMID: 39004537 DOI: 10.1016/j.tem.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.
Collapse
Affiliation(s)
- Panwei Song
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| |
Collapse
|
22
|
Farhadi Rad H, Tahmasebi H, Javani S, Hemati M, Zakerhamidi D, Hosseini M, Alibabaei F, Banihashemian SZ, Oksenych V, Eslami M. Microbiota and Cytokine Modulation: Innovations in Enhancing Anticancer Immunity and Personalized Cancer Therapies. Biomedicines 2024; 12:2776. [PMID: 39767682 PMCID: PMC11673251 DOI: 10.3390/biomedicines12122776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The gut microbiota plays a crucial role in modulating anticancer immunity, significantly impacting the effectiveness of various cancer therapies, including immunotherapy, chemotherapy, and radiotherapy. Its impact on the development of cancer is complex; certain bacteria, like Fusobacterium nucleatum and Bacteroides fragilis, can stimulate the growth of tumors by causing immunological evasion and inflammation, while advantageous strains, like Faecalibaculum rodentium, have the ability to suppress tumors by modifying immune responses. Cytokine activity and immune system regulation are intimately related. Cytokines including TGF-β, IL-6, and IL-10 promote tumor development by inhibiting efficient immune surveillance. The gut microbiome exhibits a delicate balance between pro- and anti-tumorigenic factors, as evidenced by the enhancement of anti-tumor immunity by cytokines such as IL-12 and IFN-γ. Improved immunotherapy responses are linked to a diverse microbiota, which is correlated with higher tumor infiltration and cytotoxic T-cell activation. Because microbial metabolites, especially short-chain fatty acids, affect cytokine expression and immune cell activation inside the tumor microenvironment, this link highlights the need to maintain microbial balance for optimal treatment effects. Additionally, through stimulating T-cell activation, bacteria like Lactobacillus rhamnosus and Bifidobacterium bifidum increase cytokine production and improve the efficacy of immune checkpoint inhibitors (ICIs). An option for overcoming ICI resistance is fecal microbiota transplantation (FMT), since research suggests that it improves melanoma outcomes by increasing CD8+ T-cell activation. This complex interaction provides an opportunity for novel cancer therapies by highlighting the possibility of microbiome modification as a therapeutic approach in personalized oncology approaches.
Collapse
Affiliation(s)
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Maral Hemati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Darya Zakerhamidi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Hosseini
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnaz Alibabaei
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Valentyn Oksenych
- University of Bergen, 5020 Bergen, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
23
|
Harmak Z, Kone AS, Ghouzlani A, Ghazi B, Badou A. Beyond Tumor Borders: Intratumoral Microbiome Effects on Tumor Behavior and Therapeutic Responses. Immune Netw 2024; 24:e40. [PMID: 39801738 PMCID: PMC11711125 DOI: 10.4110/in.2024.24.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
The human body contains a diverse array of microorganisms, which exert a significant impact on various physiological processes, including immunity, and can significantly influence susceptibility to various diseases such as cancer. Recent advancements in metagenomic sequencing have uncovered the role of intratumoral microbiome, which covertly altered the development of cancer, the growth of tumors, and the response to existing treatments through multiple mechanisms. These mechanisms involve mainly DNA damage induction, oncogenic signaling pathway activation, and the host's immune response modulation. To explore novel therapeutic options and effectively target and regulate the intratumoral microbiome, a comprehensive understanding of these processes is indispensable. Here, we will explore various potential actions of the intratumoral microbiome concerning the initiation and progression of tumors. We will examine its impact on responses to chemotherapy, radiotherapy, and immunotherapy. Additionally, we will discuss the current state of knowledge regarding the use of genetically modified bacteria as a promising treatment option for cancer.
Collapse
Affiliation(s)
- Zakia Harmak
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Abdou-Samad Kone
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Bouchra Ghazi
- Immunopathology-Immunomonitoring-Immunotherapy Laboratory, Faculty of Medicine, Mohammed IV University of Sciences and Health, Casablanca 82403, Morocco
- IVF Laboratory, Department of Reproductive Medicine, Mohammed VI International University Hospital, Bouskoura 27182, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| |
Collapse
|
24
|
Dizman N, Robert M, McQuade J. Beyond the Microbiome: The Role of the Metabolome and Diet in Antitumor Immunity. Eur Urol Focus 2024; 10:906-908. [PMID: 39894735 DOI: 10.1016/j.euf.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Microbiome-derived or -modulated metabolites (short-chain fatty acids, bile acids, and amino acids) could mediate antitumor immunity. Diet offers an actionable route for manipulating both the microbiome and the metabolome. Diet- and microbiome-directed trials with robust translational correlates are eagerly awaited.
Collapse
Affiliation(s)
- Nazli Dizman
- University of Texas MD Anderson Cancer Center Houston TX USA.
| | - Margaux Robert
- University of Texas MD Anderson Cancer Center Houston TX USA
| | | |
Collapse
|
25
|
Nakatsukasa H, Takahashi M, Shibano M, Ishigami Y, Kawaguchi T, Nakamura Y, Kaneda H. Clinical impact of concomitant BIO-three use in advanced or recurrent non-small cell lung cancer treated with immune-checkpoint inhibitor. Int J Clin Oncol 2024; 29:1840-1849. [PMID: 39278980 DOI: 10.1007/s10147-024-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been approved as first-line therapy for advanced non-small cell lung cancer (NSCLC). The probiotic MIYAIRI 588 can potentially improve the outcomes of patients with advanced NSCLC treated with ICI. However, the impact of other probiotics on ICI-treatment efficacy remains unclear. Thus, we aimed to clarify the association between BIO-three use and treatment outcomes in patients with advanced NSCLC treated with ICI. METHODS This retrospective study included patients aged ≥ 18 years with advanced or recurrent NSCLC who had received ICI monotherapy or ICI plus chemotherapy. Concomitant therapy with probiotic bacteria was defined as receiving it within 180 days before ICI therapy. RESULTS Here, 289 patients were enrolled, including 23 (8.0%) receiving BIO-three. In the multivariable analysis, the progression-free survival (PFS) and overall survival (OS) of patients receiving BIO-three tended to be longer than those of patients not receiving probiotic therapy (PFS, hazard ratio [HR] 0.75; 95% confidence interval [CI] 0.43-1.30; p = 0.33; OS, HR 0.69; 95% CI 0.37-1.28; p = 0.24). After propensity score matching with weighted adjustment, patients receiving BIO-three tended to have prolonged PFS (median PFS [range] 7.6 months [2.6-17.4] vs 3.2 months [1.6-7.0]; HR 0.53; 95% CI 0.25-1.12; p = 0.09) and OS (median OS [range] 25.6 months [10.8-not reached] vs 10.9 months [7.3-not reached]; HR 0.57; 95% CI 0.24-1.36; p = 0.20) than those not receiving probiotic therapy. CONCLUSION This study suggests the prognostic impact of concomitant BIO-three use in patients with advanced NSCLC on ICI treatment.
Collapse
Affiliation(s)
- Hitomi Nakatsukasa
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Masaya Takahashi
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Quality and Safety Management, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Masahito Shibano
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Yusuke Ishigami
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasutaka Nakamura
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
26
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
27
|
Yan J, Yang L, Ren Q, Zhu C, Du H, Wang Z, Qi Y, Xian X, Chen D. Gut microbiota as a biomarker and modulator of anti-tumor immunotherapy outcomes. Front Immunol 2024; 15:1471273. [PMID: 39669573 PMCID: PMC11634861 DOI: 10.3389/fimmu.2024.1471273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Although immune-checkpoint inhibitors (ICIs) have significantly improved cancer treatment, their effectiveness is limited by primary or acquired resistance in many patients. The gut microbiota, through its production of metabolites and regulation of immune cell functions, plays a vital role in maintaining immune balance and influencing the response to cancer immunotherapies. This review highlights evidence linking specific gut microbial characteristics to increased therapeutic efficacy in a variety of cancers, such as gastrointestinal cancers, melanoma, lung cancer, urinary system cancers, and reproductive system cancers, suggesting the gut microbiota's potential as a predictive biomarker for ICI responsiveness. It also explores the possibility of enhancing ICI effectiveness through fecal microbiota transplantation, probiotics, prebiotics, synbiotics, postbiotics, and dietary modifications. Moreover, the review underscores the need for extensive randomized controlled trials to confirm the gut microbiota's predictive value and to establish guidelines for microbiota-targeted interventions in immunotherapy. In summary, the article suggests that a balanced gut microbiota is key to maximizing immunotherapy benefits and calls for further research to optimize microbiota modulation strategies for cancer treatment. It advocates for a deeper comprehension of the complex interactions between gut microbiota, host immunity, and cancer therapy, aiming for more personalized and effective treatment options.
Collapse
Affiliation(s)
- Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Yang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Haiyun Du
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Yaya Qi
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohong Xian
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Chen P, Yang C, Ren K, Xu M, Pan C, Ye X, Li L. Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1504948. [PMID: 39650662 PMCID: PMC11621041 DOI: 10.3389/fimmu.2024.1504948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Hepatocellular carcinoma, a common malignancy of the digestive system, typically progresses through a sequence of hepatitis, liver fibrosis, cirrhosis and ultimately, tumor. The interaction between gut microbiota, the portal venous system and the biliary tract, referred to as the gut-liver axis, is crucial in understanding the mechanisms that contribute to the progression of hepatocellular carcinoma. Mechanisms implicated include gut dysbiosis, alterations in microbial metabolites and increased intestinal barrier permeability. Imbalances in gut microbiota, or dysbiosis, contributes to hepatocellular carcinoma by producing carcinogenic substances, disrupting the balance of the immune system, altering metabolic processes, and increasing intestinal barrier permeability. Concurrently, accumulating evidence suggests that gut microbiota has the ability to modulate antitumor immune responses and affect the efficacy of cancer immunotherapies. As a new and effective strategy, immunotherapy offers significant potential for managing advanced stages of hepatocellular carcinoma, with immune checkpoint inhibitors achieving significant advancements in improving patients' survival. Probiotics play a vital role in promoting health and preventing diseases by modulating metabolic processes, inflammation and immune responses. Research indicates that they are instrumental in boosting antitumor immune responses through the modulation of gut microbiota. This review is to explore the relationship between gut microbiota and the emergence of hepatocellular carcinoma, assess the contributions of probiotics to immunotherapy and outline the latest research findings, providing a safer and more cost-effective potential strategy for the prevention and management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chengchen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Ren
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Mingzhi Xu
- Department of General Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuewei Ye
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Macandog ADG, Catozzi C, Capone M, Nabinejad A, Nanaware PP, Liu S, Vinjamuri S, Stunnenberg JA, Galiè S, Jodice MG, Montani F, Armanini F, Cassano E, Madonna G, Mallardo D, Mazzi B, Pece S, Tagliamonte M, Vanella V, Barberis M, Ferrucci PF, Blank CU, Bouvier M, Andrews MC, Xu X, Santambrogio L, Segata N, Buonaguro L, Cocorocchio E, Ascierto PA, Manzo T, Nezi L. Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients. Cell Host Microbe 2024; 32:2004-2018.e9. [PMID: 39481388 PMCID: PMC11629153 DOI: 10.1016/j.chom.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data. We followed patients with unresectable melanoma from baseline and during anti-PD-1 therapy, collecting fecal and blood samples that were surveyed for changes in the gut microbiota and immune markers. Varying patient responses were linked to different gut microbiota dynamics during ICI treatment. We select complete responders by their stable microbiota functions and validate them using multiple external cohorts and experimentally. We identify major histocompatibility complex class I (MHC class I)-restricted peptides derived from flagellin-related genes of Lachnospiraceae (FLach) as structural homologs of tumor-associated antigens, detect FLach-reactive CD8+ T cells in complete responders before ICI therapy, and demonstrate that FLach peptides improve antitumor immunity. These findings highlight the prognostic value of microbial functions and therapeutic potential of tumor-mimicking microbial peptides.
Collapse
Affiliation(s)
- Angeli D G Macandog
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Amir Nabinejad
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Padma P Nanaware
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Smita Vinjamuri
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | - Johanna A Stunnenberg
- Netherlands Cancer Institute (NKI)-AVL, North Holland, Amsterdam 1066 CX, the Netherlands
| | - Serena Galiè
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Maria Giovanna Jodice
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Francesca Montani
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Federica Armanini
- Department of CIBIO, University of Trento, Trento, Povo 38123, Italy
| | - Ester Cassano
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Domenico Mallardo
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | | | - Salvatore Pece
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Vito Vanella
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Massimo Barberis
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | | | - Christian U Blank
- Netherlands Cancer Institute (NKI)-AVL, North Holland, Amsterdam 1066 CX, the Netherlands
| | - Marlene Bouvier
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | - Miles C Andrews
- Department of Medicine, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicola Segata
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy; Department of CIBIO, University of Trento, Trento, Povo 38123, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Emilia Cocorocchio
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Teresa Manzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy.
| |
Collapse
|
30
|
Sevcikova A, Martiniakova M, Omelka R, Stevurkova V, Ciernikova S. The Link Between the Gut Microbiome and Bone Metastasis. Int J Mol Sci 2024; 25:12086. [PMID: 39596154 PMCID: PMC11593804 DOI: 10.3390/ijms252212086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiome is essential for regulating host metabolism, defending against pathogens, and shaping the host's immune system. Mounting evidence highlights that disruption in gut microbial communities significantly impacts cancer development and treatment. Moreover, tumor-associated microbiota, along with its metabolites and toxins, may contribute to cancer progression by promoting epithelial-to-mesenchymal transition, angiogenesis, and metastatic spread to distant organs. Bones, in particular, are common sites for metastasis due to a rich supply of growth and neovascularization factors and extensive blood flow, especially affecting patients with thyroid, prostate, breast, lung, and kidney cancers, where bone metastases severely reduce the quality of life. While the involvement of the gut microbiome in bone metastasis formation is still being explored, proposed mechanisms suggest that intestinal dysbiosis may alter the bone microenvironment via the gut-immune-bone axis, fostering a premetastatic niche and immunosuppressive milieu suitable for cancer cell colonization. Disruption in the delicate balance of bone modeling and remodeling may further create a favorable environment for metastatic growth. This review focuses on the link between beneficial or dysbiotic microbiome composition and bone homeostasis, as well as the role of the microbiome in bone metastasis development. It also provides an overview of clinical trials evaluating the impact of gut microbial community structure on bone parameters across various conditions or health-related issues. Dietary interventions and microbiota modulation via probiotics, prebiotics, and fecal microbiota transplantation help support bone health and might offer promising strategies for addressing bone-related complications in cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| |
Collapse
|
31
|
Duan Y, Dai J, Lu Y, Qiao H, Liu N. Disentangling the molecular mystery of tumour-microbiota interactions: Microbial metabolites. Clin Transl Med 2024; 14:e70093. [PMID: 39568157 PMCID: PMC11578933 DOI: 10.1002/ctm2.70093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
The profound impact of the microbiota on the initiation and progression of cancer has been a focus of attention. In recent years, many studies have shown that microbial metabolites serve as key hubs that connect the microbiome and cancer progression, but the underlying molecular mechanisms have not been fully elucidated. Multiple mechanisms that influence tumour development and therapy resistance, including disrupting cellular signalling pathways, triggering oxidative stress, inducing metabolic reprogramming and reshaping tumour immune microenvironment, are reviewed. Focusing on recent advancements in this field, this review also summarises the methodological framework of studies regarding microbial metabolites. In this review, we outline the current state of research on tumour-associated microbial metabolites and describe the challenges in future scientific research and clinical applications. KEY POINTS: Metabolites derived from both gut and intratumoural microbiota play important roles in cancer initiation and progression. The dual roles of microbial metabolites pose an obstacle for clinical translations. Absolute quantification and tracing techniques of microbial metabolites are essential for addressing the gaps in studies on microbial metabolites. Integrating microbial metabolomics with multi-omics transcends current research paradigms.
Collapse
Affiliation(s)
- Yu‐Fei Duan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Jia‐Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Ying‐Qi Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| |
Collapse
|
32
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 PMCID: PMC11784870 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
33
|
Liu X, Lu B, Tang H, Jia X, Zhou Q, Zeng Y, Gao X, Chen M, Xu Y, Wang M, Tan B, Li J. Gut microbiome metabolites, molecular mimicry, and species-level variation drive long-term efficacy and adverse event outcomes in lung cancer survivors. EBioMedicine 2024; 109:105427. [PMID: 39471749 PMCID: PMC11550776 DOI: 10.1016/j.ebiom.2024.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND The influence of the gut microbiota on long-term immune checkpoint inhibitor (ICI) efficacy and immune-related adverse events (irAEs) is poorly understood, as are the underlying mechanisms. METHODS We performed gut metagenome and metabolome sequencing of gut microbiotas from patients with lung cancer initially treated with anti-PD-1/PD-L1 therapy and explored the underlying mechanisms mediating long-term (median follow-up 1167 days) ICI responses and immune-related adverse events (irAEs). Results were validated in external, publicly-available datasets (Routy, Lee, and McCulloch cohorts). FINDINGS The ICI benefit group was enriched for propionate (P = 0.01) and butyrate/isobutyrate (P = 0.12) compared with the resistance group, which was validated in the McCulloch cohort (propionate P < 0.001, butyrate/isobutyrate P = 0.002). The acetyl-CoA pathway (P = 0.02) in beneficial species mainly mediated butyrate production. Microbiota sequences from irAE patients aligned with antigenic epitopes found in autoimmune diseases. Microbiotas of responsive patients contained more lung cancer-related antigens (P = 0.07), which was validated in the Routy cohort (P = 0.02). Escherichia coli and SGB15342 of Faecalibacterium prausnitzii showed strain-level variations corresponding to clinical phenotypes. Metabolome validation reviewed more abundant acetic acid (P = 0.03), propionic acid (P = 0.09), and butyric acid (P = 0.02) in the benefit group than the resistance group, and patients with higher acetic, propionic, and butyric acid levels had a longer progression-free survival and lower risk of tumor progression after adjusting for histopathological subtype and stage (P < 0.05). INTERPRETATION Long-term ICI survivors have coevolved a compact microbial community with high butyrate production, and molecular mimicry of autoimmune and tumor antigens by microbiota contribute to outcomes. These results not only characterize the gut microbiotas of patients who benefit long term from ICIs but pave the way for "smart" fecal microbiota transplantation. Registered in the Chinese Clinical Trial Registry (ChiCTR2000032088). FUNDING This work was supported by Beijing Natural Science Foundation (7232110), National High Level Hospital Clinical Research Funding (2022-PUMCH-A-072, 2023-PUMCH-C-054), CAMS Innovation Fund for Medical Sciences (CIFMS) (2022-I2M-C&T-B-010).
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; Eight-year Medical Doctor Program, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Bo Lu
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Hao Tang
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xinmiao Jia
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Qingyang Zhou
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yanlin Zeng
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoxing Gao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Bei Tan
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| | - Jingnan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
34
|
Sun L, Wang X, Zhou H, Li R, Meng M, Roviello G, Oh B, Feng L, Yu Z, Wang J. Gut microbiota and metabolites associated with immunotherapy efficacy in extensive-stage small cell lung cancer: a pilot study. J Thorac Dis 2024; 16:6936-6954. [PMID: 39552845 PMCID: PMC11565349 DOI: 10.21037/jtd-24-1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The gut microbiota and its associated metabolites play a critical role in shaping the systemic immune response and influencing the efficacy of immunotherapy. In this study, patients with extensive-stage small cell lung cancer (ES-SCLC) were included to explore the correlation between gut microbiota and metabolites and immunotherapy efficacy in patients with ES-SCLC. METHODS Pre- and post-treatment, we collected stool samples from 49 ES-SCLC patients treated with an anti-programmed death-ligand 1 (PD-L1) antibody. We then applied 16S ribosomal RNA (rRNA) sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolomics technology. Subsequently, the gut microbiota and metabolites were identified and classified. RESULTS The results showed no statistical difference in gut microbiota alpha and beta diversity between the responder (R) and non-responder (NR) patients at baseline. However, the alpha diversity of the R patients was significantly higher than that of the NR patients after treatment. There were also differences in the microbiome composition at the baseline and post-treatment. Notably, after treatment, Faecalibacterium, Clostridium_sensu_stricto_1, and [Ruminococcus]_torques were enriched in the R group, while Dubosiella, coriobacteriaceae_UCG-002 was enriched in the NR group. The non-targeted metabolomics results also indicated that short-chain fatty acids (SCFAs) were up-regulated in the R group after treatment. More, differential metabolites were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including the PD-L1 expression and programmed death 1 (PD-1) checkpoint pathway in cancer. CONCLUSIONS These findings are anticipated to provide novel markers for predicting the efficacy of immune checkpoint inhibitors (ICIs) in patients with ES-SCLC, and offer new directions for further research on molecular mechanisms.
Collapse
Affiliation(s)
- Liyang Sun
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xueting Wang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huimin Zhou
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rui Li
- Health Management Center, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ming Meng
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | | | - Byeongsang Oh
- Northern Sydney Cancer Centre, Royal North Shore Hospital, University of Sydney Medical School, Sydney, NSW, Australia
| | - Lingxin Feng
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhuang Yu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
35
|
HUANG X, LI Y, ZHU C, ZHU H, JIANG C, ZHU X, ZHANG C, JIN C. Weitiao No. 3 (3) enhances the efficacy of anti-programmed cell death protein-1 immunotherapy by modulating the intestinal microbiota in an orthotopic model of gastric cancer mice. J TRADIT CHIN MED 2024; 44:906-915. [PMID: 39380221 PMCID: PMC11462543 DOI: 10.19852/j.cnki.jtcm.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/05/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To explore the effects of Weitiao No. 3 (3, WD-3) on anti-programmed cell death protein-1 (PD-1) immunotherapy in gastric cancer (GC). METHODS The intestinal microbiota was analyzed by 16S rDNA sequencing of fecal samples from three groups: healthy people (Health), GC patients (GC), and WD-3-treated GC patients (WD-3). Next, we established an orthotopic model of GC mice, which were treated with anti-PD-1, WD-3, or an inoculation of intestinal bacteria. Immune markers CD3, CD4, CD8, and forkhead box protein P3 (FOXP3), and the cell proliferation marker Ki67, were evaluated by immunohistochemistry. Cell apoptosis in GC tumors was assessed by terminal-deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick end labeling staining. Enzyme-linked immunosorbent assays (ELISAs) were performed to analyze the serum levels of the following cytokines in GC mice: tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-6, IL-10, interferon (IFN)-γ, and transforming growth factor (TGF)-β. RESULTS Sequencing data showed that there were significant differences in the composition of the gut microbial community among the three human groups. The gut bacteria in the three groups mainly comprised the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. At the genus level, the relative abundances of Bifidobacterium and Coprococcus showed significant decreases in the GC group, and an obvious increase in the WD-3 group, compared with the Health group. Interestingly, the relative abundance of Saccharopolyspora was only detected in the WD-3 group. The results of in vivo experiments in GC mice showed that WD-3 or anti-PD-1 treatment increased the levels of CD3+, CD4+, and CD8+ T cells, but decreased the levels of FOXP3+ regulatory T cells. Furthermore, WD-3 or PD-1 antibody treatment inhibited proliferation and promoted apoptosis of GC tumor cells. ELISA analysis showed that WD-3 or PD-1 antibody treatment facilitated TNF-α, IL-2, and IFN-γ expression, while suppressing IL-6, IL-10, and TGF-β expression. Combination therapy with WD-3 and anti-PD-1 intensified all of these effects. CONCLUSION WD-3 enhanced the immunotherapeutic efficacy of anti-PD-1 by modulating the intestinal microbiota in an orthotopic model of GC mice.
Collapse
Affiliation(s)
- Xiaona HUANG
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| | - Yuzhen LI
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| | - Chenyang ZHU
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| | - Hengzhou ZHU
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| | - Chenyu JIANG
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| | - Xiaodan ZHU
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| | - Chencen ZHANG
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| | - Chunhui JIN
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Wuxi 214071, China
| |
Collapse
|
36
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Dean NJ, d'Arienzo PD, Ibraheim H, Lee KA, Olsson-Brown AC, Pinato DJ, Powell N. The role of the gut microbiome in regulating the response to immune checkpoint inhibitor therapy. Best Pract Res Clin Gastroenterol 2024; 72:101944. [PMID: 39645284 DOI: 10.1016/j.bpg.2024.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 12/09/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised cancer therapy, yet the proportion of patients who achieve long-term disease control remain suboptimal. Over the past decade, the gut microbiome has been shown to influence immune-mediated tumour suppression as well as responses to ICI therapies. Compositional differences in gut microbiome may account for the differences in outcomes from immune checkpoint blockade. Identifying microbiota species associated with favourable/unfavourable outcomes and modelling their dynamics throughout the course of ICI treatment could help develop predictive biomarkers of immunotherapy response, and manipulating the gut microbiome represent a novel approach to enhancing ICI effectiveness. Clinically, this raises the prospect of using gut microbiome-based therapies to overcome primary resistance to ICIs, mitigate the effects of microbiome-altering drugs such as antibiotics or proton pump inhibitors, and improve overall survival in patients across numerous different cancer types.
Collapse
Affiliation(s)
- Nathan J Dean
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom
| | - Paolo D d'Arienzo
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom
| | - Hajir Ibraheim
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Karla A Lee
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom
| | - Anna C Olsson-Brown
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, United Kingdom
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Nicholas Powell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
38
|
Verhaert MAM, Aspeslagh S. Immunotherapy efficacy and toxicity: Reviewing the evidence behind patient implementable strategies. Eur J Cancer 2024; 209:114235. [PMID: 39059186 DOI: 10.1016/j.ejca.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The use of immune checkpoint inhibitors (ICI) in cancer treatment is expanding, offering promising outcomes but with an important risk of immune-related adverse events (irAEs). These events, stemming from an overstimulated immune system attacking healthy cells, can necessitate immunosuppressant treatment, disrupt treatment courses, and impact patients' quality of life. The analysis of ICI efficacy data has led to a better understanding of the characteristics of responders. Similarly, we are gaining clearer insights into the characteristics of patients who develop irAEs, prompting an increasing emphasis on modifiable factors associated with irAE risk. These factors include lifestyle choices and the composition of the gut microbiome. Despite comprehensive reviews exploring the microbiome's role in therapy efficacy, understanding its connection with immune-related toxicity remains incomplete. While endeavours to identify predictive biomarkers continue, lifestyle modifications emerge as a promising avenue for enhancing treatment outcomes. This review consolidates the current evidence regarding the impact of the gut microbiome on irAE occurrence. Furthermore, it focuses on actionable strategies for mitigating these adverse events, elucidating the evidence supporting dietary adjustments, supplementation, medication management, and physical activity. With the expanding range of indications for ICI therapy, a significant proportion of oncology patients, including those in early disease stages, are now exposed to these treatments. Acknowledging the importance of averting irAEs in this context, our review offers timely insights crucial for addressing the evolving challenges associated with immunotherapy across diverse oncological settings.
Collapse
Affiliation(s)
- Marthe August Marianne Verhaert
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Sandrine Aspeslagh
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; Department of Internal Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
39
|
Ryan T, Ling S, Trinh A, Segal JP. The role of the microbiome in immune checkpoint inhibitor colitis and hepatitis. Best Pract Res Clin Gastroenterol 2024; 72:101945. [PMID: 39645281 DOI: 10.1016/j.bpg.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 12/09/2024]
Abstract
Immune checkpoint inhibitors have revolutionised management for a variety of different types of malignancies. However, gastrointestinal adverse effects, in particular colitis and hepatitis, are relatively common with up to 30 % of patients being affected. The gut microbiome has emerged as a potential contributor to both the effectiveness of immune checkpoint inhibitors and their side effects. This review will attempt to examine the impact the microbiome has on adverse effects as a result of immune checkpoint inhibitors as well as the potential for manipulation of the microbiome as a form of management for immune mediated colitis.
Collapse
Affiliation(s)
- Thomas Ryan
- Faculty of Medicine, University of Melbourne, Melbourne, Australia.
| | - Sophia Ling
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Andrew Trinh
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jonathan P Segal
- Faculty of Medicine, University of Melbourne, Melbourne, Australia; Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
40
|
Zhu J. New Metabolomic Insights Into Cancer. Cancer J 2024; 30:301-306. [PMID: 39312449 PMCID: PMC11424019 DOI: 10.1097/ppo.0000000000000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT Cancer has been marked by metabolic irregularities that fuel various aggressive activities such as rapid cell proliferation, evasion of the immune system, and spread to distant organs. Therefore, exploiting cancer metabolism for diagnosis, monitoring, or treatment has been extensively studied in the past couple of decades with various molecular and cellular techniques. More recently, investigating cancer diagnostics and treatments through advanced metabolomics has emerged, and these comprehensive approaches provide a holistic understanding of cancer metabolism, which supported the discovery of metabolic targets relevant across multiple cancer types and the development of more effective treatments. This study offers highlights of new knowledge on cancer metabolism enabled by recent metabolomics studies and their potential applications in aiding cancer research and predicting cancer treatment outcomes. Specifically, we discussed the use of advanced metabolomics in cancer metabolism, tumor microenvironment, and cancer immunotherapy studies to provide valuable insights that can shape future research efforts in the dynamic field of cancer metabolism research.
Collapse
|
41
|
Stringer EJ, Cloke RWG, Van der Meer L, Murphy RA, Macpherson NA, Lum JJ. The Clinical Impact of Time-restricted Eating on Cancer: A Systematic Review. Nutr Rev 2024:nuae105. [PMID: 39212676 DOI: 10.1093/nutrit/nuae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
CONTEXT In the face of the growing global burden of cancer, there is increasing interest in dietary interventions to mitigate its impacts. Pre-clinical evidence suggests that time-restricted eating (TRE), a type of intermittent fasting, induces metabolic effects and alterations in the gut microbiome that may impede carcinogenesis. Research on TRE in cancer has progressed to human studies, but the evidence has yet to be synthesized. OBJECTIVE The objective of this study was to systematically evaluate the clinical and/or metabolomic effects of TRE compared with ad libitum eating or alternative diets in people with cancer. DATA SOURCES Ovid MEDLINE, Ovid Embase, CINAHL, Ovid Cochrane Central Register of Control Trials (CENTRAL), Web of Science Core Collection (ESCI, CPCI-SSH, CPCI-S), and SCOPUS were searched up to January 4, 2023, using the core concepts of "intermittent fasting" and "cancer." Original study designs, protocols, and clinical trial registries were included. DATA EXTRACTION After evaluating 13 900 results, 24 entries were included, consisting of 8 full articles, 2 abstracts, 1 published protocol and 13 trial registries. All data were extracted, compared, and critically analyzed. DATA ANALYSIS There was heterogeneity in the patient population (eg, in tumor sites), TRE regimens (eg, degree of restriction, duration), and clinical end points. A high rate (67-98%) of TRE adherence was observed, alongside improvements in quality of life. Four articles assessed cancer markers and found a reduction in tumor marker carcinoembryonic antigen, reduced rates of recurrence, and a sustained major molecular response, following TRE. Five articles demonstrated modified cancer risk factors, including beneficial effects on body mass index, adiposity, glucoregulation, and inflammation in as short a period as 8 weeks. None of the completed studies assessed the effect of TRE on the microbiome, but analysis of the microbiome is a planned outcome in 2 clinical trials. CONCLUSIONS Preliminary findings suggest that TRE is feasible and acceptable by people with cancer, may have oncological benefits, and improves quality of life. REGISTRATION PROSPERO registration No. CRD42023386885.
Collapse
Affiliation(s)
- Eleah J Stringer
- Nursing and Allied Health Research and KT Department, BC Cancer, Vancouver, BC V5Z 1G1, Canada
- Department of Oncology Nutrition, BC Cancer, Victoria, BC V8R 6V5, Canada
- Food, Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rob W G Cloke
- Nursing and Allied Health Research and KT Department, BC Cancer, Vancouver, BC V5Z 1G1, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lindsay Van der Meer
- Nursing and Allied Health Research and KT Department, BC Cancer, Vancouver, BC V5Z 1G1, Canada
- Department of Oncology Nutrition, BC Cancer, Victoria, BC V8R 6V5, Canada
- Food, Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nicol A Macpherson
- Department of Medical Oncology, BC Cancer - Victoria, Victoria, BC V8R 6V5, Canada
- Department of Medical Oncology, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer - Victoria, Victoria, BC V8R 6V5, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
42
|
Xia L, Zhu X, Wang Y, Lu S. The gut microbiota improves the efficacy of immune-checkpoint inhibitor immunotherapy against tumors: From association to cause and effect. Cancer Lett 2024; 598:217123. [PMID: 39033797 DOI: 10.1016/j.canlet.2024.217123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Immune-checkpoint inhibitors (ICIs), including anti-PD-1/PD-L1 therapeutic antibodies, have markedly enhanced survival across numerous cancer types. However, the limited number of patients with durable benefits creates an urgent need to identify response biomarkers and to develop novel strategies so as to improve response. It is widely recognized that the gut microbiome is a key mediator in shaping immunity. Additionally, the gut microbiome shows significant potential in predicting the response to and enhancing the efficacy of ICI immunotherapy against cancer. Recent studies encompassing mechanistic analyses and clinical trials of microbiome-based therapy have shown a cause-and-effect relationship between the gut microbiome and the modulation of the ICI immunotherapeutic response, greatly contributing to the establishment of novel strategies that will improve response and overcome resistance to ICI treatment. In this review, we outline the current state of research advances and discuss the future directions of utilizing the gut microbiome to enhance the efficacy of ICI immunotherapy against tumors.
Collapse
Affiliation(s)
- Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
43
|
Li X, Shang S, Wu M, Song Q, Chen D. Gut microbial metabolites in lung cancer development and immunotherapy: Novel insights into gut-lung axis. Cancer Lett 2024; 598:217096. [PMID: 38969161 DOI: 10.1016/j.canlet.2024.217096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Metabolic derivatives of numerous microorganisms inhabiting the human gut can participate in regulating physiological activities and immune status of the lungs through the gut-lung axis. The current well-established microbial metabolites include short-chain fatty acids (SCFAs), tryptophan and its derivatives, polyamines (PAs), secondary bile acids (SBAs), etc. As the study continues to deepen, the critical function of microbial metabolites in the occurrence and treatment of lung cancer has gradually been revealed. Microbial derivates can enter the circulation system to modulate the immune microenvironment of lung cancer. Mechanistically, oncometabolites damage host DNA and promote the occurrence of lung cancer, while tumor-suppresive metabolites directly affect the immune system to combat the malignant properties of cancer cells and even show considerable application potential in improving the efficacy of lung cancer immunotherapy. Considering the crosstalk along the gut-lung axis, in-depth exploration of microbial metabolites in patients' feces or serum will provide novel guidance for lung cancer diagnosis and treatment selection strategies. In addition, targeted therapeutics on microbial metabolites are expected to overcome the bottleneck of lung cancer immunotherapy and alleviate adverse reactions, including fecal microbiota transplantation, microecological preparations, metabolite synthesis and drugs targeting metabolic pathways. In summary, this review provides novel insights and explanations on the intricate interplay between gut microbial metabolites and lung cancer development, and immunotherapy through the lens of the gut-lung axis, which further confirms the possible translational potential of the microbiome metabolome in lung cancer treatment.
Collapse
Affiliation(s)
- Xinpei Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shijie Shang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Song
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
44
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
45
|
Cheraghpour M, Fatemi N, Shadnoush M, Talebi G, Tierling S, Bermúdez-Humarán LG. Immunomodulation aspects of gut microbiome-related interventional strategies in colorectal cancer. Med Oncol 2024; 41:231. [PMID: 39162936 DOI: 10.1007/s12032-024-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, develops mainly due to the accumulation of genetic and epigenetic changes over many years. Substantial evidence suggests that gut microbiota plays a significant role in the initiation, progression, and control of CRC, depending on the balance between beneficial and pathogenic microorganisms. Nonetheless, gut microbiota composition by regulating the host immune response may either promote or inhibit CRC. Thus, modification of gut microbiota potentially impacts clinical outcomes of immunotherapy. Previous studies have indicated that therapeutic strategies such as probiotics, prebiotics, and postbiotics enhance the intestinal immune system and improve the efficacy of immunotherapeutic agents, potentially serving as a complementary strategy in cancer immunotherapy. This review discusses the role of the gut microbiota in the onset and development of CRC in relation to the immune response. Additionally, we focus on the effect of strategies manipulating gut microbiome on the immune response and efficacy of immunotherapy against CRC. We demonstrate that manipulation of gut microbiome can enhance immune response and outcomes of immunotherapy through downregulating Treg cells and other immunosuppressive cells while improving the function of T cells within the tumor; however, further research, especially clinical trials, are needed to evaluate its efficacy in cancer treatment.
Collapse
Affiliation(s)
- Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shadnoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Talebi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Luis G Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
46
|
Zhao Q, Su X, Xue J, Liu Y, Zhu J, Cai X, Qin S. First-line treatment with KN046, chemotherapy and palliative radiotherapy for advanced esophageal squamous cell carcinoma: an open-label, dose escalation, and dose expansion phase Ib trial. Cancer Immunol Immunother 2024; 73:194. [PMID: 39105827 PMCID: PMC11303366 DOI: 10.1007/s00262-024-03769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024]
Abstract
There is growing evidence to suggest that radiotherapy might enhance the efficacy of immunotherapy. This study aimed to assess the possibility of KN046, a bispecific antibody targeting PD-L1 and CTLA-4, combined with chemotherapy and palliative radiotherapy for advanced esophageal squamous cell carcinoma (ESCC). In this open-label, phase Ib trial, patients with advanced ESCC were administered chemotherapy with palliative radiotherapy, and KN046 in the predefined escalation dosages of 1, 3, or 5 mg/kg (every 3 weeks during chemotherapy cycles and every 2 weeks during KN046 maintenance). The chemotherapy regimen constituted cisplatin (75 mg/m2 i.v., d1) and paclitaxel (135-175 mg/m2 ivgtt., d1). Radiotherapy specifics, including site, timing, dose, and fragmentation pattern, were at the investigator's discretion. The primary outcome was dose-limiting toxicity (DLT). From May 2019 to April 2021, 25 patients were enrolled across the dosage groups: 3 in 1 mg/kg, 12 in 3 mg/kg, and 10 in 5 mg/kg. No DLT was observed during the dose escalation. The objective response rate was 41.7% (95%CI 22.1-63.4), while the disease control rate was 87.5% (95%CI 67.6-97.3). At a median follow-up of 11.8 months, the median progression-free survival was 7.8 months (95%CI 5.2-9.7) and median overall survival was 15.9 months (95%CI 8.4-NE). Serious adverse events were reported in 48.0% of patients, predominantly leukopenia (16%), immune-mediated enterocolitis (12%), immune-mediated pneumonitis (8%), and neutropenia (8%). Combining KN046 with chemotherapy and palliative radiotherapy might be feasible, showing a favorable safety profile and notable efficacy in advanced ESCC patients.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xi Su
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiao Xue
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yandong Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jiaxing Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xuwei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
47
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
48
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 231.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Espelage L, Wagner N, Placke JM, Ugurel S, Tasdogan A. The Interplay between Metabolic Adaptations and Diet in Cancer Immunotherapy. Clin Cancer Res 2024; 30:3117-3127. [PMID: 38771898 DOI: 10.1158/1078-0432.ccr-22-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.
Collapse
Affiliation(s)
- Lena Espelage
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Natalie Wagner
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
50
|
Pallozzi M, De Gaetano V, Di Tommaso N, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Role of Gut Microbial Metabolites in the Pathogenesis of Primary Liver Cancers. Nutrients 2024; 16:2372. [PMID: 39064815 PMCID: PMC11280141 DOI: 10.3390/nu16142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatobiliary malignancies, which include hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are the sixth most common cancers and the third leading cause of cancer-related death worldwide. Hepatic carcinogenesis is highly stimulated by chronic inflammation, defined as fibrosis deposition, and an aberrant imbalance between liver necrosis and nodular regeneration. In this context, the gut-liver axis and gut microbiota have demonstrated a critical role in the pathogenesis of HCC, as dysbiosis and altered intestinal permeability promote bacterial translocation, leading to chronic liver inflammation and tumorigenesis through several pathways. A few data exist on the role of the gut microbiota or bacteria resident in the biliary tract in the pathogenesis of CCA, and some microbial metabolites, such as choline and bile acids, seem to show an association. In this review, we analyze the impact of the gut microbiota and its metabolites on HCC and CCA development and the role of gut dysbiosis as a biomarker of hepatobiliary cancer risk and of response during anti-tumor therapy. We also discuss the future application of gut microbiota in hepatobiliary cancer management.
Collapse
Affiliation(s)
- Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Natalia Di Tommaso
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|