1
|
Dahlstrand Rudin A, Torell A, Popovic J, Stockfelt M, Jacobsson B, Rudin A, Christenson K, Lundell AC, Bylund J. Pregnancy is associated with a simultaneous but independent increase in circulating CD177pos and immature low-density granulocytes. J Leukoc Biol 2025; 117:qiae255. [PMID: 39698836 DOI: 10.1093/jleuko/qiae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 12/20/2024] Open
Abstract
The neutrophil marker CD177 (NB1, HNA-2a) is expressed by 0-100% of circulating neutrophils in any given donor, dividing neutrophils into 2 distinct subpopulations (CD177pos and CD177neg). High proportions of CD177pos blood neutrophils have been linked to both systemic infections and a range of inflammatory pathologies, but whether this is a cause or a consequence of disease is not known. Many conditions displaying elevated CD177pos neutrophil proportions are also accompanied by the presence of circulating low-density granulocytes. Accordingly, it is tempting to speculate that these 2 events are connected (i.e. that proportions of CD177pos neutrophils increase as a result of an enlarged pool of circulating low-density granulocytes). A temporary increase in CD177pos neutrophils, in combination with the presence of low-density granulocytes, has been reported during pregnancy. The present study aimed to investigate whether elevated proportions of CD177pos neutrophils in peripheral blood from pregnant women can be attributed to the presence of low-density granulocytes. We found that low-density granulocytes were indeed present in pregnancy and included both immature and activated mature neutrophils. The proportion of CD177pos low-density granulocytes increased over time during pregnancy and correlated with a simultaneous increase in immature cells. However, most immature neutrophils were CD177neg, meaning that increased release of immature cells cannot explain the increased proportions of the CD177pos subtype. Therefore, although low-density granulocytes and CD177pos neutrophils are expanded simultaneously during pregnancy, these events occur independently from each other.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 12F, 413 90 Gothenburg, Sweden
| | - Agnes Torell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Jordan Popovic
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 12F, 413 90 Gothenburg, Sweden
| | - Marit Stockfelt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Journalvägen 6, 416 85 Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Journalvägen 6, 416 85 Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 12F, 413 90 Gothenburg, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 12F, 413 90 Gothenburg, Sweden
| |
Collapse
|
2
|
Gysemans C, Beya M, Pedace E, Mathieu C. Exploring Neutrophil Heterogeneity and Plasticity in Health and Disease. Biomedicines 2025; 13:597. [PMID: 40149573 PMCID: PMC11940349 DOI: 10.3390/biomedicines13030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils, the most abundant polymorphonuclear leukocytes, are critical first responders to infection, and have historically been underappreciated in terms of their functional complexity within the immune response. Once viewed primarily as short-lived, innate immune cells with limited functional plasticity, recent research has illuminated their considerable heterogeneity and diverse functional roles, which extend beyond their involvement in steady-state immunity. This review seeks to provide an updated analysis of neutrophil development, maturation, heterogeneity, and plasticity, with a focus on how these characteristics influence immune modulation in both healthy and diseased tissues. Beginning with the origin of neutrophils, we explore their maturation into effector cells and their evolving roles in immune defense under homeostatic and disease-associated conditions. We then delve into their heterogeneity, discussing recent breakthroughs in neutrophil research that challenge the traditional view of neutrophils as a uniform population. We address the significant advances that have been made in identifying distinct neutrophil subsets, the emerging complexities of their plasticity, and the challenges that remain in fully understanding their functional diversity. Finally, we highlight future directions and opportunities for continued exploration in this rapidly advancing field, shedding light on how these insights could open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Conny Gysemans
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Mateson Beya
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery, and Neurosciences, University of Siena, 53100 Siena, Italy;
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Chantal Mathieu
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| |
Collapse
|
3
|
Xu H, Zhan M, Wu Z, Chen J, Zhao Y, Feng F, Wang F, Li Y, Zhang S, Liu Y. Aberrant expansion of CD177 + neutrophils promotes endothelial dysfunction in systemic lupus erythematosus via neutrophil extracellular traps. J Autoimmun 2025; 152:103399. [PMID: 40088615 DOI: 10.1016/j.jaut.2025.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE Aberrant neutrophil activation is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and its related comorbidities. We found that CD177 was one of the most highly up-regulated genes at the transcriptional level in purified neutrophils from SLE patients. In this study, we aimed to explore the role of CD177+ neutrophils in the pathogenesis of SLE. METHODS Expression of CD177 was analyzed by neutrophil transcriptome and flow cytometry. CD177+ neutrophils and CD177-neutrophils were isolated to determine the role of neutrophils-derived NETs in endothelium dysfunction. Wild type and CD177-/- murine model of lupus were analyzed for organ involvement, endothelium-dependent vasorelaxation, serum autoantibodies, and innate and adaptive immune responses in an imiquimod (IMQ)-induced lupus model. RESULTS CD177MFI-hi neutrophils and CD177MFI-hi low-density granulocytes (LDGs) were expanded in active SLE, which were weakly but significantly associated with disease activity. CD177+neutrophils displayed enhanced production of reactive oxygen species (ROS) and NETs, which impaired the murine aortic endothelium-dependent vasorelaxation and induced endothelial cell apoptosis. Moreover, CD177-/- mice exposed to IMQ showed alleviated splenomegaly, endothelium-dependent vasorelaxation, and renal immune complex deposition. CONCLUSIONS Our findings indicated that CD177 MFI-hi may serve as a novel biomarker for monitoring disease activity in SLE. Further, CD177+ neutrophils may play a vasculopathic role in cardiovascular disease (CVD) via NETs formation, suggesting that specific targeting CD177+ neutrophil subset may have therapeutic effect in SLE but reducing the levels of NETs-prone neutrophils.
Collapse
MESH Headings
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/etiology
- Animals
- Extracellular Traps/immunology
- Extracellular Traps/metabolism
- Neutrophils/immunology
- Neutrophils/metabolism
- Mice
- Humans
- Mice, Knockout
- Disease Models, Animal
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/metabolism
- Isoantigens/metabolism
- Isoantigens/genetics
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Reactive Oxygen Species/metabolism
- Female
- Male
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Neutrophil Activation/immunology
- Endothelial Cells
- Vasodilation
Collapse
Affiliation(s)
- Honglin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Minghua Zhan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China
| | - Ziyan Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jianing Chen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanling Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shulan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Yudong Liu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Saqib M, Das S, Nafiz TN, McDonough E, Sankar P, Mishra LK, Zhang X, Cai Y, Subbian S, Mishra BB. Pathogenic role for CD101-negative neutrophils in the type I interferon-mediated immunopathogenesis of tuberculosis. Cell Rep 2025; 44:115072. [PMID: 39693225 PMCID: PMC11829800 DOI: 10.1016/j.celrep.2024.115072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are vital for immunity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), yet their heterogeneous nature suggests a complex role in TB pathogenesis. Here, we identify two distinct neutrophil populations based on CD101 expression, highlighting their divergent roles in TB. CD101-negative (CD101-ve) neutrophils, which resemble immature, pro-inflammatory granulocytes, exhibit reduced Mtb phagocytosis compared to their mature, CD101-positive (CD101+ve) counterparts. Our findings reveal that type I interferons (IFN-Is) suppress neutrophil Mtb uptake and drive the recruitment of CD101-ve neutrophils to the lungs. Infiltration of these cells promotes Mtb extracellular persistence, exacerbates epithelial damage, and impairs surfactant production. Furthermore, we demonstrate that granulocyte colony-stimulating factor (G-CSF) and chemokine receptor CXCR2 are essential for the pulmonary accumulation of CD101-ve neutrophils. Our study uncovers a pathogenic role for CD101-ve neutrophils in TB and highlights the IFN-I-dependent recruitment of this functionally compromised immature neutrophil as a driver of TB immunopathogenesis.
Collapse
Affiliation(s)
- Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Tanvir N Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Elizabeth McDonough
- GE Healthcare Technology and Innovation Center, GE Research, Niskayuna, NY, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Lokesh K Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Ximeng Zhang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Bibhuti B Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
5
|
Prendecki M, Gurung A, Pisacano N, Pusey CD. The role of neutrophils in ANCA-associated vasculitis. Immunol Lett 2024; 270:106933. [PMID: 39362307 DOI: 10.1016/j.imlet.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) is a group of rare systemic autoimmune diseases characterised by necrotising inflammation of small blood vessels and usually associated with circulating ANCA. The pathophysiology of AAV is complex, involving many aspects of the innate and adaptive immune system. Neutrophils are central to the pathogenesis of AAV as they are both the target of the autoantibody and effector cells mediating vascular injury. We describe mechanisms for ANCA induced activation of neutrophils, the pathogenic mechanisms by which this leads to endothelial cell injury, and how neutrophil crosstalk modulates other aspects of the immune system in AAV.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom.
| | - Angila Gurung
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Noelle Pisacano
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
6
|
Zheng C, Li J, Chen H, Ma X, Si T, Zhu W. Dual role of CD177 + neutrophils in inflammatory bowel disease: a review. J Transl Med 2024; 22:813. [PMID: 39223577 PMCID: PMC11370282 DOI: 10.1186/s12967-024-05539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of recurrent chronic inflammatory disorders associated with autoimmune dysregulation, typically characterized by neutrophil infiltration and mucosal inflammatory lesions. Neutrophils, as the earliest immune cells to arrive at inflamed tissues, play a dual role in the onset and progression of mucosal inflammation in IBD. Most of these cells specifically express CD177, a molecule increasingly recognized for its critical role in the pathogenesis of IBD. Under IBD-related inflammatory stimuli, CD177 is highly expressed on neutrophils and promotes their migration. CD177 + neutrophils activate bactericidal and barrier-protective functions at IBD mucosal inflammation sites and regulate the release of inflammatory mediators highly correlated with the severity of inflammation in IBD patients, thus playing a dual role. However, mitigating the detrimental effects of neutrophils in inflammatory bowel disease remains a challenge. Based on these data, we have summarized recent articles on the role of neutrophils in intestinal inflammation, with a particular emphasis on CD177, which mediates the recruitment, transepithelial migration, and activation of neutrophils, as well as their functional consequences. A better understanding of CD177 + neutrophils may contribute to the development of novel therapeutic targets to selectively modulate the protective role of this class of cells in IBD.
Collapse
Affiliation(s)
- Chengli Zheng
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiekai Li
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailin Chen
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Ma
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Si
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Smargianaki S, Elmér E, Lilliebladh S, Ohlsson S, Pettersson Å, Hellmark T, Johansson ÅCM. Disease Activity and Tendency to Relapse in ANCA-Associated Vasculitis Are Reflected in Neutrophil and Intermediate Monocyte Frequencies. J Immunol Res 2024; 2024:6648265. [PMID: 38213873 PMCID: PMC10781522 DOI: 10.1155/2024/6648265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of autoimmune diseases with inflammation affecting small blood vessels and includes granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). In this study, we investigated granulocyte and monocyte subsets in a large cohort of AAV patients with emphasis on disease activity and tendency to relapse. A cohort of 105 patients with GPA or MPA and 126 healthy controls (HCs) were included. Clinical and laboratory data were collected for all patients, including disease activity, tendency to relapse, and pharmacological treatment. Using flow cytometry, circulating eosinophils, basophils, neutrophils, and monocytes were assessed. The monocytes were subdivided into classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14-CD16+) monocytes. Mature (CD16high) or newly released (CD16dim) neutrophils were defined, as well as the frequency of CD177+ neutrophils. AAV patients displayed increased frequencies of intermediate monocytes, mature and newly released neutrophils, and an expanded population of CD177+ neutrophils compared to HC. MPA patients differed from GPA patients in terms of lower frequency of classical monocytes. No differences in cell frequencies regarding ANCA phenotype were observed. Paired data from 23 patients demonstrated that active disease was associated with an increased frequency of mature neutrophils and a decreased frequency of monocytes, in particular intermediate monocytes. Moreover, GPA patients with a tendency to relapse displayed an increased frequency of mature neutrophils with increased expression of CD177+. Relapsing MPA patients, on the other hand, showed decreased frequency of intermediate monocytes. Finally, rituximab treatment was associated with increased frequencies of classical and intermediate monocytes. In conclusion, AAV patients exhibit a skewing of different neutrophil and monocyte subpopulations that are associated with disease subtypes, disease activity, rituximab treatment, and propensity to relapse. These changes may contribute to the inflammatory process and could potentially be used as biomarkers for relapse prediction.
Collapse
Affiliation(s)
- Sofia Smargianaki
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University and Clinical Immunology and Transfusion Medicine, Skåne University Hospital, Lund, Sweden
| | - Evelina Elmér
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University and Clinical Immunology and Transfusion Medicine, Skåne University Hospital, Lund, Sweden
| | - Sandra Lilliebladh
- Nephrology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sophie Ohlsson
- Nephrology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Åsa Pettersson
- Nephrology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Thomas Hellmark
- Nephrology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Åsa CM Johansson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University and Clinical Genetics and Pathology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Palomino-Segura M, Sicilia J, Ballesteros I, Hidalgo A. Strategies of neutrophil diversification. Nat Immunol 2023; 24:575-584. [PMID: 36959290 PMCID: PMC10139675 DOI: 10.1038/s41590-023-01452-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 03/25/2023]
Abstract
Neutrophils are formidable defenders. Their vast numbers, constant production, high cytotoxicity and capacity to produce extracellular traps, underlie their ability to efficiently protect in a microorganism-rich world. However, neutrophils are much more than immune sentinels, as evidenced by the expanding repertoire of functions discovered in the context of tissue homeostasis, regeneration or chronic pathologies. In this Perspective, we discuss general functional features of the neutrophil compartment that may be relevant in most, if not all, physiological scenarios in which they participate, including specialization in naïve tissues, transcriptional noise in the bloodstream as a potential strategy for diversification and functional bias in inflammatory sites. We intentionally present the reader with more questions than answers and propose models and approaches that we hope will shed new light onto the biology of these fascinating cells and spark new directions of research.
Collapse
Affiliation(s)
- Miguel Palomino-Segura
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE) and Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain.
| | - Jon Sicilia
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Matsumoto K, Suzuki K, Yasuoka H, Hirahashi J, Yoshida H, Magi M, Noguchi-Sasaki M, Kaneko Y, Takeuchi T. Longitudinal monitoring of circulating immune cell phenotypes in anti-neutrophil cytoplasmic antibody-associated vasculitis. Autoimmun Rev 2023; 22:103271. [PMID: 36627064 DOI: 10.1016/j.autrev.2023.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) is a necrotizing multiorgan autoimmune disease that affects small- to medium-sized blood vessels. Despite the improvements in treatments, half of the patients with AAV still experience disease relapses. In this review, we focus on peripheral leukocyte properties and phenotypes in patients with AAV. In particular, we explore longitudinal changes in circulating immune cell phenotypes during the active phase of the disease and treatment. The numbers and phenotypes of leukocytes in peripheral blood were differs between AAV and healthy controls, AAV in active versus inactive phase, AAV in treatment responders versus non-responders, and AAV with and without severe infection. Therefore, biomarkers detected in peripheral blood immune cells may be useful for longitudinal monitoring of disease activity in AAV.
Collapse
Affiliation(s)
- Kotaro Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Division of Rheumatology, Department of Internal Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Junichi Hirahashi
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | | | - Mayu Magi
- Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan
| | | | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
12
|
Zhang R, Su L, Fu M, Wang Z, Tan L, Chen H, Lin Z, Tong Y, Ma S, Ye R, Zhao Z, Wang Z, Chen W, Yu J, Zhong W, Zeng J, Liu F, Chai C, Guan X, Liu T, Liang J, Zhu Y, Gu X, Zhang Y, Lui VCH, Tam PKH, Lamb JR, Wen Z, Chen Y, Xia H. CD177 + cells produce neutrophil extracellular traps that promote biliary atresia. J Hepatol 2022; 77:1299-1310. [PMID: 35803543 DOI: 10.1016/j.jhep.2022.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS We have previously reported on the potential pathogenic role of neutrophils in biliary atresia (BA). Herein, we aimed to delineate the role of CD177+ neutrophils in the pathogenesis of BA. METHODS Immune cells from the livers of mice with rhesus rotavirus-induced BA were analysed. Single-cell RNA-sequencing was performed to specifically analyse Gr-1+ (Ly6C/Ly6G+) cells in the liver. Gene expression profiles of CD177+ cells were analysed using the Smart-Seq RNA-sequencing method, and the pathogenesis of BA was examined in Cd177-/- mice. Neutrophil extracellular trap (NET) inhibitors were used to determine the role of CD177+ cell-derived NETs in BA-associated bile duct damage, and a pilot clinical study evaluated the potential effects of N-acetylcysteine on NET release in BA. RESULTS Increased levels of Gr-1+ cells were observed in the livers of mice with rhesus rotavirus-induced BA. RNA-sequencing analysis revealed that CD177+ cells were the main population of Gr-1+ cells and expressed elevated levels of both interferon-stimulated and neutrophil degranulation genes. Cd177-/- BALB/c mice exhibited delayed disease onset and reduced morbidity and mortality. High numbers of mitochondria were detected in CD177+ cells derived from mice with BA; these cells were associated with increased levels of reactive oxygen species and increased NET formation, which induced the apoptosis of biliary epithelial cells in cocultures. In a pilot clinical study, the administration of N-acetylcysteine to patients with BA reduced CD177+ cell numbers and reactive oxygen species levels, indicating a potential beneficial effect. CONCLUSIONS Our data indicate that CD177+ cells play an important role in the initiation of BA pathogenesis via NET formation. CLINICAL TRIAL REGISTRATION The pilot study of N-acetylcysteine treatment in patients with BA was registered on the Chinese Clinical Trial Registry (ChiCTR2000040505). LAY SUMMARY Neutrophils (a type of innate immune cell, i.e. an immune cell that doesn't target a specific antigen) are thought to play a role in the development of biliary atresia (a rare but potentially lethal condition of the bile ducts that occurs in infants). Herein, we found that neutrophils expressing a particular protein (CD177) played an important role in bile duct damage by releasing a special structure (NET) that can trap and kill pathogens but that can also cause severe tissue damage. A pilot study in patients with biliary atresia showed that inhibiting NETs could have a beneficial effect.
Collapse
Affiliation(s)
- Ruizhong Zhang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Liang Su
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ming Fu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhe Wang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ledong Tan
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Hongjiao Chen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zefeng Lin
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yanlu Tong
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Sige Ma
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Rongchen Ye
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ziyang Zhao
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ziqing Wang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Weiyi Chen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jiakang Yu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Zhong
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jixiao Zeng
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Fei Liu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Chenwei Chai
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xisi Guan
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Tao Liu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jiankun Liang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yun Zhu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xiaoqiong Gu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yan Zhang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Vincent C H Lui
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Paul K H Tam
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China; Faculty of Medicine, Macau University of Science and Technology, China
| | - Jonathan R Lamb
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ UK
| | - Zhe Wen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Yan Chen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China; Department of Surgery, The University of Hong Kong, Hong Kong SAR, China; Faculty of Medicine, Macau University of Science and Technology, China.
| | - Huimin Xia
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
13
|
Rankin AN, Hendrix SV, Naik SK, Stallings CL. Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2022; 12:901590. [PMID: 35800386 PMCID: PMC9253571 DOI: 10.3389/fcimb.2022.901590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterium Mycobacterium tuberculosis (Mtb), which primarily infects the lungs but can also cause extrapulmonary disease. Both the disease outcome and the pathology of TB are driven by the immune response mounted by the host. Infection with Mtb elicits inflammatory host responses that are necessary to control infection, but can also cause extensive tissue damage when in excess, and thus must be precisely balanced. In particular, excessive recruitment of neutrophils to the site of infection has been associated with poor control of Mtb infection, prompting investigations into the roles of neutrophils in TB disease outcomes. Recent studies have revealed that neutrophils can be divided into subpopulations that are differentially abundant in TB disease states, highlighting the potential complexities in determining the roles of neutrophils in Mtb infection. Specifically, neutrophils can be separated into normal (NDN) and low-density neutrophils (LDNs) based on their separation during density gradient centrifugation and surface marker expression. LDNs are present in higher numbers during active TB disease and increase in frequency with disease progression, although their direct contribution to TB is still unknown. In addition, the abundance of LDNs has also been associated with the severity of other lung infections, including COVID-19. In this review, we discuss recent findings regarding the roles of LDNs during lung inflammation, emphasizing their association with TB disease outcomes. This review highlights the importance of future investigations into the relationship between neutrophil diversity and TB disease severity.
Collapse
|
14
|
Filep JG. Targeting Neutrophils for Promoting the Resolution of Inflammation. Front Immunol 2022; 13:866747. [PMID: 35371088 PMCID: PMC8966391 DOI: 10.3389/fimmu.2022.866747] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a localized and self-limited innate host-defense mechanism against invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in humans, play pivotal roles in host defense by eradicating invading pathogens and debris. Ideally, elimination of the offending insult prompts repair and return to homeostasis. However, the neutrophils` powerful weaponry to combat microbes can also cause tissue damage and neutrophil-driven inflammation is a unifying mechanism for many diseases. For timely resolution of inflammation, in addition to stopping neutrophil recruitment, emigrated neutrophils need to be disarmed and removed from the affected site. Accumulating evidence documents the phenotypic and functional versatility of neutrophils far beyond their antimicrobial functions. Hence, understanding the receptors that integrate opposing cues and checkpoints that determine the fate of neutrophils in inflamed tissues provides insight into the mechanisms that distinguish protective and dysregulated, excessive inflammation and govern resolution. This review aims to provide a brief overview and update with key points from recent advances on neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and emerging therapeutic approaches that target neutrophils to enhance the resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
15
|
Competitively disrupting the neutrophil-specific receptor-autoantigen CD177:proteinase 3 membrane complex reduces anti-PR3 antibody-induced neutrophil activation. J Biol Chem 2022; 298:101598. [PMID: 35063507 PMCID: PMC8857647 DOI: 10.1016/j.jbc.2022.101598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/15/2023] Open
Abstract
CD177 is a neutrophil-specific receptor presenting the proteinase 3 (PR3) autoantigen on the neutrophil surface. CD177 expression is restricted to a neutrophil subset, resulting in CD177pos/mPR3high and CD177neg/mPR3low populations. The CD177pos/mPR3high subset has implications for antineutrophil cytoplasmic autoantibody (ANCA)-associated autoimmune vasculitis, wherein patients harbor PR3-specific ANCAs that activate neutrophils for degranulation. Here, we generated high-affinity anti-CD177 monoclonal antibodies, some of which interfered with PR3 binding to CD177 (PR3 "blockers") as determined by surface plasmon resonance spectroscopy and used them to test the effect of competing PR3 from the surface of CD177pos neutrophils. Because intact anti-CD177 antibodies also caused neutrophil activation, we prepared nonactivating Fab fragments of a PR3 blocker and nonblocker that bound specifically to CD177pos neutrophils. We observed that Fab blocker clone 40, but not nonblocker clone 80, dose-dependently reduced anti-PR3 antibody binding to CD177pos neutrophils. Importantly, preincubation with clone 40 significantly reduced respiratory burst in primed neutrophils challenged with either monoclonal antibodies to PR3 or PR3-ANCA immunoglobulin G from ANCA-associated autoimmune vasculitis patients. After separating the two CD177/mPR3 neutrophil subsets from individual donors by magnetic sorting, we found that PR3-ANCAs provoked significantly more superoxide production in CD177pos/mPR3high than in CD177neg/mPR3low neutrophils, and that anti-CD177 Fab clone 40 reduced the superoxide production of CD177pos cells to the level of the CD177neg cells. Our data demonstrate the importance of the CD177:PR3 membrane complex in maintaining a high ANCA epitope density and thereby underscore the contribution of CD177 to the severity of PR3-ANCA diseases.
Collapse
|
16
|
Saha R, Pradhan SS, Shalimar, Das P, Mishra P, Singh R, Sivaramakrishnan V, Acharya P. Inflammatory signature in acute-on-chronic liver failure includes increased expression of granulocyte genes ELANE, MPO and CD177. Sci Rep 2021; 11:18849. [PMID: 34552111 PMCID: PMC8458283 DOI: 10.1038/s41598-021-98086-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Acute-on-Chronic Liver Failure (ACLF) is associated with innate immune dysfunction and high short-term mortality. Neutrophils have been identified to influence prognosis in ACLF. Neutrophil biology is under-evaluated in ACLF. Therefore, we investigated neutrophil-specific genes and their association with ACLF outcomes. This is an observational study. Enriched granulocytes, containing neutrophils, isolated from study participants in three groups- ACLF(n = 10), chronic liver disease (CLD, n = 4) and healthy controls (HC, n = 4), were analysed by microarray. Differentially expressed genes were identified and validated by qRT-PCR in an independent cohort of ACLF, CLD and HC (n = 30, 15 and 15 respectively). The association of confirmed overexpressed genes with ACLF 28-day non-survivors was investigated. The protein expression of selected neutrophil genes was confirmed using flow cytometry and IHC. Differential gene expression analysis showed 1140 downregulated and 928 upregulated genes for ACLF versus CLD and 2086 downregulated and 1091 upregulated genes for ACLF versus HC. Significant upregulation of neutrophilic inflammatory signatures were found in ACLF compared to CLD and HC. Neutrophil enriched genes ELANE, MPO and CD177 were highly upregulated in ACLF and their expression was higher in ACLF 28-day non-survivors. Elevated expression of CD177 protein on neutrophil surface in ACLF was confirmed by flow cytometry. IHC analysis in archival post mortem liver biopsies showed the presence of CD177+ neutrophils in the liver tissue of ACLF patients. Granulocyte genes ELANE, MPO and CD177 are highly overexpressed in ACLF neutrophils as compared to CLD or HC. Further, this three-gene signature is highly overexpressed in ACLF 28-day non-survivors.
Collapse
Affiliation(s)
- Rohini Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Mishra
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India
| | - Rohan Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, Lab 3002, 3rd floor Teaching Block, New Delhi, 110029, India.
| |
Collapse
|
17
|
McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, Stevenson NJ, Little MA, Molloy EJ. Neutrophils: Need for Standardized Nomenclature. Front Immunol 2021; 12:602963. [PMID: 33936029 PMCID: PMC8081893 DOI: 10.3389/fimmu.2021.602963] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are the most abundant innate immune cell with critical anti-microbial functions. Since the discovery of granulocytes at the end of the nineteenth century, the cells have been given many names including phagocytes, polymorphonuclear neutrophils (PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils (LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature for neutrophils suggest that biologically distinct populations of neutrophils exist, particularly in disease, when in fact these may simply be a manifestation of the plasticity of the neutrophil as opposed to unique populations. In this review, we profile the surface markers and granule expression of each stage of granulopoiesis to offer insight into how each stage of maturity may be identified. We also highlight the remarkable surface marker expression profiles between the supposed neutrophil populations.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | | | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Amrita Dwivedi
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Zallaq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
18
|
Identification and characterization of neutrophil heterogeneity in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:50. [PMID: 33549126 PMCID: PMC7865119 DOI: 10.1186/s13054-021-03481-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/26/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although the immune function of neutrophils in sepsis has been well described, the heterogeneity of neutrophils remains unclear during the process of sepsis. METHODS In this study, we used a mouse CLP model to simulate the clinical scenario of patients with sepsis, neutrophil infiltration, abnormal distribution and dysfunction was analyzed. LPS was used to stimulate neutrophils in vitro to simulate sepsis; single-cell gene sequencing technology was used to explore the immunological typing. To explore the immunological function of immunosuppressive neutrophils, PD-L1 knockout neutrophils were cocultured with lymphocytes from wild-type mice. RESULTS We found that neutrophils presented variant dysfunction at the late stage of sepsis, including inhibition of apoptosis, seriously damaged chemotaxis and extensive infiltration into the tissues. Single-cell RNA sequencing revealed that multiple subclusters of neutrophils were differentiated after LPS stimulation. The two-dimensional spatial distribution analysis showed that Foxp3+ T cells were much closer to Ly-6G than the CD4+ and CD8+ cells, indicating that infiltrated neutrophils may play immunomodulatory effect on surrounding T-regs. Further observations showed that LPS mediates PD-L1 over expression through p38α-MSK1/-MK2 pathway in neutrophils. The subsets of highly expressed PD-L1 exert immunosuppressive effect under direct contact mode, including inhibition of T cell activation and induction of T cell apoptosis and trans-differentiation. CONCLUSIONS Taken together, our data identify a previously unknown immunosuppressive subset of neutrophils as inhibitory neutrophil in order to more accurately describe the phenotype and characteristics of these cells in sepsis.
Collapse
|
19
|
Immunopathogenesis of ANCA-Associated Vasculitis. Int J Mol Sci 2020; 21:ijms21197319. [PMID: 33023023 PMCID: PMC7584042 DOI: 10.3390/ijms21197319] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is an autoimmune disorder which affects small- and, to a lesser degree, medium-sized vessels. ANCA-associated vasculitis encompasses three disease phenotypes: granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). This classification is largely based on clinical presentations and has several limitations. Recent research provided evidence that genetic background, risk of relapse, prognosis, and co-morbidities are more closely related to the ANCA serotype, proteinase 3 (PR3)-ANCA and myeloperoxidase (MPO)-ANCA, compared to the disease phenotypes GPA or MPA. This finding has been extended to the investigation of biomarkers predicting disease activity, which again more closely relate to the ANCA serotype. Discoveries related to the immunopathogenesis translated into clinical practice as targeted therapies are on the rise. This review will summarize the current understanding of the immunopathogenesis of ANCA-associated vasculitis and the interplay between ANCA serotype and proposed disease biomarkers and illustrate how the extending knowledge of the immunopathogenesis will likely translate into development of a personalized medicine approach in the management of ANCA-associated vasculitis.
Collapse
|
20
|
Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol Cell Physiol 2020; 319:C510-C532. [PMID: 32667864 DOI: 10.1152/ajpcell.00181.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils are polymorphonuclear leukocytes that play a central role in host defense against infection and tissue injury. They are rapidly recruited to the inflamed site and execute a variety of functions to clear invading pathogens and damaged cells. However, many of their defense mechanisms are capable of inflicting collateral tissue damage. Neutrophil-driven inflammation is a unifying mechanism underlying many common diseases. Efficient removal of neutrophils from inflammatory loci is critical for timely resolution of inflammation and return to homeostasis. Accumulating evidence challenges the classical view that neutrophils represent a homogeneous population and that halting neutrophil influx is sufficient to explain their rapid decline within inflamed loci during the resolution of protective inflammation. Hence, understanding the mechanisms that govern neutrophil functions and their removal from the inflammatory locus is critical for minimizing damage to the surrounding tissue and for return to homeostasis. In this review, we briefly address recent advances in characterizing neutrophil phenotypic and functional heterogeneity and the molecular mechanisms that determine the fate of neutrophils within inflammatory loci and the outcome of the inflammatory response. We also discuss how these mechanisms may be harnessed as potential therapeutic targets to facilitate resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Amiram Ariel
- Departmentof Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
21
|
Dahlstrand Rudin A, Amirbeagi F, Davidsson L, Khamzeh A, Thorbert Mros S, Thulin P, Welin A, Björkman L, Christenson K, Bylund J. The neutrophil subset defined by CD177 expression is preferentially recruited to gingival crevicular fluid in periodontitis. J Leukoc Biol 2020; 109:349-362. [PMID: 32531826 DOI: 10.1002/jlb.3a0520-081rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, the concept of distinct subpopulations of human neutrophils has attracted much attention. One bona fide subset marker, exclusively expressed by a proportion of circulating neutrophils in a given individual, and therefore dividing neutrophils in two distinct subpopulations, is the glycoprotein CD177. CD177 is expressed on the plasma and granule membranes of 0-100% of circulating neutrophils depending on the donor. Several in vitro studies have linked CD177 to neutrophil transmigration, yet very few have looked at the role of CD177 for tissue recruitment in vivo. We investigate whether the CD177+ and CD177- neutrophil subsets differ in their propensity to migrate to both aseptic- and microbe-triggered inflamed human tissues. Microbe-triggered neutrophil migration was evaluated in samples of gingival crevicular fluid (GCF) from patients with periodontitis, whereas neutrophil migration to aseptic inflammation was evaluated in synovial fluid from patients with inflammatory arthritis, as well as in exudate from experimental skin chambers applied on healthy donors. We found that the proportion of CD177+ neutrophils was significantly higher in GCF from patients with periodontitis, as compared to blood from the same individuals. Such accumulation of CD177+ neutrophils was not seen in the two models of aseptic inflammation. Moreover, the proportion of CD177+ neutrophils in circulation was significantly higher in the periodontitis patient group, as compared to healthy donors. Our data indicate that the CD177+ neutrophil subset is preferentially recruited to the gingival crevice of periodontitis patients, and may imply that this subtype is of particular importance for situations of microbe-driven inflammation.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Firoozeh Amirbeagi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Davidsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sara Thorbert Mros
- Specialist Clinic of Periodontics, Gothenburg, Public Dental Service, Region Västra Götaland, Sweden
| | - Pontus Thulin
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Unit of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology. Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Sundqvist M, Gibson KM, Bowers SM, Niemietz I, Brown KL. Anti-neutrophil cytoplasmic antibodies (ANCA): Antigen interactions and downstream effects. J Leukoc Biol 2020; 108:617-626. [PMID: 32421916 DOI: 10.1002/jlb.3vmr0220-438rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in circulation and are key "first responders" in the immune response to infectious and non-infectious stimuli. Unlike other immune cells, neutrophils can mount a robust response (including a change in surface markers and the production of extracellular traps and reactive oxygen species) just minutes after sensing a disturbance. It has been speculated that, in some individuals, the activation of neutrophils inadvertently leads to the generation of anti-neutrophil cytoplasmic autoantibodies (ANCA) against particular neutrophil proteins (antigens) such as myeloperoxidase (MPO) and proteinase 3 (PR3). In these individuals, continuous ANCA-antigen interactions are thought to drive persistent activation of neutrophils, chronic immune activation, and disease, most notably, small vessel vasculitis. There are significant gaps however in our understanding of the underlying mechanisms and even the pathogenicity of ANCA given that vasculitis can develop in the absence of ANCA, and that ANCA have been found in circulation in other conditions with no apparent contribution to disease. These gaps are particularly evident in the context of human studies. Herein, we review knowledge on neutrophil-derived ANCA antigens PR3 and MPO, ANCA generation, and ANCA-antigen interaction(s) that may promote immune activation and disease.
Collapse
Affiliation(s)
- Martina Sundqvist
- Department of Pediatrics, Division of Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristen M Gibson
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah M Bowers
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Iwona Niemietz
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly L Brown
- Department of Pediatrics, Division of Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Shochet L, Holdsworth S, Kitching AR. Animal Models of ANCA Associated Vasculitis. Front Immunol 2020; 11:525. [PMID: 32373109 PMCID: PMC7179669 DOI: 10.3389/fimmu.2020.00525] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 01/05/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV) is a rare and severe autoimmune multisystemic disease. Its pathogenesis involves multiple arms of the immune system, as well as complex interactions between immune cells and target organs. Experimental animal models of disease can provide the crucial link from human disease to translational research into new therapies. This is particularly true in AAV, due to low disease incidence and substantial disease heterogeneity. Animal models allow for controlled environments in which disease mechanisms can be defined, without the clinical confounders of environmental and lifestyle factors. To date, multiple animal models have been developed, each of which shed light on different disease pathways. Results from animal studies of AAV have played a crucial role in enhancing our understanding of disease mechanisms, and have provided direction toward newer targeted therapies. This review will summarize our understanding of AAV pathogenesis as has been gleaned from currently available animal models, as well as address their strengths and limitations. We will also discuss the potential for current and new animal models to further our understanding of this important condition.
Collapse
Affiliation(s)
- Lani Shochet
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia
| | - Stephen Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Immunology, Monash Health, Clayton, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Pediatric Nephrology, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
24
|
Rossi B, Constantin G, Zenaro E. The emerging role of neutrophils in neurodegeneration. Immunobiology 2020; 225:151865. [DOI: 10.1016/j.imbio.2019.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
|
25
|
Ui Mhaonaigh A, Coughlan AM, Dwivedi A, Hartnett J, Cabral J, Moran B, Brennan K, Doyle SL, Hughes K, Lucey R, Floudas A, Fearon U, McGrath S, Cormican S, De Bhailis A, Molloy EJ, Brady G, Little MA. Low Density Granulocytes in ANCA Vasculitis Are Heterogenous and Hypo-Responsive to Anti-Myeloperoxidase Antibodies. Front Immunol 2019; 10:2603. [PMID: 31781107 PMCID: PMC6856659 DOI: 10.3389/fimmu.2019.02603] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 01/07/2023] Open
Abstract
Low Density Granulocytes (LDGs), which appear in the peripheral blood mononuclear cell layer of density-separated blood, are seen in cancer, sepsis, autoimmunity, and pregnancy. Their significance in ANCA vasculitis (AAV) is little understood. As these cells bear the autoantigens associated with this condition and have been found to undergo spontaneous NETosis in other diseases, we hypothesized that they were key drivers of vascular inflammation. We found that LDGs comprise a 3-fold higher fraction of total granulocytes in active vs. remission AAV and disease controls. They are heterogeneous, split between cells displaying mature (75%), and immature (25%) phenotypes. Surprisingly, LDGs (unlike normal density granulocytes) are hyporesponsive to anti-myeloperoxidase antibody stimulation, despite expressing myeloperoxidase on their surface. They are characterized by reduced CD16, CD88, and CD10 expression, higher LOX-1 expression and immature nuclear morphology. Reduced CD16 expression is like that observed in the LDG population in umbilical cord blood and in granulocytes of humanized mice treated with G-CSF. LDGs in AAV are thus a mixed population of mature and immature neutrophils. Their poor response to anti-MPO stimulation suggests that, rather than being a primary driver of AAV pathogenesis, LDGs display characteristics consistent with generic emergency granulopoiesis responders in the context of acute inflammation.
Collapse
Affiliation(s)
- Aisling Ui Mhaonaigh
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Alice M Coughlan
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Amrita Dwivedi
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Jack Hartnett
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joana Cabral
- The Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kiva Brennan
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Katherine Hughes
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Rosemary Lucey
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Susan McGrath
- The Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Sarah Cormican
- The Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Aine De Bhailis
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Department of Paediatrics, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Bonaventura A, Montecucco F, Dallegri F, Carbone F, Lüscher TF, Camici GG, Liberale L. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res 2019; 115:1266-1285. [PMID: 30918936 DOI: 10.1093/cvr/cvz084] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 08/30/2023] Open
Abstract
Neutrophils are the most abundant circulating leucocytes in healthy humans. These cells are central players during acute inflammatory responses, although a growing body of evidence supports a crucial role in chronic inflammation and chemokines and cytokines related to it as well. Thus, both humoral and cellular components are involved in the development of plaque formation and atherosclerosis. Accordingly, CANTOS trial using an interleukin-1 beta antibody confirmed that inflammatory cytokines contribute to the occurrence of myocardial infarction and cardiac death independent of changes in lipids. Recent data revealed that neutrophils are a heterogeneous population with different subsets and functional characteristics (i.e. CD177+ cells, OLFM4+ neutrophils, proangiogenic neutrophils, neutrophils undergoing reverse migration, and aged neutrophils). Importantly, neutrophils are able to synthesize de novo proteins. Neutrophil extracellular trap generation and NETosis have been considered as very important weapons in sterile inflammation. Neutrophil-derived microvesicles represent another mechanism by which neutrophils amplify inflammatory processes, being found at high levels both at the site of injury and in the bloodstream. Finally, neutrophil aging can influence their functions also in relation with host age. These recent acquisitions in the field of neutrophil biology might pave the way for new therapeutic targets to prevent or even treat patients experiencing cardiovascular (CV) diseases. Here, we discuss novel findings in neutrophil biology, their impact on CV and cerebrovascular diseases, and the potential implementation of these notions into daily clinical practice.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
- University Heart Center, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
- Department of Research and Education, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| |
Collapse
|
27
|
Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol 2019; 10:346. [PMID: 30886615 PMCID: PMC6409342 DOI: 10.3389/fimmu.2019.00346] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are versatile innate effector cells essential for immune defense but also responsible for pathologic inflammation. This dual role complicates therapeutic targeting. However, neither neutrophils themselves nor the mechanisms they employ in different forms of immune responses are homogeneous, offering possibilities for selective intervention. Here we review heterogeneity within the neutrophil population as well as in the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining opportunities for therapeutic manipulation in inflammatory disease.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
28
|
Lynch AM, Wagner BD, Weiss SJ, Wall KM, Palestine AG, Mathias MT, Siringo FS, Cathcart JN, Patnaik JL, Drolet DW, Janjic N, Mandava N. Proteomic Profiles in Advanced Age-Related Macular Degeneration Using an Aptamer-Based Proteomic Technology. Transl Vis Sci Technol 2019; 8:14. [PMID: 30697465 PMCID: PMC6348995 DOI: 10.1167/tvst.8.1.14] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose To explore top-ranked plasma proteins related to neovascular age-related macular degeneration (AMD) and geographic atrophy (GA), and explore pathways related to neovascular AMD and GA. Methods We conducted a pilot study of patients with neovascular AMD (n = 10), GA (n = 10), and age-matched cataract controls (n = 10) who were recruited into an AMD registry. We measured 4001 proteins in ethylenediaminetetraacetic acid plasma samples using an aptamer-based proteomic technology. Relative concentrations of each of 4001 proteins were log (base 2) transformed and compared between cases of neovascular AMD and GA versus controls using linear regression. Pathway analysis was conducted using pathways downloaded from Reactome. Results In this pilot study, higher levels of vinculin and lower levels of CD177 were found in patients with neovascular AMD compared with controls. Neuregulin-4 was higher and soluble intercellular adhesion molecule-1 was lower in patients with GA compared with controls. For neovascular AMD, cargo trafficking to the periciliary membrane, fibroblast growth factor receptor 3b ligand binding and activation, and vascular endothelial growth factor–related pathways were in the top ranked pathways. The top-ranked pathways for GA included several related to ErbB4 signaling. Conclusions We found different proteins and different pathways associated with neovascular AMD and GA. Vinculin and some of the top-ranked pathways have been previously associated with AMD, whereas others have not been described. Translational Relevance Biomarkers identified in plasma likely reflect systemic alterations in protein expression and may improve our understanding of the mechanisms leading to AMD.
Collapse
Affiliation(s)
- Anne M Lynch
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | | | | | - Alan G Palestine
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marc T Mathias
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Frank S Siringo
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer N Cathcart
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer L Patnaik
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Naresh Mandava
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
29
|
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on Neutrophil Function in Severe Inflammation. Front Immunol 2018; 9:2171. [PMID: 30356867 PMCID: PMC6190891 DOI: 10.3389/fimmu.2018.02171] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
30
|
Flesch BK, Reil A. Molecular Genetics of the Human Neutrophil Antigens. Transfus Med Hemother 2018; 45:300-309. [PMID: 30498408 PMCID: PMC6257083 DOI: 10.1159/000491031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/17/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Antibodies to human neutrophil antigens (HNAs) have been implicated in transfusion-related acute lung injury and allo- and autoimmune neutropenia. To date, five HNA systems are assigned, and during the last decades enormous efforts have been undertaken to identify the underlying genes and to characterize the antigens. This review of the literature will provide the current genetic, molecular and functional information on HNAs. RECENT FINDINGS New information on alleles and antigens has been added to nearly each of the five HNA systems. HNA-1d has been added as the antithetical epitope to HNA-1c that is located on the glycoprotein encoded by FCGR3B*02 but not by FCGR3B. FCGR3B*04 and *05 now are included as new alleles. A CD177*787A>T substitution was demonstrated as the main reason for the HNA-2-negative phenotype on neutrophils. The target glycoprotein of HNA-3 antibodies could be identified as choline transporter-like protein 2 (CTL2) encoded by SLC44A2. The conformation sensitive epitope discriminates between arginine and glutamine at position 152 resulting in HNA-3a and HNA-3b. An additional Leu151Phe substitution can impair HNA-3a antibody binding. Recently an alloantibody against HNA-4b which discriminates from HNA-4a by an Arg61His exchange of the glycoprotein encoded by the ITGAM gene was reported in neonatal alloimmune neutropenia. An update of the current HNA nomenclature based on the new findings was provided in 2016 by the ISBT Granulocyte Immunobiology Working Party nomenclature subcommittee. CONCLUSIONS The molecular basis of each of the five HNA antigen systems has been decoded during the past decades. This enables reliable molecular typing strategies, antibody detection and specification as well as development of new assays based on recombinant antigens. However, research on HNA alleles, antigens, and antibodies is not finally terminated and also in the future will add new findings.
Collapse
|
31
|
Zhou G, Yu L, Fang L, Yang W, Yu T, Miao Y, Chen M, Wu K, Chen F, Cong Y, Liu Z. CD177 + neutrophils as functionally activated neutrophils negatively regulate IBD. Gut 2018; 67:1052-1063. [PMID: 28468761 DOI: 10.1136/gutjnl-2016-313535] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neutrophils are accumulated in inflamed mucosa of IBD and play an important role in the pathogenesis. CD177 is expressed in neutrophils specifically and upregulated during inflammation. However, the role of CD177+ neutrophils in pathogenesis of IBD remains elusive. MATERIALS AND METHODS Expression of CD177 was analysed in peripheral blood and intestinal mucosa from patients with IBD using quantitative RT-PCR, flow cytometry and immunohistochemistry. CD177+ and CD177- neutrophils were isolated to determine gene differences by RNA sequencing. Colitis was established in CD177-/- and wild-type mice in response to dextran sulfate sodium (DSS) insults to determine the role of CD177+ neutrophils in IBD. RESULTS CD177+ neutrophils were markedly increased in peripheral blood and inflamed mucosa from patients with active IBD compared with healthy controls. RNA sequencing revealed that differential gene expression between CD177+ and CD177- neutrophils from patients with IBD was associated with response to bacterial defence, hydrogen peroxide and reactive oxygen species (ROS). CD177+ neutrophils produced lower levels of proinflammatory cytokines (ie, interferon-γ, interleukin (IL)-6, IL-17A), but higher levels of IL-22 and transforming growth factor-β, and exhibited increased bactericidal activities (ie, ROS, antimicrobial peptides, neutrophil extracellular trap) compared with CD177- subset. CD177-/- mice developed more severe colitis on DSS insults compared with wild-type mice. Moreover, CD177 deficiency led to compromised intestinal barrier and impaired antibacterial immunity through decreased production of IL-22 by CD177- neutrophils. CONCLUSIONS CD177+ neutrophils represent functionally activated population and play a protective role in IBD through increased bactericidal activity and IL-22 production. Targeting CD177+ neutrophils may be beneficial for treatment of IBD.
Collapse
Affiliation(s)
- Guangxi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lin Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feidi Chen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
32
|
Abstract
Autoimmune disorders are characterized by a loss of immune tolerance and consequent autoimmunity-mediated disease manifestation. Experimental models are invaluable research tools helping us to understand disease pathogenesis and to search for novel therapeutics. Animal models of autoimmune diseases consist of two groups, spontaneous and induced models. In this review article, we focus on the induced models of autoimmune diseases. Due to the complex nature of autoimmune disorders, many strategies have been applied for the induction of corresponding experimental models in animals like monkeys, rabbits, rats, and mice. Methodologically, these strategies can be categorized into three categories, namely immunization with autoantigen, transfer of autoimmunity, and induction by environmental factors. In this review article, we aim to provide a comprehensive overview of the field of induced experimental autoimmune diseases. On the one hand, we describe and summarize the different strategies used for induction of experimental autoimmune disease. On the other hand, we discuss how to select a strategy for modeling human disease, including the choice of an appropriate species and method for such an approach.
Collapse
Affiliation(s)
- Xinhua Yu
- Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Xiamen-Borstel Joint Laboratory of Autoimmunity, Medical College of Xiamen University, Xiamen, 361102, China.
| | - Frank Petersen
- Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| |
Collapse
|
33
|
Liu H, Liu Y, Li Y, Liu Z, Li L, Ding S, Wang Y, Zhang T, Li L, Shao Z, Fu R. Proteinase 3 expression on the neutrophils of patients with paroxysmal nocturnal hemoglobinuria. Exp Ther Med 2017; 15:2525-2532. [PMID: 29467851 DOI: 10.3892/etm.2017.5662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
Proteinase 3 (PR3) is released from neutrophils and regulates platelet activity, which is associated with cluster of differentiation (CD)177 antigen (NB1), a glycosylphosphatidylinositol-linked protein. In the present study, the effect of PR3 on thrombosis in paroxysmal nocturnal hemoglobinuria (PNH) and PNH-aplastic anemia (AA) syndrome was explored. The expression of PR3 and NB1 on CD59- neutrophils was detected by flow cytometry, immunofluorescence (IF), reverse transcription-quantitative polymerase chain reaction analysis and western blotting. Serum levels of PR3, proteinase-activated receptor 1 (PAR1) and D-Dimer were measured using ELISAs. The expression of PR3 and NB1 on the plasma membrane of CD59- neutrophils in patients with PNH/PNH-AA was significantly lower compared with their expression on CD59+ neutrophils in patients and controls (P=0.001). However, no correlation between PR3 and NB1 expression was identified. IF staining further demonstrated partially positive PR3 expression on CD59- neutrophils. The serum level of PR3 in patients was identified to be significantly decreased compared with healthy controls (P<0.0001), and significantly negatively correlated with PAR1 (r=-0.456; P=0.043) and D-Dimer (r=-0.503; P=0.028) levels. The mRNA and protein levels of PR3 on PNH clones did not change significantly compared with the control group. In conclusion, PR3 expression on the plasma membrane of neutrophils and in the serum of patients with PNH/PNH-AA decreased, which may result in increased PAR1 expression and increased clotting. The present study provides the basis for further study on platelets in PNH.
Collapse
Affiliation(s)
- Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liyan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yihao Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tian Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
34
|
Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis 2017; 18:495-503. [PMID: 28857501 DOI: 10.1111/1751-2980.12540] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), comprising of ulcerative colitis and Crohn's disease, are inflammatory disorders of the gastrointestinal tract characterized by chronically relapsing mucosal inflammation. Neutrophils, as the effector cells of acute inflammation, have long been reported to play a role in the maintenance of intestinal homeostasis and pathogenesis of IBD. At the early stage of mucosal inflammation in patients with IBD, neutrophils flood into intestinal mucosa, phagocytose pathogenic microbes, and promote mucosal healing and resolution of inflammation. However, large numbers of neutrophils infiltrating in the inflamed mucosa and accumulating in the epithelia cause damage of mucosal architecture, compromised epithelial barrier and production of inflammatory mediators. In this review we discuss the critical roles of neutrophils in modulating innate and adaptive immune responses in intestinal mucosa, and, importantly, clarify the potential roles of neutrophils related to their production of inflammatory mediators, transenthothelial and transepithelial migration into intestinal mucosa, and the underlying mechanisms in regulating mucosal inflammation of IBD. Moreover, we also describe a new subset of neutrophils (i.e., CD177+ neutrophils) and illustrate its protective role in modulating intestinal mucosal immune responses in IBD.
Collapse
Affiliation(s)
- Guang Xi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhan Ju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
35
|
CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation. Blood 2017; 130:2092-2100. [PMID: 28807980 DOI: 10.1182/blood-2017-03-768507] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177pos and CD177neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration.
Collapse
|
36
|
Eulenberg-Gustavus C, Bähring S, Maass PG, Luft FC, Kettritz R. Gene silencing and a novel monoallelic expression pattern in distinct CD177 neutrophil subsets. J Exp Med 2017; 214:2089-2101. [PMID: 28559244 PMCID: PMC5502425 DOI: 10.1084/jem.20161093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/01/2017] [Accepted: 04/12/2017] [Indexed: 12/24/2022] Open
Abstract
CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Eulenberg-Gustavus et al. show that epigenetic silencing causes CD177negative neutrophils, whereas a novel pattern of monoallelic CD177 expression results in a variable percentage of CD177positive neutrophils in bimodal individuals. CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Individuals can be either CD177-deficient or harbor distinct CD177neg and CD177pos neutrophil subsets. We studied mechanisms controlling subset-restricted CD177 expression in bimodal individuals. CD177pos, but not CD177neg neutrophils, produced CD177 protein and mRNA. Haplotype analysis indicated a unique monoallelic CD177 expression pattern, where the offspring stably transcribed either the maternal or paternal allele. Hematopoietic stem cells expressed both CD177 alleles and silenced one copy during neutrophil differentiation. ChIP and reporter assays in HeLa cells with monoallelic CD177 expression showed that methylation reduced reporter activity, whereas demethylation caused biallelic CD177 expression. HeLa cell transfection with c-Jun and c-Fos increased CD177 mRNA. Importantly, CD177pos human neutrophils, but not CD177neg neutrophils, showed a euchromatic CD177 promoter, unmethylated CpGs, and c-Jun and c-Fos binding. We describe epigenetic mechanisms explaining the two distinct CD177 neutrophil subsets and a novel monoallelic CD177 expression pattern that does not follow classical random monoallelic expression or imprinting.
Collapse
Affiliation(s)
- Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Philipp G Maass
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany .,Nephrology and Intensive Care Medicine, Campus Virchow, Medical Faculty of the Charité, Berlin, Germany
| |
Collapse
|
37
|
Olfactomedin-4 Is a Candidate Marker for a Pathogenic Neutrophil Subset in Septic Shock. Crit Care Med 2017; 45:e426-e432. [PMID: 27635771 DOI: 10.1097/ccm.0000000000002102] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Heterogeneity in sepsis-related pathobiology presents a significant challenge. Resolving this heterogeneity presents an opportunity to understand pathobiology and improve patient care. Olfactomedin-4 is a neutrophil subset marker and may contribute to sepsis heterogeneity. Our objective was to evaluate the expression of olfactomedin-4 and characterize neutrophil heterogeneity in children with septic shock. DESIGN Single-center, prospective cohort, as well as secondary analysis of existing transcriptomic and proteomic databases. SETTING Tertiary care PICU. PATIENTS Patients from 5 days to 18 years old with septic shock were enrolled. Data collected included the expression of olfactomedin-4 messenger RNA, serum protein concentrations, and percentage of neutrophils that express olfactomedin-4. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Secondary analysis of existing transcriptomic data demonstrated that olfactomedin-4 is the most highly expressed gene in nonsurvivors of pediatric septic shock, compared with survivors. Secondary analysis of an existing proteomic database corroborated these observations. In a prospectively enrolled cohort, we quantified the percentage of olfactomedin-4+ neutrophils in patients with septic shock. Patients with a complicated course, defined as greater than or equal to two organ failures at day 7 of septic shock or 28-day mortality, had a higher percentage of olfactomedin-4+ neutrophils, compared with those without a complicated course. By logistic regression, the percentage of olfactomedin-4+ neutrophils was independently associated with increased risk of a complicated course (odds ratio, 1.09; 95% CI, 1.01-1.17; p = 0.024). CONCLUSIONS Olfactomedin-4 identifies a subpopulation of neutrophils in patients with septic shock, and those with a high percentage of olfactomedin-4+ neutrophils are at higher risk for greater organ failure burden and death. Olfactomedin-4 might serve as a marker of a pathogenic neutrophil subset in patients with septic shock.
Collapse
|
38
|
Martin KR, Witko-Sarsat V. Proteinase 3: the odd one out that became an autoantigen. J Leukoc Biol 2017; 102:689-698. [PMID: 28546501 DOI: 10.1189/jlb.3mr0217-069r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils are critical in the defense against bacterial and fungal pathogens, and they also modulate the inflammatory process. The areas where neutrophils are studied have expanded from the restricted field of antibacterial defense to the modulation of inflammation and finally, to fine-tuning immune responses. As a result, recent studies have shown that neutrophils are implicated in several systemic autoimmune diseases, although exactly how neutrophils contribute to these diseases and the molecular mechanisms responsible are still under investigation. In a group of autoimmune vasculitides associated with anti-neutrophil cytoplasmic antibodies (AAVs), granulomatosis with polyangiitis (GPA) illustrates the concept that autoimmunity can develop against one specific neutrophil protein, namely, proteinase 3 (PR3), one of the four serine protease homologs contained within azurophilic granules. In this review, we will focus on recent molecular analyses combined with functional studies that provide clear evidence that the pathogenic properties of PR3 are not only a result of its enzymatic activity but also mediated by a particular structural element-the hydrophobic patch-which facilitates associations with various proteins and lipids and permits anchorage into the plasma membrane. Furthermore, these unique structural and functional characteristics of PR3 might be key contributors to the systemic inflammation and to the immune dysregulation observed in GPA.
Collapse
Affiliation(s)
- Katherine R Martin
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France; .,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| |
Collapse
|
39
|
Characterization of the CD177 interaction with the ANCA antigen proteinase 3. Sci Rep 2017; 7:43328. [PMID: 28240246 PMCID: PMC5327412 DOI: 10.1038/srep43328] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Proteinase 3 is a serine protease found in neutrophil granules and on the extracellular neutrophil membrane (mPR3). mPR3 is a major antigen for anti-neutrophil cytoplasmic antibodies (PR3-ANCAs), autoantibodies causing fatal autoimmune diseases. In most individuals, a subpopulation of neutrophils also produce CD177, proposed to present additional PR3 on the surface, resulting in CD177neg/mPR3low and CD177pos/mPR3high neutrophil subsets. A positive correlation has been shown between mPR3 abundance, disease incidence, and clinical outcome. We present here a detailed investigation of the PR3:CD177 complex, verifying the interaction, demonstrating the effect of binding on PR3 proteolytic activity and explaining the accessibility of major PR3-ANCA epitopes. We observed high affinity PR3:CD177 complex formation by surface plasmon resonance. Using flow cytometry and a PR3-specific FRET assay, we found that CD177 binding reduced the proteolytic activity of PR3 in vitro using purified proteins, in neutrophil degranulation supernatants containing wtPR3 and directly on mPR3high neutrophils and PR3-loaded HEK cells. Finally, CD177pos/mPR3high neutrophils showed no migration advantage in vitro or in vivo when migrating from the blood into the oral cavity. We illuminate details of the PR3:CD177 interaction explaining mPR3 membrane orientation and proteolytic activity with relevance to ANCA activation of the distinct mPR3 neutrophil populations.
Collapse
|
40
|
Affiliation(s)
- Ralph Kettritz
- Experimental and Clinical Research Center; A joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC) and Department of Nephrology and Intensive Care Medicine; Charité University Health Services; Berlin Germany
| |
Collapse
|
41
|
Yang J, Ge H, Poulton CJ, Hogan SL, Hu Y, Jones BE, Henderson CD, McInnis EA, Pendergraft WF, Jennette JC, Falk RJ, Ciavatta DJ. Histone modification signature at myeloperoxidase and proteinase 3 in patients with anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Clin Epigenetics 2016; 8:85. [PMID: 27752292 PMCID: PMC5057507 DOI: 10.1186/s13148-016-0251-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/02/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by destructive vascular inflammation. Two prominent ANCA autoantigens are myeloperoxidase (MPO) and proteinase 3 (PR3), and transcription of MPO and PRTN3, the genes encoding the autoantigens, is associated with disease activity. We investigated whether patients with AAV have alterations in histone modifications, particularly those associated with transcriptional activation, at MPO and PRTN3. RESULTS We identified a network of genes regulating histone modifications that were differentially expressed in AAV patients compared to healthy controls. We focused on four genes (EHMT1 and EHMT2, ING4, and MSL1) and found their expression correlated with expression of MPO and PRTN3. Methylation of histone H3K9, catalyzed by EHMT1 and EHMT2 and associated with gene silencing, was most depleted at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Acetylation of histone H4K16, modified by complexes containing ING4 and MSL1 and associated with gene activation, was most enriched at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Methylation at H3K4, a mark of transcriptional activation, was enriched at MPO and PRTN3 in patients and healthy controls. CONCLUSIONS MPO and PRTN3 in neutrophils of AAV patients with active disease have a distinct pattern of histone modifications, which implicates epigenetic mechanisms in regulating expression of autoantigen genes and suggests that the epigenome may be involved in AAV pathogenesis.
Collapse
Affiliation(s)
- Jiajin Yang
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Heng Ge
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Xian Jiaotong University, 157 Xiwu Road, Xian, Shaanxi 710004 People's Republic of China
| | - Caroline J Poulton
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Susan L Hogan
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yichun Hu
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Britta E Jones
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Candace D Henderson
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Elizabeth A McInnis
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - William F Pendergraft
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - J Charles Jennette
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Ronald J Falk
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Dominic J Ciavatta
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Campus Box 7264, Chapel Hill, NC 27599 USA
| |
Collapse
|
42
|
Jarrot PA, Kaplanski G. Pathogenesis of ANCA-associated vasculitis: An update. Autoimmun Rev 2016; 15:704-13. [DOI: 10.1016/j.autrev.2016.03.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
|
43
|
Schreiber A, Eulenberg-Gustavus C, Bergmann A, Jerke U, Kettritz R. Lessons from a double-transgenic neutrophil approach to induce antiproteinase 3 antibody-mediated vasculitis in mice. J Leukoc Biol 2016; 100:1443-1452. [PMID: 27365530 DOI: 10.1189/jlb.5a0116-037r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
ANCA to either PR3 or MPO are found in patients with necrotizing vasculitis and glomerulonephritis. ANCA binding to their target antigens on neutrophils and subsequent neutrophil activation are pivotal disease mechanisms that lead to vascular inflammation and necrosis. ANCA interaction with PR3 is more complex than with MPO as the neutrophil-specific CD177 receptor is involved in PR3 surface expression and PR3-ANCA-induced neutrophil activation. Modeling human disease is important to clinical research. Highly successful mouse models of MPO-ANCA vasculitis exist; however, recapitulating PR3-ANCA vasculitis has not been successful. We generated double-transgenic (DT) mice that expressed human PR3 and CD177 under a myeloid-specific huMRP8 promoter in an attempt to model PR3-ANCA vasculitis. DT mice strongly expressed the human transgenes in and on murine neutrophils and bound murine and human anti-PR3 antibodies. Nevertheless, passive transfer of these antibodies into LPS-primed DT mice or immunization of C57BL/6 mice with human PR3 followed by irradiation and transplantation of DT bone marrow failed to induce glomerulonephritis. Further analyses revealed that anti-PR3 antibodies did not activate DT neutrophils as shown by superoxide generation. Moreover, we found that mice did not properly process human pro-PR3 into mature PR3 and, consequently, the signaling complex between PR3, CD177, and CD11b, which promotes neutrophil activation by anti-PR3 antibodies, failed to form. We conclude that important species differences in PR3 and CD177 exist between men and mice that prevented successful generation of a murine anti-PR3 antibody model.
Collapse
Affiliation(s)
- Adrian Schreiber
- Experimental and Clinical Research Center, Charité, Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nephrology and Intensive Care Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, Charité, Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Astrid Bergmann
- Experimental and Clinical Research Center, Charité, Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Uwe Jerke
- Experimental and Clinical Research Center, Charité, Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité, Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; .,Nephrology and Intensive Care Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 2016; 127:2173-81. [DOI: 10.1182/blood-2016-01-688887] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Abstract
Neutrophils are polymorphonuclear leukocytes of the phagocytic system that act as first line of host defense against invading pathogens but are also important mediators of inflammation-induced injury. In contrast to other members of the innate immune system, neutrophils are classically considered a homogenous population of terminally differentiated cells with a well-defined and highly conserved function. Indeed, their short lifespan, the absent proliferative capacity, their limited ability to produce large amounts of cytokines, and the failure to recirculate from the tissue to the bloodstream have sustained this idea. However, increasing evidence over the last decade has demonstrated an unexpected phenotypic heterogeneity and functional versatility of the neutrophil population. Far beyond their antimicrobial functions, neutrophils are emerging as decision-shapers during innate and adaptive immune responses. These emerging discoveries open a new door to understand the role of neutrophils during homeostatic but also pathogenic immune processes. Thus, this review details novel insights of neutrophil phenotypic and functional heterogeneity during homeostasis and disease.
Collapse
|
45
|
Li Y, Mair DC, Schuller RM, Li L, Wu J. Genetic mechanism of human neutrophil antigen 2 deficiency and expression variations. PLoS Genet 2015; 11:e1005255. [PMID: 26024230 PMCID: PMC4449163 DOI: 10.1371/journal.pgen.1005255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Human neutrophil antigen 2 (HNA-2) deficiency is a common phenotype as 3-5% humans do not express HNA-2. HNA-2 is coded by CD177 gene that associates with human myeloproliferative disorders. HNA-2 deficient individuals are prone to produce HNA-2 alloantibodies that cause a number of disorders including transfusion-related acute lung injury and immune neutropenia. In addition, the percentages of HNA-2 positive neutrophils vary significantly among individuals and HNA-2 expression variations play a role in human diseases such as myelodysplastic syndrome, chronic myelogenous leukemia, and gastric cancer. The underlying genetic mechanism of HNA-2 deficiency and expression variations has remained a mystery. In this study, we identified a novel CD177 nonsense single nucleotide polymorphism (SNP 829A>T) that creates a stop codon within the CD177 coding region. We found that all 829TT homozygous individuals were HNA-2 deficient. In addition, the SNP 829A>T genotypes were significantly associated with the percentage of HNA-2 positive neutrophils. Transfection experiments confirmed that HNA-2 expression was absent on cells expressing the CD177 SNP 829T allele. Our data clearly demonstrate that the CD177 SNP 829A>T is the primary genetic determinant for HNA-2 deficiency and expression variations. The mechanistic delineation of HNA-2 genetics will enable the development of genetic tests for diagnosis and prognosis of HNA-2-related human diseases.
Collapse
Affiliation(s)
- Yunfang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David C. Mair
- American Red Cross, North Central Blood Services, National Neutrophil Reference Laboratory, Saint Paul, Minnesota, United States of America
| | - Randy M. Schuller
- American Red Cross, North Central Blood Services, National Neutrophil Reference Laboratory, Saint Paul, Minnesota, United States of America
| | - Ling Li
- Department of Clinical and Experimental Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
46
|
Kimberly RP. The Road Traveled: Genomics and Biomarkers in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol 2015; 67:1700-2. [PMID: 25891203 DOI: 10.1002/art.39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 11/06/2022]
|
47
|
Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177. PLoS One 2014; 9:e99671. [PMID: 24926686 PMCID: PMC4057222 DOI: 10.1371/journal.pone.0099671] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Objective Differential gene expression in CD177+ and CD177− neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). Methods Neutrophils were isolated from healthy controls (HC) with high, negative or bimodal CD177 expression, and sorted into CD177+ and CD177− subpopulations. Total RNA was screened for expression of 24,000 probes with Illumina Ref-8 Beadchips. Genes showing differential expression between CD177+ and CD177− subsets in microarray analysis were re-assessed using quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. Results The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177− neutrophils resulted in 14 genes with fold change (fc) >3 difference in expression. Interestingly, 10 of these genes have been reported to change significantly in expression during neutrophil maturation, and most of these genes were granule protein (GP) coding genes. mRNA expression levels measured by RT-PCR of a number of these GP, and of PR3 and MPO were higher in the CD177− neutrophil subset in HC, however, particular granule protein amounts were comparable between CD177+ and CD177− neutrophil subsets. AAV patients had higher amounts of CD177+ neutrophils, but contrary to neutrophils from HC expression of GP-genes was increased, possibly due to activation. Conclusion The neutrophil population can be distinguished by membrane expression of CD177 into subsets that are different in expression of GP mRNA but not in GP protein production. GP gene expression is also elevated in AAV patients, which is not explained by skewed distribution of CD177+ and CD177− subsets but may be associated with neutrophil activation during on-going inflammation.
Collapse
|
48
|
|
49
|
Kallenberg CG, Stegeman CA, Abdulahad WH, Heeringa P. Pathogenesis of ANCA-Associated Vasculitis: New Possibilities for Intervention. Am J Kidney Dis 2013; 62:1176-87. [PMID: 23810690 DOI: 10.1053/j.ajkd.2013.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/14/2013] [Indexed: 01/19/2023]
|
50
|
Meyerson HJ, Osei E, Schweitzer K, Blidaru G, Edinger A, Balog A. CD177 expression on neutrophils: in search of a clonal assay for myeloid neoplasia by flow cytometry. Am J Clin Pathol 2013; 140:658-69. [PMID: 24124144 DOI: 10.1309/ajcpdfbebqzw1oi7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES To determine whether the fraction of CD177+ neutrophils might be altered in clonal myeloid disorders, similar to the skewed κ/λ ratio for B-cell lymphomas, and could be used to identify myeloid neoplasms. METHODS Blood and bone marrow samples were evaluated for the fraction of CD177+ neutrophils by flow cytometry. RESULTS Skewed high neutrophil CD177(%) was not associated with neoplasia, but skewed low neutrophil CD177(%) was highly correlated with clonal myeloid disorders at values less than 40%. Specificity of low neutrophil CD177(%) for clonal myeloid disorders was 87% with a 40% cutoff and 95% with a 30% cutoff. Findings were most pronounced for myelodysplasia, with 52% (11/21) containing fewer than 40% CD177+ neutrophils. Specificity was also suggested by normalization of neutrophil CD177(%) in four patients who reached morphologic remission after therapy for myelodysplasia or acute leukemia. CONCLUSIONS Skewed low neutrophil CD177(%) is highly associated with clonal myeloid disorders, particularly myelodysplasia, and may be useful for detecting clonal myeloid disorders.
Collapse
Affiliation(s)
- Howard J. Meyerson
- Department of Pathology, University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University, Cleveland, OH
| | - Ebeneezer Osei
- Department of Pathology, University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University, Cleveland, OH
| | - Karen Schweitzer
- Department of Pathology, University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University, Cleveland, OH
| | - Georgetta Blidaru
- Department of Pathology, University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University, Cleveland, OH
| | - Alison Edinger
- Department of Pathology, University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University, Cleveland, OH
| | - Anna Balog
- Department of Pathology, University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University, Cleveland, OH
| |
Collapse
|