1
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
2
|
Abstract
Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.
Collapse
|
3
|
Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa. Microorganisms 2021; 9:microorganisms9071430. [PMID: 34361866 PMCID: PMC8303630 DOI: 10.3390/microorganisms9071430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Apicomplexa are unicellular eukaryotes that parasitise a wide spectrum of invertebrates and vertebrates, including humans. In their hosts, they occupy a variety of niches, from extracellular cavities (intestine, coelom) to epicellular and intracellular locations, depending on the species and/or developmental stages. During their evolution, Apicomplexa thus developed an exceptionally wide range of unique features to reach these diversified parasitic niches and to survive there, at least long enough to ensure their own transmission or that of their progeny. This review summarises the current state of knowledge on the attachment/invasive and nutrient uptake strategies displayed by apicomplexan parasites, focusing on trophozoite stages of their so far poorly studied basal representatives, which mostly parasitise invertebrate hosts. We describe their most important morphofunctional features, and where applicable, discuss existing major similarities and/or differences in the corresponding mechanisms, incomparably better described at the molecular level in the more advanced Apicomplexa species, of medical and veterinary significance, which mainly occupy intracellular niches in vertebrate hosts.
Collapse
|
4
|
Polyphyletic origin, intracellular invasion, and meiotic genes in the putatively asexual agamococcidians (Apicomplexa incertae sedis). Sci Rep 2020; 10:15847. [PMID: 32985520 PMCID: PMC7522995 DOI: 10.1038/s41598-020-72287-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Agamococcidians are enigmatic and poorly studied parasites of marine invertebrates with unexplored diversity and unclear relationships to other sporozoans such as the human pathogens Plasmodium and Toxoplasma. It is believed that agamococcidians are not capable of sexual reproduction, which is essential for life cycle completion in all well studied parasitic apicomplexans. Here, we describe three new species of agamococcidians belonging to the genus Rhytidocystis. We examined their cell morphology and ultrastructure, resolved their phylogenetic position by using near-complete rRNA operon sequences, and searched for genes associated with meiosis and oocyst wall formation in two rhytidocystid transcriptomes. Phylogenetic analyses consistently recovered rhytidocystids as basal coccidiomorphs and away from the corallicolids, demonstrating that the order Agamococcidiorida Levine, 1979 is polyphyletic. Light and transmission electron microscopy revealed that the development of rhytidocystids begins inside the gut epithelial cells, a characteristic which links them specifically with other coccidiomorphs to the exclusion of gregarines and suggests that intracellular invasion evolved early in the coccidiomorphs. We propose a new superorder Eococcidia for early coccidiomorphs. Transcriptomic analysis demonstrated that both the meiotic machinery and oocyst wall proteins are preserved in rhytidocystids. The conservation of meiotic genes and ultrastructural similarity of rhytidocystid trophozoites to macrogamonts of true coccidians point to an undescribed, cryptic sexual process in the group.
Collapse
|
5
|
Abstract
Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.
Collapse
|
6
|
Molecular characterization of surface antigen 10 of Eimeria tenella. Parasitol Res 2019; 118:2989-2999. [PMID: 31473858 DOI: 10.1007/s00436-019-06437-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/22/2019] [Indexed: 01/26/2023]
Abstract
Chicken coccidiosis is caused by the apicomplexan parasite Eimeria spp. At present, drug resistance of Eimeria is common because of the indiscriminate use of anticoccidial drugs. The gene encoding surface antigen 10 of Eimeria tenella (EtSAG10) is differentially expressed between drug-resistant and drug-sensitive strains. RNA-seq analysis indicated that this gene was downregulated in strains resistant to maduramicin and diclazuril compared to susceptible strains. EtSAG10 DNA sequence alignment revealed that they contained one and ten mutations in MRR and DZR, compared with DS, respectively. A full-length EtSAG10 cDNA was successfully cloned and expressed, and the polyclonal antibody was prepared. The transcription and translation levels of EtSAG10 were analyzed by quantitative real-time PCR (qPCR) and Western blotting. The localization of EtSAG10 in Spz, Mrz, and parasites in the first asexual stage was determined by indirect immunofluorescence. The potential association of EtSAG10 with sporozoite invasion of host cells was assessed by invasion inhibition assays. The results showed that EtSAG10 had a predicted transmembrane domain at the C-terminal end and a predicted signal peptide at the N-terminal end. EtSAG10 was downregulated in drug-resistant strains, which is consistent with the RNA-seq results. The EtSAG10 protein was localized to the parasite surface and parasitophorous vacuole membrane. This protein was shown to play a role in the infection of chicken intestine by sporozoites.
Collapse
|
7
|
Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, Marugán-Hernández V, García-Lunar P, Hemphill A, Ortega-Mora LM. The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress. Parasit Vectors 2016; 9:352. [PMID: 27329357 PMCID: PMC4915099 DOI: 10.1186/s13071-016-1620-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Background NTPases (also NTPDases) are enzymes with apyrase activity. They are widely distributed among eukaryotes, and also among members of the family Sarcocystidae. In Toxoplasma gondii, the TgNTPase accumulates in the dense granules, and has been commonly associated with the strain virulence. In the closely related Neospora caninum, the NcNTPase lacks nucleoside diphosphate hydrolase activity and appears to be more abundant in virulent isolates, indicating that it may contribute to the pathogenicity of neosporosis. However, so far no additional information on NcNTPase has been provided. Methods Herein, the NcNTPase coding sequences were analysed by different in silico and de novo sequencing approaches. A comparative analysis of NcNTPase and NcGRA7 in terms of protein dynamics, secretion, phosphorylation, and mRNA expression profiles during the tachyzoite lytic cycle was also carried out. Moreover, NcNTPase immunolocalization was analysed by confocal microscopy techniques over a set number of time-points. Results We describe the presence of three different loci containing three copies of the NcNTPase within the Nc-Liv genome, and report the existence of up to four different NcNTPase alleles in Nc-Liv. We also provide evidence for the occurrence of diverse protein species of the NcNTPase by two-dimensional gel electrophoresis. Both NcNTPase and NcGRA7 were similarly up-regulated and secreted during the egress and/or early invasion phases, and were phosphorylated. However, its secretion was not affected by the addition of calcium modulators such as A23187 and ethanol. NcNTPase and NcGRA7 localized in dense granules and parasitophorous vacuole membrane throughout the lytic cycle, although differed in their inmunolocalization during early invasion and egress. Conclusions The present study reveals the complexity of the NcNTPase loci in N. caninum. We hypothesize that the expression of different isoforms of the NcNTPase protein could contribute to parasite virulence. Our findings showed regulation of expression, secretion and phosphorylation of NcNTPase suggesting a potential role for progression through the tachyzoites lytic cycle. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1620-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Pastor-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Virginia Marugán-Hernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Paula García-Lunar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland
| | - Luis M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Chetouhi C, Panek J, Bonhomme L, ElAlaoui H, Texier C, Langin T, de Bekker C, Urbach S, Demettre E, Missé D, Holzmuller P, Hughes DP, Zanzoni A, Brun C, Biron DG. Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us? INFECTION GENETICS AND EVOLUTION 2015; 33:84-94. [DOI: 10.1016/j.meegid.2015.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
|
9
|
Molecular characterization and functional analysis of subunit 7 of eukaryotic initiation factor 3 from Eimeria tenella. Exp Parasitol 2015; 154:118-26. [PMID: 25888243 DOI: 10.1016/j.exppara.2015.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/22/2015] [Accepted: 04/08/2015] [Indexed: 01/27/2023]
Abstract
The initiation of translation in eukaryotic cells is stimulated by proteins known as initiation factors (eIFs). A structurally complex eIF composed of multiple subunits, eIF3 has been shown to have various functions in translation in a variety of eukaryotes. Until now, little is known about eIF3 in Eimeria tenella. Based on a previously identified expressed sequence tag(EST), we cloned the eIF3 subunit 7 gene (EteIF3s7) from E. tenella by rapid amplification of the cDNA ends(RACE). The 2278-bp full-length complementary DNA of EteIF3s7 contained a 1716-bp open reading frame (ORF) that encoded a 571-amino acid (aa) polypeptide. The EteIF3s7 protein contained the subunit 7 domain that is characteristic of members of the eIF3 zeta superfamily. The levels of EteIF3s7 messenger RNA and protein were higher in second generation merozoites than in sporulated oocysts, unsporulated oocysts, or sporozoites, and the EteIF3s7 protein was barely detectable in unsporulated oocysts. Our immunofluorescence analysis showed that the EteIF3s7 protein was uniformly distributed throughout the cytoplasm of sporozoites. After sporozoites were incubated in complete medium, the EteIF3s7 protein localized to the anterior region of the parasite. Following the first schizogenous division, the protein was uniformly dispersed in trophozoites, immature schizonts, and mature schizonts, and the EteIF3s7 protein was observed to be closely associated with the parasitophorous vacuole membrane. An anti-rEteIF3s7 polyclonal antibody inhibited the ability of E. tenella to invade DF-1 cells, which suggested that EteIF3s7 might be involved in host cell invasion and required for the growth of the parasite in the host.
Collapse
|
10
|
Abstract
SUMMARYCryptosporidiumhost cell interaction remains fairly obscure compared with other apicomplexans such asPlasmodiumorToxoplasma. The reason for this is probably the inability of this parasite to complete its life cyclein vitroand the lack of a system to genetically modifyCryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.
Collapse
|
11
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Molecular characterization of Neospora caninum MAG1, a dense granule protein secreted into the parasitophorous vacuole, and associated with the cyst wall and the cyst matrix. Parasitology 2010; 137:1605-19. [PMID: 20444303 DOI: 10.1017/s0031182010000442] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY In Neospora caninum and Toxoplasma gondii, the parasitophorous vacuole (PV) is synthesized at the time of infection. During tachyzoite-to-bradyzoite stage conversion, the PV is later transformed into a tissue cyst that allows parasites to survive in their host for extended periods of time. We report on the characterization of NcMAG1, the N. caninum orthologue of T. gondii MAG1 (matrix antigen 1; TgMAG1). The 456 amino acid predicted NcMAG1 protein is 54% identical to TgMAG1. By immunoblotting, a rabbit antiserum raised against recombinant NcMAG1 detected a major product of approximately 67 kDa in extracts of N. caninum tachyzoite-infected Vero cells, which was stained more prominently in extracts of infected Vero cells treated to induce in vitro bradyzoite conversion. Immunofluorescence and TEM localized the protein mainly within the cyst wall and the cyst matrix. In both tachyzoites and bradyzoites, NcMAG1 was associated with the parasite dense granules. Comparison between NcMAG1 and TgMAG1 amino acid sequences revealed that the C-terminal conserved regions exhibit 66% identity, while the N-terminal variable regions exhibit only 32% identity. Antibodies against NcMAG1-conserved region cross-reacted with the orthologuous protein in T. gondii but those against the variable region did not. This indicates that the variable region possesses unique antigenic characteristics.
Collapse
|
13
|
Abstract
Intracellular pathogens such as viruses and bacteria subvert all the major cellular functions of their hosts. Targeted host processes include protein synthesis, membrane trafficking, modulation of gene expression, antigen presentation, and apoptosis. In recent years, it has become evident that protozoan pathogens, including members of the phylum Apicomplexa, also hijack their host cell's functions to access nutrients and to escape cellular defenses and immune responses. These obligate intracellular parasites provide superb illustrations of the subversion of host cell processes such as the recruitment and reorganization of host cell compartments without fusion around the parasitophorous vacuole of Toxoplasma gondii; the export of Plasmodium falciparum proteins on the surface of infected erythrocytes; and the induced transformation of the lymphocytes infected by Theileria parva, which leads to clonal extension.
Collapse
Affiliation(s)
- Fabienne Plattner
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
14
|
Shi T, Yan W, Ren H, Liu X, Suo X. Dynamic development of parasitophorous vacuole of Eimeria tenella transfected with the yellow fluorescent protein gene fused to different signal sequences from apicomplexan parasites. Parasitol Res 2008; 104:315-20. [DOI: 10.1007/s00436-008-1194-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
|
15
|
Valigurová A, Jirků M, Koudela B, Gelnar M, Modrý D, Šlapeta J. Cryptosporidia: Epicellular parasites embraced by the host cell membrane. Int J Parasitol 2008; 38:913-22. [DOI: 10.1016/j.ijpara.2007.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/30/2007] [Accepted: 11/08/2007] [Indexed: 11/16/2022]
|
16
|
Langsley G, van Noort V, Carret C, Meissner M, de Villiers EP, Bishop R, Pain A. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect 2008; 10:462-70. [PMID: 18468471 PMCID: PMC3317772 DOI: 10.1016/j.micinf.2008.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/24/2022]
Abstract
Rab genes encode a subgroup of small GTP-binding proteins within the ras super-family that regulate targeting and fusion of transport vesicles within the secretory and endocytic pathways. These genes are of particular interest in the protozoan phylum Apicomplexa, since a family of Rab GTPases has been described for Plasmodium and most putative secretory pathway proteins in Apicomplexa have conventional predicted signal peptides. Moreover, peptide motifs have now been identified within a large number of secreted Plasmodium proteins that direct their targeting to the red blood cell cytosol, the apicoplast, the food vacuole and Maurer's clefs; in contrast, motifs that direct proteins to secretory organelles (rhoptries, micronemes and microspheres) have yet to be defined. The nature of the vesicle in which these proteins are transported to their destinations remains unknown and morphological structures equivalent to the endoplasmic reticulum and trans-Golgi stacks typical of other eukaryotes cannot be visualised in Apicomplexa. Since Rab GTPases regulate vesicular traffic in all eukaryotes, and this traffic in intracellular parasites could regulate import of nutrient and drugs and export of antigens, host cell modulatory proteins and lactate we compare and contrast here the Rab families of Apicomplexa.
Collapse
Affiliation(s)
- Gordon Langsley
- Département de Maladies Infectieuses, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V - Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
VALIGUROVÁ ANDREA, HOFMANNOVÁ LADA, KOUDELA BŘETISLAV, VÁVRA JIŘÍ. An Ultrastructural Comparison of the Attachment Sites Between Gregarina steini and Cryptosporidium muris. J Eukaryot Microbiol 2007; 54:495-510. [DOI: 10.1111/j.1550-7408.2007.00291.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Leander BS. Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida). ZOOL SCR 2007. [DOI: 10.1111/j.1463-6409.2007.00272.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Péroval M, Péry P, Labbé M. The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth. Int J Parasitol 2006; 36:1205-15. [PMID: 16753167 DOI: 10.1016/j.ijpara.2006.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/06/2006] [Accepted: 04/11/2006] [Indexed: 11/28/2022]
Abstract
The 90-kDa heat shock proteins (Hsp90) are important for stress tolerance, for newly synthesised protein folding and for the growth of various organisms. Participation of Hsp90 in the development of Apicomplexa, notably in Plasmodium falciparum and Toxoplasma gondii, has been proven. In this work, the importance of Hsp90 for Eimeria tenella, which is responsible for avian caecal coccidiosis, was studied. Our results show that E. tenella Hsp90 (EtHsp90) expression increases during infection. Immunofluorescence microscopy studies reveal a dispersed localisation of EtHsp90 during the first schizogony. Moreover, EtHsp90 is secreted by sporozoites as early as 5min after addition of FCS in a temperature-dependent manner. By using staurosporine, we invalidated the hypothesis that EtHsp90 might be a micronemal protein. Then, EtHsp90 was detected in a parasitophorous vacuole membrane. This result suggests the importance of EtHsp90 for intracellular growth of the parasite. Inhibition of EtHsp90 function using specific antibodies and geldanamicin attenuates the capacity of E. tenella to invade and grow in the host cell.
Collapse
Affiliation(s)
- Marylène Péroval
- Département de Biologie, Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles, France
| | | | | |
Collapse
|
20
|
Carvalho CS, Melo EJT. Acidification of the parasitophorous vacuole containing Toxoplasma gondii in the presence of hydroxyurea. AN ACAD BRAS CIENC 2006; 78:475-84. [PMID: 16936937 DOI: 10.1590/s0001-37652006000300008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 03/22/2006] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii multiplies within parasitophorous vacuole that is not recognized by the primary no oxidative defense of host cells, mainly represented by the fusion with acidic organelles. Recent studies have already shown that hydroxyurea arrested the intracellular parasites leading to its destruction. In the present work we investigated the cellular mechanism involved in the destruction of intracellular Toxoplasma gondii. Fluorescent vital stains were used in order to observe possible acidification of parasitophorous vacuole-containing Toxoplasma gondii in presence of hydroxyurea. Vero cells infected with tachyzoites were treated with hydroxyurea for 12, 24 or 48 hours. Fluorescence, indicative of acidification, was observed in the parasitophorous vacuole when the cultures were incubated in presence of acridine orange. LysoTracker red was used in order to determine whether lysosomes were involved in the acidification process. An intense fluorescence was observed after 12 and 24 hours of incubation with hydroxyurea, achieving it is highly intensity after 48 hours of treatment. Ultrastructural cytochemistry for localization of the acid phosphatase lysosomal enzyme was realized. Treated infected cultures showed reaction product in vesicles fusing with vacuole or associated with intravacuolar parasites. These results suggest that fusion with lysosomes and acidification of parasitophorous vacuole leads to parasites destruction in the presence pf hydroxyurea.
Collapse
Affiliation(s)
- Cristiane S Carvalho
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | | |
Collapse
|
21
|
Leander BS, Ramey PA. Cellular Identity of a Novel Small Subunit rDNA Sequence Clade of Apicomplexans: Description of the Marine Parasite Rhytidocystis polygordiae n. sp. (Host: Polygordius sp., Polychaeta). J Eukaryot Microbiol 2006; 53:280-91. [PMID: 16872296 DOI: 10.1111/j.1550-7408.2006.00109.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new species of Rhytidocystis (Apicomplexa) is characterized from North American waters of the Atlantic Ocean using electron microscopy and phylogenetic analyses of small subunit (SSU) rDNA sequences. Rhytidocystis polygordiae n. sp. is a parasite of the polychaete Polygordius sp. and becomes the fourth described species within this genus. The trophozoites of R. polygordiae were relatively small oblong cells (L=35-55 microm; W=20-25 microm) and distinctive in possessing subterminal indentations at both ends of the cell. The surface of the trophozoites had six to eight longitudinal series of small transverse folds and several micropores arranged in short linear rows. The trophozoites of R. polygordiae were positioned beneath the brush border of the intestinal epithelium but appeared to reside between the epithelial cells within the extracellular matrix rather than within the cells. The trophozoites possessed a uniform distribution of paraglycogen granules, putative apicoplasts, mitochondria with tubular cristae, and a centrally positioned nucleus. The trophozoites were non-motile and lacked a mucron and an apical complex. Intracellular sporozoites of R. polygordiae had a conoid, a few rhoptries, micronemes, dense granules, and a posteriorly positioned nucleus. Phylogenies inferred from SSU rDNA sequences demonstrated a close relationship between R. polygordiae and the poorly known parasite reported from the hemolymph of the giant clam Tridacna crocea. The rhytidocystid clade diverged early in the apicomplexan radiation and showed a weak affinity to a clade consisting of cryptosporidian parasites, monocystids, and neogregarines.
Collapse
Affiliation(s)
- Brian S Leander
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
22
|
Hermosilla C, Zahner H, Taubert A. Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells. Int J Parasitol 2006; 36:423-31. [PMID: 16500654 DOI: 10.1016/j.ijpara.2006.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 01/07/2023]
Abstract
Eimeria bovis is an important coccidian parasite of cattle causing severe diarrhea in young animals. Its first schizogony takes place in endothelial cells of the ileum resulting in the formation of macroschizonts 14-18 days p.i. This longlasting development suggests a particular immune evasion strategy of the parasite. Here, we analyse early innate immune reactions to E. bovis by determining the adhesion of polymorphonuclear neutrophils (PMN) to infected endothelial cell layers under flow conditions and the transcription of adhesion molecule genes in infected host cells. Bovine umbilical vein endothelial cells (BUVEC) were infected with E. bovis sporozoites. Sporozoites invaded BUVEC within 1h and the first mature macroschizonts occurred 14 days p.i. PMN adhesion was enhanced in E. bovis-infected BUVEC layers as early as 8h p.i.; maximum adhesion occurred 48 h p.i. Increased adhesion rates persisted until the end of the observation period at 14 days p.i. PMN adhered to both infected and uninfected cells within monolayers, suggesting paracrine cell activation. E. bovis infection upregulated the transcription of genes encoding for P-selectin, E-selectin, vascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Most marked effects concerned E-selectin followed by P-selectin, VCAM-1 and ICAM-1. Increased transcript levels were found beginning 30 min p.i. and maximum values occurred 1-2h p.i. (P-selectin) and 2-4h p.i. (E-selectin, VCAM-1, ICAM-1). By 12-24h p.i. levels had decreased to those of uninfected controls. Tumor necrosis factor alpha (TNFalpha)-induced PMN adhesion was significantly reduced in infected vs. uninfected BUVEC. Eimeria bovis also had suppressive effects on TNFalpha-mediated upregulation of adhesion molecule gene transcription. The data presented here suggest that infection of BUVEC with E. bovis on one hand induces proinflammatory reactions resulting in enhanced PMN adhesion mediated by upregulated adhesion molecule gene transcription but on the other downregulates TNFalpha-induced cell activation.
Collapse
Affiliation(s)
- Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Rudolf-Buchheim-Str. 2, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
23
|
Mercier C, Adjogble KDZ, Däubener W, Delauw MFC. Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? Int J Parasitol 2006; 35:829-49. [PMID: 15978597 DOI: 10.1016/j.ijpara.2005.03.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/07/2005] [Accepted: 03/18/2005] [Indexed: 02/06/2023]
Abstract
Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data accumulated over recent years on alternative strategies chosen by these parasites to develop within a parasitophorous vacuole and explores the role of dense granules in this process. One of the characteristics of the Plasmodium erythrocyte stages is to export numerous parasite proteins into both the host cell cytoplasm and/or plasma membrane via the vacuole used as a step trafficking compartment. Whether this feature can be correlated to few storage granules and a restricted number of dense granule proteins, is not yet clear. By contrast, the Toxoplasma developing vacuole is decorated by abundantly expressed dense granule proteins and is characterised by a network of membranous nanotubes. Although the exact function of most of these proteins remains currently unknown, recent data suggest that some of these dense granule proteins could be involved in building the intravacuolar membranous network. Conserved expression of the Toxoplasma dense granule proteins throughout most of the parasite stages suggests that they could also be key elements of the cyst formation.
Collapse
Affiliation(s)
- Corinne Mercier
- Institut Jean Roget, Université Joseph Fourier, CNRS UMR 5163, Place du Commandant Nal., 38700 La Tronche, France.
| | | | | | | |
Collapse
|
24
|
Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA. The genome of Cryptosporidium hominis. Nature 2004; 431:1107-12. [PMID: 15510150 DOI: 10.1038/nature02977] [Citation(s) in RCA: 399] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 08/06/2004] [Indexed: 11/09/2022]
Abstract
Cryptosporidium species cause acute gastroenteritis and diarrhoea worldwide. They are members of the Apicomplexa--protozoan pathogens that invade host cells by using a specialized apical complex and are usually transmitted by an invertebrate vector or intermediate host. In contrast to other Apicomplexans, Cryptosporidium is transmitted by ingestion of oocysts and completes its life cycle in a single host. No therapy is available, and control focuses on eliminating oocysts in water supplies. Two species, C. hominis and C. parvum, which differ in host range, genotype and pathogenicity, are most relevant to humans. C. hominis is restricted to humans, whereas C. parvum also infects other mammals. Here we describe the eight-chromosome approximately 9.2-million-base genome of C. hominis. The complement of C. hominis protein-coding genes shows a striking concordance with the requirements imposed by the environmental niches the parasite inhabits. Energy metabolism is largely from glycolysis. Both aerobic and anaerobic metabolisms are available, the former requiring an alternative electron transport system in a simplified mitochondrion. Biosynthesis capabilities are limited, explaining an extensive array of transporters. Evidence of an apicoplast is absent, but genes associated with apical complex organelles are present. C. hominis and C. parvum exhibit very similar gene complements, and phenotypic differences between these parasites must be due to subtle sequence divergence.
Collapse
Affiliation(s)
- Ping Xu
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284-2030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|