1
|
Miranda MH, Nader-Macías MEF. Pharmabiotic/phytobiotic formulas approach and their intravaginal effect on different parameters. Vet Res Commun 2024; 48:3019-3033. [PMID: 38980588 DOI: 10.1007/s11259-024-10450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Postpartum reproductive infections in cows generate significant economic losses. The use of lactic acid bacteria in animal health is an alternative tool to avoid antibiotic therapy in the prevention/treatment of bovine reproductive infections. In previous studies, 6 lactic bacteria from bovine mammary glands and vagina with beneficial, safe and technological characteristics were selected, and included in probiotic/phytobiotic formulas (combined with Malva and Lapacho extracts). In this work, probiotic and phytobiotic formulations were designed and their long-term viability determined. They were administered intravaginally to 30 females pregnant bovine pre and postpartum. The modification of the native microbiota and permanence/colonization of cultivable bacteria was evaluated, and also the safety of the designed products through the application of nutritional, clinical, hematological and biochemical parameters. The microorganisms maintained their viability up to 9 months at refrigeration temperature. The number of cultivable bacteria showed different pattern: total aerobic mesophylls increased slightly in all experimental groups, while Enterobacteriaceae increased after delivery, except in beneficial acid lactic bacteria + vegetable extract cows. Control and vegetable extract females showed the highest numbers of Enterobacteriaceae at the end of the trial (30 days postpartum). The number of lactic acid bacteria increased significantly in all the groups between 15 days pre and postpartum. The different parameters evaluated demonstrate the safety and harmlessness of the designed formulas, without producing local and systemic adverse effects in the cows.
Collapse
Affiliation(s)
- María Hortencia Miranda
- Centro de Referencia para Lactobacilos, CONICET. Chacabuco 145, San Miguel de Tucumán, CP4000, Tucumán, Argentina
| | | |
Collapse
|
2
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
3
|
Liu Y, Ai H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front Pharmacol 2024; 15:1395673. [PMID: 38953105 PMCID: PMC11215423 DOI: 10.3389/fphar.2024.1395673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.
Collapse
Affiliation(s)
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
4
|
Silva JA, Castañares M, Mouguelar H, Valenciano JA, Pellegrino MS. Isolation of lactic acid bacteria from the reproductive tract of mares as potentially beneficial strains to prevent equine endometritis. Vet Res Commun 2024; 48:1353-1366. [PMID: 38233700 DOI: 10.1007/s11259-024-10295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Endometritis, the inflammation of the endometrium, is the leading cause of subfertility in mares, and therefore responsible for major economic losses in the horse industry worldwide. It is generally treated with uterine lavages combined with ecbolic agents and local or systemic antibiotics. However, since antibiotic overuse has been associated with antimicrobial resistance in mares with persistent endometritis, new prevention and treatment alternatives are needed. One such alternative could be the use of probiotic lactic acid bacteria (LAB) isolated from the host. Thanks to their species specificity, resident microbiota may restore ecological equilibrium within the host, and therefore, help prevent infections and improve physiological functions. In the present study, 257 bacterial strains were isolated from 77 healthy mares, and 88.76% (n = 228) of them were phenotypically classified as LAB. Within this group, 65.79% were able to inhibit at least one strain from each of the genera that most commonly cause equine endometritis (Streptococcus equi subsp. zooepidemicus, Escherichia coli, and Staphylococcus spp.). Five strains (RCE11, RCE20, RCE91, RCE99, and RCE167) were selected on the basis of their beneficial properties: ability to autoaggregate and adhere to equine epithelial cells, high inhibition of and co-aggregation with all the bacteria isolated from clinical cases of endometritis evaluated, and negative co-inhibition between one another. All five were finally identified as Enterococcus spp., namely E. faecium (two strains), E. hirae (two strains), and E. gallinarum (one strain). Further studies will assess their safety and biotechnological potential for the design of a multi-strain probiotic formula to prevent equine endometritis.
Collapse
Affiliation(s)
- Jessica Alejandra Silva
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Castañares
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Horacio Mouguelar
- Departament of Anatomy, Faculty of Agronomy and Veterinary, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Javier Aguilar Valenciano
- Departament of Animal Production, Faculty of Agronomy and Veterinary, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Matías Santiago Pellegrino
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Vaccalluzzo A, Pino A, Grimaldi RL, Caggia C, Cianci S, Randazzo CL. Lacticaseibacillus rhamnosus TOM 22.8 (DSM 33500) is an effective strategy for managing vaginal dysbiosis, rising the lactobacilli population. J Appl Microbiol 2024; 135:lxae110. [PMID: 38755019 DOI: 10.1093/jambio/lxae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
AIM The present study is a single-centre, randomized, controlled clinical trial aimed to evaluate the effectiveness of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 (DSM 33500) strain, orally administrated, to treat vaginal dysbiosis. METHODS AND RESULTS Overall, 80 women, with signs and symptoms of vaginal dysbiosis, were enrolled and allocated to the treatment group (A, n=60), who took 1 capsule of the probiotic strain for 10 consecutive days, or the non-treatment group (B, n=20), who did not receive any treatment. Clinical (vaginal signs and symptoms; pH of the vaginal fluid; Amsel criteria; Nugent score; Lactobacillary grade) and microbiological examinations were performed at baseline (T0), 10 days (T1), and 30 (T2) days after the oral administration of the probiotic TOM 22.8 strain. The latter resulted in a restoration of the physiological pH, accompanied by remission or attenuation of clinical signs and symptoms as well as the improvement of the quality of life (QoL). Microbiological data revealed a significant reduction of potentially pathogenic bacteria. CONCLUSION The administration of the L. rhamnosus TOM 22.8 probiotic strain could be proposed as an effective strategy for the treatment of vaginal dysbiosis.
Collapse
Affiliation(s)
- Amanda Vaccalluzzo
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| | - Raffaela Luisa Grimaldi
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Santa Sofia Street, 78, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| | - Stefano Cianci
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood "G. Barresi", University of Messina, 98122 Messina, Italy
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| |
Collapse
|
6
|
Das S, Konwar BK. Prophylactic application of vaginal lactic acid bacteria against urogenital pathogens and its prospective use in sanitary suppositories. Int Microbiol 2024; 27:179-202. [PMID: 37258658 DOI: 10.1007/s10123-023-00376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Beneficial and pathogenic microbes coexist in the vaginal canal, where a diminishing population of lactic acid bacteria may cause recurring urogenital infections. Probiotic bacteria Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus vaginalis, and pathogenic microbes Enterococcus faecalis, Enterobacter cloacae, Shigella sp., Staphylococcus epidermidis, and Escherichia fergusonii were isolated from vaginal swabs. Lactobacillus sp. and their probiotic culture free supernatant (PCFS) inhibited the growth of the above-mentioned urogenital pathogens. L. crispatus produced both lactic acid and hydrogen peroxide, exhibiting the best antimicrobial potential against the studied pathogens. Lyophilized L. crispatus had a shelf life of 12 months and the lyophilized PCFS also retained its antibacterial property with a minimum inhibition concentration of 1 μg/μL. Carboxy-methyl cellulose-alginate, a green alternative to super-absorbent polymers, was encapsulated with L. crispatus cells. The probiotic in its encapsulated state retained its viability for 21 days, and the bead showed 30% solvent absorptive capacity. PCFS-laced non-woven fabric displayed antibacterial property with no change in its physicochemical properties. These probiotic and postbiotic formulations have excellent prophylactic potential for urogenital infections. Such formulations can be exploited as additives in sanitary suppositories to enhance vaginal health.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam-784028, Assam, India
| | | |
Collapse
|
7
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
8
|
Shoureshi PS, Niino C, Eilber KS. Can vaginal lactobacillus suppositories help reduce urinary tract infections? Int Urogynecol J 2023; 34:2713-2718. [PMID: 37392226 PMCID: PMC10682044 DOI: 10.1007/s00192-023-05568-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Recurrent urinary tract infections (rUTIs) are a burden to patients and the health care economy. Vaginal probiotics and supplements have gained significant attention in mainstream media and lay press as a non-antibiotic alternative. We performed a systematic review to determine whether vaginal probiotics are an effective means of prophylaxis for rUTI. METHODS A PubMed/MEDLINE article search was performed from inception to August 2022 for prospective, in vivo use of vaginal suppositories for the prevention of rUTIs. Search terms included: vaginal probiotic suppository (34 results), vaginal probiotic randomized (184 results), vaginal probiotic prevention (441 results), vaginal probiotic UTI (21 results), and vaginal probiotic urinary tract infection (91 results). A total of 771 article titles and abstracts were screened. RESULTS A total of 8 articles fit the inclusion criteria and were reviewed and summarized. Four were randomized controlled trials, with 3 of the studies having a placebo arm. Three were prospective cohort studies, and 1 was a single arm, open label trial. Five of the 7 articles that specifically evaluated for rUTI reduction with vaginal suppositories did find a decreased incidence with probiotic use; however, only 2 had statistically significant results. Both of these were studies of Lactobacillus crispatus and were not randomized. Three studies demonstrated the efficacy and safety of Lactobacillus as a vaginal suppository. CONCLUSION Current data support the use of vaginal suppositories containing Lactobacillus as a safe, non-antibiotic measure, but actual reduction of rUTI in susceptible women remains inconclusive. The appropriate dosing and duration of therapy remain unknown.
Collapse
Affiliation(s)
- Poone S Shoureshi
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Clarissa Niino
- Department of Obstetrics & Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Karyn S Eilber
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Chathuranga K, Shin Y, Uddin MB, Paek J, Chathuranga WAG, Seong Y, Bai L, Kim H, Shin JH, Chang YH, Lee JS. The novel immunobiotic Clostridium butyricum S-45-5 displays broad-spectrum antiviral activity in vitro and in vivo by inducing immune modulation. Front Immunol 2023; 14:1242183. [PMID: 37881429 PMCID: PMC10595006 DOI: 10.3389/fimmu.2023.1242183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Clostridium butyricum is known as a probiotic butyric acid bacterium that can improve the intestinal environment. In this study, we isolated a new strain of C. butyricum from infant feces and evaluated its physiological characteristics and antiviral efficacy by modulating the innate immune responses in vitro and in vivo. The isolated C. butyricum S-45-5 showed typical characteristics of C. butyricum including bile acid resistance, antibacterial ability, and growth promotion of various lactic acid bacteria. As an antiviral effect, C. butyricum S-45-5 markedly reduced the replication of influenza A virus (PR8), Newcastle Disease Virus (NDV), and Herpes Simplex Virus (HSV) in RAW264.7 cells in vitro. This suppression can be explained by the induction of antiviral state in cells by the induction of antiviral, IFN-related genes and secretion of IFNs and pro-inflammatory cytokines. In vivo, oral administration of C. butyricum S-45-5 exhibited prophylactic effects on BALB/c mice against fatal doses of highly pathogenic mouse-adapted influenza A subtypes (H1N1, H3N2, and H9N2). Before challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed increased levels of IFN-β, IFN-γ, IL-6, and IL-12 in serum, the small intestine, and bronchoalveolar lavage fluid (BALF), which correlated with observed prophylactic effects. Interestingly, after challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed reduced levels of pro-inflammatory cytokines and relatively higher levels of anti-inflammatory cytokines at day 7 post-infection. Taken together, these findings suggest that C. butyricum S-45-5 plays an antiviral role in vitro and in vivo by inducing an antiviral state and affects immune modulation to alleviate local and systemic inflammatory responses caused by influenza virus infection. Our study provides the beneficial effects of the new C. butyricum S-45-5 with antiviral effects as a probiotic.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeseul Shin
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jayoung Paek
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | - Yebin Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Lu Bai
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hongik Kim
- Research and Development Division, Vitabio, Inc., Daejeon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Elebeedy D, Ghanem A, Aly SH, Ali MA, Faraag AHI, El-Ashrey MK, salem AM, Hassab MAE, Maksoud AIAE. Synergistic antiviral activity of Lactobacillus acidophilus and Glycyrrhiza glabra against Herpes Simplex-1 Virus (HSV-1) and Vesicular Stomatitis Virus (VSV): experimental and In Silico insights. BMC Microbiol 2023; 23:173. [PMID: 37391715 PMCID: PMC10311774 DOI: 10.1186/s12866-023-02911-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/25/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND The emergence of different viral infections calls for the development of new, effective, and safe antiviral drugs. Glycyrrhiza glabra is a well-known herbal remedy possessing antiviral properties. OBJECTIVE The objective of our research was to evaluate the effectiveness of a newly developed combination of the probiotics Lactobacillus acidophilus and G. glabra root extract against two viral models, namely the DNA virus Herpes simplex virus-1 (HSV-1) and the RNA virus Vesicular Stomatitis Virus (VSV), with regards to their antiviral properties. METHODOLOGY To examine the antiviral impacts of various treatments, we employed the MTT assay and real-time PCR methodology. RESULTS The findings of our study indicate that the co-administration of L. acidophilus and G. glabra resulted in a significant improvement in the survival rate of Vero cells, while also leading to a reduction in the titers of Herpes Simplex Virus Type 1 (HSV-1) and Vesicular Stomatitis Virus (VSV) in comparison to cells that were not treated. Additionally, an investigation was conducted on glycyrrhizin, the primary constituent of G. glabra extract, utilizing molecular docking techniques. The results indicated that glycyrrhizin exhibited a greater binding energy score for HSV-1 polymerase (- 22.45 kcal/mol) and VSV nucleocapsid (- 19.77 kcal/mol) in comparison to the cocrystallized ligand (- 13.31 and - 11.44 kcal/mol, respectively). CONCLUSIONS The combination of L. acidophilus and G. glabra extract can be used to develop a new, natural antiviral agent that is safe and effective.
Collapse
Affiliation(s)
- Dalia Elebeedy
- Department of Pharmaceutical Biotechnology Faculty of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo, Badr City, 11829 Cairo Egypt
| | - Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo, Badr City, 11829 Cairo Egypt
| | - Ahmed H. I. Faraag
- School of Biotechnology, Badr University in Cairo, Badr City, 11829 Cairo Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795 Egypt
| | - Mohamed K. El-Ashrey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman Inter-National University, Ras Sudr, Egypt
| | - Aya M. salem
- Faculty of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman Inter-National University, Ras Sudr, Egypt
| | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Monufia, Egypt
| |
Collapse
|
11
|
Liu P, Lu Y, Li R, Chen X. Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Front Cell Infect Microbiol 2023; 13:1153894. [PMID: 37077531 PMCID: PMC10106725 DOI: 10.3389/fcimb.2023.1153894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The vaginal microbiome is a distinct component of the human microbiome that is colonized by a wide variety of microorganisms. Lactobacilli are the most frequently identified microorganisms in the healthy human vagina. These Gram-positive bacilli can acidify the vaginal microenvironment, inhibit the proliferation of other pathogenic microorganisms, and promote the maintenance of a eubiotic vaginal microbiome. However, a vaginal flora with a reduced proportion or abundance of lactobacilli is associated with various vaginal infections that have been linked to serious health consequences such as infertility, preterm birth, pelvic inflammatory disease, premature rupture of membranes, and miscarriage. Due to their “Generally Recognized as Safe” classification and critical role in vaginal health, probiotic lactobacilli have been widely used as an alternative or adjunct to traditional antibiotic therapy for the treatment of vaginal infections and restoration of the vaginal microbiome. This review focuses on the significant role of probiotic lactobacilli in the vaginal microenvironment and discusses the use of probiotic lactobacilli in the treatment of female vaginal infections in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Rongguo Li
- *Correspondence: Rongguo Li, ; Xiaodi Chen,
| | | |
Collapse
|
12
|
de Freitas PNN, Silva CR, Constantin PP, Pileggi SAV, Vicari MR, Pileggi M. Fixing the Damage: The Evolution of Probiotics from Fermented Food to Biotherapeutic Products. A SUSTAINABLE GREEN FUTURE 2023:245-276. [DOI: 10.1007/978-3-031-24942-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Kumar V, Naik B, Kumar A, Khanduri N, Rustagi S, Kumar S. Probiotics media: significance, challenges, and future perspective - a mini review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00098-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe health benefits associated with probiotics have increased their application in pharmaceutical formulations and functional food development. High production of probiotic biomass requires a cost-effective production method and nutrient media optimization. The biomass production of probiotics can be enhanced by optimizing growth parameters such as substrate, pH, incubation time, etc. For economical industrial production of probiotic biomass, it is required to design a new medium with low cost. Wastes from the food industries are promising components for the development of the low-cost medium. Industrial wastes such as cheese whey and corn steep liquor are excellent examples of reliable sources of nitrogen for the biomass production of probiotic bacteria. The increased yield of biomass reduced the cost of production. This review focuses on the importance of probiotic media for biomass production and its challenges.
Graphical Abstract
Collapse
|
14
|
Lacticaseibacillus rhamnosus CA15 (DSM 33960) as a Candidate Probiotic Strain for Human Health. Nutrients 2022; 14:nu14224902. [PMID: 36432588 PMCID: PMC9694283 DOI: 10.3390/nu14224902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Lactobacilli with probiotic properties have emerged as promising tools for both the prevention and treatment of vaginal dysbiosis. The present study aimed to study the in vitro probiotic potential of the Lacticaseibacillus rhamnosus CA15 (DSM 33960) strain isolated from a healthy vaginal ecosystem. The strain was evaluated for both functional (antagonistic activity against pathogens; H2O2, organic acid, and lactic acid production; antioxidant and anti-inflammatory activities; ability to adhere to intestinal mucus and to both CaCo-2 and VK7/E6E7 cell lines; exopolysaccharide production; surface properties; and ability to survive during gastrointestinal transit) and safety (hemolytic, DNase, and gelatinase activities; mucin degradation ability; production of biogenic amines; and resistance to antimicrobials) characteristics. Data revealed that the tested strain was able to antagonize a broad spectrum of vaginal pathogens. In addition, the adhesion capacity to both vaginal and intestinal cell lines, as well as anti-inflammatory and antioxidant activities, was detected. The ability of the Lacticaseibacillus rhamnosus CA15 (DSM 33960) strain to survive under harsh environmental conditions occurring during the gastrointestinal passage suggests its possible oral delivery. Thus, in vitro data highlighted interesting probiotic properties of the CA15 (DSM 33960) strain, which could represent a valuable candidate for in vivo vaginal infections treatment.
Collapse
|
15
|
Pacha-Herrera D, Erazo-Garcia MP, Cueva DF, Orellana M, Borja-Serrano P, Arboleda C, Tejera E, Machado A. Clustering Analysis of the Multi-Microbial Consortium by Lactobacillus Species Against Vaginal Dysbiosis Among Ecuadorian Women. Front Cell Infect Microbiol 2022; 12:863208. [PMID: 35646732 PMCID: PMC9131875 DOI: 10.3389/fcimb.2022.863208] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
The vaginal microbiota plays vital protection in women. This probiotic activity is caused not only by individual Lactobacillus species but also by its multi-microbial interaction. However, the probiotic activity promoted by multi-microbial consortia is still unknown. The aim of this study was the individual and collective analysis on the prevalence of five vaginal lactobacilli (Lactobacillus iners, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, and Lactobacillus acidophilus) among healthy women and women with bacterial vaginosis (BV) or aerobic vaginitis (AV). PCR assays were realized on 436 vaginal samples from a previous study. Chi-square, univariable, and multivariable logistic regression analyses with the Benjamini–Hochberg adjustment evaluated associations between these lactobacilli and vaginal microbiota. Multi-microbial clustering model was also realized through Ward’s Minimum Variance Clustering Method with Euclidean squared distance for hierarchical clustering to determine the probiotic relationship between lactobacilli and vaginal dysbiosis. Concerning the individual effect, L. acidophilus, L. jensenii, and L. crispatus showed the highest normalized importance values against vaginal dysbiosis (100%, 79.3%, and 74.8%, respectively). However, only L. acidophilus and L. jensenii exhibited statistical values (p = 0.035 and p = 0.050, respectively). L. acidophilus showed a significant prevalence on healthy microbiota against both dysbioses (BV, p = 0.041; and AV, p = 0.045). L. jensenii only demonstrated significant protection against AV (p = 0.012). Finally, our results evidenced a strong multi-microbial consortium by L. iners, L. jensenii, L. gasseri, and L. acidophilus against AV (p = 0.020) and BV (p = 0.009), lacking protection in the absence of L. gasseri and L. acidophilus.
Collapse
Affiliation(s)
- David Pacha-Herrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Maria P. Erazo-Garcia
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Darío F. Cueva
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Miguel Orellana
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Pamela Borja-Serrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Camila Arboleda
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias, Grupo de Bioquimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- *Correspondence: António Machado,
| |
Collapse
|
16
|
Hashem NM, Gonzalez-Bulnes A. The Use of Probiotics for Management and Improvement of Reproductive Eubiosis and Function. Nutrients 2022; 14:nu14040902. [PMID: 35215551 PMCID: PMC8878190 DOI: 10.3390/nu14040902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Reproductive tract dysbiosis, due to the action of pathogens and/or unhealthy lifestyle, has been related to many reproductive diseases and disorders in mammalian species. Classically, such a problem has been confronted by the administration of antibiotics. Despite their effectiveness for controlling disease, treatments with antibiotics may negatively affect the fertility of males and females and, mainly, may induce antibiotic resistance. Accordingly, safer alternatives for maintaining reproductive system eubiosis, such as probiotics, are required. The present review summarizes the current knowledge on the biodiversity of the microbiota at the reproductive tract, possible changes in the case of dysbiosis, and their relationships with adequate reproductive health and functioning in both females and males. Afterwards, mechanisms of action and benefits of different probiotics are weighed since the biological activities of probiotics may provide a promising alternative to antibiotics for maintaining and restoring reproductive eubiosis and function. However, at present, it is still necessary for further research to focus on: (a) identifying mechanisms by which probiotics can affect reproductive processes; (b) the safety of probiotics to the host, specifically when consumed during sensitive reproductive windows such as pregnancy; and (c) the hazards instructions and regulatory rules required for marketing these biological-based therapies with sufficient safety. Thus, in this review, to draw a comprehensive overview with a relatively low number of clinical studies in this field, we showed the findings of studies performed either on human or animal models. This review strategy may help provide concrete facts on the eligible probiotic strains, probiotics colonization and transfer route, and prophylactic and/or therapeutic effects of different probiotic strains.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Correspondence: (N.M.H.); (A.G.-B.)
| |
Collapse
|
17
|
Artym J, Zimecki M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9121940. [PMID: 34944756 PMCID: PMC8699013 DOI: 10.3390/biomedicines9121940] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Women’s intimate health depends on several factors, such as age, diet, coexisting metabolic disorders, hormonal equilibrium, sexual activity, drug intake, contraception, surgery, and personal hygiene. These factors may affect the homeostasis of the internal environment of the genital tract: the vulva, vagina and cervix. This equilibrium is dependent on strict and complex mutual interactions between epithelial cells, immunocompetent cells and microorganisms residing in this environment. The microbiota of the genital tract in healthy women is dominated by several species of symbiotic bacteria of the Lactobacillus genus. The bacteria inhibit the growth of pathogenic microorganisms and inflammatory processes by virtue of direct and multidirectional antimicrobial action and, indirectly, by the modulation of immune system activity. For the homeostasis of the genital tract ecosystem, antimicrobial and anti-inflammatory peptides, as well as proteins secreted by mucus cells into the cervicovaginal fluid, have a fundamental significance. Of these, a multifunctional protein known as lactoferrin (LF) is one of the most important since it bridges innate and acquired immunity. Among its numerous properties, particular attention should be paid to prebiotic activity, i.e., exerting a beneficial action on symbiotic microbiota of the gastrointestinal and genital tract. Such activity of LF is associated with the inhibition of bacterial and fungal infections in the genital tract and their consequences, such as endometritis, pelvic inflammation, urinary tract infections, miscarriage, premature delivery, and infection of the fetus and newborns. The aim of this article is to review the results of laboratory as well as clinical trials, confirming the prebiotic action of LF on the microbiota of the lower genital tract.
Collapse
|
18
|
Monczor F, Genaro A. South American special issue: Editorial. Pharmacol Res Perspect 2021; 9:e00868. [PMID: 34609071 PMCID: PMC8491458 DOI: 10.1002/prp2.868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federico Monczor
- Facultad de Farmacia y BioquímicaInstituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Universidad de Buenos AiresBuenos AiresArgentina
| | - Ana Genaro
- Instituto de Investigaciones Biomédicas (UCA‐CONICET)Buenos AiresArgentina
- Departamento de FarmacologíaFacultad de MedicinaUBA ParaguayBuenos AiresArgentina
| |
Collapse
|