1
|
Zhang R, Lan J, Chen Q, Liu Y, Hu L, Cao J, Zhao H, Shen Y. Hesperidin Alleviates Acute Necrotizing Pancreatitis by Activating SIRT1 - Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation. Comb Chem High Throughput Screen 2024; 27:1745-1757. [PMID: 37534793 DOI: 10.2174/1386207326666230803140408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Acute necrotizing pancreatitis is a serious pancreatic injury with limited effective treatments. This study aims to investigate the therapeutic effects of hesperidin on Larginine- induced acute pancreatitis and its potential targets. METHODS The authors induced acute pancreatitis in mice by administering two hourly intraperitoneal injections of L-arginine-HCl, and evaluated the impact of hesperidin on pancreatic and lung tissues, plasma amylase activity, and myeloperoxidase content. Additionally, necrosis and mitochondrial function was tested in primary pancreatic acinar cells. The interactions between hesperidin and proteins involved in necrosis and mitochondrial dysfunction were further invested using in silico molecular docking and molecular dynamic simulations. RESULTS Hesperidin effectively ameliorated the severity of acute necrotizing pancreatitis by reducing plasma amylase, pancreatic MPO, serum IL-6 levels, pancreatic edema, inflammation, and pancreatic necrosis. Hesperidin also protected against acute pancreatitis-associated lung injury and prevented acinar cell necrosis, mitochondrial membrane potential loss, and ATP depletion. In addition, hesperidin exhibited a high binding affinity with SIRT1 and increased the protein levels of SIRT1. The SIRT1 inhibitor EX527 abolished the protective effect of hesperidin against necrosis in acinar cells. CONCLUSION These findings indicate that hesperidin alleviates the severity of acute necrotizing pancreatitis by activating SIRT1, which may provide insight into the mechanisms of natural compounds in treating AP. Hesperidin has potential as a therapeutic agent for acute necrotizing pancreatitis and provides a new approach for novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Junjie Lan
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Qi Chen
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Yang Liu
- Department of Hepatobiliary Surgery II, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Linfang Hu
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Jinyong Cao
- Department of Endoscopy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Huaye Zhao
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| |
Collapse
|
2
|
Bayless RL, Sheats MK, Jones SL. Withaferin A Inhibits Neutrophil Adhesion, Migration, and Respiratory Burst and Promotes Timely Neutrophil Apoptosis. Front Vet Sci 2022; 9:900453. [PMID: 35782542 PMCID: PMC9247543 DOI: 10.3389/fvets.2022.900453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils play a major role in many equine conditions, including equine asthma, laminitis, and intestinal ischemia and reperfusion injury, and therefore represent an attractive target for innovative therapeutic approaches. Novel strategies for reducing neutrophilic inflammation include modulation of neutrophil functions and lifespan. Withaferin A (WFA) is a phytochemical with well-established in vitro and in vivo anti-inflammatory properties, but its direct effects on neutrophils are largely unknown. We hypothesized that WFA would inhibit adhesion, migration, and respiratory burst by equine neutrophils and promote timely apoptosis of primed equine neutrophils. Consistent with this hypothesis, our data show that WFA causes a significant, concentration-dependent inhibition of equine neutrophil adhesion, migration, and respiratory burst in response to diverse stimuli. Further, WFA treatment increased apoptosis of equine neutrophils exposed to GM-CSF for 24 h. This pro-apoptotic effect of WFA was not observed in unprimed neutrophils, nor at the 2-h time point relevant to our functional neutrophil experiments. Our data demonstrate that WFA may reduce neutrophil-mediated inflammation through multiple mechanisms, including suppression of inflammatory responses and promotion of apoptosis. Additional research is needed to elucidate the molecular mechanisms for these effects and evaluate the potential clinical use of WFA in veterinary and human patients.
Collapse
Affiliation(s)
- Rosemary L Bayless
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Samuel L Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Xu Q, Wang M, Guo H, Liu H, Zhang G, Xu C, Chen H. Emodin Alleviates Severe Acute Pancreatitis-Associated Acute Lung Injury by Inhibiting the Cold-Inducible RNA-Binding Protein (CIRP)-Mediated Activation of the NLRP3/IL-1 β/CXCL1 Signaling. Front Pharmacol 2021; 12:655372. [PMID: 33967799 PMCID: PMC8103163 DOI: 10.3389/fphar.2021.655372] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Severe acute pancreatitis (SAP) can lead to acute lung injury (ALI). This study investigated the therapeutic effect of emodin and its molecular mechanisms in a rat model of SAP-ALI. Methods: Forty male Sprague-Dawley rats were randomly divided into the groups: Control (CON), SAP (SAP), emodin (EMO), and C23 (C23). The latter three groups of rats were induced for SAP-ALI by retrograde injection of 5% sodium taurocholate into the biliary-pancreatic duct and were treated with vehicle, emodin or C23, respectively. One day post induction, their pancreatic and lung injury was assessed by histology and arterial blood gas analysis. In vitro, rat alveolar macrophages (NR8383 cells) were treated with recombinant rat CIRP in the presence or absence of TAK242 (a TLR4 inhibitor), C23 or emodin. The CIRP-mediated activation of the NLRP3/IL-1β/CXCL1 signaling in rat lungs and NR8383 cells was determined. Similarly, the role of IL-1β in the CIRP-induced CXCL1 expression was investigated. Results: Emodin treatment significantly reduced inflammation and tissue damages in the pancreatic and lung tissues in rats with SAP-ALI, accompanied by decreasing serum amylase, CIRP and IL-1β levels and improving lung function. Furthermore, emodin significantly mitigated the SAP-up-regulated CIRP expression in the pancreatic islets and lung tissues, and attenuated the SAP-activated NF-κB signaling, NLRP3 inflammasome formation and CXCL1 expression in lung resident macrophages as well as neutrophil infiltration in the lungs of rats. In addition, treatment with CIRP significantly activated the NF-κB signaling and NLRP3 inflammasome formation and induced IL-1β and CXCL1 expression and pyroptosis in NR8383 cells, which were abrogated by TAK242 and significantly mitigated by C23 or emodin. Moreover, CIRP only induced very lower levels of CXCL1 expression in IL-1β-silencing NR8383 cells and treatment with IL-1β induced CXCL1 expression in NR8383 cells in a dose and time-dependent manner. Conclusion: Emodin may inhibit the CIRP-activated NLRP3/IL-1β/CXCL1signaling to decrease neutrophil infiltration and ameliorate the SAP-ALI in rats.
Collapse
Affiliation(s)
- Qiushi Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Huanhuan Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Wan J, Ren Y, Yang X, Li X, Xia L, Lu N. The Role of Neutrophils and Neutrophil Extracellular Traps in Acute Pancreatitis. Front Cell Dev Biol 2021; 8:565758. [PMID: 33553136 PMCID: PMC7859271 DOI: 10.3389/fcell.2020.565758] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Leukocyte invasion (neutrophils and monocytes/macrophages) is closely related to the severity of acute pancreatitis (AP) and plays an important role in the systemic inflammatory response and other organ injuries secondary to AP. Increased and sustained activation of neutrophils are major determinants of pancreatic injury and inflammation. After the onset of AP, the arrival of the first wave of neutrophils occurs due to a variety of triggers and is critical for the exacerbation of inflammation. In this review, we summarize the functional characteristics of neutrophils, elastase, and heparin-binding proteins in granules, the mechanisms of neutrophil recruitment and the role of neutrophil extracellular traps (NETs) in AP.
Collapse
Affiliation(s)
- Jianhua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuping Ren
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xueyang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Xia
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis. Cell Tissue Res 2020; 380:207-222. [DOI: 10.1007/s00441-020-03211-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
|
6
|
Gulla A, Gulbinas A, Dambrauskas Z, Strupas K. Heme Oxygenase-1 Polymorphism Is Associated With the Development of Necrotic Acute Pancreatitis Via Vascular Cell Adhesion Molecule-1 and the E-Selectin Expression Regulation Pathway. Pancreas 2019; 48:787-791. [PMID: 31210657 DOI: 10.1097/mpa.0000000000001328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Severe acute pancreatitis can lead to systemic complications. Here, we explore the mechanisms based on our previous study associated with the deregulation of heme oxygenase-1 (HO-1) and development of severe acute pancreatitis. METHODS Acute pancreatitis patients (n = 135) and age- and sex-matched healthy controls (n = 108) were studied. The polymerase chain reaction products were analyzed with an ABI 3130 genetic analyzer and GeneMapper software. A short allele was defined ≤27 dinucleotide (GT) repeats, whereas a long allele was defined >27 GT. Levels of 12 different cytokines in blood serum were measured by enzyme-linked immunosorbent assay. All samples in this study were consistently stored in -80°C. RESULTS Patients with the long long genotype expressed E-selectin and vascular cell adhesion molecule-1 at statistically significantly higher levels in serum compared with short short genotype or short long genotypes. Vascular cell adhesion molecule-1 and E-selectin serum levels significantly correlate with the total allele length of the HO-1 promoter region. CONCLUSION Polymorphism of the GT repeats in the HO-1 promoter region may be a risk factor for developing acute necrotizing pancreatitis due to deregulation of the immune response.
Collapse
Affiliation(s)
| | - Antanas Gulbinas
- Department of Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Zilvinas Dambrauskas
- Department of Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
7
|
Garg PK, Singh VP. Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology 2019; 156:2008-2023. [PMID: 30768987 PMCID: PMC6486861 DOI: 10.1053/j.gastro.2018.12.041] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis may be associated with both local and systemic complications. Systemic injury manifests in the form of organ failure, which is seen in approximately 20% of all cases of acute pancreatitis and defines "severe acute pancreatitis." Organ failure typically develops early in the course of acute pancreatitis, but also may develop later due to infected pancreatic necrosis-induced sepsis. Organ failure is the most important determinant of outcome in acute pancreatitis. We review here the current understanding of the risk factors, pathophysiology, timing, impact on outcome, and therapy of organ failure in acute pancreatitis. As we discuss the pathophysiology of severe systemic injury, the distinctions between markers and mediators of severity are highlighted based on evidence supporting their causality in organ failure. Emphasis is placed on clinically relevant end points of organ failure and the mechanisms underlying the pathophysiological perturbations, which offer insight into potential therapeutic targets to treat.
Collapse
|
8
|
Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Chronic Pancreatitis Associated Acute Respiratory Failure. MOJ IMMUNOLOGY 2017; 5:00149. [PMID: 29399623 PMCID: PMC5793936 DOI: 10.15406/moji.2017.05.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a condition characterized by parenchymal inflammation of the pancreas, which is often associated with lung injury due to low level of oxygen and the condition is termed as acute pancreatitis-associated lung injury (APALI). Clinical reports indicated that ~ 20% to 50% of patients from low oxygen levels in blood with acute respiratory distress syndrome (ARDS). ARDS is a severe form of acute lung injury (ALI), a pulmonary disease with impaired airflow making patients difficult to breathe. ALI is frequently observed in patients with severe acute pancreatitis. Approximately one third of severe pancreatitis patients develop acute lung injury and acute respiratory distress syndrome that account for 60% of all deaths within the first week. The major causes of ALI and ARDS are sepsis, trauma, aspiration, multiple blood transfusion, and most importantly acute pancreatitis. The molecular mechanisms of ALI and ARDS are still not well explored, but available reports indicate the involvement of several pro-inflammatory mediators including cytokines (TNF-α, IL-1β, IL-6) and chemokines [like interleukin-8 (IL-8) and macrophage inhibitory factor (MIF)], as well as macrophage polarization regulating the migration and pulmonary infiltration of neutrophils into the pulmonary interstitial tissue, causing injury to the pulmonary parenchyma. Acute lung injury and acute respiratory distress syndrome in acute pancreatitis remains an unsolved issue and needs more research and resources to develop effective treatments and therapies. However, recent efforts have tested several molecules in an experimental model and showed promising results as a treatment option. The current review summarized the mechanism that is operational in pancreatitis-associated acute respiratory failure and respiratory distress syndrome in patients and current treatment options.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | - Alok K Verma
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | | | - Anil Mishra
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| |
Collapse
|
9
|
Nagao S, Taguchi K, Sakai H, Yamasaki K, Watanabe H, Otagiri M, Maruyama T. Carbon monoxide-bound hemoglobin vesicles ameliorate multiorgan injuries induced by severe acute pancreatitis in mice by their anti-inflammatory and antioxidant properties. Int J Nanomedicine 2016; 11:5611-5620. [PMID: 27822039 PMCID: PMC5089833 DOI: 10.2147/ijn.s118185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Carbon monoxide (CO) has attracted attention as a possible therapeutic agent for affecting anti-inflammatory and antioxidant activities. Previously, CO-bound hemoglobin vesicle (CO-HbV) was developed as a nanotechnology-based CO donor, and its safety profile and therapeutic potential as a clinically applicable carrier of CO were examined in vitro and in vivo. In the present study, the therapeutic efficacy of CO-HbV against severe acute pancreatitis was examined with secondary distal organ-injured model mice that were fed with a choline-deficient ethionine-supplemented diet. A CO-HbV treatment significantly reduced the mortality of the acute pancreatitis model mice compared to saline and HbV. Biochemical and histological evaluations clearly showed that CO-HbV suppressed acute pancreatitis by inhibiting the production of systemic proinflammatory cytokines, neutrophil infiltration, and oxidative injuries in pancreatic tissue. Interestingly, CO-HbV also diminished the subsequent damage to distal organs including liver, kidneys, and lungs. This could be due to the suppression of neutrophil infiltration into tissues and the subsequently enhanced oxidative injuries. In contrast, O2-bound HbV, the inactive form of CO-HbV, was ineffective against both pancreatitis and distal organ injuries, confirming that CO was directly responsible for the protective effects of CO-HbV in acute pancreatitis. These findings suggest that CO-HbV has anti-inflammatory and antioxidant characteristics of CO and consequently exerts a superior protective effect against acute pancreatitis-induced multiorgan damage.
Collapse
Affiliation(s)
- Saori Nagao
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto; Research Fellow of Japan Society for the Promotion of Science, Tokyo
| | - Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto; DDS Research Institute, Sojo University
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto; Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto; DDS Research Institute, Sojo University
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto; Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Ateyya H, Wagih HM, El-Sherbeeny NA. Effect of tiron on remote organ injury in rats with severe acute pancreatitis induced by L-arginine. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:873-85. [PMID: 27118662 DOI: 10.1007/s00210-016-1250-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory disorder of the pancreas that can be complicated by involvement of other remote organs. Oxidative stress is known to have a crucial role in the development of pancreatic acinar damage and one of the main causes in multisystem organ failure in experimental AP. The aim of the study was to determine the effect of tiron on pancreas and remote organ damage in L-arginine (L-Arg) induced AP rat model. Thirty-two male rats were divided in random into four groups: control, tiron, L-Arg, and tiron with L-Arg. At the end of the experiment, blood samples were withdrawn for biochemical analysis. The pancreas, lung, kidney, and liver were collected for histopathological examination. Estimation of pancreatic water content was done. Analysis of pulmonary, hepatic, renal, and pancreatic lipid peroxide levels (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) were carried out. Finally, nuclear factor kappa B (NF-κB) and transforming growth factor β1 (TGF-β1) expression in pancreatic tissue was determined. Results indicated that treatment with tiron significantly decreased lipid peroxide levels and markedly increased both SOD activity and GSH level. Moreover, histopathological analysis further confirmed that administration of tiron relatively ameliorates pancreatic acinar cells and remote organ damage. Increased immunoreactivity of NF-κB and TGF-β1 were reduced also by tiron treatment. These findings pointed out the protective role of the mitochondrial antioxidant, tiron against AP induced by L-Arg.
Collapse
Affiliation(s)
- Hayam Ateyya
- College of Pharmacy, Taibah University, El-Madinah, El-Munawarah, Saudi Arabia. .,Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Heba M Wagih
- Medical Laboratories Technology Department, Faculty of Applied Medical Sciences, Taibah University, El-Madinah El-Munawarah, Saudi Arabia.,Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nagla A El-Sherbeeny
- College of Pharmacy, Taibah University, El-Madinah, El-Munawarah, Saudi Arabia.,Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Wu D, Zeng Y, Fan Y, Wu J, Mulatibieke T, Ni J, Yu G, Wan R, Wang X, Hu G. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci Rep 2016; 6:20545. [PMID: 26841848 PMCID: PMC4740794 DOI: 10.1038/srep20545] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023] Open
Abstract
Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM.
Collapse
Affiliation(s)
- Deqing Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuting Fan
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tunike Mulatibieke
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ge Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Xia H, Ren X, Bolte CS, Ustiyan V, Zhang Y, Shah TA, Kalin TV, Whitsett JA, Kalinichenko VV. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol 2015; 52:611-21. [PMID: 25275225 DOI: 10.1165/rcmb.2014-0091oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Current treatments for inflammation associated with bronchopulmonary dysplasia (BPD) fail to show clinical efficacy. Foxm1, a transcription factor of the Forkhead box family, is a critical mediator of lung development and carcinogenesis, but its role in BPD-associated pulmonary inflammation is unknown. Immunohistochemistry and RNA analysis were used to assess Foxm1 in lung tissue from hyperoxia-treated mice and patients with BPD. LysM-Cre/Foxm1(-/-) mice, in which Foxm1 was deleted from myeloid-derived inflammatory cells, including macrophages, monocytes, and neutrophils, were exposed to neonatal hyperoxia, causing lung injury and remodeling. Measurements of lung function and flow cytometry were used to evaluate the effects of Foxm1 deletion on pulmonary inflammation and repair. Increased Foxm1 expression was observed in pulmonary macrophages of hyperoxia-exposed mice and in lung tissue from patients with BPD. After hyperoxia, deletion of Foxm1 from the myeloid cell lineage decreased numbers of interstitial macrophages (CD45(+)CD11b(+)Ly6C(-)Ly6G(-)F4/80(+)CD68(-)) and impaired alveologenesis and lung function. The exaggerated BPD-like phenotype observed in hyperoxia-exposed LysM-Cre/Foxm1(-/-) mice was associated with increased expression of neutrophil-derived myeloperoxidase, proteinase 3, and cathepsin g, all of which are critical for lung remodeling and inflammation. Our data demonstrate that Foxm1 influences pulmonary inflammatory responses to hyperoxia, inhibiting neutrophil-derived enzymes and enhancing monocytic responses that limit alveolar injury and remodeling in neonatal lungs.
Collapse
|
13
|
José RJ, Williams AE, Mercer PF, Sulikowski MG, Brown JS, Chambers RC. Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:6024-34. [PMID: 25948816 PMCID: PMC4456635 DOI: 10.4049/jimmunol.1500124] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/24/2022]
Abstract
Neutrophils are key effector cells of the innate immune response to pathogenic bacteria, but excessive neutrophilic inflammation can be associated with bystander tissue damage. The mechanisms responsible for neutrophil recruitment to the lungs during bacterial pneumonia are poorly defined. In this study, we focus on the potential role of the major high-affinity thrombin receptor, proteinase-activated receptor 1 (PAR-1), during the development of pneumonia to the common lung pathogen Streptococcus pneumoniae. Our studies demonstrate that neutrophils were indispensable for controlling S. pneumoniae outgrowth but contributed to alveolar barrier disruption. We further report that intra-alveolar coagulation (bronchoalveolar lavage fluid thrombin-antithrombin complex levels) and PAR-1 immunostaining were increased in this model of bacterial lung infection. Functional studies using the most clinically advanced PAR-1 antagonist, SCH530348, revealed a key contribution for PAR-1 signaling in influencing neutrophil recruitment to lung airspaces in response to both an invasive and noninvasive strain of S. pneumoniae (D39 and EF3030) but that PAR-1 antagonism did not impair the ability of the host to control bacterial outgrowth. PAR-1 antagonist treatment significantly decreased pulmonary levels of IL-1β, CXCL1, CCL2, and CCL7 and attenuated alveolar leak. Ab neutralization studies further demonstrated a nonredundant role for IL-1β, CXCL1, and CCL7 in mediating neutrophil recruitment in response to S. pneumoniae infection. Taken together, these data demonstrate a key role for PAR-1 during S. pneumoniae lung infection that is mediated, at least in part, by influencing multiple downstream inflammatory mediators.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Andrew E Williams
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Michal G Sulikowski
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
14
|
Jones HD, Yoo J, Crother TR, Kyme P, Ben-Shlomo A, Khalafi R, Tseng CW, Parks WC, Arditi M, Liu GY, Shimada K. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration. PLoS One 2015; 10:e0123460. [PMID: 25875775 PMCID: PMC4395431 DOI: 10.1371/journal.pone.0123460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/03/2015] [Indexed: 01/31/2023] Open
Abstract
Background Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3) directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury. Methods We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε. Results Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice. Conclusions Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but paradoxically also leads to the development of significant hypoxemia. These findings suggest that pulmonary neutrophilia is not linked to hypoxemia in ventilator-induced lung injury, and that nicotinamide exacerbates hypoxemia during VILI.
Collapse
Affiliation(s)
- Heather D. Jones
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jeena Yoo
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Timothy R. Crother
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Pierre Kyme
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States of America
| | - Ramtin Khalafi
- Pituitary Center, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States of America
| | - Ching W. Tseng
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - William C. Parks
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - George Y. Liu
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Kenichi Shimada
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Alcohol and gallstones are the most common etiologic factors in acute pancreatitis (AP). Recurrent AP can lead to chronic pancreatitis (CP). Although the underlying pathophysiology of the disease is complex, immune cells are critical in the pathogenesis of pancreatitis and determining disease severity. In this review, we discuss the role of innate and adaptive immune cells in both AP and CP, potential immune-based therapeutic targets, and animal models used to understand our knowledge of the disease. The relative difficulty of obtaining human pancreatic tissue during pancreatitis makes animal models necessary. Animal models of pancreatitis have been generated to understand disease pathogenesis, test therapeutic interventions, and investigate immune responses. Although current animal models do not recapitulate all aspects of human disease, until better models can be developed available models are useful in addressing key research questions. Differences between experimental and clinical pancreatitis need consideration, and when therapies are tested, models with established disease ought to be included.
Collapse
|
16
|
Wang H, Wang S, Tang A, Gong H, Ma P, Chen L. Combined effects of sivelestat and resveratrol on severe acute pancreatitis-associated lung injury in rats. Exp Lung Res 2014; 40:288-97. [PMID: 24785170 DOI: 10.3109/01902148.2014.908249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite extensive research and clinical efforts made in the management of acute pancre-atitis during the past few decades, to date no effective cure is available and the mortality from severe acute pancre-atitis remains high. Given that lung is the primary cause of early death in acute pancreatitis patients, novel therapeutic approaches aiming to prevent lung injury have become a subject of intensive investigation. In a previous study, we demonstrated that sivelestat, a specific inhibitor of neutrophil elastase, is effective in protecting against lung failure in rats with taurocholate-induced acute pancreatitis. As part of the analyses extended from that study, the present study aimed to evaluate the role of sivelestat and/or resveratrol in the protection against acute pancreatitis-associated lung injury. The extended analyses demonstrated the following: (1) sodium taurocholate induced apparent lung injury and dysfunction manifested by histological anomalies, including vacuolization and apoptosis of the cells in the lung, as well as biochemical aberrations in the blood (an increase in amylase concentration and a decrease in partial arterial oxygen pressure) and increases in activities of reactive oxygen species, interleukin 6, myeloperoxidase, neutrophil elastase, lung edema, bronchotracho alveolar lavage protein concentration, and bronchotracho alveolar lavage cell infiltration in the lung; and (2) in lung tissues, either sivelestat or resveratrol treatment effectively attenuated the taurocholate-induced abnormalities in all parameters analyzed except for serum amylase concentration. In addition, combined treatment with both sivelestat and resveratrol demonstrated additive protective effects on pancreatitis-associated lung injury compared with single treatment.
Collapse
Affiliation(s)
- Houhong Wang
- 1Department of Surgery, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
17
|
Jones HD, Crother TR, Gonzalez-Villalobos RA, Jupelli M, Chen S, Dagvadorj J, Arditi M, Shimada K. The NLRP3 inflammasome is required for the development of hypoxemia in LPS/mechanical ventilation acute lung injury. Am J Respir Cell Mol Biol 2014; 50:270-80. [PMID: 24007300 DOI: 10.1165/rcmb.2013-0087oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IL-1β is a potent proinflammatory cytokine that is implicated in the pathogenesis of acute respiratory distress syndrome. We hypothesized that LPS and mechanical ventilation (MV) together could lead to IL-1β secretion and the development of acute lung injury (ALI), and that this process would be dependent on caspase-1 and the nucleotide binding domain and leucine-rich repeat (NLR) pyrin domain containing 3 (NLRP3) inflammasome activation. The objectives of this study were to determine the specific role of IL-1β, caspase-1, and the NLRP3 inflammasome in a two-hit model of ALI due to LPS plus MV. We used a two-hit murine model of ALI in which both inhaled LPS and MV were required for the development of hypoxemia, pulmonary neutrophil infiltration, and alveolar leakage. Nlrp3-deficent and Casp1-deficient mice had significantly diminished IL-1β levels in bronchoalveolar lavage fluid, and were specifically protected from hypoxemia, despite similar alveolar neutrophil infiltration and leakage. The IL-1 receptor antagonist, Anakinra, significantly improved the specific development of hypoxemia without significant effects on neutrophil infiltration or alveolar leakage. MV resulted in increased bronchoalveolar lavage extracellular ATP and alveolar macrophage apoptosis as triggers of NLRP3 inflammasome activation. NLRP3 inflammasome activation and IL-1β production play a key role in ALI caused by the combination of LPS and MV, particularly in the hypoxemia associated with acute respiratory distress syndrome. Blocking IL-1 signaling in this model specifically ameliorates hypoxemia, without affecting neutrophil infiltration and alveolar leakage, disassociating these readouts of ALI. MV causes alveolar macrophage apoptosis, a key step in the activation of NLRP3 inflammasome and production of IL-1β.
Collapse
|
18
|
Role of macrophages in bile acid-induced inflammatory response of fetal lung during maternal cholestasis. J Mol Med (Berl) 2013; 92:359-72. [DOI: 10.1007/s00109-013-1106-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/17/2013] [Accepted: 11/14/2013] [Indexed: 01/14/2023]
|
19
|
Oiva J, Mustonen H, Kylänpää ML, Kuuliala K, Siitonen S, Kemppainen E, Puolakkainen P, Repo H. Patients with acute pancreatitis complicated by organ dysfunction show abnormal peripheral blood polymorphonuclear leukocyte signaling. Pancreatology 2013; 13:118-24. [PMID: 23561969 DOI: 10.1016/j.pan.2013.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Circulating polymorphonuclear leukocytes (PMNLs) may contribute to development of organ dysfunction in acute pancreatitis (AP). We outlined aberrations in PMNL signaling profiles in patients with AP complicated by organ dysfunction and immune suppression. METHODS Study comprised 13 patients treated at intensive care unit due to severe AP complicated by vital organ dysfunction. Mean proportion (SEM) of HLA-DR-positive monocytes was 55.0% (4.1%). 13 healthy volunteers served as reference subjects. Phosphorylation of PMNL NFκB, p38, ERK1/2 and STAT3, -5 and -6 was determined using whole blood flow cytometry. Transmigration of PMNLs was studied using endothelial EA-HY cell monolayer. RESULTS Proportions of NFκB phosphorylation-positive PMNLs were lower in the patients' than in reference subjects' blood samples supplemented with tumor necrosis factor. p38 phosphorylation was normal while ERK1/2 phosphorylation was decreased. STAT3 was constitutively activated in five patients. Proportion of patients' pSTAT6-positive cells was normal while fluorescence intensity was decreased. STAT5 phosphorylation was normal. Transmigration of patients' PMNLs was increased. CONCLUSIONS In patients with AP complicated by organ dysfunction proportion of pNFκB-positive PMNLs is decreased. This impairs patients' defense mechanisms against infection. Despite immune suppression, PMNL transmigration was increased and p38 phosphorylation capacity was not depressed, which may contribute to end organ inflammation and dysfunction.
Collapse
Affiliation(s)
- Jani Oiva
- Department of Surgery, Helsinki University Central Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen J, Cai QP, Shen PJ, Yan RL, Wang CM, Yang DJ, Fu HB, Chen XY. Netrin-1 protects against L-Arginine-induced acute pancreatitis in mice. PLoS One 2012; 7:e46201. [PMID: 23029434 PMCID: PMC3459888 DOI: 10.1371/journal.pone.0046201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022] Open
Abstract
Acute pancreatitis (AP) is a common inflammatory disease mediated by damage to acinar cells and subsequent pancreatic inflammation with infiltration of leukocytes. The neuronal guidance protein, netrin-1, has been shown to control leukocyte trafficking and modulate inflammatory responses in several inflammation-based diseases. The present study was aimed toward investigating the effects of netrin-1 in an in vivo model of AP in mice. AP was induced in C57BL/6 mice by administration of two intraperitoneal injections of L-Arginine (4 g/kg). Mice were treated with recombinant mouse netrin-1 at a dose of 1 µg/mouse or vehicle (0.1% BSA) intravenously through the tail vein immediately after the second injection of L-Arginine, and every 24 h thereafter. Mice were sacrificed at several time intervals from 0 to 96 h after the induction of pancreatitis. Blood and tissue samples of pancreas and lung were collected and processed to determine the severity of pancreatitis biochemically and histologically. Immunohistochemical staining demonstrated that netrin-1 was mainly expressed in the islet cells of the normal pancreas and the AP model pancreas, and the pancreatic expression of netrin-1 was down-regulated at both the mRNA and protein levels during the course of AP. Exogenous netrin-1 administration significantly reduced plasma amylase levels, myeloperoxidase activity, pro-inflammatory cytokine production, and pancreas and lung tissue damages. Furthermore, netrin-1 administration did not cause significant inhibition of nuclear factor-kappa B activation in the pancreas of L-Arginine-induced AP. In conclusion, our novel data suggest that netrin-1 is capable of improving damage of pancreas and lung, and exerting anti-inflammatory effects in mice with severe acute pancreatitis. Thus, our results indicate that netrin-1 may constitute a novel target in the management of AP.
Collapse
Affiliation(s)
- Ji Chen
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qing-ping Cai
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pi-jie Shen
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rong-lin Yan
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chang-ming Wang
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - De-jun Yang
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong-bing Fu
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xue-yun Chen
- Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
21
|
Akbarshahi H, Rosendahl AH, Westergren-Thorsson G, Andersson R. Acute lung injury in acute pancreatitis--awaiting the big leap. Respir Med 2012; 106:1199-1210. [PMID: 22749752 DOI: 10.1016/j.rmed.2012.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/12/2022]
Abstract
Acute lung injury is a severe complication to acute pancreatitis and a significant health problem associated with a considerable mortality. Underlying mechanisms are complex and poorly understood, although recent insights have identified several inflammatory profiles and cellular components involved to varying degrees during different phases of pancreatitis exacerbation and acute lung injury. This review aims to highlight the current understanding of the inflammatory and cellular components involved in and responsible for the associations of acute pancreatitis and acute lung injury, with the hope of thereby providing an increased understanding of the underlying mechanisms. In addition, novel experimental models of modulating the pancreatitis-associated acute lung injury are presented, interventions that may be of potential future clinical value.
Collapse
Affiliation(s)
- Hamid Akbarshahi
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden
| | | | | | | |
Collapse
|
22
|
Mansfield C. Pathophysiology of acute pancreatitis: potential application from experimental models and human medicine to dogs. J Vet Intern Med 2012; 26:875-87. [PMID: 22676262 DOI: 10.1111/j.1939-1676.2012.00949.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/05/2012] [Accepted: 04/24/2012] [Indexed: 12/18/2022] Open
Abstract
The cellular events leading to pancreatitis have been studied extensively in experimental models. Understanding the cellular events and inciting causes of the multisystem inflammatory cascades that are activated with this disease is of vital importance to advance diagnosis and treatment of this condition. Unfortunately, the pathophysiology of pancreatitis in dogs is not well understood, and extrapolation from experimental and human medicine is necessary. The interplay of the inflammatory cascades (kinin, complement, cytokine) is extremely complex in both initiating leukocyte migration and perpetuating disease. Recently, nitric oxide (NO) and altered microcirculation of the pancreas have been proposed as major initiators of inflammation. In addition, the role of the gut is becoming increasingly explored as a cause of oxidative stress and potentiation of systemic inflammation in pancreatitis.
Collapse
Affiliation(s)
- Caroline Mansfield
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Vic., Australia.
| |
Collapse
|
23
|
Wang C, Li D, Qian Y, Wang J, Jing H. Increased matrix metalloproteinase-9 activity and mRNA expression in lung injury following cardiopulmonary bypass. J Transl Med 2012; 92:910-6. [PMID: 22449799 DOI: 10.1038/labinvest.2012.50] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To determine whether the presence of Matrix metalloproteinases (MMPs) is associated with acute lung injury following cardiopulmonary bypass (CPB), we evaluated the activity and gene expression of matrix metalloproteinases-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) of lungs using rat model of CPB. Adult male Sprague-Dawley rats were randomly divided into three groups: Group I (underwent cannulation + heparinization only); group II (underwent 60 min of normothermic CPB); and group III (underwent 60 min of normothermic of CPB, which rats received doxycycline treat by filling stomach 1 week ahead of CPB). Lung injury was evaluated histologically. The enzyme activity of MMP-9 and TIMP-1 in the bronchoalveolar lavage fluid was detected by western-blot analysis. The expression of MMP-9 and TIMP-1 in lung tissue was assessed using reverse transcriptase-polymerase chain reaction method. We found there was significantly pulmonary edema and lung injury in groups II and III compared with group I, and the histological markers of pulmonary edema in the Group III were less pronounced in comparison with Group II. The MMP-9 activity and gene expression were increased significantly, but the TIMP-1 increased slowly in group II, and the ratio of MMP-9/TIMP-1 was imbalanced severely. More significantly, the MMP-9 decreased significantly and the TIMP-1 mRNA increased gradually in group III compared with group II, and the ratio of MMP-9/TIMP-1 was improved significantly. We concluded MMP-9 might have an important role in acute lung injury following CPB. TIMP-1 increased in the rats treated with doxycycline ahead and might compensate for the activity of MMP-9. The doxycycline might have the protective effect against acute lung injury following CPB.
Collapse
Affiliation(s)
- Changtian Wang
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing, China
| | | | | | | | | |
Collapse
|
24
|
Zhou J, Tsai YT, Weng H, Tang EN, Nair A, Davé DP, Tang L. Real-time detection of implant-associated neutrophil responses using a formyl peptide receptor-targeting NIR nanoprobe. Int J Nanomedicine 2012; 7:2057-68. [PMID: 22619542 PMCID: PMC3356202 DOI: 10.2147/ijn.s29961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neutrophils play an important role in implant-mediated inflammation and infection. Unfortunately, current methods which monitor neutrophil activity, including enzyme measurements and histological evaluation, require many animals and cannot be used to accurately depict the dynamic cellular responses. To understand the neutrophil interactions around implant-mediated inflammation and infection it is critical to develop methods which can monitor in vivo cellular activity in real time. In this study, formyl peptide receptor (FPR)-targeting near-infrared nanoprobes were fabricated. This was accomplished by conjugating near-infrared dye with specific peptides having a high affinity to the FPRs present on activated neutrophils. The ability of FPR-targeting nanoprobes to detect and quantify activated neutrophils was assessed both in vitro and in vivo. As expected, FPR-targeting nanoprobes preferentially accumulated on activated neutrophils in vitro. Following transplantation, FPR-targeting nanoprobes preferentially accumulated at the biomaterial implantation site. Equally important, a strong relationship was observed between the extent of fluorescence intensity in vivo and the number of recruited neutrophils at the implantation site. Furthermore, FPR-targeting nanoprobes may be used to detect and quantify the number of neutrophils responding to a catheter-associated infection. The results show that FPR-targeting nanoprobes may serve as a powerful tool to monitor and measure the extent of neutrophil responses to biomaterial implants in vivo.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019-0138, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Bedrosian AS, Nguyen AH, Hackman M, Connolly MK, Malhotra A, Ibrahim J, Cieza-Rubio NE, Henning JR, Barilla R, Rehman A, Pachter HL, Medina-Zea MV, Cohen SM, Frey AB, Acehan D, Miller G. Dendritic cells promote pancreatic viability in mice with acute pancreatitis. Gastroenterology 2011; 141:1915-26.e1-14. [PMID: 21801698 PMCID: PMC3202684 DOI: 10.1053/j.gastro.2011.07.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 06/21/2011] [Accepted: 07/18/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS The cellular mediators of acute pancreatitis are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. METHODS Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier method. RESULTS Numbers of major histocompatibility complex II(+)CD11c(+) DCs increased 100-fold in pancreata of mice with acute pancreatitis to account for nearly 15% of intrapancreatic leukocytes. Intrapancreatic DCs acquired a distinct immune phenotype in mice with acute pancreatitis; they expressed higher levels of major histocompatibility complex II and CD86 and increased production of interleukin-6, membrane cofactor protein-1, and tumor necrosis factor-α. However, rather than inducing an organ-destructive inflammatory process, DCs were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DCs and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DCs died from acinar cell death within 4 days. Depletion of DCs from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DCs did not require infiltrating neutrophils, activation of nuclear factor-κB, or signaling by mitogen-activated protein kinase or tumor necrosis factor-α. CONCLUSIONS DCs are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress.
Collapse
Affiliation(s)
- Andrea S. Bedrosian
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Andrew H. Nguyen
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Michael Hackman
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Michael K. Connolly
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Ashim Malhotra
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Junaid Ibrahim
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Napoleon E. Cieza-Rubio
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Justin R. Henning
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Rocky Barilla
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Adeel Rehman
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - H. Leon Pachter
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Marco V. Medina-Zea
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Steven M. Cohen
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Alan B. Frey
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Devrim Acehan
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - George Miller
- Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016,Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
26
|
Ceyhan GO, Timm AK, Bergmann F, Günther A, Aghdassi AA, Demir IE, Mayerle J, Kern M, Lerch MM, Büchler MW, Friess H, Schemmer P. Prophylactic glycine administration attenuates pancreatic damage and inflammation in experimental acute pancreatitis. Pancreatology 2011; 11:57-67. [PMID: 21474970 DOI: 10.1159/000325972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/15/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Acute pancreatitis (AP) is characterized by premature zymogen activation, systemic inflammatory response resulting in inflammatory infiltrates, sustained intracellular calcium, neurogenic inflammation and pain. The inhibitory neurotransmitter and cytoprotective amino acid glycine exerts a direct inhibitory effect on inflammatory cells, inhibits calcium influx and neuronal activation and therefore represents a putative therapeutic agent in AP. METHODS To explore the impact of glycine, mild AP was induced in rats by supramaximal cerulein stimulation (10 μg/kg BW/h) and severe AP by retrograde injection of sodium taurocholate solution (3%) into the common biliopancreatic duct. 100/300 mmol glycine was administered intravenously before induction of AP. To elucidate the effect of glycine on AP, we determined pathomorphology, pancreatic cytokines as well as proteases, serum lipase and amylase, pancreatic and lung MPO activity and pain sensation. RESULTS Glycine administration resulted in a noticeable improvement of pathomorphological alterations in AP, such as a reduction of necrosis, inflammatory infiltrates and cytoplasmic vacuoles in cerulein pancreatitis. In taurocholate pancreatitis, glycine additionally diminished pancreatic cytokines and MPO activity, as well as serum lipase and amylase levels. CONCLUSIONS Glycine reduced the severity of mild and much more of severe AP by attenuating the intrapancreatic and systemic inflammatory response. Therefore, glycine seems to be a promising tool for prophylactic treatment of AP. and IAP.
Collapse
Affiliation(s)
- G O Ceyhan
- Department of Surgery, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
DiMagno MJ, Lee SH, Owyang C, Zhou SY. Inhibition of acinar apoptosis occurs during acute pancreatitis in the human homologue DeltaF508 cystic fibrosis mouse. Am J Physiol Gastrointest Liver Physiol 2010; 299:G400-12. [PMID: 20522641 PMCID: PMC2928535 DOI: 10.1152/ajpgi.00061.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously, we found that the University of North Carolina cystic fibrosis (UNC-CF) mouse had more severe experimental acute pancreatitis (AP) than wild-type (WT) mice characterized by exuberant pancreatic inflammation and impaired acinar apoptosis. Because exon 10 CFTR gene mutations exhibit different phenotypes in tissues such as the mouse lung, we tested the hypothesis that DeltaF508-CF mice also develop severe AP associated with an antiapoptotic acinar phenotype, which requires indirect effects of the extracellular milieu. We used cerulein hyperstimulation models of AP. More severe pancreatitis occurred in cerulein-injected DeltaF508-CF vs. WT mice based on histological severity (P < 0.01) and greater neutrophil sequestration [P < 0.0001; confirmed by myeloperoxidase activity (P < 0.005)]. In dispersed acini cerulein-evoked necrosis was greater in DeltaF508-CF acini compared with WT (P < 0.05) and in WT acini pretreated with CFTR(inh)-172 compared with vehicle (P < 0.05). Cerulein-injected DeltaF508-CF vs. WT mice had less apoptosis based on poly(ADP-ribose) polymerase (PARP) cleavage (P < 0.005), absent DNA laddering, and reduced terminal deoxynucleotidyltransferase biotin-dUTP nick end labeling (TUNEL) staining (P < 0.005). Unexpectedly, caspase-3 activation was greater in DeltaF508-CF vs. WT acini at baseline (P < 0.05) and during AP (P < 0.0001). Downstream, DeltaF508-CF pancreas overexpressed the X-linked inhibitor of apoptosis compared with WT (P < 0.005). In summary, the DeltaF508-CF mutation, similar to the UNC-CF "null" mutation, causes severe AP characterized by an exuberant inflammatory response and impaired acinar apoptosis. Enhanced acinar necrosis in DeltaF508-CF occurs independently of extracellular milieu and correlates with loss of CFTR-Cl conductance. Although both exon 10 models of CF inhibit acinar apoptosis execution, the DeltaF508-CF mouse differs by increasing apoptosis signaling. Impaired transduction of increased apoptosis signaling in DeltaF508-CF acini may be biologically relevant to the pathogenesis of AP associated with CFTR mutations.
Collapse
Affiliation(s)
- Matthew J. DiMagno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Sae-Hong Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Shi-yi Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
28
|
Matrix metalloproteinase-9 derived from polymorphonuclear neutrophils increases gut barrier dysfunction and bacterial translocation in rat severe acute pancreatitis. Surgery 2008; 145:147-56. [PMID: 19167969 DOI: 10.1016/j.surg.2008.08.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 08/31/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND The role of polymorphonuclear neutrophil granulocytes (PMNs) and the PMN-derived protease, which is called matrix metalloproteinase-9 (MMP-9), for the gut barrier dysfunction in severe acute pancreatitis (SAP) has not yet been clarified. The aim of this study was to evaluate the effects of PMNs and MMP-9 on gut barrier dysfunction in rat SAP. METHODS SAP was induced by the injection of 5% sodium taurocholate, and anti-rat PMN serum or BB-94 were administered 48 h and 24 h, respectively, before the induction of acute pancreatitis. Twenty-four hours after the induction of acute pancreatitis, the gut barrier dysfunction and the incidence of bacterial translocation (BT) and PMN transmigration were investigated by bacterial, histologic, and biochemical (MPO) analysis. Inhibition of MMP-9 was achieved by depletion of PMNs or inhibition of MMP-activity by a broad-spectrum MMP inhibitor and confirmed by zymography. In addition, reactive oxygen species were evaluated by spin trap assay. RESULTS The mucosal injury and the infiltration of PMNs into the gut tissue of rats with SAP were significantly increased in comparison with rats treated with anti-rat PMN serum or BB-94. The levels of MMP-9 and reactive oxygen species in the gut of rats with SAP were significantly higher than those of the rats treated with anti-rat PMN serum or BB-94. Pretreatment with anti-rat PMN serum or BB-94 reduced the incidence of BT in SAP. CONCLUSION The incidence of BT in SAP was prevented by the depletion of PMNs or less pronounced by the injection of the MMP inhibitor BB-94. PMNs play an important pathophysiologic role in the occurrence of BT, and MMP-9 is involved in both BT and PMN transmigration in rat SAP.
Collapse
|
29
|
De Palma AM, Thibaut HJ, Li S, Van Aelst I, Dillen C, Swinnen M, Verbeken E, Neyts J, Opdenakker G. Inflammatory rather than infectious insults play a role in exocrine tissue damage in a mouse model for coxsackievirus B4-induced pancreatitis. J Pathol 2008; 217:633-41. [DOI: 10.1002/path.2501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
de Campos T, Deree J, Martins JO, Loomis WH, Shenvi E, Putnam JG, Coimbra R. Pentoxifylline attenuates pulmonary inflammation and neutrophil activation in experimental acute pancreatitis. Pancreas 2008; 37:42-9. [PMID: 18580443 DOI: 10.1097/mpa.0b013e3181612d19] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Acute pancreatitis (AP) is associated with a systemic inflammatory response. Pentoxifylline (PTX) has been shown to attenuate neutrophil activation and end-organ injury in shock states such as hemorrhage and sepsis. We hypothesized that PTX would down-regulate AP-induced lung injury. METHODS Sprague-Dawley rats underwent catheterization of the pancreatic duct. Acute pancreatitis (n = 7) and AP/PTX animals (n = 7) received a retrograde infusion of 3.5% sodium taurocholate and intravenous treatment with normal saline or normal saline and PTX (25 mg/kg), respectively. Pulmonary neutrophil degranulation and sequestration were determined by zymography and detection of myeloperoxidase. Nuclear factor kappa B and mitogen-activated protein kinase phosphorylation was determined by Western blot. Cytokine-induced neutrophil chemoattractant was quantified by enzyme linked immunosorbent assay. RESULTS Pulmonary histologic injury scores were attenuated in the AP/PTX group (P < 0.05). Plasma amylase levels remained unchanged. Pentoxifylline produced a significant decline in myeloperoxidase content and matrix metalloproteinase activity (P < 0.05). The increase in the phosphorylation of pulmonary nuclear factor kappa B, p38 mitogen-activated protein kinase, and extracellular-related signal kinase 1/2 observed after AP was not demonstrated with PTX (P < 0.05). Pentoxifylline supplementation reduced pulmonary cytokine-induced neutrophil chemoattractant levels by 50% (P < 0.05). CONCLUSIONS Pentoxifylline significantly attenuated histologic lung injury, pulmonary neutrophil activity, and proinflammatory signaling in a severe model of AP. Therefore, PTX may serve as an adjunct for the treatment of the inflammatory complications of severe AP.
Collapse
Affiliation(s)
- Tercio de Campos
- Division of Trauma and Surgical Critical Care, Department of Surgery, University of California School of Medicine, San Diego, CA, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Hamada K, Yoshida M, Isayama H, Yagi Y, Kanazashi S, Kashihara Y, Takeuchi K, Yamaguchi I. Possible involvement of endogenous 5-HT in aggravation of cerulein-induced acute pancreatitis in mice. J Pharmacol Sci 2007; 105:240-50. [PMID: 17965538 DOI: 10.1254/jphs.fp0071049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to elucidate the pathogenic role of endogenous 5-HT in pancreatitis. Injections of cerulein at hourly intervals caused edematous pancreatitis in mice characterized by hyperenzymemia and histological alterations. While the cerulein-induced hyperenzymemia was attenuated in mice pretreated with p-CPA, a 5-HT depletor, it was exaggerated by the preferential 5-HT2A agonist (DOI), but not by the preferential 5-HT2B agonist (BW723C86) or the preferential 5-HT2C agonist (mCPP). Selective 5-HT2A antagonists (risperidone, spiperone, ketanserin, AMI-193, and MDL 11,939) dose-dependently attenuated the hyperenzymemia; and their potency order, excepting that of ketanserin which has considerable affinity at the 5-HT2C receptor as well, paralleled their reported pKi values at the 5-HT2A receptor. Selective 5-HT2B (SB204741) and 5-HT2C (SB242084) antagonists hardly affected the hyperenzymemia. Although the non-selective 5-HT2A/2B/2C antagonists (metergoline, ritanserin, and methysergide) dose-dependently attenuated the hyperenzymemia, they were relatively less potent compared to their high pKi values at the 5-HT2A receptor. In another set of experiments, risperidone, but not SB204741 and SB242084, dose-dependently reversed the cerulein-induced histological alteration of the pancreas (inflammatory cell infiltration). These results suggest that endogenously released 5-HT activates 5-HT2A receptors to aggravate cerulein-induced pancreatitis. We propose that selective 5-HT2A antagonists may provide a new therapy for acute pancreatitis.
Collapse
Affiliation(s)
- Kentaro Hamada
- UMN Pharma, Inc., Department of Pharmacology, 1-15-8 Jinnan, Shibuya-ku Tokyo 150-0041, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Role of platelet activating factor in pathogenesis of acute respiratory distress syndrome. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200710020-00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
33
|
Gultekin FA, Kerem M, Tatlicioglu E, Aricioglu A, Unsal C, Bukan N. Leptin treatment ameliorates acute lung injury in rats with cerulein-induced acute pancreatitis. World J Gastroenterol 2007; 13:2932-8. [PMID: 17589942 PMCID: PMC4171144 DOI: 10.3748/wjg.v13.i21.2932] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the effect of exogenous leptin on acute lung injury (ALI) in cerulein-induced acute pancreatitis (AP).
METHODS: Forty-eight rats were randomly divided into 3 groups. AP was induced by intraperitoneal (i.p.) injection of cerulein (50 μg/kg) four times, at 1 h intervals. The rats received a single i.p. injection of 10 μg/kg leptin (leptin group) or 2 mL saline (AP group) after cerulein injections. In the sham group, animals were given a single i.p. injection of 2 mL saline. Experimental samples were collected for biochemical and histological evaluations at 24 h and 48 h after the induction of AP or saline administration. Blood samples were obtained for the determination of amylase, lipase, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, macrophage inflammatory peptide (MIP)-2 and soluble intercellular adhesion molecule (sICAM)-1 levels, while pancreatic and lung tissues were removed for myeloperoxidase (MPO) activity, nitric oxide (NOx) level, CD40 expression and histological evaluation.
RESULTS: Cerulein injection caused severe AP, confirmed by an increase in serum amylase and lipase levels, histopathological findings of severe AP, and pancreatic MPO activity, compared to the values obtained in the sham group. In the leptin group, serum levels of MIP-2, sICMA-1, TNF-α, and IL-1β, pancreatic MPO activity, CD40 expression in pancreas and lung tissues, and NOx level in the lung tissue were lower compared to those in the AP group. Histologically, pancreatic and lung damage was less severe following leptin administration.
CONCLUSION: Exogenous leptin attenuates inflamma-tory changes, and reduces pro-inflammatory cytokines, nitric oxide levels, and CD40 expression in cerulein-induced AP and may be protective in AP associated ALI.
Collapse
Affiliation(s)
- Fatma Ayca Gultekin
- Gazi University, School of Medicine, Department of General Surgery, Besevler 06510 Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
34
|
Hayashi T, Ishida Y, Kimura A, Iwakura Y, Mukaida N, Kondo T. IFN-gamma protects cerulein-induced acute pancreatitis by repressing NF-kappa B activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:7385-7394. [PMID: 17513789 DOI: 10.4049/jimmunol.178.11.7385] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We explored the pathophysiological roles of IFN-gamma in cerulein-induced acute pancreatitis. In wild-type (WT) mice, cerulein injection caused acute pancreatitis as evidenced by increased serum amylase levels and pathological changes such as interstitial edema, vacuolization, acinar cell necrosis, and neutrophil infiltration in pancreas. Concomitantly, cerulein treatment augmented intrapancreatic gene expression of TNF-alpha, KC/CXCL1, MIP-2/CXCL2, cyclooxygenase-2 (COX-2), and IFN-gamma in WT mice. In situ hybridization combined with immunofluorescence analyses demonstrated that infiltrating neutrophils expressed IFN-gamma mRNA. Unexpectedly, IFN-gamma(-/-) mice exhibited exacerbated cerulein-induced pancreatic injury, with enhanced neutrophil recruitment. Moreover, intrapancreatic gene expression of TNF-alpha, KC/CXCL1, MIP-2/CXCL2, and COX-2 were significantly exaggerated in IFN-gamma(-/-) mice, compared with WT mice. Cerulein activated NF-kappaB, an indispensable transcription factor for gene transcription of TNF-alpha, KC/CXCL1, MIP-2/CXCL2, and COX-2, in pancreas of cerulein-treated WT mice as evidenced by the increases in nuclear amount and DNA-binding activity of NF-kappaB p65. In comparison with WT mice, IFN-gamma(-/-) mice exhibited exaggerated and prolonged NF-kappaB activation, probably due to reduced acetylation of Stat1, a main signal transducer of IFN-gamma, because acetylated Stat1 can inhibit NF-kappaB activation. Indeed, IFN-gamma acetylated Stat1 and reciprocally reduced NF-kappaB activation and COX-2 expression in neutrophils. Finally, even when administered 4 h after the first cerulein injection, IFN-gamma remarkably attenuated acute pancreatitis in both WT and IFN-gamma(-/-) mice, with reduced NF-kappaB activation and COX-2 expression. Thus, IFN-gamma can have anti-inflammatory effects on acute pancreatitis by depressing the proinflammatory consequences of NF-kappaB activation.
Collapse
Affiliation(s)
- Takahito Hayashi
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Cosen-Binker LI, Gaisano HY. Recent insights into the cellular mechanisms of acute pancreatitis. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2007; 21:19-24. [PMID: 17225878 PMCID: PMC2656626 DOI: 10.1155/2007/930424] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In acute pancreatitis, initiating cellular events causing acinar cell injury includes co-localization of zymogens with lysosomal hydrolases, leading to premature enzyme activation and pathological exocytosis of zymogens into the interstitial space. This is followed by processes that accentuate cell injury; triggering acute inflammatory mediators, intensifying oxidative stress, compromising the microcirculation and activating a neurogenic feedback. Such localized events then progress to a systemic inflammatory response leading to multiorgan dysfunction syndrome with resulting high morbidity and mortality. The present review discusses some of the most recent insights into each of these cellular processes postulated to cause or propagate the process of acute pancreatitis, and also the role of alcohol and genetics.
Collapse
Affiliation(s)
| | - Herbert Y Gaisano
- Correspondence: Dr Herbert Y Gaisano, University of Toronto, Room 7226, Medical Science Building, 1 King’s College Circle, Toronto, Ontario M5S 1A8. Telephone 416-978-1526, fax 416-978-8765, e-mail
| |
Collapse
|
36
|
Abstract
Many animal models are available to investigate the pathogenesis of pancreatitis, an inflammatory disorder of the pancreas. However, the secretagogue hyperstimulation model of pancreatitis is the most commonly used. Animals infused with high doses of cholecystokinin (CCK) exhibit hyperamylasemia, pancreatic edema, and acinar cell injury, which closely mimic pancreatitis in humans. Intra-acinar zymogen activation is an essential early event in the pathogenesis of secretagogue-induced pancreatitis. Early in the course of pancreatitis, lysosomal hydrolases colocalize with digestive zymogens and activate them. These activated zymogens then cause acinar cell injury and necrosis, a characteristic of pancreatitis. Besides being the site of initiation of injury in pancreatitis, acinar cells also synthesize and release cytokines and chemokines very early in the course of pancreatitis, which then attract and activate inflammatory cells and initiate the disease's systemic phase.
Collapse
Affiliation(s)
- Ashok K Saluja
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
37
|
Zhao X, Dib M, Wang X, Widegren B, Andersson R. Influence of mast cells on the expression of adhesion molecules on circulating and migrating leukocytes in acute pancreatitis-associated lung injury. Lung 2005; 183:253-264. [PMID: 16211461 DOI: 10.1007/s00408-004-2538-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2005] [Indexed: 11/28/2022]
Abstract
Pancreatitis-associated lung injury is an early-occurring and severe complication, still associated with substantial mortality. A number of inflammatory cells and their products are involved in the initiation and progress of the condition. In the present study, acute pancreatitis (AP) was induced by the intraductal infusion of 5% sodium taurodeoxycholate in the rat. Pulmonary endothelial barrier dysfunction was measured by plasma exudation of radiolabeled albumin. Expression of PECAM-1, ICAM-1, and L: -selectin on neutrophils (CD11b(+)) and monocytes/macrophages (CD11b/c(+)), obtained from circulation and lung tissue, was measured 1 and 6 hours after AP induction (n = 10 rats/time point/group). Plasma levels of histamine and serotonin were determined. The role of mast cells was evaluated by pretreatment with the mast cell stabilizer cromolyn. Intraperitoneal administration of cromolyn downregulated pancreatitis-induced systemic increase of histamine at 1 hour (513 +/- 82 vs. 309 +/- 50, p < 0.05). Cromolyn prevented a decreased expression of PECAM-1 on circulatory neutrophils and monocytes/macrophages and against an increased expression of ICAM-1 and PECAM-1 on pulmonary neutrophils and monocytes/macrophages 6 hours after AP induction (about 40% vs. 10%, p < 0.01). The mast cell stabilizer also prevented pancreatitis-induced pulmonary endothelial barrier dysfunction at 6 hours. Thus, our data indicate that mast cells may play a critical role in the activation of leukocytes during the initiation of pancreatitis-associated lung injury by altering phenotypes of adhesion molecules.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pharmacology, Medical College of Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
38
|
Abstract
Acute pancreatitis is an inflammatory disorder, and inflammation not only affects the pathogenesis but also the course of the disease. Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction; if marked this leads to a systemic inflammatory response syndrome (SIRS). An excessive SIRS leads to distant organ damage and multiple organ dysfunction syndrome (MODS). MODS associated with acute pancreatitis is the primary cause of morbidity and mortality in this condition. Recent studies by us and other investigators have established the critical role played by inflammatory mediators such as TNF-alpha, IL-1beta, IL-6, IL-8, CINC/GRO-alpha, MCP-1, PAF, IL-10, CD40L, C5a, ICAM-1, MIP1-alpha, RANTES, substance P, and hydrogen sulfide in acute pancreatitis and the resultant MODS. This review intends to present an overview of the inflammatory response that takes place following pancreatic acinar cell injury.
Collapse
Affiliation(s)
- M Bhatia
- Department of Pharmacology, National University of Singapore, Faculty of Medicine, Singapore.
| |
Collapse
|
39
|
Abstract
Acute pancreatitis is a disease of variable severity in which some patients experience mild, self-limited attacks while others manifest a severe, highly morbid, and frequently lethal attack. The events that regulate the severity of acute pancreatitis are, for the most part, unknown. Several recent studies have suggested that the acinar cell response to injury may be an important determinant of disease severity. In these studies, mild acute pancreatitis was found to be associated with extensive apoptotic acinar cell death while severe acute pancreatitis was found to involve extensive acinar cell necrosis but very little acinar cell apoptosis. These observations have led to the hypothesis that apoptosis might be a favorable response to acinar cell and that interventions which favor induction of apoptotic, as opposed to necrotic, acinar cell death might reduce the severity of an attack of acute pancreatitis. This review aims to discuss our current understanding of the contribution of acinar cell apoptosis to the severity of acute pancreatitis.
Collapse
Affiliation(s)
- M Bhatia
- Department of Pharmacology, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
40
|
Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol 2004; 202:145-156. [PMID: 14743496 DOI: 10.1002/path.1491] [Citation(s) in RCA: 868] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 09/29/2003] [Indexed: 12/17/2022]
Abstract
Inflammatory response leading to organ dysfunction and failure continues to be the major problem after injury in many clinical conditions such as sepsis, severe burns, acute pancreatitis, haemorrhagic shock, and trauma. In general terms, systemic inflammatory response syndrome (SIRS) is an entirely normal response to injury. Systemic leukocyte activation, however, is a direct consequence of a SIRS and if excessive, can lead to distant organ damage and multiple organ dysfunction syndrome (MODS). When SIRS leads to MODS and organ failure, the mortality becomes high and can be more than 50%. Acute lung injury that clinically manifests as acute respiratory distress syndrome (ARDS) is a major component of MODS of various aetiologies. Inflammatory mediators play a key role in the pathogenesis of ARDS, which is the primary cause of death in these conditions. This review summarizes recent studies that demonstrate the critical role played by inflammatory mediators such as tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, platelet activating factor (PAF), IL-10, granulocyte macrophage-colony stimulating factor (GM-CSF), C5a, intercellular adhesion molecule (ICAM)-1, substance P, chemokines, VEGF, IGF-I, KGF, reactive oxygen species (ROS), and reactive nitrogen species (RNS) in the pathogenesis of ARDS. It is reasonable to speculate that elucidation of the key mediators in ARDS coupled with the discovery of specific inhibitors would make it possible to develop clinically effective anti-inflammatory therapy.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pharmacology, National University of Singapore, Singapore.
| | | |
Collapse
|
41
|
Cosen-Binker LI, Binker MG, Negri G, Tiscornia O. Experimental model of acute pancreatitis in Wistar rat: glucocorticoid treatment profile. Dig Dis Sci 2003. [PMID: 12924636 DOI: 10.1023/a: 1024791101859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe acute pancreatitis may be triggered by an extrapancreatic insult at the peri-Vaterian duodenum such as that occurring in the short-term, 20 min closed duodenal loop model in Wistar rat, which mimics biliary acute pancreatitis or that following endoscopy. Glucocorticoids are immunological modulators whose therapeutic value is worth investigating. Wistar male rats were used under standardized conditions. Acute pancreatitis was induced by instillation of a 7% sodium tauraocholate solution with 5 drops of methylene blue to monitor absence of duodenal bilio pancreatic reflux into the peri-Vaterian duodenum for 20 min. Detection of biliopancreatic reflux with methylene blue was an exclusion criterion. Different doses and times of administration of subcutaneous hydrocortisone were evaluated. Biochemical assays were carried out in blood samples and pancreatic and lung tissue, while histpathological studies were done in the pancreas, lung liver, duodenum, spleen, kidneys, suprarenal glands, and stomach. Animals subjected to the experimental model developed severe acute pancreatitis. According to the dose and time of administration, hydrocortisone therapy was effective and beneficial at a dose of 4 mg/kg give 30 min before inducing acute pancreatitis. It was ineffective when doses were <4 mg/kg and given before sodium taurocholate harmful when the dose was >4 mg/kg and given either before or after. Thus, the proposed model is valid and useful to study the initiation mechanism of acute pancreatitis caused extrapancreatically while its amelioration by glucocorticoid is related the dose and time factor to achieve therapeutical results.
Collapse
Affiliation(s)
- Laura Iris Cosen-Binker
- Programa de Estudios Pancreáticos, Hospital de Clínicas, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
42
|
Pastor CM, Rubbia-Brandt L, Hadengue A, Jordan M, Morel P, Frossard JL. Role of macrophage inflammatory peptide-2 in cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. J Transl Med 2003; 83:471-8. [PMID: 12695550 DOI: 10.1097/01.lab.0000063928.91314.9f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acute pancreatitis is an inflammatory process of variable severity, and leukocytes are thought to play a key role in the development of pancreatitis and pancreatitis-associated lung injury. The effects of mediators released by these inflammatory cells may induce tissue damage. The aim of our study was to evaluate the role of the chemokine, macrophage inflammatory protein-2 (MIP-2), in the pathogenesis of cerulein-induced pancreatitis and pancreatitis-associated lung injury. The severity of pancreatitis was measured by serum amylase, pancreatic edema, acinar cell necrosis, and myeloperoxidase activity. Lung injury was quantitated by evaluating lung microvascular permeability and lung myeloperoxidase activity. To determine the role of MIP-2 in the pathophysiology of the disease, anti-MIP-2 antibody was administered either 1 hour before or 2 hours after the start of cerulein administration. MIP-2 concentrations increased in serum, pancreas, and lung tissues in mice treated with cerulein. Anti-MIP-2 antibody administrated either before or after cerulein partially protected against pancreas and lung injury. These results show that MIP-2 plays a key role in the pathophysiology of acute pancreatitis and that MIP-2 blockade may improve the outcome of the disease.
Collapse
Affiliation(s)
- Catherine M Pastor
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
De La Torre Prados M, García AlcÁntara A, Soler García A, Fernández García I, Luque Fernández M, Merino Vega J. Pancreatitis aguda y base experimental en la respuesta fisiopatológica local y sistémica. Med Intensiva 2003. [DOI: 10.1016/s0210-5691(03)79875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
|
45
|
Frossard JL, Saluja AK, Mach N, Lee HS, Bhagat L, Hadenque A, Rubbia-Brandt L, Dranoff G, Steer ML. In vivo evidence for the role of GM-CSF as a mediator in acute pancreatitis-associated lung injury. Am J Physiol Lung Cell Mol Physiol 2002; 283:L541-8. [PMID: 12169573 DOI: 10.1152/ajplung.00413.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe pancreatitis is frequently associated with acute lung injury (ALI) and the respiratory distress syndrome. The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in mediating the ALI associated with secretagogue-induced experimental pancreatitis was evaluated with GM-CSF knockout mice (GM-CSF -/-). Pancreatitis was induced by hourly (12x) intraperitoneal injection of a supramaximally stimulating dose of the cholecystokinin analog caerulein. The resulting pancreatitis was similar in GM-CSF-sufficient (GM-CSF +/+) control animals and GM-CSF -/- mice. Lung injury, quantitated by measuring lung myeloperoxidase activity (an indicator of neutrophil sequestration), alveolar-capillary permeability, and alveolar membrane thickness was less severe in GM-CSF -/- than in GM-CSF +/+ mice. In GM-CSF +/+ mice, pancreas, lung and serum GM-CSF levels increase during pancreatitis. Lung levels of macrophage inflammatory protein (MIP)-2 are also increased during pancreatitis, but, in this case, the rise is less profound in GM-CSF -/- mice than in GM-CSF +/+ controls. Administration of anti-MIP-2 antibodies was found to reduce the severity of pancreatitis-associated ALI. Our findings indicate that GM-CSF plays a critical role in coupling pancreatitis to ALI and suggest that GM-CSF may act indirectly by regulating the release of other proinflammatory factors including MIP-2.
Collapse
Affiliation(s)
- Jean Louis Frossard
- Department of Surgery, Beth Israel Hospital Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Logsdon C. Phosphatidylinositol 3-kinase and trypsin activation in pancreatitis. J Clin Invest 2001; 108:1267-8. [PMID: 11696567 PMCID: PMC209447 DOI: 10.1172/jci14272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- C Logsdon
- University of Michigan, Department of Physiology, Box 0622, 7710 Medical Science Building II, Ann Arbor, Michigan 48109-0622, USA.
| |
Collapse
|
47
|
Auten RL, Mason SN, Tanaka DT, Welty-Wolf K, Whorton MH. Anti-neutrophil chemokine preserves alveolar development in hyperoxia-exposed newborn rats. Am J Physiol Lung Cell Mol Physiol 2001; 281:L336-44. [PMID: 11435208 DOI: 10.1152/ajplung.2001.281.2.l336] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammation may contribute to lung injury and impaired alveolar development in bronchopulmonary dysplasia. We treated hyperoxia-exposed newborn rats with antibodies to the neutrophil chemokine cytokine-induced neutrophil chemoattractant-1 (CINC-1) during 95% O2 exposure to reduce adverse effects of hyperoxia-induced inflammation on lung development. Rats were exposed at birth to air, 95% O2, or 95% O2 + anti-CINC-1 (injected on days 3 and 4). Bromodeoxyuridine (BrdU) was injected 6 h before death. Anti-CINC-1 treatment improved weight gain but not survival at day 8. Anti-CINC-1 reduced bronchoalveolar lavage neutrophils at day 8 to levels equal to air controls. Total detectable lung CINC-1 was reduced to air control levels. Lung compliance was improved by anti-CINC-1, achieving air control levels in the 10-microg anti-CINC-1 group. Anti-CINC-1 preserved proliferating cell nuclear antigen expression in airway epithelium despite 95% O2 exposure. BrdU incorporation was depressed by hyperoxia but preserved by anti-CINC-1 to levels similar to air control. Alveolar volume and surface density were decreased by hyperoxia but preserved by anti-CINC-1 to levels equal to air control. Blockade of neutrophil influx in newborns may avert early lung injury and avoid alveolar developmental arrest that contributes to bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- R L Auten
- Division of Neonatal Medicine, Department of Pediatrics, Neonatal-Perinatal Research Institute, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
48
|
Frossard JL, Pastor CM, Hadengue A. Effect of hyperthermia on NF-kappaB binding activity in cerulein-induced acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1157-62. [PMID: 11352808 DOI: 10.1152/ajpgi.2001.280.6.g1157] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the pancreatic heat shock response has already been reported to confer protective effects during experimental pancreatitis, the mechanism of action remains unknown. We investigated the effects of hyperthermia in cerulein-induced pancreatitis. Heat shock protein 70 (HSP70) expression in rats was induced by a 20-min period of water immersion (42 degrees C). The severity of pancreatitis as well as the pancreatic expression of cytokines, nuclear factor-kappaB (NF-kappaB), and inhibitory factor kappaB-alpha (IkappaB-alpha) were evaluated in the presence and absence of hyperthermia. We found that hyperthermia resulted in time-dependent expression of HSP70 within the pancreas associated with a reduction in the severity of acute pancreatitis. Tumor necrosis factor-alpha and intercellular adhesion molecule-1 expression was significantly reduced in the presence of hyperthermia. Moreover, NF-kappaB activity was delayed in the presence of hyperthermia whereas IkappaB-alpha was stabilized in the cytoplasm. These results suggest that hyperthermia decreases the severity of cerulein-induced pancreatitis by decreasing cytokine expression in the pancreas through the modulation of NF-kappaB activity.
Collapse
Affiliation(s)
- J L Frossard
- Division of Gastroenterology, Geneva University Hospital, 1211 Geneva 14, Switzerland.
| | | | | |
Collapse
|
49
|
Bhatia M, Saluja AK, Singh VP, Frossard JL, Lee HS, Bhagat L, Gerard C, Steer ML. Complement factor C5a exerts an anti-inflammatory effect in acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 2001; 280:G974-G978. [PMID: 11292607 DOI: 10.1152/ajpgi.2001.280.5.g974] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Complement factor C5a acting via C5a receptors (C5aR) is recognized as an anaphylotoxin and chemoattractant that exerts proinflammatory effects in many pathological states. The effects of C5a and C5aR in acute pancreatitis and in pancreatitis-associated lung injury were evaluated using genetically altered mice that either lack C5aR or do not express C5. Pancreatitis was induced by administration of 12 hourly injections of cerulein (50 microg/kg ip). The severity of pancreatitis was determined by measuring serum amylase, neutrophil sequestration in the pancreas, and acinar cell necrosis. The severity of lung injury was evaluated by measuring neutrophil sequestration in the lung and pulmonary microvascular permeability. In both strains of genetically altered mice, the severity of pancreatitis and pancreatitis-associated lung injury was greater than that noted in the comparison wild-type strains of C5aR- and C5-sufficient animals. This exacerbation of injury in the absence of C5a function indicates that, in pancreatitis, C5a exerts an anti-inflammatory effect. Potentially, C5a and its receptor are capable of both promoting and reducing the extent of acute inflammation.
Collapse
Affiliation(s)
- M Bhatia
- Department of Surgery and Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard Digestive Diseases Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lundberg AH, Fukatsu K, Gaber L, Callicutt S, Kotb M, Wilcox H, Kudsk K, Gaber AO. Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis. Ann Surg 2001; 233:213-20. [PMID: 11176127 PMCID: PMC1421203 DOI: 10.1097/00000658-200102000-00010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine whether blocking the cell surface expression of intracellular adhesion molecules (ICAM-1) in established severe acute pancreatitis (AP) would ameliorate pulmonary injury. SUMMARY BACKGROUND DATA Lung injury in AP is in part mediated by infiltrating leukocytes, which are directed to lung tissue by ICAM-l. The authors' laboratory has previously demonstrated that AP results in overproduction of inflammatory cytokines, upregulation of pulmonary ICAM-1 expression, and a concomitant infiltration of neutrophils, which results in lung injury. METHODS Young female mice were fed a choline-deficient/ethionine-supplemented diet to induce AP and were treated with a blocking dose of monoclonal antibody specific to the ICAM-1 receptor. Antibody treatment was administered at 72, 96, and 120 hours after beginning the diet, and all animals were killed at 144 hours. The degree of pancreatitis was evaluated by serum biochemical and tumor necrosis factor alpha levels as well as histology. The dual radiolabeled monoclonal antibody method was used to quantitate ICAM-1 cell surface expression in pulmonary tissue. Lung injury was assessed histologically and by determining lung microvascular permeability by measuring accumulated 125I-radiolabeled albumin. Pulmonary neutrophil sequestration was determined by the myeloperoxidase assay. RESULTS All mice developed severe AP, and pancreatic injury was equally severe in both treated and untreated groups. Pulmonary ICAM-1 expression was significantly upregulated in animals with AP compared with controls. Treatment with a blocking dose of anti-ICAM-1 antibody after the induction of AP resulted in inhibited ICAM-1 cell surface expression to near control levels. Compared to untreated animals with AP, mice treated with anti-ICAM-1 mice had significantly reduced histologic lung injury and neutrophil sequestration, and a decreased microvascular permeability by more than twofold. CONCLUSIONS These results demonstrate for the first time that treatment targeting the cell surface expression of ICAM-1 after the induction of AP ameliorates pulmonary injury, even in the face of severe pancreatic disease.
Collapse
Affiliation(s)
- A H Lundberg
- Department of Surgery, University of Tennessee, Memphis, USA
| | | | | | | | | | | | | | | |
Collapse
|