1
|
Makris G, Veit L, Rüfenacht V, Klassa S, Zürcher N, Matsumoto S, Poms M, Häberle J. Expression and function of the urea cycle in widely-used hepatic cellular models. J Inherit Metab Dis 2024; 47:1228-1238. [PMID: 38192032 DOI: 10.1002/jimd.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The group of rare metabolic defects termed urea cycle disorders (UCDs) occur within the ammonia elimination pathway and lead to significant neurocognitive sequelae for patients surviving decompensation episodes. Besides orthotopic liver transplantation, curative options are lacking for UCDs, with dietary management being the gold clinical standard. Novel therapeutic approaches are essential for UCDs; however, such effort presupposes preclinical testing in cellular models that effectively capture disease manifestation. Several cellular and animal models exist and aim to recapitulate the broad phenotypic spectrum of UCDs; however, the majority of those lack extensive molecular and biochemical characterization. The development of cellular models is emerging since animal models are extremely time and cost consuming, and subject to ethical considerations, including the 3R principle that endorses animal welfare over unchecked preclinical testing. The aim of this study was to compare the extent of expression and functionality of the urea cycle in two commercial hepatoma-derived cell lines, induced pluripotent stem cell hepatocytes (iPSC-Heps), primary human hepatocytes (PHHs) and human liver cell preparations. Using immunoblotting, immunocytochemistry, and stable isotope tracing of the urea cycle metabolites, we identified that the hepatoma-derived, 2-week differentiated HepaRG cells are urea cycle proficient and behave as cellular alternatives to PHHs. Furthermore, HepaRG cells were superior to iPSC-Heps, which are known to exhibit batch-to-batch variabilities in terms of hepatic maturity and enzyme expression. Finally, HepG2 cells lack the urea cycle enzymes ornithine transcarbamylase and arginase 1, the transporter ORNT1, which limits their suitability as model for the study of UCDs.
Collapse
Affiliation(s)
- Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lara Veit
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sven Klassa
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nadia Zürcher
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Martin Poms
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Mitaka T, Ichinohe N, Tanimizu N. "Small Hepatocytes" in the Liver. Cells 2023; 12:2718. [PMID: 38067145 PMCID: PMC10705974 DOI: 10.3390/cells12232718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Mature hepatocytes (MHs) in an adult rodent liver are categorized into the following three subpopulations based on their proliferative capability: type I cells (MH-I), which are committed progenitor cells that possess a high growth capability and basal hepatocytic functions; type II cells (MH-II), which possess a limited proliferative capability; and type III cells (MH-III), which lose the ability to divide (replicative senescence) and reach the final differentiated state. These subpopulations may explain the liver's development and growth after birth. Generally, small-sized hepatocytes emerge in mammal livers. The cells are characterized by being morphologically identical to hepatocytes except for their size, which is substantially smaller than that of ordinary MHs. We initially discovered small hepatocytes (SHs) in the primary culture of rat hepatocytes. We believe that SHs are derived from MH-I and play a role as hepatocytic progenitors to supply MHs. The population of MH-I (SHs) is distributed in the whole lobules, a part of which possesses a self-renewal capability, and decreases with age. Conversely, injured livers of experimental models and clinical cases showed the emergence of SHs. Studies demonstrate the involvement of SHs in liver regeneration. SHs that appeared in the injured livers are not a pure population but a mixture of two distinct origins, MH-derived and hepatic-stem-cell-derived cells. The predominant cell-derived SHs depend on the proliferative capability of the remaining MHs after the injury. This review will focus on the SHs that appeared in the liver and discuss the significance of SHs in liver regeneration.
Collapse
Affiliation(s)
- Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.I.); (N.T.)
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.I.); (N.T.)
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.I.); (N.T.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
3
|
Iakovleva V, Wuestefeld A, Ong ABL, Gao R, Kaya NA, Lee MY, Zhai W, Tam WL, Dan YY, Wuestefeld T. Mfap4: a promising target for enhanced liver regeneration and chronic liver disease treatment. NPJ Regen Med 2023; 8:63. [PMID: 37935709 PMCID: PMC10630300 DOI: 10.1038/s41536-023-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
The liver has a remarkable regenerative capacity. Nevertheless, under chronic liver-damaging conditions, this capacity becomes exhausted, allowing the accumulation of fibrotic tissue and leading to end-stage liver disease. Enhancing the endogenous regenerative capacity by targeting regeneration breaks is an innovative therapeutic approach. We set up an in vivo functional genetic screen to identify such regeneration breaks. As the top hit, we identified Microfibril associated protein 4 (Mfap4). Knockdown of Mfap4 in hepatocytes enhances cell proliferation, accelerates liver regeneration, and attenuates chronic liver disease by reducing liver fibrosis. Targeting Mfap4 modulates several liver regeneration-related pathways including mTOR. Our research opens the way to siRNA-based therapeutics to enhance hepatocyte-based liver regeneration.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Anna Wuestefeld
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Agnes Bee Leng Ong
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Rong Gao
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Neslihan Arife Kaya
- Laboratory of Translational Cancer Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - May Yin Lee
- Laboratory of Translational Cancer Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wai Leong Tam
- Laboratory of Translational Cancer Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Republic of Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, 119074, Republic of Singapore
| | - Torsten Wuestefeld
- Laboratory of In Vivo Genetics and Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.
- School of Biological Science, Nanyang University of Singapore, Singapore, 637551, Republic of Singapore.
- National Cancer Centre, Singapore, 169610, Republic of Singapore.
| |
Collapse
|
4
|
Ichinohe N, Tanimizu N, Ishigami K, Yoshioka Y, Fujitani N, Ochiya T, Takahashi M, Mitaka T. CINC-2 and miR-199a-5p in EVs secreted by transplanted Thy1 + cells activate hepatocytic progenitor cell growth in rat liver regeneration. Stem Cell Res Ther 2023; 14:134. [PMID: 37194082 DOI: 10.1186/s13287-023-03346-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Small hepatocyte-like progenitor cells (SHPCs) are hepatocytic progenitor cells that transiently form clusters in rat livers treated with retrorsine (Ret) that underwent 70% partial hepatectomy (PH). We previously reported that transplantation of Thy1+ cells obtained from D-galactosamine-treated livers promotes SHPC expansion, thereby accelerating liver regeneration. Extracellular vesicles (EVs) secreted by Thy1+ cells induce sinusoidal endothelial cells (SECs) and Kupffer cells (KCs) to secrete IL17B and IL25, respectively, thereby activating SHPCs through IL17 receptor B (RB) signaling. This study aimed to identify the inducers of IL17RB signaling and growth factors for SHPC proliferation in EVs secreted by Thy1+ cells (Thy1-EVs). METHODS Thy1+ cells isolated from the livers of rats treated with D-galactosamine were cultured. Although some liver stem/progenitor cells (LSPCs) proliferated to form colonies, others remained as mesenchymal cells (MCs). Thy1-MCs or Thy1-LSPCs were transplanted into Ret/PH-treated livers to examine their effects on SHPCs. EVs were isolated from the conditioned medium (CM) of Thy1-MCs and Thy1-LSPCs. Small hepatocytes (SHs) isolated from adult rat livers were used to identify factors regulating cell growth in Thy1-EVs. RESULTS The size of SHPC clusters transplanted with Thy1-MCs was significantly larger than that of SHPC clusters transplanted with Thy1-LSPCs (p = 0.02). A comprehensive analysis of Thy1-MC-EVs revealed that miR-199a-5p, cytokine-induced neutrophil chemoattractant-2 (CINC-2), and monocyte chemotactic protein 1 (MCP-1) were candidates for promoting SHPC growth. Additionally, miR-199a-5p mimics promoted the growth of SHs (p = 0.02), whereas CINC-2 and MCP-1 did not. SECs treated with CINC-2 induced Il17b expression. KCs treated with Thy1-EVs induced the expression of CINC-2, Il25, and miR-199a-5p. CM derived from SECs treated with CINC-2 accelerated the growth of SHs (p = 0.03). Similarly, CM derived from KCs treated with Thy1-EVs and miR-199a-5p mimics accelerated the growth of SHs (p = 0.007). In addition, although miR-199a-overexpressing EVs could not enhance SHPC proliferation, transplantation of miR-199a-overexpressing Thy1-MCs could promote the expansion of SHPC clusters. CONCLUSION Thy1-MC transplantation may accelerate liver regeneration owing to SHPC expansion, which is induced by CINC-2/IL17RB signaling and miR-199a-5p via SEC and KC activation.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-8556, Japan.
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-8556, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Keisuke Ishigami
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Naoki Fujitani
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
5
|
Ichinohe N, Tanimizu N, Mitaka T. Isolation of Small Hepatocyte-Like Progenitor Cells from Retrorsine/Partial Hepatectomy Rat Livers by Laser Microdissection. Methods Mol Biol 2022; 2544:183-193. [PMID: 36125719 DOI: 10.1007/978-1-0716-2557-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Small hepatocyte-like progenitor cells (SHPCs) are known as liver stem/progenitor cells (LSPCs). SHPCs transiently appear and form clusters in rat livers treated with retrorsine (Ret) and a 70% partial hepatectomy (PH). The Ret/PH model has been used widely to analyze the effectiveness of cell transplantation and the mechanisms of LSPC proliferation. Laser microdissection (LMD) is a powerful tool that can excise and collect specific areas of cells from a tissue slice with a laser under a microscope. These cells exhibiting morphological alterations different from the surrounding cells may be analyzed by gene expression profiling. Specific markers of SHPCs have not yet been identified, in part, because it is difficult to isolate SHPCs from the liver using fluorescence or magnetic-activated cell sorting. To examine the underlying mechanism for SHPC growth, we established comprehensive gene expression profiles for SHPCs captured from liver sections using LMD. In this chapter, we introduce a method to isolate SHPCs from liver tissue sections using LMD for gene expression analysis.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, Suzuki H, Mitaka T. Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther 2021; 12:312. [PMID: 34051870 PMCID: PMC8164814 DOI: 10.1186/s13287-021-02387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Small hepatocyte-like progenitor cells (SHPCs) appear to form transient clusters in rat livers treated with retrorsine (Ret) and 70% partial hepatectomy (PH). We previously reported that the expansion of SHPCs was amplified in Ret/PH-treated rat livers transplanted with Thy1+ cells derived from D-galactosamine-treated injured livers. Extracellular vesicles (EVs) produced by hepatic Thy1+ donor cells activated SHPCs via interleukin (IL)-17 receptor B signaling. As bone marrow-derived mesenchymal cells (BM-MCs) also express Thy1, we aimed to determine whether BM-MCs could also promote the growth of SHPCs. METHODS BM-MCs were isolated from dipeptidyl-peptidase IV (DPPIV)-positive rats. BM-MCs or BM-MC-derived EVs were administered to DPPIV-negative Ret/PH rat livers, and the growth and the characteristics of SHPC clusters were evaluated 14 days post-treatment. miRNA microarrays and cytokine arrays examined soluble factors within EVs. Small hepatocytes (SHs) isolated from an adult rat liver were used to identify factors enhancing hepatocytic progenitor cells growth. RESULTS The recipient's livers were enlarged at 2 weeks post-BM-MC transplantation. The number and the size of SHPCs increased remarkably in livers transplanted with BM-MCs. BM-MC-derived EVs also stimulated SHPC growth. Comprehensive analyses revealed that BM-MC-derived EVs contained miR-146a-5p, interleukin-6, and stem cell factor, which could enhance SHs' proliferation. Administration of EVs derived from the miR-146a-5p-transfected BM-MCs to Ret/PH rat livers remarkably enhanced the expansion of SHPCs. CONCLUSIONS miR-146a-5p involved in EVs produced by BM-MCs may play a major role in accelerating liver regeneration by activating the intrinsic hepatocytic progenitor cells.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Masayuki Ishii
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Science, Sapporo, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
7
|
Zivko C, Fuhrmann G, Luciani P. Liver-derived extracellular vesicles: A cell by cell overview to isolation and characterization practices. Biochim Biophys Acta Gen Subj 2021; 1865:129559. [DOI: 10.1016/j.bbagen.2020.129559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
|
8
|
Wang W, Shui L, Liu Y, Zheng M. C-Kit, a Double-Edged Sword in Liver Regeneration and Diseases. Front Genet 2021; 12:598855. [PMID: 33603771 PMCID: PMC7884772 DOI: 10.3389/fgene.2021.598855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have reported an important role of c-kit in embryogenesis and adulthood. Activation of the SCF/KIT signal transduction pathway is customarily linked to cell proliferation, migration and survival thus influence hematopoiesis, pigmentation, and spermatogenesis. The role of c-kit in the liver is controversial, it is however argued that it is a double-edged sword in liver regeneration and diseases. First, liver c-kit+ cells, including oval cells, bile epithelial cells, and part of hepatocytes, participate in liver tissue repair by regenerating target cells according to the type of liver injury. At the same time, c-kit+ mast cells, act as immature progenitors in circulation, playing a critical role in liver fibrosis. Furthermore, c-kit is also a proto-oncogene. Notably, c-kit overexpression regulates gastrointestinal stromal tumors. Various studies have explored on c-kit and hepatocellular carcinoma, nevertheless, the intricate roles of c-kit in the liver are largely understudied. Herein, we extensively summarize previous studies geared toward providing hints for future clinical and basic research.
Collapse
Affiliation(s)
- Weina Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Sharma M, Kulkarni A, Sasikala M, Kumar P, Jaggaiahgari S, Pondugala K, Jaishetwar G, Darisetty S, Jagtap N, Gupta R, Singh JR, Fatima S, Rao PN, Rao GV, Reddy DN. Long-term Outcome of Autologous Hematopoietic Stem Cell Infusion in Cirrhosis: Waning Effect over Time. J Clin Transl Hepatol 2020; 8:385-390. [PMID: 33447521 PMCID: PMC7782109 DOI: 10.14218/jcth.2020.00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Aims: Long-term data on cell-based therapies, including hematopoietic stem cell infusion in cirrhosis, are sparse and lacking. Methods: Patients with cirrhosis of non-viral etiology received either standard-of-care (n = 23) or autologous CD34+ cell infusion through the hepatic artery (n = 22). Study patients received granulocyte colony-stimulating factor (commonly known as G-CSF) injections at 520 µgm per day for 3 days, followed by leukapheresis and CD34+ cell infusion into the hepatic artery. The Control group received standard-of-care treatment. Results: Mean CD34+ cell count on the third day of G-CSF injection was 27.00 ± 20.43 cells/µL 81.84 ± 11.99 viability and purity of 80-90%. Significant improvement in the model of end-stage liver disease (commonly known as MELD) score (15.75 ± 5.13 vs. 19.94 ± 6.68, p = 0.04) was noted at end of 3 months and 1 year (15.5 ± 5.3 vs. 19.8 ± 6.4, p = 0.04) but was not statistically different at end of the second (17.2 ± 5.5 vs. 20.3 ± 6.8, p = 0.17) and third-year (18.4 ± 6.1 vs. 21.3 ± 6.4, p = 0.25). No difference in mortality (6/23 vs. 5/23) was noted. Conclusions: Autologous CD34+ cell infusion effectively improved liver function and MELD score up to 1 year but the sustained benefit was not maintained at the end of 3 years, possibly due to ongoing progression of the underlying disease.
Collapse
Affiliation(s)
- Mithun Sharma
- Asian Institute of Gastroenterology, Hyderabad, India
- Correspondence to: Dr. Mithun Sharma, Hepatology, and Liver Transplantation, Asian Institute of Gastroenterology, Hyderabad, India. Tel: +91-4042342234, Fax: +91-4042342334, E-mail:
| | | | | | - Pramod Kumar
- Asian Institute of Gastroenterology, Hyderabad, India
| | | | | | | | | | - Nitin Jagtap
- Asian Institute of Gastroenterology, Hyderabad, India
| | - Rajesh Gupta
- Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Syeda Fatima
- Asian Institute of Gastroenterology, Hyderabad, India
| | | | | | | |
Collapse
|
10
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
11
|
Tsuchiya A, Lu WY. Liver stem cells: Plasticity of the liver epithelium. World J Gastroenterol 2019; 25:1037-1049. [PMID: 30862993 PMCID: PMC6406190 DOI: 10.3748/wjg.v25.i9.1037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver has a high regenerative capacity after acute liver injury, but this is often impaired during chronic liver injury. The existence of a dedicated liver stem cell population that acts as a source of regeneration during chronic liver injury has been controversial. Recent advances in transgenic models and cellular reprogramming have provided new insights into the plasticity of the liver epithelium and directions for the development of future therapies. This article will highlight recent findings about the cellular source of regeneration during liver injury and the advances in promoting liver regeneration.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Wei-Yu Lu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, the University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
12
|
Wang K, Sun D. Cancer stem cells of hepatocellular carcinoma. Oncotarget 2018; 9:23306-23314. [PMID: 29796190 PMCID: PMC5955417 DOI: 10.18632/oncotarget.24623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma is a malignant tumor arising from hepatocytes. The hepatocellular carcinoma is dictated by a subset of cells with stem cell-like features. These cells are apoptosis-resistant and have particular biomarkers, which serve as seeds in different stages of tumorigenesis including initiation, progression, metastasis, and relapse of hepatocellular carcinoma. Signaling pathways of cancer stem cells are novel targets for the radical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kewei Wang
- Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, China.,Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin, China.,Key Laboratory of Etiology and Epidemiology (23618504), National Health and Family Planning Commission of the People's Republic of China, Harbin, China.,Harbin Medical University, Harbin, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin, China.,Key Laboratory of Etiology and Epidemiology (23618504), National Health and Family Planning Commission of the People's Republic of China, Harbin, China.,Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Zhang RR, Zheng YW, Li B, Nie YZ, Ueno Y, Tsuchida T, Taniguchi H. Hepatic stem cells with self-renewal and liver repopulation potential are harbored in CDCP1-positive subpopulations of human fetal liver cells. Stem Cell Res Ther 2018; 9:29. [PMID: 29402311 PMCID: PMC5800061 DOI: 10.1186/s13287-017-0747-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro. Hepatic stem cells (HpSCs) may be an alternative source of functional hepatocytes for cell therapy and disease modeling. Since these cells play an import role in regenerative medicine, the precise characterization that determines specific markers used to isolate these cells as well as whether they contribute to liver regeneration still remain to be shown. METHOD In this study, human HpSCs were isolated from human primary fetal liver cells (FLCs) by flow cytometry using CDCP1, CD90, and CD66 antibodies. The isolated CDCP1+CD90+CD66- HpSCs were cultured on dishes coated with type IV collagen in DMEM nutrient mixture F-12 Ham supplemented with FBS, human γ-insulin, nicotinamide, dexamethasone, and L-glutamine for at least 2 weeks, and were characterized by transcriptomic profiling, quantitative real-time PCR, immunocytochemistry, and in-vivo transplantation. RESULTS The purified CDCP1+CD90+CD66- subpopulation exhibited clonal expansion and self-renewal capability, and bipotential capacity was further identified in single cell-derived colonies containing distinct hepatocytes and cholangiocytes. Moreover, in-vivo liver repopulation assays demonstrated that human CDCP1+CD90+CD66- HpSCs repopulated over 90% of the mouse liver and differentiated into functional hepatocytes with drug metabolism activity. CONCLUSIONS We identified a human hepatic stem/progenitor population in the CDCP1+CD90+CD66- subpopulation in human FLCs, indicating CDCP1 marker could potentially be utilized to identify and isolate HpSCs for further cytotherapy of liver disease.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Department of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575 Japan
- Research Center of Stem Cells and Regenerative Medicine, Jiangsu University Hospital, Zhenjiang, Jiangsu 212001 China
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239 USA
| | - Yun-Zhong Nie
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| |
Collapse
|
14
|
Jeng KS, Jeng CJ, Jeng WJ, Sheen IS, Li SY, Lu SJ, Chang CF. Tropism of liver epithelial cells toward hepatocellular carcinoma in vitro and in vivo with altering gene expression of cancer stem cells. Am J Surg 2017; 215:735-743. [PMID: 29246405 DOI: 10.1016/j.amjsurg.2017.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/02/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rat liver epithelial (RLE) cells could inhibit the proliferation and invasiveness of hepatoma cells in vitro. This study is to understand the tropism and the effect of RLE cells on mouse hepatoma cells both in vitro and in vivo. METHODS RLE cells were isolated from new-born rats and characterized their stem cell markers. Co-culture and HCC mouse model was established to detect therapeutic effect of RLE cells. RESULTS RLE cells (including Thy-1+ RLE cells, Thy-1- RLE cells, RLE cells) displayed a selective tropism toward ML-1 hepatoma cells both in vitro and in vivo. They altered the gene expression of some cancer stem cell markers in the liver tumor. CONCLUSION Liver epithelial cells have a selective tropism toward HCC in vitro and in vivo. They could alter the gene expression of cancer stem cells.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Chi-Juei Jeng
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Juei Jeng
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taiwan
| | - I-Shyan Sheen
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taiwan
| | - Shih-Yun Li
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ssu-Jung Lu
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
15
|
Asano Y, Shimoda H, Matsusaki M, Akashi M. Transplantation of artificial human lymphatic vascular tissues fabricated using a cell‐accumulation technique and their engraftment in mouse tissue with vascular remodelling. J Tissue Eng Regen Med 2017; 12:e1501-e1510. [DOI: 10.1002/term.2570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 07/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
- Department of Anatomical ScienceHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of EngineeringOsaka University Osaka Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier BiosciencesOsaka University Osaka Japan
| |
Collapse
|
16
|
Bria A, Marda J, Zhou J, Sun X, Cao Q, Petersen BE, Pi L. Hepatic progenitor cell activation in liver repair. LIVER RESEARCH (BEIJING, CHINA) 2017; 1:81-87. [PMID: 29276644 PMCID: PMC5739327 DOI: 10.1016/j.livres.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver possesses an extraordinary ability to regenerate after injury. Hepatocyte-driven liver regeneration is the default pathway in response to mild-to-moderate acute liver damage. When replication of mature hepatocytes is blocked, facultative hepatic progenitor cells (HPCs), also referred to as oval cells (OCs) in rodents, are activated. HPC/OCs have the ability to proliferate clonogenically and differentiate into several lineages including hepatocytes and bile ductal epithelia. This is a conserved liver injury response that has been studied in many species ranging from mammals (rat, mouse, and human) to fish. In addition, improper HPC/OC activation is closely associated with fibrotic responses, characterized by myofibroblast activation and extracellular matrix production, in many chronic liver diseases. Matrix remodeling and metalloprotease activities play an important role in the regulation of HPC/OC proliferation and fibrosis progression. Thus, understanding molecular mechanisms underlying HPC/OC activation has therapeutic implications for rational design of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Adam Bria
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jorgessen Marda
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Junmei Zhou
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Xiaowei Sun
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Qi Cao
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Bryon E. Petersen
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Liya Pi
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int 2017; 37:1260-1271. [PMID: 28135758 PMCID: PMC5534384 DOI: 10.1111/liv.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
The liver is a unique organ for homoeostasis with regenerative capacities. Hepatocytes possess a remarkable capacity to proliferate upon injury; however, in more severe scenarios liver regeneration is believed to arise from at least one, if not several facultative hepatic progenitor cell compartments. Newly identified pericentral stem/progenitor cells residing around the central vein is responsible for maintaining hepatocyte homoeostasis in the uninjured liver. In addition, hepatic progenitor cells have been reported to contribute to liver fibrosis and cancers. What drives liver homoeostasis, regeneration and diseases is determined by the physiological and pathological conditions, and especially the hepatic progenitor cell niches which influence the fate of hepatic progenitor cells. The hepatic progenitor cell niches are special microenvironments consisting of different cell types, releasing growth factors and cytokines and receiving signals, as well as the extracellular matrix (ECM) scaffold. The hepatic progenitor cell niches maintain and regulate stem cells to ensure organ homoeostasis and regeneration. In recent studies, more evidence has been shown that hepatic cells such as hepatocytes, cholangiocytes or myofibroblasts can be induced to be oval cell-like state through transitions under some circumstance, those transitional cell types as potential liver-resident progenitor cells play important roles in liver pathophysiology. In this review, we describe and update recent advances in the diversity and plasticity of hepatic progenitor cell and their niches and discuss evidence supporting their roles in liver homoeostasis, regeneration, fibrosis and cancers.
Collapse
Affiliation(s)
- Jiamei Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Long Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Neil D. Theise
- Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York, USA
| | - Ann Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ping Liu
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
18
|
Dubový P, Klusáková I, Kučera L, Osičková J, Chovancová J, Loja T, Mayer J, Doubek M, Joukal M. Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition. Auton Neurosci 2017; 206:19-27. [PMID: 28688831 DOI: 10.1016/j.autneu.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023]
Abstract
Existing experimental studies of the effect of sympathetic nerve fibers on bone marrow cells are based on the systemic administration of neurotoxic 6-hydroxydopamine. The method of global chemical sympathectomy has some serious disadvantages and could lead to questionable results. We describe a new method of local chemical sympathectomy of rat femoral bone marrow using guanethidine (Ismelin) delivery using an osmotic mini pump. Local guanethidine treatment for 14days led to complete elimination of sympathetic fibers in femoral bone marrow in contrast to bone marrow of contralateral or naïve femurs. Ablation of sympathetic fibers was associated with a loss of rat endothelial cell marker (RECA) indicating immunophenotype changes in blood vessel endothelial cells, but no significant effect of guanethidine was found on the survival of endothelial cells and mesenchymal stem cells in vitro. Moreover, local guanethidine treatment also elicited a significant reduction of Nestin+/SDF1+ mesenchymal stem cells and c-Kit+/CD90+ hematopoietic stem cells in femoral bone marrow. Tissue-specific chemical sympathectomy of rat bone marrow by guanethidine overcomes some of the drawbacks of systemic administration of neurotoxic compounds like 6-hydroxydopamine and delivers unequivocal evidence on the effects of sympathetic innervation on the cell content of bone marrow.
Collapse
Affiliation(s)
- P Dubový
- Department of Anatomy, Faculty of Medicine, Masaryk University, Czech Republic.
| | - I Klusáková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Czech Republic
| | - L Kučera
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Czech Republic
| | - J Osičková
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - J Chovancová
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - T Loja
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - J Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - M Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - M Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Czech Republic
| |
Collapse
|
19
|
Ichinohe N, Ishii M, Tanimizu N, Kon J, Yoshioka Y, Ochiya T, Mizuguchi T, Hirata K, Mitaka T. Transplantation of Thy1 + Cells Accelerates Liver Regeneration by Enhancing the Growth of Small Hepatocyte-Like Progenitor Cells via IL17RB Signaling. Stem Cells 2017; 35:920-931. [PMID: 27925343 DOI: 10.1002/stem.2548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 10/31/2016] [Accepted: 11/13/2016] [Indexed: 01/08/2023]
Abstract
Small hepatocyte-like progenitor cells (SHPCs) transiently form clusters in rat livers treated with retrorsine (Ret)/70% partial hepatectomy (PH). When Thy1+ cells isolated from d-galactosamine-treated rat livers were transplanted into the livers of Ret/PH-treated rats, the mass of the recipient liver transiently increased during the first 30 days after transplantation, suggesting that liver regeneration was enhanced. Here we addressed how Thy1+ cell transplantation stimulates liver regeneration. We found that the number and size of SHPC clusters increased in the liver at 14 days after transplantation. GeneChip analysis revealed that interleukin 17 receptor b (IL17rb) expression significantly increased in SHPCs from livers transplanted with Thy1+ cells. We subsequently searched for ligand-expressing cells and found that sinusoidal endothelial cells (SECs) and Kupffer cells expressed Il17b and Il25, respectively. Moreover, extracellular vesicles (EVs) separated from the conditioned medium of Thy1+ cell culture induced IL17b and IL25 expression in SECs and Kupffer cells, respectively. Furthermore, EVs enhanced IL17rb expression in small hepatocytes (SHs), which are hepatocytic progenitor cells; in culture, IL17B stimulated the growth of SHs. These results suggest that Thy1-EVs coordinate IL17RB signaling to enhance liver regeneration by targeting SECs, Kupffer cells, and SHPCs. Indeed, the administration of Thy1-EVs increased the number and size of SHPC clusters in Ret/PH-treated rat livers. Sixty days post-transplantation, most expanded SHPCs entered cellular senescence, and the enlarged liver returned to its normal size. In conclusion, Thy1+ cell transplantation enhanced liver regeneration by promoting the proliferation of intrinsic hepatic progenitor cells via IL17RB signaling. Stem Cells 2017;35:920-931.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo, Japan
| | - Masayuki Ishii
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo, Japan
| | - Junko Kon
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koichi Hirata
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Katsumata LW, Miyajima A, Itoh T. Portal fibroblasts marked by the surface antigen Thy1 contribute to fibrosis in mouse models of cholestatic liver injury. Hepatol Commun 2017; 1:198-214. [PMID: 29404454 PMCID: PMC5721447 DOI: 10.1002/hep4.1023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis, a condition that is characterized by excessive production and accumulation of extracellular matrix, including collagen, is the most common outcome of chronic liver injuries of different etiologies. Vitamin A‐storing hepatic stellate cells (HSCs) are considered to be the main source of this collagen production, with activation in response to liver injury. In contrast, the contribution of other cell types to this fibrogenic response remains largely elusive due to the lack of specific surface markers to identify and isolate these cells for detailed analysis. Here, we identify a mesenchymal population of thymus cell antigen 1 (Thy1)+ CD45− cells (Thy1 MCs) in the mouse liver; these cells reside near the portal vein in vivo and indicate profibrogenic characteristics in vitro, shown by their expression of collagen and α‐smooth muscle actin. Flow cytometric analysis of mouse liver nonparenchymal cells revealed that vitamin A storage and Thy1 expression were mutually exclusive, indicating that Thy1 MCs are distinct from HSCs. Importantly, Thy1 MCs reacted and contributed to the development of liver fibrosis specifically in mouse models of cholestatic liver injury. With the occurrence of cholestatic liver injury, collagen‐producing Thy1 MCs expanded in cell number and inhibited collagen degradation through up‐regulation of matrix metalloproteinase inhibitor Timp1 expression, thereby promoting the accumulation of extracellular matrix in the periportal area. Conclusion: This study establishes Thy1 as a useful cell surface marker to prospectively identify and isolate periportal fibroblasts and further highlights a significant contribution of these cells to the pathogenesis of liver fibrosis caused by cholestatic liver injuries. We suggest that Thy1 MCs may be an interesting therapeutic target for treating liver fibrosis in addition to the well‐characterized HSCs. (Hepatology Communications 2017;1:198‐214)
Collapse
Affiliation(s)
- Len William Katsumata
- Laboratory of Cell Growth and Differentiation Institute of Molecular and Cellular Biosciences, University of Tokyo Tokyo Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation Institute of Molecular and Cellular Biosciences, University of Tokyo Tokyo Japan
| | - Tohru Itoh
- Laboratory of Cell Growth and Differentiation Institute of Molecular and Cellular Biosciences, University of Tokyo Tokyo Japan
| |
Collapse
|
21
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|
22
|
Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 2016; 18:238-45. [PMID: 26911907 DOI: 10.1038/ncb3309] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell replacement in adult organs can be achieved through stem cell differentiation or the replication or transdifferentiation of existing cells. In the adult liver and pancreas, stem cells have been proposed to replace tissue cells, particularly following injury. Here we review how specialized cell types are produced in the adult liver and pancreas. Based on current evidence, we propose that the plasticity of differentiated cells, rather than stem cells, accounts for tissue repair in both organs.
Collapse
Affiliation(s)
- Janel L Kopp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093-0695, USA
| |
Collapse
|
23
|
Gjymishka A, Pi L, Oh SH, Jorgensen M, Liu C, Protopapadakis Y, Patel A, Petersen BE. miR-133b Regulation of Connective Tissue Growth Factor: A Novel Mechanism in Liver Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1092-1102. [PMID: 26945106 PMCID: PMC4861761 DOI: 10.1016/j.ajpath.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/30/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
Abstract
miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response.
Collapse
Affiliation(s)
- Altin Gjymishka
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Seh-Hoon Oh
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Marda Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | | | - Ashnee Patel
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Bryon E Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida.
| |
Collapse
|
24
|
Zhang H, Siegel CT, Shuai L, Lai J, Zeng L, Zhang Y, Lai X, Bie P, Bai L. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis. Sci Rep 2016; 6:21783. [PMID: 26905303 PMCID: PMC4764864 DOI: 10.1038/srep21783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2(+) cells) that were isolated from healthy adult mouse liver by using a "Percoll-Plate-Wait" procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 10(6) cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2(+) cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2(+) cells may be novel adult liver progenitors that participate in liver regeneration.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Christopher T. Siegel
- Department of Surgery, Division of Hepatobiliary and Abdominal Organ Transplantation, Case Western Reserve University Hospital, Cleveland OH 44106, USA
| | - Ling Shuai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Linli Zeng
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Xiangdong Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| |
Collapse
|
25
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Maria Monteiro de Araújo C, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Zaidan Dagli ML, Jaeschke H, Cogliati B, Vinken M. Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1111-21. [PMID: 26912412 DOI: 10.1016/j.bbadis.2016.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Being goalkeepers of liver homeostasis, gap junctions are also involved in hepatotoxicity. However, their role in this process is ambiguous, as gap junctions can act as both targets and effectors of liver toxicity. This particularly holds true for drug-induced liver insults. In the present study, the involvement of connexin26, connexin32 and connexin43, the building blocks of liver gap junctions, was investigated in acetaminophen-induced hepatotoxicity. METHODS C57BL/6 mice were overdosed with 300mg/kg body weight acetaminophen followed by analysis of the expression and localization of connexins as well as monitoring of hepatic gap junction functionality. Furthermore, acetaminophen-induced liver injury was compared between mice genetically deficient in connexin43 and wild type littermates. Evaluation of the toxicological response was based on a set of clinically relevant parameters, including protein adduct formation, measurement of alanine aminotransferase activity, cytokines and glutathione. RESULTS It was found that gap junction communication deteriorates upon acetaminophen intoxication in wild type mice, which is associated with a switch in mRNA and protein production from connexin32 and connexin26 to connexin43. The upregulation of connexin43 expression is due, at least in part, to de novo production by hepatocytes. Connexin43-deficient animals tended to show increased liver cell death, inflammation and oxidative stress in comparison with wild type counterparts. CONCLUSION These results suggest that hepatic connexin43-based signaling may protect against acetaminophen-induced liver toxicity.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chloé Abels
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | | | - Taynã Tiburcio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, United States
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
26
|
Köhn-Gaone J, Gogoi-Tiwari J, Ramm GA, Olynyk JK, Tirnitz-Parker JEE. The role of liver progenitor cells during liver regeneration, fibrogenesis, and carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G143-54. [PMID: 26608186 DOI: 10.1152/ajpgi.00215.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/19/2015] [Indexed: 01/31/2023]
Abstract
The growing worldwide challenge of cirrhosis and hepatocellular carcinoma due to increasing prevalence of excessive alcohol consumption, viral hepatitis, obesity, and the metabolic syndrome has sparked interest in stem cell-like liver progenitor cells (LPCs) as potential candidates for cell therapy and tissue engineering, as an alternative approach to whole organ transplantation. However, LPCs always proliferate in chronic liver diseases with a predisposition to cancer; they have been suggested to play major roles in driving fibrosis, disease progression, and may even represent tumor-initiating cells. Hence, a greater understanding of the factors that govern their activation, communication with other hepatic cell types, and bipotential differentiation as opposed to their potential transformation is needed before their therapeutic potential can be harnessed.
Collapse
Affiliation(s)
- Julia Köhn-Gaone
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia
| | - Jully Gogoi-Tiwari
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - John K Olynyk
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia; Fiona Stanley and Fremantle Hospitals, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia; and
| | - Janina E E Tirnitz-Parker
- Curtin Health Innovation Research Institute, Curtin University, Perth Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Fremantle Western Australia, Australia
| |
Collapse
|
27
|
Jeng KS, Jeng CJ, Jeng WJ, Sheen IS, Li SY, Hung ZH, Hsiau HI, Yu MC, Chang CF. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells. Oncol Rep 2015; 35:1622-8. [PMID: 26647726 DOI: 10.3892/or.2015.4478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/31/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, R.O.C
| | - Chi-Juei Jeng
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Wen-Juei Jeng
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, LinKou Medical Center, Chang-Gung University, Taipei, Taiwan, R.O.C
| | - I-Shyan Sheen
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, LinKou Medical Center, Chang-Gung University, Taipei, Taiwan, R.O.C
| | - Shih-Yun Li
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan, R.O.C
| | - Zih-Hang Hung
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, R.O.C
| | - Hsin-I Hsiau
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan, R.O.C
| | - Ming-Che Yu
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan, R.O.C
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, R.O.C
| |
Collapse
|
28
|
Chen X, Xu C. Transcription Profiles of Marker Genes Predict The Transdifferentiation Relationship between Eight Types of Liver Cell during Rat Liver Regeneration. CELL JOURNAL 2015. [PMID: 26199913 PMCID: PMC4503848 DOI: 10.22074/cellj.2016.3756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the transdifferentiation relationship between eight types of liver cell during rat liver regeneration (LR). MATERIALS AND METHODS 114 healthy Sprague-Dawley (SD) rats were used in this experimental study. Eight types of liver cell were isolated and purified with percoll density gradient centrifugation and immunomagentic bead methods. Marker genes for eight types of cell were obtained by retrieving the relevant references and databases. Expression changes of markers for each cell of the eight cell types were measured using microarray. The relationships between the expression profiles of marker genes and transdifferentiation among liver cells were analyzed using bioinformatics. Liver cell transdifferentiation was predicted by comparing expression profiles of marker genes in different liver cells. RESULTS During LR hepatocytes (HCs) not only express hepatic oval cells (HOC) markers (including PROM1, KRT14 and LY6E), but also express biliary epithelial cell (BEC) markers (including KRT7 and KRT19); BECs express both HOC markers (including GABRP, PCNA and THY1) and HC markers such as CPS1, TAT, KRT8 and KRT18; both HC markers (KRT18, KRT8 and WT1) and BEC markers (KRT7 and KRT19) were detected in HOCs. Additionally, some HC markers were also significantly upregulated in hepatic stellate cells ( HSCs), sinusoidal endothelial cells (SECs) , Kupffer cells (KCs) and dendritic cells (DCs), mainly at 6-72 hours post partial hepatectomy (PH). CONCLUSION Our findings indicate that there is a mutual transdifferentiation relationship between HC, BEC and HOC during LR, and a tendency for HSCs, SECs, KCs and DCs to transdifferentiate into HCs.
Collapse
Affiliation(s)
- Xiaguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Cunshuan Xu
- Key Laboratory for Cell Differentiation Regulation, Henan Normal University, East of Construction Road, Xinxiang, China ; College of Life Science, Henan Normal University, East of Construction Road, Xinxiang, China
| |
Collapse
|
29
|
Gao Q, Jia Y, Yang G, Zhang X, Boddu PC, Petersen B, Narsingam S, Zhu YJ, Thimmapaya B, Kanwar YS, Reddy JK. PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1396-408. [PMID: 25773177 DOI: 10.1016/j.ajpath.2015.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Obesity poses an increased risk of developing metabolic syndrome and closely associated nonalcoholic fatty liver disease, including liver cancer. Satiety hormone leptin-deficient (ob/ob) mice, considered paradigmatic of nutritional obesity, develop hepatic steatosis but are less prone to developing liver tumors. Sustained activation of peroxisome proliferator-activated receptor α (PPARα) in ob/ob mouse liver increases fatty acid oxidation (FAO), which contributes to attenuation of obesity but enhances liver cancer risk. To further evaluate the role of PPARα-regulated hepatic FAO and energy burning in the progression of fatty liver disease, we generated PPARα-deficient ob/ob (PPARα(Δ)ob/ob) mice. These mice become strikingly more obese compared to ob/ob littermates, with increased white and brown adipose tissue content and severe hepatic steatosis. Hepatic steatosis becomes more severe in fasted PPARα(Δ)ob/ob mice as they fail to up-regulate FAO systems. PPARα(Δ)ob/ob mice also do not respond to peroxisome proliferative and mitogenic effects of PPARα agonist Wy-14,643. Although PPARα(Δ)ob/ob mice are severely obese, there was no significant increase in liver tumor incidence, even when maintained on a diet containing Wy-14,643. We conclude that sustained PPARα activation-related increase in FAO in fatty livers of obese ob/ob mice increases liver cancer risk, whereas deletion of PPARα in ob/ob mice aggravates obesity and hepatic steatosis. However, it does not lead to liver tumor development because of reduction in FAO and energy burning.
Collapse
Affiliation(s)
- Qian Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaohong Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Prajwal C Boddu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bryon Petersen
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Saiprasad Narsingam
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yi-Jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
30
|
Ji XK, Xie YK, Zhong JQ, Xu QG, Zeng QQ, Wang Y, Zhang QY, Shan YF. GSK-3β suppresses the proliferation of rat hepatic oval cells through modulating Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 2015; 36:334-42. [PMID: 25661318 DOI: 10.1038/aps.2014.150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/23/2014] [Indexed: 12/29/2022]
Abstract
AIM Glycogen synthase kinase 3β (GSK-3β) plays a crucial role in hepatic biology, including liver development, regeneration, proliferation and carcinogenesis. In this study we investigated the role of GSK-3β in regulation of growth of hepatic oval cells in vitro and in liver regeneration in partially hepatectomized rats. METHODS WB-F344 cells, the rat hepatic stem-like epithelial cells, were used as representative of oval cells. Cell viability was examined using a WST-8 assay. The cells were transfected with a recombinant lentivirus expressing siRNA against GSK-3β (GSK-3βRNAiLV) or a lentivirus that overexpressed GSK-3β (GC-GSK-3βLV). Adult rats underwent partial (70%) hepatectomy, and liver weight and femur length were measured at d 7 after the surgery. The expression of GSK-3β, phospho-Ser9-GSK-3β, β-catenin and cyclin D1 was examined with immunoblotting assays or immunohistochemistry. RESULTS Treatment of WB-F344 cells with the GSK-3β inhibitor SB216763 (5 and 10 μmol/L) dose-dependently increased the levels of phospho-Ser9-GSK-3β, but not the levels of total GSK-3β, and promoted the cell proliferation. Knockout of GSK-3β with GSK-3βRNAiLV increased the cell proliferation, whereas overexpression of GSK-3β with GC-GSK-3βLV decreased the proliferation. Both SB216763 and GSK-3βRNAiLV significantly increased the levels of β-catenin and cyclin D1 in the cells, whereas GSK-3β overexpression decreased their levels. In rats with a partial hepatectomy, administration of SB216763 (2 mg/kg, ip) significantly increased the number of oval cells, the levels of phospho-Ser9-GSK-3β, β-catenin and cyclin D1 in liver, as well as the ratio of liver weight to femur length at d 7 after the surgery. CONCLUSION GSK-3β suppresses the proliferation of hepatic oval cells by modulating the Wnt/β-catenin signaling pathway.
Collapse
|
31
|
The herbal compound "diwu yanggan" modulates liver regeneration by affecting the hepatic stem cell microenvironment in 2-acetylaminofluorene/partial hepatectomy rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:468303. [PMID: 25628749 PMCID: PMC4299675 DOI: 10.1155/2015/468303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 02/01/2023]
Abstract
Ethnopharmacological Relevance. “Diwu Yanggan” (DWYG) has been reported to regulate liver regeneration, modulate the immune response, ameliorate liver injury, kill virus, ameliorate liver fibrosis, and suppress hepatic cancer. However, its mechanisms are still unknown. Objectives. To investigate the effects of DWYG on oval cell proliferation in 2-AAF/PH rats and determine its mechanism. Methods. Wistar rats were randomly distributed into normal group, sham group, vehicle group, and DWYG group. Hepatic pathological changes were examined by H&E staining. The oval cell markers CD34, AFP, CK-19 and hematopoietic cell markers CD45, Thy1.1, and hepatocyte marker ALB were examined with immunohistochemistry. The percentage of CD34/CD45 double-positive cells in bone marrow was detected by flow cytometry. Cytokine levels were measured with the Bio-plex suspension array system. Results. DWYG significantly increased the survival rates of 2-AAF/PH rats and promoted liver regeneration. Furthermore, DWYG increased the ratio of CD34/CD45 double-positive cells on days 10 and 14. In addition, DWYG gradually restored IL-1, GRO/KC, and VEGF levels to those of the normal group. Conclusions. DWYG increases 2-AAF/PH rat survival rates, suppresses hepatic precarcinoma changes, and restores hepatic tissue structure and function. DWYG may act by modulating the hepatic microenvironment to support liver regeneration.
Collapse
|
32
|
Liu D, Yovchev MI, Zhang J, Alfieri AA, Tchaikovskaya T, Laconi E, Dabeva MD. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:110-28. [PMID: 25447047 DOI: 10.1016/j.ajpath.2014.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 01/07/2023]
Abstract
In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1(+) cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1(+) cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1(+) cells. Thy1(+) cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity.
Collapse
Affiliation(s)
- Daqing Liu
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Mladen I Yovchev
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jinghang Zhang
- Flow Cytometry Core Facility, Albert Einstein College of Medicine, Bronx, New York
| | - Alan A Alfieri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Tatyana Tchaikovskaya
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Ezio Laconi
- Section of Experimental Pathology, Department of Sciences and Biomedical Technology, University of Cagliari, Cagliari, Italy
| | - Mariana D Dabeva
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
33
|
Behbahan IS, Keating A, Gale RP. Concise review: bone marrow autotransplants for liver disease? Stem Cells 2014; 31:2313-29. [PMID: 23939914 DOI: 10.1002/stem.1510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
There are increasing reports of using bone marrow-derived stem cells to treat advanced liver disease. We consider several critical issues that underlie this approach. For example, are there multipotent stem cell populations in human adult bone marrow? Can they develop into liver cells or supporting cell types? What are stromal stem/progenitor cells, and can they promote tissue repair without replacing hepatocytes? Does reversal of end-stage liver disease require new hepatocytes, a new liver microenvironment, both, neither or something else? Although many of these questions are unanswered, we consider the conceptual and experimental bases underlying these issues and critically analyze results of clinical trials of stem cell therapy of end-stage liver disease.
Collapse
Affiliation(s)
- Iman Saramipoor Behbahan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
34
|
Annexin A3-Expressing Cellular Phenotypes Emerge from Necrotic Lesion in the Pericentral Area in 2-Acetylaminofluoren/Carbon Tetrachloride-Treated Rat Livers. Biosci Biotechnol Biochem 2014; 71:3082-9. [DOI: 10.1271/bbb.70501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Abstract
Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.
Collapse
|
36
|
Yuasa T, Yano R, Izawa T, Kuwamura M, Yamate J. Calponin expression in renal tubulointerstitial fibrosis induced in rats by Cisplatin. J Toxicol Pathol 2014; 27:97-103. [PMID: 24791074 PMCID: PMC4000080 DOI: 10.1293/tox.2013-0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/26/2013] [Indexed: 01/04/2023] Open
Abstract
Renal tubulointerstitial fibrosis is the common feature of chronic renal failure, regardless of its etiology. Myofibroblasts play important roles in progression of the fibrosis and are characterized by expressions of various cytoskeletons such as vimentin, desmin and α-smooth muscle actin (α-SMA). To pursue the characteristics of the cells, we immunohistochemically investigated the relationship between calponin (a marker of terminal smooth muscles) expression and myofibroblasts in cisplatin-induced rat renal tubulointerstitial fibrosis. Calponin-expressing interstitial cells increased with fibrosis and reacted simultaneously to vimentin or α-SMA (a marker of well-differentiated myofibroblasts) but not desmin or Thy-1 (a marker of myofibroblasts at the early stage). The present study shows that calponin may be expressed transiently in relatively well-developed myofibroblasts in rat renal fibrosis. Calponin could become a marker for myofibroblast development in chronic renal toxicity in rats.
Collapse
Affiliation(s)
- Takahiro Yuasa
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Ryo Yano
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
37
|
Chen Q, Khoury M, Limmon G, Choolani M, Chan JKY, Chen J. Human fetal hepatic progenitor cells are distinct from, but closely related to, hematopoietic stem/progenitor cells. Stem Cells 2014; 31:1160-9. [PMID: 23404852 DOI: 10.1002/stem.1359] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/20/2013] [Indexed: 01/18/2023]
Abstract
Much controversy surrounds the identity and origin of human hepatic stem and progenitor cells in part because of a lack of small animal models in which the developmental potential of isolated candidate cell populations can be functionally evaluated. We show here that adoptive transfer of CD34(+) cells from human fetal liver into sublethally irradiated NOD-SCID Il2rg(-/-) (NSG) mice leads to an efficient development of not only human hematopoietic cells but also human hepatocyte-like cells in the liver of the recipient mice. Using this simple in vivo assay in combination with cell fractionation, we show that CD34(+) fetal liver cells can be separated into three distinct subpopulations: CD34(hi) CD133(hi), CD34(lo) CD133(lo), and CD34(hi) CD133(neg). The CD34(hi) CD133(hi) population contains hematopoietic stem/progenitor cells (HSPCs) as they give rise to T cells, B cells, NK cells, dendritic cells, and monocytes/macrophages in NSG mice and colony-forming unit (CFU)-GEMM cells in vitro. The CD34(lo) CD133(lo) population does not give rise to hematopoietic cells, but reproducibly generates hepatocyte-like cells in NSG mice and in vitro. The CD34(hi) CD133(neg) population only gives rise to CFU-GM and burst-forming unit-erythroid in vitro. Furthermore, we show that the CD34(lo) CD133(lo) cells express hematopoietic, hepatic, and mesenchymal markers, including CD34, CD133, CD117, epithelial cell adhesion molecule, CD73, albumin, α-fetal protein, and vimentin and transcriptionally are more closely related to HSPCs than to mature hepatocytes. These results show that CD34(lo) CD133(lo) fetal liver cells possess the hepatic progenitor cell properties and that human hepatic and hematopoietic progenitor cells are distinct, although they may originate from the same precursors in the fetal liver.
Collapse
Affiliation(s)
- Qingfeng Chen
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
38
|
Yin DZ, Cai JY, Zheng QC, Chen ZW, Zhao JX, Yuan YN. Mouse A6-positive hepatic oval cells derived from embryonic stem cells. ACTA ACUST UNITED AC 2014; 34:1-9. [PMID: 24496671 DOI: 10.1007/s11596-014-1223-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 12/23/2013] [Indexed: 12/14/2022]
Abstract
Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.
Collapse
Affiliation(s)
- Dong-Zhi Yin
- Department of General Surgery, Huangshi Central Hospital, Huangshi, 435000, China.,Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ji-Ye Cai
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qi-Chang Zheng
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng-Wei Chen
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, 60612, USA
| | - Jing-Xian Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - You-Neng Yuan
- Department of General Surgery, Huangshi Central Hospital, Huangshi, 435000, China
| |
Collapse
|
39
|
Okada T, Saito A, Amagai T, Onodera S, Hirai Y, Furusawa M, Azuma T. Side Population Cells derived from Dental Pulp and Dental Germ have Distinct Surface Markers compared to Bone Marrow Side Population Cells. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Liu WH, Ren LN, Chen T, You N, Liu LY, Wang T, Yan HT, Luo H, Tang LJ. Unbalanced distribution of materials: the art of giving rise to hepatocytes from liver stem/progenitor cells. J Cell Mol Med 2014; 18:1-14. [PMID: 24286303 PMCID: PMC3916112 DOI: 10.1111/jcmm.12183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Liver stem/progenitor cells (LSPCs) are able to duplicate themselves and differentiate into each type of cells in the liver, including mature hepatocytes and cholangiocytes. Understanding how to accurately control the hepatic differentiation of LSPCs is a challenge in many fields from preclinical to clinical treatments. This review summarizes the recent advances made to control the hepatic differentiation of LSPCs over the last few decades. The hepatic differentiation of LSPCs is a gradual process consisting of three main steps: initiation, progression and accomplishment. The unbalanced distribution of the affecting materials in each step results in the hepatic maturation of LSPCs. As the innovative and creative works for generating hepatocytes with full functions from LSPCs are gradually accumulated, LSPC therapies will soon be a new choice for treating liver diseases.
Collapse
Affiliation(s)
- Wei-Hui Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Na Ren
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Chen
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Nan You
- Department of General Surgery Xinqiao Hospital, Third Military Medical UniversityChongqing, China
| | - Li-Ye Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Wang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hong-Tao Yan
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hao Luo
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Jun Tang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| |
Collapse
|
41
|
Shin S, Kaestner KH. The origin, biology, and therapeutic potential of facultative adult hepatic progenitor cells. Curr Top Dev Biol 2014; 107:269-92. [PMID: 24439810 DOI: 10.1016/b978-0-12-416022-4.00010-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The liver plays an essential role in glucose and lipid metabolism, synthesis of plasma proteins, and detoxification of xenobiotics and other toxins. Chronic disease of this important organ is one of the leading causes of death in the United States. Following loss of tissue, liver mass can be restored by two mechanisms. Under normal conditions, or after massive loss of parenchyma by surgical resection, liver mass is maintained by division of hepatocytes. After chronic injury, or when proliferation of hepatocytes is impaired, facultative adult hepatic progenitor cells (HPCs) proliferate and differentiate into hepatocytes and cholangiocytes (biliary epithelial cells). HPCs are attractive candidates for cell transplantation because of their potential contribution to liver regeneration. However, until recently, the lack of highly specific markers has hampered efforts to better understand the origin and physiology of HPCs. Recent advances in cell isolation methods and genetic lineage tracing have enabled investigators to explore multiple aspects of HPC biology. In this review, we describe the potential origins of HPCs, the markers used to detect them, the contribution of HPCs to recovery, and the signaling pathways that regulate their biology. We end with an examination of the therapeutic potential of HPCs and their derivatives.
Collapse
Affiliation(s)
- Soona Shin
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
42
|
Iskovich S, Goldenberg-Cohen N, Sadikov T, Yaniv I, Stein J, Askenasy N. Two distinct mechanisms mediate the involvement of bone marrow cells in islet remodeling: neogenesis of insulin-producing cells and support of islet recovery. Cell Transplant 2013; 24:879-90. [PMID: 24380400 DOI: 10.3727/096368913x676899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that small-sized bone marrow cells (BMCs) isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate and contribute to regeneration of injured islets. In this study, we assess some of the characteristics of these cells compared to elutriated hematopoietic progenitors (R/O) and whole BMCs in a murine model of streptozotocin-induced chemical diabetes. The GFP(bright)CD45(+) progeny of whole BMCs and R/O progenitors progressively infiltrate the pancreas with evolution of donor chimerism; are found at islet perimeter, vascular, and ductal walls; and have a modest impact on islet recovery from injury. In contrast, Fr25lin(-) cells incorporate in the islets, convert to GFP(dim)CD45(-)PDX-1(+) phenotypes, produce proinsulin, and secrete insulin with significant contribution to stabilization of glucose homeostasis. The elutriated Fr25lin(-) cells express low levels of CD45 and are negative for SCA-1 and c-kit, as removal of cells expressing these markers did not impair conversion to produce insulin. BMCs mediate two synergistic mechanisms that contribute to islet recovery from injury: support of islet remodeling by hematopoietic cells and neogenesis of insulin-producing cells from stem cells.
Collapse
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Gong P, Wang Y, Zhang J, Wang Z. Differential hepatic stem cell proliferation and differentiation after partial hepatectomy in rats. Mol Med Rep 2013; 8:1005-10. [PMID: 23903957 DOI: 10.3892/mmr.2013.1606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
Stem cell‑derived hepatocyte precursor cells represent a promising model for clinical transplantation to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology studies. The present study aimed to establish a new method of induction of hepatocyte differentiation using various factors and evaluate the effect of different partial hepatectomies and the duration of collagenase perfusion on hepatic stem cell proliferation and differentiation. A rat model of hepatic oval cell proliferation was established by partial hepatectomy (PH). Following 73.1 and 83.4% PH, rats underwent perfusion with IV collagenase for 10, 20 and 30 min. Density gradient centrifugation was performed and cells in the supernatant were cultured in various combinations of factors to induce oval cells to differentiate into mature hepatocytes. Cells were characterized for hepatocyte marker expression by morphology, flow cytometry, immunofluorescence and western blot analysis. Hepatic oval cells isolated from rats at 7 and 14 days post‑PH exhibited properties of hepatic stem/progenitor cells. Following culturing in RPMI‑1640 medium with hepatocyte growth factor and fibroblast growth factor‑4, the cells resembled primary human hepatocytes with regard to morphology and expression of the hepatocyte markers, cytokeratin 18 (CK‑18) and α‑1‑fetoprotein (AFP). Optimal differentiation of hepatic stem cells to CK‑18‑ and AFP‑positive cells was observed when stem cells isolated from 83.4% PH rats (7 days following surgery) were perfused with IV collagenase for 20 min. The results of this study provide novel insights into characteristics of rat hepatic stem cells.
Collapse
Affiliation(s)
- Peng Gong
- Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 110001, P.R. China.
| | | | | | | |
Collapse
|
44
|
Li Z, Chen J, Li L, Ran JH, Liu J, Gao TX, Guo BY, Li XH, Liu ZH, Liu GJ, Gao YC, Zhang XL. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation. Braz J Med Biol Res 2013; 46:681-8. [PMID: 23903688 PMCID: PMC3854420 DOI: 10.1590/1414-431x20132620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/25/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that
play a role in liver regeneration after acute liver injury. Here, we investigated the
in vitro proliferation and differentiation characteristics of
HOCs in order to explore their potential capacity for intrahepatic transplantation.
Clusters or scattered HOCs were detected in the portal area and interlobular bile
duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial
hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8%
and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by
immunostaining and flow cytometric analysis. In addition, HOCs could be
differentiated into hepatocytes and bile duct epithelial cells after leukemia
inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver
transplantation, and HOCs were subsequently transplanted into recipients. Biochemical
indicators of liver function were assessed 4 weeks after transplantation. HOC
transplantation significantly prolonged the median survival time and improved the
liver function of rats receiving HOCs compared to controls (P=0.003, Student
t-test). Administration of HOCs to rats also receiving liver
transplantation significantly reduced acute allograft rejection compared to control
liver transplant rats 3 weeks following transplantation (rejection activity index
score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may
be useful in therapeutic liver regeneration after orthotopic liver
transplantation.
Collapse
Affiliation(s)
- Z Li
- Liaocheng People's Hospital, Department of Hepatobiliary Surgery, LiaochengShandong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ma Y, Liang D, Liu J, Wen JG, Servoll E, Waaler G, Sæter T, Axcrona K, Vlatkovic L, Axcrona U, Paus E, Yang Y, Zhang Z, Kvalheim G, Nesland JM, Suo Z. SHBG is an important factor in stemness induction of cells by DHT in vitro and associated with poor clinical features of prostate carcinomas. PLoS One 2013; 8:e70558. [PMID: 23936228 PMCID: PMC3728318 DOI: 10.1371/journal.pone.0070558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Androgen plays a vital role in prostate cancer development. However, it is not clear whether androgens influence stem-like properties of prostate cancer, a feature important for prostate cancer progression. In this study, we show that upon DHT treatment in vitro, prostate cancer cell lines LNCaP and PC-3 were revealed with higher clonogenic potential and higher expression levels of stemness related factors CD44, CD90, Oct3/4 and Nanog. Moreover, sex hormone binding globulin (SHBG) was also simultaneously upregulated in these cells. When the SHBG gene was blocked by SHBG siRNA knock-down, the induction of Oct3/4, Nanog, CD44 and CD90 by DHT was also correspondingly blocked in these cells. Immunohistochemical evaluation of clinical samples disclosed weakly positive, and areas negative for SHBG expression in the benign prostate tissues, while most of the prostate carcinomas were strongly positive for SHBG. In addition, higher levels of SHBG expression were significantly associated with higher Gleason score, more seminal vesicle invasions and lymph node metastases. Collectively, our results show a role of SHBG in upregulating stemness of prostate cancer cells upon DHT exposure in vitro, and SHBG expression in prostate cancer samples is significantly associated with poor clinicopathological features, indicating a role of SHBG in prostate cancer progression.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongming Liang
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian Liu
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian-Guo Wen
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Einar Servoll
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | - Gudmund Waaler
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | | | - Karol Axcrona
- Departments of Urology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ljiljana Vlatkovic
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elisabeth Paus
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiqian Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Gunnar Kvalheim
- Departments of Cell Therapy, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jahn M. Nesland
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
- * E-mail:
| |
Collapse
|
46
|
Yuasa T, Juniantito V, Ichikawa C, Yano R, Izawa T, Kuwamura M, Yamate J. Thy-1 expression, a possible marker of early myofibroblast development, in renal tubulointerstitial fibrosis induced in rats by cisplatin. ACTA ACUST UNITED AC 2013; 65:651-9. [DOI: 10.1016/j.etp.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
|
47
|
Rao MS, Sasikala M, Reddy DN. Thinking outside the liver: induced pluripotent stem cells for hepatic applications. World J Gastroenterol 2013; 19:3385-3396. [PMID: 23801830 PMCID: PMC3683676 DOI: 10.3748/wjg.v19.i22.3385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/06/2011] [Accepted: 12/15/2011] [Indexed: 02/06/2023] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.
Collapse
|
48
|
Profiling and semiquantitative analysis of the cell surface proteome in human mesenchymal stem cells. Anal Bioanal Chem 2013; 405:5501-17. [DOI: 10.1007/s00216-013-6969-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022]
|
49
|
Ralphs S, Khan SA. The role of the hepatitis viruses in cholangiocarcinoma. J Viral Hepat 2013; 20:297-305. [PMID: 23565610 DOI: 10.1111/jvh.12093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/05/2013] [Indexed: 12/14/2022]
Abstract
Cholangiocarcinoma is the second most common liver cancer in the world. The aetiology of the disease is diverse incorporating a variety of conditions leading to biliary stasis, biliary and liver inflammation, but a large number of cases still occur in the absence of established risk factors. Its incidence and mortality is increasing, which has intensified the search for alternative aetiological agents and pathogenetic mechanisms. Chronic infection with hepatitis B and hepatitis C viruses are the primary risk factor for hepatocellular cancer. This review focuses on the epidemiological evidence of a role for these viruses in cholangiocarcinoma and the pathogenetic mechanisms that might be involved.
Collapse
Affiliation(s)
- S Ralphs
- Hepatology and Gastroenterology Section, Department of Medicine, Imperial College London, St Mary's Hospital Campus, London W2 1NY, UK
| | | |
Collapse
|
50
|
YANG JIANYE, ZHOU YUAN, LIU BO, WANG HONGFEI, DU XINLING. Trop2 plays a cardioprotective role by promoting cardiac c-kit+ cell proliferation and inhibition of apoptosis in the acute phase of myocardial infarction. Int J Mol Med 2013; 31:1298-304. [DOI: 10.3892/ijmm.2013.1332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/20/2012] [Indexed: 11/06/2022] Open
|