Sathish M, Miyazawa K, Hill JP, Ariga K. Solvent engineering for shape-shifter pure fullerene (C60).
J Am Chem Soc 2009;
131:6372-3. [PMID:
19374354 DOI:
10.1021/ja902061r]
[Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a highly anticipated technique for bottom-up nanotechnology, i.e., shape control of pure functional molecules, we here report controlled formation of two-dimensional (2D) objects such as hexagons and rhombi and their selective shape shifting into one-dimensional (1D) rods through solvent-dependent changes of crystal lattice, all from pure C(60). Uniformly shaped rhombi and hexagons were obtained at tert-butyl alcohol/toluene and i-propyl alcohol/CCl(4) interfaces, respectively. In addition, exposure of these 2D nanosheets to water induced selective transformation into 1D nanorods. Nanorhombi were converted to short nanorods upon exposure to water. This shape shift is accompanied by changes in crystalline structures from a mixed fcc/hexagonal to pure fcc lattice, the latter of which is almost identical with morphologically similar C(60) nanowhiskers. Metastable nanorhombi which possess a strained mixed crystalline structure metamorphosize into the more stable short nanowhisker (nanorods). In contrast, the stable nanohexagon of a single lattice (and so less strain) does not undergo shape shifting. These results clearly demonstrate controlled formation of 2D nanosheets with various shapes (hexagons, rhombi, etc.) and selective shape shifting to nanorods (short nanowhiskers) all from pure C(60) molecules by very simple solvent treatments.
Collapse